Flexure of thick orthotropic plates by exponential shear deformation theory
Directory of Open Access Journals (Sweden)
A. S. Sayyad
Full Text Available In the present paper, a variationally consistent exponential shear deformation theory taking into account transverse shear deformation effect is presented for the flexural analysis of thick orthotropic plates. The inplane displacement field uses exponential function in terms of thickness coordinate to include the shear deformation effect. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for static flexure of simply supported orthotropic plates are compared with those of other refined theories and elasticity solution wherever applicable. The results obtained by present theory are in excellent agreement with those of exact results and other higher order theories. Thus the efficacy of the present refined theory is established.
Thermal analysis of isotropic plates using hyperbolic shear deformation theory
Directory of Open Access Journals (Sweden)
Shinde B.M.
2013-12-01
Full Text Available In this paper, thermal analysis of a thick isotropic rectangular plate is carried out using the hyperbolic shear deformation theory (HYSDT. The displacement field of the theory contains three variables. The hyperbolic sine and cosine functions are used in the displacement field in-terms of thickness coordinate to represent the effect of shear deformation. The most important feature of the theory is that, the transverse shear stresses can be obtained directly from the use of constitutive relations, hence the theory does not need shear correction factor. The theory accounts for parabolic distribution of transverse shear stresses across the thickness satisfying the stress free boundary conditions at top and bottom surfaces of the plate. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. The results obtained for bending analysis of isotropic plates subjected to uniformly distributed thermal load are compared with those obtained by other theories, to validate the accuracy of the presented theory.
Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Yuwaraj Marotrao Ghugal
Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.
Directory of Open Access Journals (Sweden)
A. S. Sayyad
Full Text Available In the present paper, an exponential shear deformation theory is used to determine the natural frequencies and critical buckling loads of orthotropic plates. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The in-plane displacement field uses an exponential function in terms of thickness coordinate to include the effect of shear deformation and rotary inertia. Governing equations and boundary conditions are derived from the dynamic version of principle of virtual work. The Navier type solution is employed for solving the governing equations of simply supported square orthotropic plates. The results obtained using present higher order shear deformation theory are found to be agree well with those obtained by other several existing higher order theories for analyzing the buckling and free vibration behaviour of orthotropic plates.
Directory of Open Access Journals (Sweden)
Sayyad A. S.
2012-06-01
Full Text Available This paper presents a variationally consistent an exponential shear deformation theory for the bi-directional bending and free vibration analysis of thick plates. The theory presented herein is built upon the classical plate theory. In this displacement-based, refined shear deformation theory, an exponential functions are used in terms of thickness co-ordinate to include the effect of transverse shear deformation and rotary inertia. The number of unknown displacement variables in the proposed theory are same as that in first order shear deformation theory. The transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor. Governing equations and boundary conditions of the theory are obtained using the dynamic version of principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of proposed theory. Results obtained by using proposed theory are found to be agree well with the exact elasticity results. The objective of the paper is to investigate the bending and dynamic response of thick isotropic square and rectangular plates using an exponential shear deformation theory.
Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
Yuwaraj M. Ghugal
2016-12-01
Full Text Available A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the present formulation does not require the shear correction factor generally associated with the first order shear deformable theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.
Sayyad, Atteshamuddin Shamshuddin; Shinde, Bharati Machhindra; Ghugal, Yuwaraj Marotrao
2014-11-01
This study presents the thermoelastic analysis of laminated composite plates subjected to sinusoidal thermal load linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are investigated by using a unified plate theory which includes different functions in terms of thickness coordinate to represent the effect of shear deformation. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Governing equations of equilibrium and associated boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Numerical results are presented to demonstrate the thermal response of the laminated composite plates.
Buckling analysis of thick plates using refined trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Sachin Madhavrao Gunjal
2015-12-01
Full Text Available In this paper, a refined trigonometric shear deformation plate theory is applied for the buckling analysis of thick isotropic square and rectangular plates. The theory involves only two unknowns, as against three in first order shear deformation theory and other higher order theories. The theory involves sinusoidal function in the in-plane displacement. The transverse displacement involves bending and shear components. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported isotropic rectangular plate subjected to uniaxial and biaxial compression is considered for the detailed numerical study. Results of critical buckling load for simply supported isotropic rectangular plates are compared with those of other refined theories.
Free Vibration Analysis of Laminated Plates Using First-Order Shear Deformation Theory
Topal, Umut; Uzman, Ümit
This paper deals with free vibration analysis of simply supported laminated composite plates using first-order shear deformation theory (FSDT). The displacement field of a laminated composite plate is given for FSDT. The numerical studies are conducted to determine the effect of width-to-thickness ratio, degree of orthotropy, fiber orientation, aspect ratio on the nondimensionalized fundamental frequency for laminated composite plates. Also, the effect of shear deformation, rotatory inertia and shear correction coefficient on the nondimensionalized fundamental frequency is examined. A MATLAB code is written for free vibration of laminated plates. However, the problem is modeled using finite element package program ANSYS for different meshes. Finally, the results are given in graphical and tabular form and compared.
Buckling analysis of thick isotropic plates by using exponential shear deformation theory
Directory of Open Access Journals (Sweden)
Sayyad A. S.
2012-12-01
Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.
Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory
International Nuclear Information System (INIS)
Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M
2011-01-01
Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.
Free vibration of thick orthotropic plates using trigonometric shear deformation theory
Directory of Open Access Journals (Sweden)
Y. M Ghugal
Full Text Available In this paper a trigonometric shear deformation theory is presented for the free vibration of thick orthotropic square and rectangular plates. In this displacement based theory the in-plane displacement field uses sinusoidal function in terms of thickness coordinate to include the shear deformation effect. The cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The most important feature of the theory is that the transverse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface conditions on the top and bottom surfaces of the plate. Hence the theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Results obtained for frequency of bending mode, shear mode and thickness stretch mode of free vibration of simply supported orthotropic square and rectangular plates are compared with those of other refined theories and exact solution from theory of elasticity wherever applicable.
Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory
Energy Technology Data Exchange (ETDEWEB)
Pekovic, Ognjen; Stupar, Slobodan; Simonovic, Aleksandar; Svorcan, Jelena; Komarov, Dragan [University of Belgrade, Belgrade (Serbia)
2014-08-15
This research paper presents an isogeometric plate finite element formulation for analysis of thick composite plates. Isogeometric finite element method which is based on non-uniform rational B-splines (NURBS) basis functions, is a novel numerical procedure developed to bridge the gap between CAD and FEM modeling of structures. In order to investigate the behavior of isogeometric plate elements under static loading, plate kinematics is based on third order shear deformation theory (TSDT) of Reddy, which is free from transverse shear locking. This paper discusses accurate transverse stress recovery procedures for TSDT isogeometric finite elements. Numerical experiments with quadratic, cubic and quartic elements are presented and obtained results are compared to other available ones.
Duc, N. D.; Tung, H. V.
2010-12-01
An analytical approach to investigating the stability of simply supported rectangular functionally graded plates under in-plane compressive, thermal, and combined loads is presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections. The resulting equations are solved by employing the Galerkin procedure to obtain expressions from which the postbuckling load-deflection curves can be traced by an iterative procedure. A stability analysis performed for geometrically midplane-symmetric FGM plates shows the effects of material and geometric parameters, in-plane boundary conditions, temperature-dependent material properties, and imperfections on the postbuckling behavior of the plates.
Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
B. Sidda Reddy
2013-01-01
Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.
Directory of Open Access Journals (Sweden)
Alireza Shooshtari
Full Text Available Abstract Free vibration of a magnetoelectroelastic rectangular plate is investigated based on the Reddy's third-order shear deformation theory. The plate rests on an elastic foundation and it is considered to have different boundary conditions. Gauss's laws for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single partial differential equation and then by using the Galerkin method, the ordinary differential equation of motion as well as an analytical relation for the natural frequency of the plate is obtained. Some numerical examples are presented to validate the proposed model and to investigate the effects of several parameters on the vibration frequency of the considered smart plate.
Behaviour of plate elements based on the first-order shear deformation theory
Averill, R. C.; Reddy, J. N.
1990-01-01
A new analytical technique to assess the performance of shear deformable elements is presented, which makes it possible to determine a priori whether a given element will lock when used to model thin structures. The role that shear constraints play in determining the behavior of thin elements was established by comparing the results of key numerical tests with the predictions of element behavior made by studying the form of the shear constraints. Conclusions regarding locking behavior and the effects of reduced integration in thin shear deformable elements are presented, including the findings (1) that singularity of the shear stiffness matrix is not sufficient to avoid locking; (2) that the effect of mesh refinement on an element that contains spurious constraints is two-fold; and (3) that reduced integration does not remove spurious constraints but rather relaxes them. The results of the study are in agreement with previous studies of Mindlin plate elements in regarding Lagrangian elements as superior to serendipity elements when either full or reduced integration is employed.
Hao, Y. X.; Zhang, W.
2010-05-01
The present investigation focuses on the research of the nonlinear vibration of a cantilevered FGMs rectangular plate subjected to the transversal excitation. Materials properties of the constituents are graded in the thickness direction according to a power law distribution and are assumed to be temperature-dependent and vary along the thickness direction. In the framework of the Reddy's Third-order shear deformation plate theory, the governing equations of motion for the cantilever FGMs rectangular plate are derived by using the Hamilton's principle. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The equations of motion can be reduced two-degree-of-freedom nonlinear system under the external excitations using the Galerkin's method. Using numerical method, the control equations are analyzed to obtain the response curves. A detailed parametric study is conducted to show the influences of the material properties on dynamic responses of the nonlinear vibration of the cantilever FGM plate.
Directory of Open Access Journals (Sweden)
Mohammd Sharif Zarei
2016-12-01
Full Text Available In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs, and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT, the motion equations are derived using the energy method and Hamilton's principle. The Navier’s method is used in conjunction with the Bolotin's method for obtaining the dynamic instability region (DIR of the structure. The effects of different parameters such as the volume percentage of SWCNTs, the number and orientation angle of the layers, the elastic medium, and the geometrical parameters of the plates are shown on DIR of the structure. Results indicate that by increasing the volume percentage of SWCNTs the resonance frequency increases, and DIR shifts to right. Moreover, it is found that the present results are in good agreement with the previous researches.
Nguyen Dinh Duc; Pham Hong Cong
2015-01-01
This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of thick functionally graded material (FGM) plates using both of the first-order shear deformation plate theory and stress function with full motion equations (not using Volmir’s assumptions). The FGM plate is assumed to rest on elastic foundation and subjected to mechanical, thermal, and damping loads. Numerical results for dynamic response of the FGM plate are obtained by Runge–Kutta metho...
Dynamic stability of laminated FGM plates based on higher-order shear deformation theory
Yang, J.; Liew, K. M.; Kitipornchai, S.
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Directory of Open Access Journals (Sweden)
Nguyen Dinh Duc
2015-12-01
Full Text Available This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of thick functionally graded material (FGM plates using both of the first-order shear deformation plate theory and stress function with full motion equations (not using Volmir’s assumptions. The FGM plate is assumed to rest on elastic foundation and subjected to mechanical, thermal, and damping loads. Numerical results for dynamic response of the FGM plate are obtained by Runge–Kutta method. The results show the material properties, the elastic foundations, mechanical and thermal loads on the nonlinear dynamic response of functionally graded plates.
Directory of Open Access Journals (Sweden)
Bharti Machhindra Shinde
2015-03-01
Full Text Available In this paper, a refined trigonometric shear deformation theory is applied for the bending analysis of isotropic and orthotropic plates under the various loading conditions. The two unknown variables are involved in the present theory. The present theory satisfies the shear stress free condition at top and bottom surface of the plates without using shear correction factors. The governing equations and boundary conditions are obtained by using the principle of virtual work. A closed form solution is obtained using Navier Solution Scheme. A simply supported isotropic and orthotropic plate subjected to sinusoidally distributed, uniformly distributed and linearly varying loads are considered for the detailed numerical study. The results obtained using present theory are compared with previously published results.
International Nuclear Information System (INIS)
Pervez, T.
1992-01-01
Composite materials have been used for centuries, brick reinforced with straw, laminated iron-steel swords, gun-barrels and concrete, to name but a few. Today industrial innovations improved energy planning, uncertain availability have created a greater interest in search of new materials. Now that increasingly performance requirements are forcing many conventional materials to the limit, the engineer's approach of fitting the design to the properties is changing into one of finding materials with the right properties to meet the demand of design, service of economics. The use of composite materials have progressed through several stages in past two and half decade. First, demonstration pieces were built with the idea of let's see if we can build one. For second stage, replacement pieces, part of the objective was to test a part designed to replace a metal part in an existing application. The last stage is actual production pieces designed from the beginning to be fabricated wholly from composite. This last goal is being approached in deliberate, conservation and multistage fashion. A substantial composite technology has been developed and awaits further challenge. In this paper new higher order shear deformable theory for anisotropic laminated composite is presented. The finite element method is used to get static and dynamic solution for the plate with and without damping effects. Finally, example and discussion are presented to demonstrate the accuracy of the theory presented herein. (author)
Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.
2018-03-01
An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
Xia, Wei; Ni, Qiao
2011-10-01
The influence of fiber orientation, flow yaw angle and length-to-thickness ratio on flutter characteristics of angle-ply laminated plates in supersonic flow is studied by finite element approach. The structural model is established using the Reissner-Mindlin theory in which the transverse shear deformation is considered. The aerodynamic pressure is evaluated by the quasi-steady first-order piston theory. The equations of motion are formulated based on the principle of virtual work. With the harmonic motion assumption, the flutter boundary is determined by solving a series of complex eigenvalue problems. Numerical study shows that (1) The flutter dynamic pressure and the coalescence of flutter modes depend on fiber orientation, flow yaw angle and length-to-thickness ratio; (2) The laminated plate with all fibers aligned with the flow direction gives the highest flutter dynamic pressure, but a slight yawing of the flow from the fiber orientation results in a sharp decrease of the flutter dynamic pressure; (3) The angle-ply laminated plate with fiber orientation angle equal to flow yaw angle gives high flutter dynamic pressure, but not the maximum flutter dynamic pressure; (4) With the decrease of length-to-thickness ratio, an adverse effect due to mode transition on the flutter dynamic pressure is found.
A hyperbolic shear and normal deformation theory for deflection and stresses of FGM sandwich plate
Directory of Open Access Journals (Sweden)
Saidi H.
2016-01-01
Full Text Available In the present paper, the static analysis of functionally graded sandwich plates subjected to thermo mechanical loads is studied. In this model, the displacements vary as a hyperbolic function through the thickness of the plate and satisfy stress boundary conditions on the top and the bottom of the plate. The material properties of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fraction of material constituents. The core layer is still homogeneous and made of an isotropic material. The governing equations of equilibrium for FG sandwich plates can be obtained using the virtual work principle, and the closed form solutions are obtained by using Navier technique. The accuracy of the present analysis is ascertained by comparing it with various results available in the literature. The influences played by side-to-thickness ratio, aspect ratio and volume fraction distributions are investigated.
Experimentally Validated Nonlinear Analysis of Bridge Plate Girders with Deformations
Directory of Open Access Journals (Sweden)
Kużawa Mieszko
2015-09-01
Full Text Available Comprehensive methodology of numerical nonlinear analysis of the consecutive phases in the structural behaviour of bridge plate girders with deformations is presented. The analysis concerns all stages of structure loading until failure and especially determination of the ultimate shear load capacity. Verification and validation of the numerical procedures proposed is based on comparison of the calculated results with effects of experimental laboratory shear capacity tests of plate girders carried out at the University of Ljubljana.
A simplified four-unknown shear and normal deformations theory for ...
Indian Academy of Sciences (India)
Ferreira & Roque (2011) have used a higher-order shear deformation theory and a radial basis function collocation technique for predicting the static deformations and free vibration behaviour of thick plates. Neves et al (2012a, b) have presented an original hyperbolic sine shear deformation theory for the bending and free ...
Simple shear of deformable square objects
Treagus, Susan H.; Lan, Labao
2003-12-01
Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.
Localization in inelastic rate dependent shearing deformations
Katsaounis, Theodoros
2016-09-18
Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd
Theoretical analysis on shear-bending deflection of a ring-shape piezoelectric plate
Directory of Open Access Journals (Sweden)
Zejun Yu
2016-02-01
Full Text Available In this paper, the electromechanical coupling field in shear-bending mode for a ring-shape piezoelectric plate was theoretically established. According to the classical small bending elastic plate theory and piezoelectric constitutive equations, the analytical solution to the bending deformation of the piezo-actuator under electric field and a concentrated or uniformly distributed mechanical load was achieved. The mechanism for generating bending deformation is attributed to axisymmetric shear strain, which further induces the bending deformation of the single ring-shape piezoelectric plate. This mechanism is significant different from that of piezoelectric bimorph or unimorph actuators reported before. Our analysis offers guidance for the optimum design of a ring-shape shear-bending piezo-actuator.
Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates
Directory of Open Access Journals (Sweden)
Min Sook Kim
2017-01-01
Full Text Available The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered were the types of shear reinforcement, including steel stirrups or GFRP plates, and the shear reinforcement spacing. The experimental results show that the GFRP shear reinforcement effectively increased the shear strengths of flat plates. Furthermore, the applicability of two formulas was investigated: a modified version of a shear strength formula from ACI 318-14 and the ACI 318-14 fracture prediction formula.
Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates
Min Sook Kim; Young Hak Lee
2017-01-01
The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP) plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered w...
Inelastic deformations of fault and shear zones in granitic rock
International Nuclear Information System (INIS)
Wilder, D.G.
1986-02-01
Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads
A refined shear deformation theory for flexure of thick beams
Directory of Open Access Journals (Sweden)
Yuwaraj M. Ghugal
Full Text Available A Hyperbolic Shear Deformation Theory (HPSDT taking into account transverse shear deformation effects, is used for the static flexure analysis of thick isotropic beams. The displacement field of the theory contains two variables. The hyperbolic sine function is used in the displacement field in terms of thickness coordinate to represent shear deformation. The transverse shear stress can be obtained directly from the use of constitutive relations, satisfying the shear stress-free boundary conditions at top and bottom of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. General solutions of thick isotropic simply supported, cantilever and fixed beams subjected to uniformly distributed and concentrated loads are obtained. Expressions for transverse displacement of beams are obtained and contribution due to shear deformation to the maximum transverse displacement is investigated. The results of the present theory are compared with those of other refined shear deformation theories of beam to verify the accuracy of the theory.
Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...
Indian Academy of Sciences (India)
Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...
Porosity reduction within shear deformation bands in unconsolidated Pleistocene sediments
Brandes, Christian; Tanner, David
2016-04-01
Deformation bands are important structural elements that occur in the upper crust and develop in porous sandstones and even in unconsolidated sands. In contrast to discrete surfaces such as faults, deformation bands represent tabular zones of continuous displacement over several centimeters (Fossen et al., 2007). We present an outcrop-based study on the internal fabric of shear deformation bands that developed in Pleistocene unconsolidated sands in northern Germany. The deformation bands formed in an extensional stress regime, have a normal sense of displacement in a range of centimeters to decimeters, and form conjugate sets that intersect at angles between 70° and 90° (Brandes & Tanner, 2012). Due to their near-surface position, they are a perfect target for the study of deformation band formation prior to burial and diagenesis. Thin section analysis show a significant pore space reduction from the host sediment to the shear deformation band. The boundary between the host sediment and the shear deformation bands can be very sharp. The grains within the deformation band are of the same grain size as the host sediment. Grain shape varies from angular to well-rounded. Many elliptic grains have a long-axis orientation parallel to the trend of the deformation band. The grains in the analysed thin sections are all intact, i.e., there is no evidence for cataclasis. We believe the shear deformation bands are created by a grain-sliding process that decreases the porosity and leads to a denser packing of the sand. This is a porosity reduction mechanism in sandstone that occurs prior to burial without cataclasis. This can have an impact on fluid-flow in unconsolidated sediments in the near-surface. References: Brandes, C. & Tanner, D.C. (2012) Three-dimensional geometry and fabric of shear deformation bands in unconsolidated Pleistocene sediments. Tectonophysics, 518-521, 84-92. Fossen, H., Schultz, R.A., Shipton, Z.K., & Mair, K. (2007) Deformation bands in sandstone: a
Directory of Open Access Journals (Sweden)
Tao Zhang
2018-01-01
Full Text Available Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX plays a vital role in grain refinement during hot deformation. Finite element models (FEM coupled with microstructure evolution models and cellular automata models (CA are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.
Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin
2018-01-17
Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.
Gholami, Raheb; Ansari, Reza; Gholami, Yousef
2017-06-01
The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.
Numerical Modelling of Double-Steel Plate Composite Shear Walls
Directory of Open Access Journals (Sweden)
Michaela Elmatzoglou
2017-02-01
Full Text Available Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface.
Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation
National Research Council Canada - National Science Library
Omar, Mohamed
2000-01-01
.... The effect of the shear deformation is accounted for without the need for introducing Timoshenko's shear coefficient By using the absolute coordinates, the nonlinear strain-displacement relationships...
SEISMIC EVALUATION OF ATYPICAL SPECIAL PLATE SHEAR WALLS
Energy Technology Data Exchange (ETDEWEB)
Mark J. Russell; Robert E. Spears; Ryan G. Kobbe
2007-07-01
The structure of a building undergoing a seismic reevaluation at the Idaho National Laboratory includes a number of steel plate walls and a roof liner which will act as shear diaphragms during an earthquake. Since the facility was designed and built long before such criteria were formulated, it is not surprising that these walls are not configured to meet all of the recently formulated requirements for such structures. To take advantage of this unusual structural feature, nonlinear analysis was used to ensure accurate modeling of the plate walls in a linear elastic seismic analysis of the full superstructure. The modeling was also used to establish the capacity of the plate.
Nonlinear analysis of shear deformable beam-columns partially ...
African Journals Online (AJOL)
In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...
Nonlinear analysis of shear deformable beam-columns partially ...
African Journals Online (AJOL)
user
system of nonlinear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation ... doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large ...
Analysis of local microstructure after shear creep deformation
Czech Academy of Sciences Publication Activity Database
Peter, D.; Viswanathan, G.B.; Dlouhý, Antonín; Eggeler, G.
2010-01-01
Roč. 58, č. 19 (2010), s. 6431-6443 ISSN 1359-6454 R&D Projects: GA ČR GA106/07/0762 Institutional research plan: CEZ:AV0Z20410507 Keywords : Titanium aluminides * Shear creep deformation * Transmission electron microscopy * Dislocations * Twinning Subject RIV: JG - Metallurgy Impact factor: 3.781, year: 2010
Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.
2015-12-01
In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.
An elastic plate model for interseismic deformation in subduction zones
Kanda, Ravi V. S.; Simons, Mark
2010-03-01
Geodetic observations of interseismic surface deformation in the vicinity of subduction zones are frequently interpreted using simple kinematic elastic dislocation models (EDM). In this theoretical study, we develop a kinematic EDM that simulates plate subduction over the interseismic period (the elastic subducting plate model (ESPM)) having only 2 more degrees of freedom than the well-established back slip model (BSM): an elastic plate thickness and the fraction of flexural stresses due to bending at the trench that are released continuously. Unlike the BSM, in which steady state deformation in both plates is assumed to be negligible, the ESPM includes deformation in the subducting and overriding plates (owing to plate thickness), while still preserving the correct sense of convergence velocity between the subducting and overriding plates, as well as zero net steady state vertical offset between the two plates when integrated over many seismic cycles. The ESPM links elastic plate flexure processes to interseismic deformation and helps clarify under what conditions the BSM is appropriate for fitting interseismic geodetic data at convergent margins. We show that the ESPM is identical to the BSM in the limiting case of zero plate thickness, thereby providing an alternative motivation for the BSM. The ESPM also provides a consistent convention for applying the BSM to any megathrust interface geometry. Even in the case of nonnegligible plate thickness, the deformation field predicted by the ESPM reduces to that of the BSM if stresses related to plate flexure at the trench are released either continuously and completely at shallow depths during the interseismic period or deep in the subduction zone (below ˜100 km). However, if at least a portion of these stresses are not continuously released in the shallow portion of the subduction zone (via seismic or aseismic events), then the predicted surface velocities of these two models can differ significantly at horizontal
Directory of Open Access Journals (Sweden)
A. Ghorbanpour Arani
2016-03-01
Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.
Directory of Open Access Journals (Sweden)
Ahmad Soleimani
Full Text Available In this paper, the first order shear deformation theory (FSDT is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets. Keywords: Postbuckling analysis, Graphene sheet, Nonlocal elasticity, First order shear deformation theory, Isogeometric analysis, Initial imperfection
Measurement of the shear wave speed in a submerged plate
International Nuclear Information System (INIS)
Hull, A J; Cray, B A
2009-01-01
This paper develops an inverse method to estimate, in water, the shear wave speed in an isotropic, thick, elastomeric plate. The submerged plate is mechanically shaken and a scanning laser vibrometer is used to measure normal velocity on one surface. The temporal domain measurements are transformed into the frequency domain using a Fourier transform, then, the spatial domain measurements are transformed into the k x ,k y wavevector domain using two Fourier transforms. Once the data is in the wavevector-frequency domain, the propagation wavenumber of each specific wave type can be estimated by fitting a circle to each collection of spectral peaks. Using this measured estimate of the wavenumber corresponding to the propagating wave, the Newton-Raphson gradient method is applied (inserting the estimated wavenumber into to the theoretical dispersion curve equation for wave propagation in a fluid-loaded plate,) hence resulting in an estimate of the shear wave speed. An experiment is included to illustrate the method and statistical properties of the measurement are discussed.
International Nuclear Information System (INIS)
Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don
2014-01-01
Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties
Directory of Open Access Journals (Sweden)
S. Natarajan
2014-01-01
Full Text Available A cell-based smoothed finite element method with discrete shear gap technique is employed to study the static bending, free vibration, and mechanical and thermal buckling behaviour of functionally graded material (FGM plates. The plate kinematics is based on the first-order shear deformation theory and the shear locking is suppressed by the discrete shear gap method. The shear correction factors are evaluated by employing the energy equivalence principle. The material property is assumed to be temperature dependent and graded only in the thickness direction. The effective properties are computed by using the Mori-Tanaka homogenization method. The accuracy of the present formulation is validated against available solutions. A systematic parametric study is carried out to examine the influence of the gradient index, the plate aspect ratio, skewness of the plate, and the boundary conditions on the global response of the FGM plates. The effect of a centrally located circular cutout on the global response is also studied.
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
About the Possibility Of Transformation Of Shear Deformation Modes.
Ostapchuk, Aleksey; Kocharyan, Gevorg; Pavlov, Dmitriy; Markov, Vadim
2014-05-01
In this study we present the results of laboratory experiments aimed to investigate the effect of material properties, filling a discontinuity, on transformation of deformation modes from stable creep to regular stick-slip. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical 'slider model' statement. A small granite block slid under shear load on a bigger granite block. The contact between rough surfaces of the blocks was filled with a discrete material, which simulated the fault zone. Quartz sand, granite crumb, glass balls and rock salt were used as the filling material. The normal load was applied to the sliding block through a special device excluding origination of tangential forces. Shear load was applied to the block through a spring. The sliding block position was controlled by laser sensors that recorded relative displacement of blocks at the frequency up to 4 kHz with the accuracy of 0.1 micron. A full spectrum of possible deformation regimes was obtained in experiments - from stable slip to low-velocity motion and to regular stick-slip, with various seismic moments realized per one act of instability. The deformation regime can transform into another one due to a slight change of the filling material structure and humidity. Experimental data can be divided into three groups, which, speaking in terms of seismology, correspond to aseismic creep, slow earthquakes and normal earthquakes with various magnitudes. Laboratory experiments allowed to determine the main factor that controlls realization of deformation regime of the model fault and to develop the phenomenological model of the process based on assumption that some force mesostructures were forming across the model fault in shearing. The mode of deformation regime is completely controlled by the length and amount of these mesostructures. At the same time narrow particle-size distribution, high degree of order of
Numerical modeling of intraplate seismicity with a deformable loading plate
So, B. D.; Capitanio, F. A.
2017-12-01
We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic
Gravitational convergence, shear deformation and rotation of magnetic forcelines
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Directory of Open Access Journals (Sweden)
A. E. Alshorbagy
2013-01-01
Full Text Available The first-order shear deformation plate model, accounting for the exact neutral plane position, is exploited to investigate the uncoupled thermomechanical behavior of functionally graded (FG plates. Functionally graded materials are mainly constructed to operate in high temperature environments. Also, FG plates are used in many applications (such as mechanical, electrical, and magnetic, where an amount of heat may be generated into the FG plate whenever other forms of energy (electrical, magnetic, etc. are converted into thermal energy. Several simulations are performed to study the behavior of FG plates, subjected to thermomechanical loadings, and focus the attention on the effect of the heat source intensity. Most of the previous studies have considered the midplane neutral one, while the actual position of neutral plane for functionally graded plates is shifted and should be firstly determined. A comparative study is performed to illustrate the effect of considering the neutral plane position. The volume fraction of the two constituent materials of the FG plate is varied smoothly and continuously, as a continuous power function of the material position, along the thickness of the plate.
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear
DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS
Directory of Open Access Journals (Sweden)
S. A. Bornyakov
2016-01-01
Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of
Neres, M.; Carafa, M. M. C.; Fernandes, R. M. S.; Matias, L.; Duarte, J. C.; Barba, S.; Terrinha, P.
2016-09-01
We present an improved neotectonic numerical model of the complex NW Africa-SW Eurasia plate boundary segment that runs from west to east along the Gloria Fault up to the northern Algerian margin. We model the surface velocity field and the ongoing lithospheric deformation using the most recent version of the thin-shell code SHELLS and updated lithospheric model and fault map of the region. To check the presence versus the absence of an independently driven Alboran domain, we develop two alternative plate models: one does not include an Alboran plate; another includes it and determines the basal shear tractions necessary to drive it with known velocities. We also compare two alternative sets of Africa-Eurasia velocity boundary conditions, corresponding to geodetic and geological-scale averages of plate motion. Finally, we perform an extensive parametric study of fault friction coefficient, trench resistance, and velocities imposed in Alboran nodes. The final run comprises 5240 experiments, each scored to geodetic velocities (estimated for 250 stations and here provided), stress direction data, and seismic strain rates. The model with the least discrepancy to the data includes the Alboran plate driven by a basal WSW directed shear traction, slightly oblique to the westward direction of Alboran motion. We provide estimates of long-term strain rates and slip rates for the modeled faults, which can be useful for further hazard studies. Our results support that a mechanism additional to the Africa-Eurasia convergence is required to drive the Alboran domain, which can be related to subduction processes occurring within the mantle.
Sammarco, V James
2009-09-01
Management of Charcot's deformity of the foot and ankle continues to challenge physicians. Medical co-morbidity, peripheral neuropathy, vascular disease, and immune impairment cause severe problems for these patients and, when combined with neuroarthropathy, can lead to amputation. Progressive bony deformity and bone resorption, which may accompany neuroarthropathy, only increase the challenge of surgical treatment. These challenges have led physicians to develop "superconstruct" techniques to improve fixation, whereby fusion is extended beyond the zone of injury to include joints that are not affected, bone resection is performed to shorten the extremity to allow for adequate reduction of deformity without undue tension on the soft tissue envelope, the strongest device is used that can be tolerated by the soft tissue envelope; and the devices are applied in a novel position that maximizes mechanical function. This article reviews three techniques designed to achieve lasting deformity correction and successful arthrodesis: plantar plating, locked plating, and axial screw fixation.
Shear-wave splitting beneath western United States in relation to plate tectonics
Özalaybey, Serdar; Savage, Martha K.
1995-09-01
Andreas fault. Stations located over the young subducting Gorda plate mark a change in the fast direction to nearly NE-SW. This direction aligns well with the maximum compressive stress direction in the overlying North American plate and the NE-SW directed internal shearing of the Gorda plate. The anisotropic thicknesses calculated from delay times suggest roughly double that expected for purely lithospheric contributions. This implies that the anisotropic thickness may include some of the asthenosphere. Alternatively, using a higher anisotropy of 8% can bring thicknesses in line with other measures of lithospheric thicknesses. The correspondence between the fast directions and the present plate tectonic deformations suggest that mapping upper mantle deformation through seismic anisotropy is a viable method, and that asthenospheric flow may be a significant contributor to seismic anisotropy.
Shear Correction Factors in Creep-Damage Analysis of Beams, Plates and Shells
Altenbach, Holm; Naumenko, Konstantin
Modern design rules for thin-walled structures which operate at elevated temperatures are based on the demand that the creep and may be the damage behaviour should be taken into account. In the last four decades various models including the scalar or tensor valued hardening and damage variables are established. These models reflect the influence of the deformation or the damage induced anisotropy on the creep response. One problem in creep analysis of thin-walled structures is the selection of the structural mechanics model which has to be adequate to the choice of the constitutive equations. Considering complex loading conditions the structural mechanics model has to reflect for instance the different constitutive behaviour in tension and compression. Below the applicability of classical engineering models for beams, plates and shells to the creep-damage analysis is discussed. It will be shown that a first improvement of the classical approach can be given within the assumptions of the first order shear deformation theory. Based on the beam equations we demonstrate that the shear correction factors have to be modified within the time-step analysis.
Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates
Zirakian, Tadeh
2013-01-01
Steel plate shear walls (SPSWs) have been frequently used as the primary or part of the primary lateral force-resisting system in design of low-, medium-, and high-rise buildings. Their application has been based on two different design philosophies as well as detailing strategies. Stiffened and/or stocky-web SPSWs with improved buckling stability and high seismic performance have been mostly used in Japan, which is one of the pioneering countries in design and application of these systems. U...
Deformation of high performance concrete plate under humid tropical weather
Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.
2018-03-01
This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.
Soleimani, Ahmad; Naei, Mohammad Hasan; Mashhadi, Mahmoud Mosavi
In this paper, the first order shear deformation theory (FSDT) is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS) under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA) have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets.
Design proposal for ultimate shear strength of tapered steel plate girders
Directory of Open Access Journals (Sweden)
A. Bedynek
2017-03-01
Full Text Available Numerous experimental and numerical studies on prismatic plate girders subjected to shear can be found in the literature. However, the real structures are frequently designed as non-uniform structural elements. The main objective of the research is the development of a new proposal for the calculation of the ultimate shear resistance of tapered steel plate girders taking into account the specific behaviour of such members. A new mechanical model is presented in the paper and it is used to show the differences between the behaviour of uniform and tapered web panels subjected to shear. EN 1993-1-5 design specifications for the determination of the shear strength for rectangular plates are improved in order to assess the shear strength of tapered elements. Numerical studies carried out on tapered steel plate girders subjected to shear lead to confirm the suitability of the mechanical model and the proposed design expression.
Deformation of the Northwestern Okhotsk Plate: How is it happening?
Hindle, D.; Fujita, K.; Mackey, K.
2009-09-01
The Eurasia (EU) - North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on the EU-OK-NA triple junction and is thus caught and compressed between converging EU and NA. We suggest that this leads to a coherent and understandable large scale deformation pattern of mostly northwest-southeast trending strike-slip faults which split Northwest OK into several extruding slivers. When the fault geometry is analysed together with space geodetic and focal mechanism data it suggests a central block which is extruding faster bordered east and west by progressively slower extruding blocks until the OK plate boundary faults are encountered. Taking into account elastic loading from both the intra-OK faults and the OK-Pacific (PA) boundary reconciles geodetic motions with geologic slip rates on at least the OK-NA boundary which corresponds to the Ulakhan fault.
Tomographic Inversion for Shear Velocity Beneath the North American Plate
Grand, Stephen P.
1987-12-01
A tomographic back projection scheme has been applied to S and SS travel times to invert for shear velocity below the North American plate. The data range in distance from 8° to 80°, and a total of 3923 arrival times were used. First arrivals were measured directly off the seismograms, while the arrival times of later arrivals were found by a waveform correlation technique using synthetic seismograms. The starting model was laterally heterogeneous in the upper 400 km to account for the first-order differences in ray paths already known. The model was divided into blocks with horizontal dimensions of 500 km by 500 km and varying vertical thicknesses. Good resolution was obtained for structure from just below the crust to about 1700 km depth in the mantle. In the upper mantle a high-velocity root was found directly beneath the Canadian shield to about 400 km depth with the Superior province having the highest velocity and deepest root. The east coast of the United States was found to have intermediate velocities from 100 to 350 km depth and the western United States the slowest velocities at these depths. Below 400 km depth the most significant structure found is a slab-shaped high-velocity anomaly from the eastern Carribean to the northern United States. Beneath the Carribean this anomaly is almost vertical and extends from about 700 km to 1700 km depth. Further to the north, the anomaly dips to the east with high velocities at 700 km depth in the central United States and high velocities below 1100 km depth beneath the east coast. The anomaly is about 1% in magnitude. This lower-mantle anomaly may be associated with past subduction of the Farallon plate beneath North America.
Present-day intra-plate deformation of the Eurasian plate
Garcia-Sancho, Candela; Govers, Rob; Warners-Ruckstuhl, Karin N.; Tesauro, Magdala
2014-05-01
We build on the results of two recent, yet independent, studies. In the first (Warners-Ruckstuhl et al., 2013) the forces on, and stresses within the Eurasian plate were established. In the second (Tesauro et al., 2012) the distribution of mechanically strong and weak parts of the Eurasian plate was found. The aim of our work is to predict lithospheric deformation of the Eurasian plate and to compare it with observations. This constitutes a test of both the force/stress results and of the strength results. Specific questions are to which extent stresses localize in specific regions and whether micro-plates as identified by geodesists arise naturally from the results. Importantly, Warners-Ruckstuhl et al. (2013) found an ensemble of mechanically consistent force models based on plate interaction forces, lithospheric body forces and convective tractions. Each of these force sets is in mechanical equilibrium. A subset drives Eurasia in the observed direction of absolute motion and generates a stress field in a homogeneous elastic plate that fits observed horizontal stress directions to first order. Deformation models constitute a further test and a possibility to discriminate between the remaining force sets. Following Tesauro et al. (2012) we assume five different compositions for the upper and lower crust. We use their geotherms and crustal thickness maps to estimate vertical distributions of strength at any location within the Eurasian plate. Based on the assumption that horizontal strain rates do not vary with depth allows us to estimate the vertically averaged viscosity of each point. We include major active faults in our mechanical model. We compare our results with GPS velocities, InSAR, seismic, and paleomagnetic observations, which capture present-day and long-term deformation. We discuss various causes for differences.
Plate motions and deformations from geologic and geodetic data
Jordan, T. H.
1986-06-01
Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also
Tessler, A.; Annett, M. S.; Gendron, G.
2001-01-01
A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.
Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.
Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long
2017-11-01
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
Improved finite strip Mindlin plate bending element using assumed shear strain distributions
Chulya, Abhisak; Thompson, Robert L.
1988-01-01
A linear finite strip plate element based on Mindlin/Reissner plate theory is developed. The analysis is suitable for both thin and thick plates. In the formulation new transverse shear strains are introduced and assumed constant in each two-code linear strip. The element stiffness matrix is explicitly formulated for efficient computation and computer implementation. Numerical results showing the efficiency and predictive capability of the element for the analysis of plates are presented for different support and loading conditions and a wide range of thicknesses. No sign of shear locking phenomenon was observed with the newly developed element.
Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests
National Research Council Canada - National Science Library
Scheidler, Mike
2007-01-01
This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...
Wang, Ji; Yang, Jiashi; Li, Jiangyu
2007-03-01
Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.
Modelling continental deformation within global plate tectonic reconstructions
Williams, S.; Whittaker, J.; Heine, C.; Müller, P.
2010-12-01
A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting
Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis
Directory of Open Access Journals (Sweden)
T.S. Viswanathan
2014-09-01
Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.
Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century
Stünitz, Holger
Folding and simple shear deformation frequently occur together on all scales. The kinematic information from crystallographic preferred orientation (CPO) and microstructural information from shape fabrics are used to investigate the relationships of simple shear and folding in small-scale folds. Three fold samples were analysed: sample 1 with the fold axis perpendicular; sample 2 oblique; and sample 3 essentially parallel to the shear direction. All folds have formed by buckling in a simple shear deformation regime. The principal kinematic directions for each sample lie in a single plane normal to the fold axial plane and at variable angles to the fold axis. The CPOs allow a distinction to be identified between coaxial and simple shear deformation components in different parts of each fold. The shear senses determined by CPOs and shape fabrics indicate that the shear deformation and the buckling of the layers occurred approximately simultaneously in all samples. CPO analysis of the flexural-slip components of the folding suggests that the fold axes have not rotated substantially towards the extension direction since their initiation. The variable orientations of the fold axes are explained by variable original orientations of the anisotropy with respect to the shear direction.
Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde
2018-02-01
This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of
Redistribution of Core-forming Melt During Shear Deformation of Partially Molten Peridotite
Hustoft, J. W.; Kohlstedt, D. L.
2002-01-01
To investigate the role of deformation on the distribution of core-forming melt in a partially molten peridotite, samples of olivine-basalt-iron sulfide were sheared to large strains. Dramatic redistribution of sulfide and silicate melts occur during deformation. Additional information is contained in the original extended abstract.
Flexural analysis of deep beam subjected to parabolic load using refined shear deformation theory
Directory of Open Access Journals (Sweden)
Ghugal Y. M.
2012-12-01
Full Text Available A trigonometric shear deformation theory for flexure of thick or deep beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick isotropic beams are considered for the numerical studies to demonstrate the efficiency of the theory. It has been shown that the theory is capable of predicting the local effect of stress concentration due to fixity of support. The fixed isotropic beams subjected to parabolic loads are examined using the present theory. Results obtained are discussed critically with those of other theories.
International Nuclear Information System (INIS)
Galishin, A.Z.
1995-01-01
The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present
A simplified four-unknown shear and normal deformations theory for ...
Indian Academy of Sciences (India)
The present theory accounts for an adequate distribution of transverse shear strains through the plate thickness and tangential stress-free on the plate surfaces. The effect of normal strain is also included. The governing, equilibrium equations and boundary conditions are derived by employing the virtual work principle.
Distributed microscopic actuation analysis of deformable plate membrane mirrors
Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen
2018-02-01
To further reduce the areal density of optical mirrors used in space telescopes and other space-borne optical structures, the concept of flexible membrane deformable mirror has been proposed. Because of their high flexibility, poor stiffness and low damping properties, environmental excitations such as orbital maneuver, path changing, and non-uniform heating may induce unexpected vibrations and thus reduce working performance. Therefore, active vibration control is essential for these membrane mirrors. In this paper, two different mirror models, i.e., the plate membrane model and pure membrane model, are studied respectively. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as actuators. Dynamic equations of the mirror laminated with piezoelectric actuators are presented first. Then, the actuator induced modal control force is defined. When the actuator area shrinks to infinitesimal, the expressions of microscopic local modal control force and its two components are obtained to predict the spatial microscopic actuation behavior of the mirror. Different membrane pretension forces are also applied to reveal the tension effects on the actuation of the mirror. Analyses indicate that the spatial distribution of modal micro-control forces is exactly the same with the sensing signals distribution of the mirror, which provides crucial guidelines for optimal actuator placement of membrane deformable mirrors.
He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun
2015-05-01
Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.
Microvoid Formation during Shear Deformation of Ultrahigh Strength Steels
1989-01-01
These speci- mens are machined from standard sized Charpy blanks. They have two narrow gage sections which are displaced simultaneously in simple shear...Figure 2). Dynamic tests were performed in a modified instrumented Charpy im- LOADING SCHEMATIC DIAGRAM pact machine. The Charpy specimen fixture was...In addition, the pendulum weight nliatic diagram ot a double linear shear specimen. h ,peclmen is w sp h rsheared " ithin the tvwo reduced sections
Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J
2017-11-01
The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A simplified four-unknown shear and normal deformation theory
Indian Academy of Sciences (India)
1972), Kant et al. (2008) and Kapuria & Kumari (2010)). 3. Basic equations. Consider a composite rectangular plate of length a, width b and thickness h made of an arbitrary lamination material (see figure 1). The plate is subjected to a transverse ...
Energy Technology Data Exchange (ETDEWEB)
Miao Xie-xing; Mao Xian-biao; Zhu Chuan-qu; Liu Wei-qun [China University of Mining and Technology, Xuzhou (China)
2005-07-01
The bolt probably supports larger shearing deformation in the course of huge deformation of roadway surrounding rock, for instance the cable bolts-metal mesh reinforcement of small pillar adopted largely in coalmines, especially that in gob-side entry of fully-mechanized caving face (FCF). The mechanism that the full-column roof support bolt sustains during shearing deformation in gob-side entry of FCF was analyzed by theoretical research, and the shearing stress distribution, the maximum shearing force and the maximum shearing stress in bolts were obtained with the help of numerical simulation. It is indicated that the maximum shearing stress of the roof support bolt in gob-side entry of FCF will approach or exceed the allowable shearing stress of bolt materials in condition of large deformation in surrounding rock, and here, the shearing effect of bolt is not to be neglected. 6 refs., 4 figs., 1 tab.
Hydrodynamic of a deformed bubble in linear shear flow
International Nuclear Information System (INIS)
Adoua, S.R.
2007-07-01
This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)
Tool design, user characteristics and performance: a case study on plate-shears.
Kilbom, A; Mäkäräinen, M; Sperling, L; Kadefors, R; Liedberg, L
1993-06-01
Performance, grip forces and fatigue were studied in six male and six female subjects while cutting with plate-shears. Three types of plate-shears were used, one standard and two modified, either with a spring grip, or with a spring grip in combination with a reduced grip span. In addition, three types of plate - easy, moderately difficult and difficult to cut - were used. Male subjects used around 40% of their maximal grip force and female subjects around 60% with the moderately difficult plate; the male subjects produced more than twice as long a cutting distance as the females. Neither EMG analysis (frequency shifts) nor subjective exertion or reduction of handgrip MVC indicated a more pronounced fatigue in women than in men, probably because the female subjects used about a 50% lower cutting rate than the men. Productivity (in cm cut per min) was strongly related to measures of hand size and to the relative grip force used. Thus in a multiple regression analysis using metacarpal hand circumference and relative grip force as independent variables, R2 was 0.77. The two types of modified plate-shears were preferred by all and gave a roughly 30% higher productivity in the male subjects but did not improve productivity in the females. However, with a spring grip and reduced grip span, the female subjects reduced the relative grip forced used from around 65 to 50%. The total work (force-time integral) per cm cut was not influenced by type of plate-shear.
Shon, Sudeok; Yoo, Mina; Lee, Seungjae
2017-03-06
The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.
Deformation in Micro Roll Forming of Bipolar Plate
Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.
2017-09-01
Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.
Finite element analysis of thermoviscoplastic deformations of an impact-loaded prenotched plate
Jaber, Naim A.
Four different thermoviscoplastic relations, namely, the Litonski-Batra, the Johnson-Cook, the Bodner-Partom and the power law are used to model the thermoviscoplastic response of a material. Each one of these relations accounts for strain hardening, strain-rate hardening and thermal softening of the material. The material parameters in these relations are found by solving an initial-boundary-value problem corresponding to simple shearing deformations so that the computed effective stress vs. the effective plastic strain curves match closely with the experimental data of Marchand and Duffy who tested thin-walled HY-100 steel tubes in torsion. These four viscoplastic relations are used to analyze dynamic thermomechanical deformations of a prenotched plate impacted on the notched side by a cylindrical projectile made of the same material as the plate. The impact loading on the contact surface is simulated by prescribing the time history of the normal component of velocity and null tangential tractions. A plane strain state of deformation is assumed to prevail in the plate and its deformations are studied for different values of the impact speed. The in-house developed finite element code employs constant strain triangular elements, one point integration rule, and a lumped mass matrix. The Lagrangian description of motion is used to describe deformations of the plate. The coupled nonlinear partial differential equations are first reduced to coupled nonlinear ordinary differential equations (ODES) by using the Galerkin approximation. The ODEs are integrated by using the stiff solver, LSODE, which adaptively adjusts the time step size and computes the solution within the prescribed accuracy. Results computed with the four constitutive relations are found to be qualitatively similar to each other and the general tends agree with the experimental observations in the sense that at low speed of impact, a brittle failure ensues at a point on the upper surface of the notch
Current deformation rates and extrusion of the northwestern Okhotsk plate, northeast Russia
Hindle, D.; Fujita, K.; Mackey, K.
2006-01-01
Northeast Asia is a region of broad deformation resulting from the convergence of the Eurasian (EU) and North American (NA) plates. Part of this convergence has been suggested to be relieved by the extrusion and deformation of the Okhotsk plate (OK). Three models for the deformation of the seismically active northwestern corner of the Okhotsk plate, based on different modes of deformation partitioning, are calculated and compared to observations from GPS, seismicity, and geology. The results suggest that this region is being extruded southeastward and deforming internally by a mixture of pure contraction, ``smooth'' extrusion, and ``rigid'' extrusion. Calculated extrusion rates are ~3-5.5 mm/yr, comparable to estimates from geologic data, and internal deformation rates are ~3.0 × 10-9 yr -1. Internal deformation may be only partially accommodated by seismicity, but the short time span of seismic data leaves this subject to large uncertainty.
Uniaxial tensile and shear deformation tests of gold–tin eutectic solder film
Directory of Open Access Journals (Sweden)
Takahiro Namazu, Hideki Takemoto, Hiroshi Fujita and Shozo Inoue
2007-01-01
Full Text Available This paper describes a novel experimental technique for measuring mechanical properties of gold-tin (Au–Sn eutectic solder film used for soldering package in microelectromechanical systems (MEMS. Dual-source DC magnetron sputtering was employed to deposit Au-20 weight % (wt% Sn film. The tensile test with in situ X-ray diffraction (XRD measurement evaluates the Young's modulus and Poisson's ratio at intermediate temperatures. The Young's modulus and Poisson's ratio at room temperature were found to be 51.3 GPa and 0.288, lower than bulk values. The Young's modulus decreased with increasing temperature, whereas the Poisson's ratio did not depend on temperature. The XRD tensile test also showed creep deformation behavior of Au–Sn film. We have developed a shear deformation test technique, which is performed by using Au–Sn film sandwiched by two single crystal silicon (Si cantilever structures, to characterize the shear properties of the film. The shear moduli obtained from the shear deformation tests ranged from 11.5 to 13.3 GPa, about 38% lower than those from the XRD tensile tests. The measured shear strength from 12 to 17 MPa exhibited a temperature dependency. Information about the tensile and shear characteristics would likely to be of great use in designing Au–Sn soldering packages for MEMS.
Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...
Indian Academy of Sciences (India)
The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes ...
Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...
Indian Academy of Sciences (India)
The granite becomes intensely foliated with astrong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite showsstretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. Theangle between the C and S fabric is further reduced and finally becomes ...
Deformation of footwall rock of Phulad Shear Zone, Rajasthan
Indian Academy of Sciences (India)
The granite becomes intensely foliated with astrong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite showsstretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. Theangle between the C and S fabric is further reduced and finally becomes ...
Deformation of the Northwestern Okhotsk Plate: How is it happening?
Hindle, D.; Fujita, K.; Mackey, K.
2009-01-01
The Eurasia (EU) – North America (NA) plate boundary zone across Northeast Asia still presents many open questions within the plate tectonic paradigm. Constraining the geometry and number of plates or microplates present in the plate boundary zone is especially difficult because of the location of the EU-NA euler pole close to or even upon the EU-NA boundary. One of the major challenges remains the geometry of the Okhotsk plate (OK). whose northwestern portion terminates on ...
The unexpected stability of multiwall nanotubes under high pressure and shear deformation
Energy Technology Data Exchange (ETDEWEB)
Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)
2016-08-22
The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Transtensional deformation of Montserrat revealed by shear wave splitting
Baird, Alan F.; Kendall, J.-Michael; Sparks, R. Stephen J.; Baptie, Brian
2015-09-01
Here we investigate seismic anisotropy of the upper crust in the vicinity of Soufrière Hills volcano using shear wave splitting (SWS) analysis from volcano-tectonic (VT) events. Soufrière Hills, which is located on the island of Montserrat in the Lesser Antilles, became active in 1995 and has been erupting ever since with five major phases of extrusive activity. We use data recorded on a network of seismometers between 1996 and 2007 partially spanning three extrusive phases. Shear-wave splitting in the crust is often assumed to be controlled either by structural features, or by stress aligned cracks. In such a case the polarization of the fast shear wave (ϕ) would align parallel to the strike of the structure, or to the maximum compressive stress direction. Previous studies analyzing SWS in the region using regional earthquakes observed temporal variations in ϕ which were interpreted as being caused by stress perturbations associated with pressurization of a dyke. Our analysis, which uses much shallower sources and thus only samples the anisotropy of the upper few kilometres of the crust, shows no clear temporal variation. However, temporal effects cannot be ruled out, as large fluctuations in the rate of VT events over the course of the study period as well as changes in the seismic network configuration make it difficult to assess. Average delay times of approximately 0.2 s, similar in magnitude to those reported for much deeper slab events, suggest that the bulk of the anisotropy is in the shallow crust. We observe clear spatial variations in anisotropy which we believe are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults which crosses the volcanic complex.
Deformation of a Capsule in a Power-Law Shear Flow.
Tian, Fang-Bao
2016-01-01
An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses
DEFF Research Database (Denmark)
Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel
2006-01-01
We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... containing many atoms. The D-min(2) profile has a peak whose width is around 10 nm; this width is largely independent of the strain rate. Most of the simulations were, at least nominally, at 100 K, about T-g/3 for this system. The development of the shear bands takes a few tens of ps, once plastic flow has...
Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation
National Research Council Canada - National Science Library
Omar, Mohamed
2000-01-01
.... As a consequence, the centrifugal and Coriolis forces are identically equal to zero. Surprisingly, the more general model developed in this investigation leads to a significant saving in computer time as compared to non-shear deformable models presented in previous investigations.
Ideal shear strength and deformation behaviours of L10 TiAl from ...
Indian Academy of Sciences (India)
exists between Ti 3d and Al 2p, and the structural stability would be lowered with increase of the strain. Keywords. First-principles calculations; ideal shear strength; deformation mode; charge density; density of states. 1. Introduction. TiAl intermetallic compound with an ordered L10 (space group P4/mmm, prototype CuAu) ...
Shear-deforming textile reinforced concrete for the construction of double-curved structures
Woodington, W.; Bergsma, O.K.; Schipper, H.R.
2015-01-01
A composite textile reinforced concrete (TRC) material is developed to overcome the difficulties of constructing double-curved freeform structures. This is possible by shear-deformation of the woven reinforcement. It affects the direction of reinforcement and thickness, resulting in variable
Anomalous energy cascades in dense granular materials yielding under simple shear deformations
Saitoh, K.; Mizuno, Hideyuki
2015-01-01
By using molecular dynamics (MD) simulations of dense granular particles in two dimensions, we study turbulent-like structures of their non-affine velocities under simple shear deformations. We find that the spectrum of non-affine velocities, introduced as an analog of energy spectrum for turbulent
Shear Resistance Capacity of Interface of Plate-Studs Connection between CFST Column and RC Beam
Directory of Open Access Journals (Sweden)
Qianqian Wang
2017-01-01
Full Text Available The combination of a concrete-filled steel tube (CFST column and reinforced concrete (RC beam produces a composite structural system that affords good structural performance, functionality, and workability. The effective transmission of moments and shear forces from the beam to the column is key to the full exploitation of the structural performance. The studs of the composite beam transfer the interfacial shear force between the steel beam and the concrete slab, with the web bearing most of the vertical shear force of the steel beam. In this study, the studs and vertical steel plate were welded to facilitate the transfer of the interfacial shear force between the RC beam and CFST column. Six groups of a total of 18 specimens were used to investigate the shear transfer mechanism and failure mode of the plate-studs connection, which was confirmed to effectively transmit the shear forces between the beam and column. The results of theoretical calculations were also observed to be in good agreement with the experimental measurements.
Directory of Open Access Journals (Sweden)
Y. M. Ghugal
Full Text Available In the present work, a layerwise trigonometric shear deformation theory is used for the analysis of two layered (90/0 cross ply laminated simply supported and fixed beams subjected to sinusoidal load. The displacement field of the present theory consists of trigonometric sine function in terms of thickness coordinate to take into account the effect of transverse shear deformation. Theory satisfies the trans-verse shear stress free boundary conditions at top and bottom surfaces of the beam. This model satisfies the constitutive relationship between shear stress and shear strain in both the layers and the axial displacement compatibility at the interface. Virtual work principle is employed to obtain governing equations and boundary conditions. Closed form solution technique has the limitation of simply supported boundary condition. In the present work general solution technique is developed, which can be used for any type of boundary and loading conditions. The transverse shear stresses are obtained using constitu-tive relation as well from the use of equilibrium equations. The results of displacements and stresses obtained by present theory are compared with the available results in the literature.
Numerical simulations of deformation and aggregation of red blood cells in shear flow.
Low, Hong-Tong; Ju, M; Sui, Y; Nazir, T; Namgung, B; Kim, Sangho
2013-01-01
This article reviews numerical simulations of red blood cells (RBCs) mainly using the lattice Boltzmann method (LBM), focusing on the 2-dimensional deformation and aggregation of the cells in simple shear flow. We outline the incorporation of the immersed boundary method into the LBM, in which the membrane forces are obtained from the membrane model. The RBCs are simulated as a single biconcave capsule and as a doublet of biconcave capsules. The transition from swinging to tumbling motions of the RBCs, as induced by reducing the shear rate or increasing the membrane bending stiffness, is discussed. Also discussed is the aggregation tendency of the doublet of RBCs, for which homogenous deformability maintained RBC aggregation, whereas an increased deformability difference resulted in RBC dissociation.
Mechanics and Partitioning of Deformation of the Northwestern Okhostk Plate, Northeast Russia
Hindle, D.; Mackey, K.; Fujita, K.
2007-12-01
The tectonic evolution and present day deformation of northeastern Russia remains one of the major challenges in plate tectonics. Arguments over the existence of at least a separate Okhotsk plate between North America and Eurasia appear to be resolved on the basis of the latest GPS studies combined with elastic modeling. The question of the mechanical behaviour of the Okhotsk plate, caught between the slowly, obliquely converging North American and Eurasian plates now becomes important. We present an analysis of geological lineaments, micro-seismicity, total seismic moment release and seismic deformation rate and GPS campaign data and global plate tectonic model data (REVEL) to estimate the likelihood of future seismicity and the relative amount of elastic and viscous deformation of the lithosphere of the northwestern Okhotsk plate. We find that it is likely that the Okhotsk plate is cracked into slivers, but that rates of relative motion of these slivers are close to indistinguishable from the behaviour of a single, rigid plate. The analysis also suggests the upper bound for large earthquakes in the region to be Mw 7-7.5 which we expect to occur only on the plate boundary fault itself. This fits geological evidence for a long term offset rate 5-10 times higher on the major plate boundary fault than other lineaments cutting the Okhotsk plate itself.
Al-Azzawi, Zaid; Stratford, Timothy; Rotter, John; Bisby, Luke
2015-01-01
The two essential functions of the web plate in a plate girder are to maintain a relative distance between the top and bottom flanges and to resist shear stresses. In most practical ranges of plate girder bridge spans, the shear stresses are relatively low compared to bending stresses in the flanges induced by flexure. As a result, the web plate is typically much thinner than the flanges. The web panel is therefore prone to buckling at comparatively low shear forces. To enhance the web’s buck...
International Nuclear Information System (INIS)
Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.
2010-01-01
The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation
Inverse transient thermoelastic deformations in thin circular plates
Indian Academy of Sciences (India)
Bessel's functions with the help of the integral transform technique. Thermoelastic deformations are discussed with the help of temperature and are illustrated numer- ically. Keywords. Inverse transient; thermoelastic deformation. 1. Introduction. The inverse thermoelastic problem consists of determination of the temperature, ...
Chen, Zhihao; Schellart, Wouter P.; Duarte, João C.
2015-01-01
In a subduction system the force and the energy required to deform the overriding plate are generally thought to come from the negative buoyancy of the subducted slab and its potential energy, respectively. Such deformation might involve extension and back-arc basin formation or shortening and
Directory of Open Access Journals (Sweden)
Yeghnem R.
2014-04-01
Full Text Available The present paper deals with the effect of deformation delayed creep and shrinkage of the concrete on the seismic response of shear walls reinforced concrete strengthened with composite materials having a sinusoidal distribution of fibers. The lateral stiffness of shear walls RC, adhesives and composite material taking into account the phenomenon of creep and shrinkage of concrete described by the Eurocode 2, and widthwise varying fiber volume fraction of the composite plate has been determined by a finite element model. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes have been tested to demonstrate the accuracy of the proposed method. Numerical results obtained are discussed and the factors influencing the seismic response of reinforced concrete shear walls strengthened taking account the effects of the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied
Pappu, Vijay; Bagchi, Prosenjit
2008-11-01
3D computational modeling and simulation are presented on adhesion, deformation, rolling and detachment of a liquid capsule on adhesive surfaces in shear flow with an objective to understand the adhesive rolling motion of biological cells, such as leukocyte and cancel cells, and the coupling between cell deformation and biophysics of the adhesive bonds. The computational model is based on an immersed boundary method for deformable capsules, and a finite difference-Fourier transform technique for solving the complete Navier-Stokes equations. The flow solver is coupled with a Monte Carlo simulation representing random process for bond formation and breakage between the capsule and the adhesive surface. Becuase of the stochastic process of bond formation and breakage, the roling motion is comprised of intermittent ``stops-and-runs'' which is well-known for biological cells such as leukocytes, which is reproduced in our simulations. The major objective of this talk is to present phase diagrams for cell adhesion which are obtained in terms of the critical bond strength as a function of cell deformability and biophysical parameters of the adhesion bonds. Through these phase diagrams, we elucidate the role of the hydrodynamic lift force, that exists on an wall- bounded deformable particle in shear flow, in the process of cell capture. Funded by NSF (BES-0603035 and CTS-0625936).
Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.
2017-12-01
The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing
Deformation and burst of a liquid droplet freely suspended in a linear shear field
Barthes-Biesel, D.; Acrivos, A.
1973-01-01
A theoretical method is presented for predicting the deformation and the conditions for breakup of a liquid droplet freely suspended in a general linear shear field. This is achieved by expanding the solution to the creeping-flow equations in powers of the deformation parameter epsilon and using linear stability theory to determine the onset of bursting. When compared with numerical solutions and with the available experimental data, the theoretical results are generally found to be of acceptable accuracy although, in some cases, the agreement is only qualitative.
Verhulst, Kristof; Cardinaels, Ruth; Renardy, Yuriko; Moldenaers, Paula
2008-07-01
The steady deformation and orientation of droplets in shear flow, both under bulk and confined conditions, is microscopically studied for blends with one viscoelastic phase and a viscosity ratio of 1.5. The experiments are performed with a Linkam shearing cell and a counter rotating setup, based on a Paar Physica MCR300. For bulk shear flow, it is shown that matrix viscoelasticity suppresses droplet deformation and promotes droplet orientation towards the flow direction. Interestingly, these effects saturate at Deborah numbers above 2. For ellipsoidal droplets, viscoelasticity of the droplet fluid hardly affects the droplet deformation and droplet orientation, even up to Deborah numbers as high as 16. When the droplet is confined between two plates, the droplet deformation and the orientation towards the flow direction increase with confinement ratio, as in fully Newtonian systems. At a Deborah number of 1, the effect of component viscoelasticity under confined conditions remains qualitatively the same as under bulk conditions, at least up to a confinement ratio 2R/H of 0.6. The experiments under bulk conditions are compared with the predictions of phenomenological models, such as the Maffettone-Minale model, for droplet deformation. The Shapira-Haber model, which analytically describes the effects of the walls on the droplet deformation for fully Newtonian systems, is used to describe the experimental results under confinement. Here, this model is combined with the bulk phenomenological models to include bulk viscoelasticity effects. Under the present conditions, the adapted Shapira-Haber model describes the steady droplet deformation under confinement rather well. Finally, the experimentally obtained droplet shapes are compared with the results of 3D simulations, performed with a volume-of-fluid algorithm.
Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China
International Nuclear Information System (INIS)
Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui
2008-01-01
The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research
Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern
Fuchs, L.; Becker, T. W.
2017-12-01
How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-11-01
Free vibration analysis is presented for a simply supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third-order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher-order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.
Deformation of a Capsule in a Power-Law Shear Flow
Directory of Open Access Journals (Sweden)
Fang-Bao Tian
2016-01-01
Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
Analytical study of building height effects over Steel Plate Shear Wall Behavior
Directory of Open Access Journals (Sweden)
Benyamin Kioumarsi
2016-09-01
Full Text Available In the latest three decades, the steel plate shear walls (SPSW system has emerged as a promising lateral load resisting system for both construction new buildings and retrofit of existing buildings. This system has acceptable stiffness for control of structure displacement, ductile failure mechanism and high energy absorption. This paper will quantify the effect of increasing the height over analytical behavior of SPSW (height effect. Considering abundant emergence of high-rise buildings all over the world in recent years and their need for strengthening, the importance of the studies presented in this paper cannot be overemphasized for optimum height usage of SPSW lateral resisting system. The study was performed through design of four models of dual system with special moment frames capable of resisting at least 25% of prescribed seismic forces. In this article, structure buildings consisting of 5, 10, 15 and 20 stories have been modelled. Results consisting of story shear absorption, support reaction forces, lateral story displacement and drift index have investigated for different cases. Results show that SPSW absorbs more shears at the lower stories than top stories. Furthermore, axial reaction of edge supports experience decreasing rate corresponding to increase in the story numbers. Drift magnitude of steel plate shear wall with the 5 stories has the maximum value at the top story while the systems with the 10 and the 15 stories have maximum drift at lower stories.
Transverse vibrations of shear-deformable beams using a general higher order theory
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
International Nuclear Information System (INIS)
Ohmori, Junji; Koizumi, Norikiyo; Shimizu, Tatsuya; Okuno, Kiyoshi; Hasegawa, Mitsuru
2009-09-01
The winding pack (WP) of the Toroidal Field (TF) coil of ITER consists of 7 double-pancakes (DPs). In the DP, the conductor is embedded in a groove of a radial plate (RP), and cover plates (CP) are welded to the RP teeth to fix the conductors in the RP groove. The dimensions of the DP are 15 m in height and 9 m in width while the tolerances of the DP are very severe, such as a flatness of 2 mm and an in-plane deviation of a few millimeters. It is therefore required to reduce the deformation of the DP by CP welding. In order to estimate welding deformation, the authors apply an analytical method in which the CP welding deformation of the DP can be calculated using inherent strain evaluated from welding deformation measured using a RP mock-up. Calculated results indicate that out-of-plane distortion can be kept to within required tolerances, but in-plane deformation is larger than allowed when welding thickness is 2.5 mm. The in-plane deformation is mainly caused by the bending of the curved RP region. Therefore, reducing the welding thickness at the curved region emerges as the most promising solution of this issue. Calculated results assuming a welding thickness of 1 mm at the curved region show that the in-plane deformation conforms to required tolerances. Furthermore, since the maximum out-of-plane deformation is within tolerances but marginal, an alternative design in which the number of welding lines is half that of the reference design, is proposed not only to improve the out-of-plane distortion but also to simplify the manufacture of the DP. It is found that the alternative design is effective in reducing welding distortion. (author)
Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates
Directory of Open Access Journals (Sweden)
Emad Hosseinpour
2015-01-01
Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.
Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain
Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie
2017-04-01
Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in
Zhang, B.
2016-12-01
Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra
Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis
Directory of Open Access Journals (Sweden)
Guoxin Zhang
2017-01-01
Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.
Numerical Investigation of the Influence of Viscoelasticity on Drop Deformation in Shear
Verhulst, K.; Cardinaels, R.; Moldenaers, P.; Renardy, Y.; Afkhami, S.
2008-07-01
Numerical simulations and experimental data are compared for the investigation of the influence of viscoelasticity on drop deformation in shear. A viscoelastic drop suspended in a Newtonian liquid, or a Newtonian drop suspended in a viscoelastic liquid, is sheared and investigated for transients, relaxation after cessation of shear flow, and step-up in shear rate. The numerical simulations are conducted at parameters chosen to model the experiments. We use the volume of fluid (VOF) continuum surface force (CSF) algorithm for situations dominated by shear. For drop relaxation experiments, we use the paraboloid representation of the interface in the surface tension force (PROST) algorithm. The Oldroyd-B and Giesekus constitutive models are implemented. An interesting result is that by stepping up in the capillary number gradually, a stationary states is achieved at higher capillary numbers than without the graduated steps. The experimental work is described in Verhulst, Moldenaers and Cardinaels [l]. We present a summary of the numerical approach here. The reader is referred to [2] for details.
A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean
Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.
2012-04-01
Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The
Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs
2013-04-01
The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.
Effects of relative density and accumulated shear strain on post-liquefaction residual deformation
Directory of Open Access Journals (Sweden)
J. Kim
2013-10-01
Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative
Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear
International Nuclear Information System (INIS)
Ozaki, Masahiko; Akita, Shodo; Osuga, Hiroshi; Nakayama, Tatsuo; Adachi, Naoyuki
2004-01-01
This paper describes the derivation of the equation for evaluating the strength of steel plate reinforced concrete structure (SC) and the experimental results of SC panels subjected to in-plane shear. Two experimental research programs were carried out. One was the experimental study in which the influence of the axial force and the partitioning web were investigated, another was that in which the influence of the opening was investigated. In the former program, nine specimens were loaded in cyclic in-plane shear. The test parameters were the thickness of the surface steel plate, the effects of the partitioning web and the axial force. The experimental results were compared with the calculated results, and good agreement between the calculated results and the experimental results was shown. In the later programs, six specimens having an opening were loaded in cyclic in-plane shear, and were compared with the results of the specimen without opening. FEM analysis was used to supplement experimental data. Finally, we proposed the equation to calculate the reduction ratio from the opening for design
Thrust plate prosthesis for proximal femoral deformity: a series of 15 patients
Karatosun, Vasfi; Ünver, Bayram; Gultekin, Alper; Gunal, Izge
2011-01-01
Objectives: Patients with coxarthrosis and proximal femoral deformity experience problems with total hip arthroplasty. A custom-made prosthesis or a proximal osteotomy is required for such cases, and these also increase the rate of complications. The purpose of this study was to evaluate the results of the thrust plate prosthesis (TPP) in patients with deformity of the proximal femur. Methods: Fifteen patients (7 females, 8 males) with a mean age of 56.4 years (range 19-75 years) at the...
Ren, Jingli; Chen, Cun; Wang, Gang; Liaw, Peter K.
2017-03-01
This paper explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10-2 s-1 the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at the intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10-2 s-1.
Pacific plate slab pull and intraplate deformation in the early Cenozoic
Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.
2014-08-01
Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion
Pacific plate slab pull and intraplate deformation in the early Cenozoic
Directory of Open Access Journals (Sweden)
N. P. Butterworth
2014-08-01
Full Text Available Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific
Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows
Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan
2017-11-01
We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.
International Nuclear Information System (INIS)
Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro
1984-01-01
The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)
Palano, Mimmo; González, Pablo J.; Fernández, José
2016-04-01
A spatially dense crustal velocity field, based on up to 15 years of GNSS observations at more than 380 sites and extensively covering the Iberian Peninsula and Northern Africa, allow us to provide new insights into two main tectonic processes currently occurring in this area. We detected a slow large-scale clockwise rotation of the Iberian Peninsula with respect to a local pole located closely to the northwestern sector of the Pyrenean mountain range (Palano et al., 2015). Although this crustal deformation pattern could suggest a rigid rotating lithosphere block, this model would predict significant shortening along the Western (off-shore Lisbon) and North Iberian margin which cannot totally ruled out but currently is not clearly observed. Conversely, we favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. Furthermore, the western Mediterranean basin appears fragmented into independent crustal tectonic blocks, which delimited by inherited lithospheric shear structures and trapped within the Nubia-Eurasia collision, are currently accommodating most of the plate convergence rate. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. Most of the observed crustal ground deformation can be attributed to processes driven by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary. Nevertheless, the observed deformation field infers a very low convergence rates as observed also at the eastern side of the western Mediterranean, along the Calabro Peloritan Arc, by space geodesy (e.g. Palano, 2015). References Palano M. (2015). On the present
Cocos Ridge Collision as a Driver for Plate Boundary Deformation in the Western Caribbean
La Femina, P. C.; Govers, R. M.; Geirsson, H.; Kobayashi, D.
2011-12-01
The subduction and collision of bathymetric highs can result in geodynamic changes along convergent plate boundaries, including intense upper plate deformation, increases in mechanical coupling and seismicity, migration and or cessation of volcanism and formation of forearc terranes. But how extensive can the deformation associated with these features be and what are the implications for the long-term formation and evolution of plate boundary zones? Plate boundary evolution and upper plate deformation in southern Central America associated with Cocos Ridge collision is well studied and indicates, 1) migration of the volcanic arc toward the backarc northwest of and cessation of volcanism directly inboard the ridge, 2) uplift of the Cordillera de Talamanca inboard the ridge, 3) shortening across the forearc Fila Costena fold and thrust belt, and 4) outer forearc uplift above and flanking the ridge. Recent geodynamical modeling of Cocos Ridge collision, combined with the results of kinematic block models for the Central American margin, suggests the ridge drives northwest-directed forearc motion from central Costa Rica northwest to the Cocos - Caribbean (Central American forearc block) - North America triple junction, greatly increasing the spatial scale of deformation. Upperplate deformation of the Central American margin to the southeast of the Cocos Ridge in Panama was not investigated in these models. We investigate the dynamics of Cocos Ridge collision along the entire Central American margin and the implications on plate boundary evolution with a new geodynamic model of ridge collision. Our model results are compared to a new GPS derived horizontal velocity field for Central America and preliminary results indicate that the Cocos Ridge drives the Panamanian isthmus into northern South America (i.e., the North Andes block).
Directory of Open Access Journals (Sweden)
Rolando Chacón
Full Text Available In this paper, the behavior of the intertwined shear and patch loading mechanisms in transversally stiffened steel plate girders is described. The phenomenological insight depicted in this paper shows the influence of the web thickness and the flange yield strength as well as the influence of the transverse stiffeners on the stress distribution, the critical loads and on the equilibrium path of this particular type of loading. A previously validated numerical model is used systematically as a simulation tool. Stress-, strain-, force- and displacement fields are exploited for the sake of inferring and idealizing the most valuable features of the depicted mechanical model.
Buckling And Postbuckling Of An Imperfect Plate Subjected To The Shear Load
Directory of Open Access Journals (Sweden)
Psotný Martin
2015-12-01
Full Text Available The stability analysis of an imperfect plate subjected to the shear load is presented. To solve this problem, a specialized computer program based on FEM has been created. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. Corresponding levels of the total potential energy are defined. Special attention is paid to the influence of imperfections on the post-critical buckling mode. Obtained results are compared with those gained using ANSYS system.
Present-day deformation of the intra-Eurasian plate regions
Garcia Sancho, Candela; Govers, Rob; Tesauro, Magdala
2015-04-01
We build on the results of two recent, yet independent, studies. In the first (Warners-Ruckstuhl et al., 2013) the forces on, and stresses within the Eurasian plate were established. In the second (Tesauro et al., 2012) the distribution of mechanically strong and weak parts of the Eurasian plate was found. We predict lithospheric deformation of the Eurasian plate, mainly focused on the Tibetan Plateau and in a lesser scale, on the Zagros Mountains and Anatolia, and compare it with observations. This constitutes a test of both the force/stress results and of the strength results. Specific questions are to which extent stresses localize in specific regions and whether micro-plates as identified by geodesists arise naturally from the results. Importantly, Warners-Ruckstuhl et al. (2013) found an ensemble of mechanically consistent force models based on plate interaction forces, lithospheric body forces and convective tractions. Each of these force sets is in mechanical equilibrium. A subset drives Eurasia in the observed direction of absolute motion and generates a stress field in a homogeneous elastic plate that fits observed horizontal stress directions to first order. Deformation models constitute a further test to discriminate between the remaining force sets. Following Tesauro et al. (2012) we assume five different compositions for the upper and lower crust. We use their geotherms and crustal thickness maps to estimate vertical distributions of strength at any location within the Eurasian plate. From the power-law relationship between strength and viscosity, and based on the assumption that horizontal strain rates do not vary with depth, we estimate the vertically averaged viscosity of each element of the domain. The combination of forces and averaged viscosities, and the inclusion of major active faults in our mechanical model allow us to predict deformation (velocities, strain rates and rotation rates). We compare our results with GPS velocities, InSAR, seismic
Lattice Boltzmann simulations of leukocyte rolling and deformation in a three-dimensional shear flow
Luo, Ye; Qi, Dewei; He, Guowei
2013-11-01
Lattice Boltzmann simulation is used to simulate the motion of a leukocyte in fluid. The cell membrane is built by lattice spring model. The interaction between the fluid flow and the solid surface is treated by immersed boundary method. Stochastic Monte Carlo method is used to deal with receptor/ligand interaction. It is shown that the model can correctly predict the characteristic ``stop-and-g'' motion of rolling leukocytes. Effects of cell deformation, shear rates, bonding force, microvilli distribution on rolling are studied and compared with experiments.
Asymmetric first order shear horizontal guided waves propagation in a tapered plate
International Nuclear Information System (INIS)
Chen, Jiu-Jiu; Song, Guang-Huang; Han, Xu
2015-01-01
In this paper, through numerical simulation of the first order shear horizontal guided waves propagation in a homogeneous tapered plate, we have realized sound unidirectional transmission based on the mode conversion mechanism. We also find that the contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle of tapered edge. And the working frequency range of the asymmetric transmission can be easily controlled by the height of tapered surface or the thickness of slab. This asymmetric system shows potentially significant applications in various sound devices. - Highlights: • We study the sound unidirectional transmission for SH 1 guided wave in a homogeneous tapered plate. • The contrast transmission ratio of unidirectional transmission is highly influenced by the slope angle. • The working frequency range of unidirectional transmission can be easily controlled by structure parameters
Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities
Smith, Kathryn E.; Dupont, Kenneth M.; Safranski, David L.; Blair, Jeremy; Buratti, Dawn; Zeetser, Vladimir; Callahan, Ryan; Lin, Jason; Gall, Ken
2016-01-01
Three-dimensional (3-D) printing offers many potential advantages in designing and manufacturing plating systems for foot and ankle procedures that involve small, geometrically complex bony anatomy. Here, we describe the design and clinical use of a Ti-6Al-4V ELI bone plate (FastForward™ Bone Tether Plate, MedShape, Inc., Atlanta, GA) manufactured through 3-D printing processes. The plate protects the second metatarsal when tethering suture tape between the first and second metatarsals and is a part of a new procedure that corrects hallux valgus (bunion) deformities without relying on doing an osteotomy or fusion procedure. The surgical technique and two clinical cases describing the use of this procedure with the 3-D printed bone plate are presented within. PMID:28337049
Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities.
Smith, Kathryn E; Dupont, Kenneth M; Safranski, David L; Blair, Jeremy; Buratti, Dawn; Zeetser, Vladimir; Callahan, Ryan; Lin, Jason; Gall, Ken
2016-09-01
Three-dimensional (3-D) printing offers many potential advantages in designing and manufacturing plating systems for foot and ankle procedures that involve small, geometrically complex bony anatomy. Here, we describe the design and clinical use of a Ti-6Al-4V ELI bone plate (FastForward™ Bone Tether Plate, MedShape, Inc., Atlanta, GA) manufactured through 3-D printing processes. The plate protects the second metatarsal when tethering suture tape between the first and second metatarsals and is a part of a new procedure that corrects hallux valgus (bunion) deformities without relying on doing an osteotomy or fusion procedure. The surgical technique and two clinical cases describing the use of this procedure with the 3-D printed bone plate are presented within.
DEFF Research Database (Denmark)
Mishin, Oleg; Segal, V.M.; Ferrasse, S.
2012-01-01
A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved ...... Bc. © The Minerals, Metals & Materials Society and ASM International 2012...
Structural coarsening during annealing of an aluminum plate heavily deformed using ECAE
DEFF Research Database (Denmark)
Mishin, Oleg V.; Zhang, Yubin; Godfrey, A.
2015-01-01
The microstructure and softening behaviour have been investigated in an aluminum plate heavily deformed by equal channel angular extrusion and subsequently annealed at 170 °C. It is found that at this temperature the microstructure evolves by coarsening with no apparent signs of recrystallization...
Thermal deformation in a thin circular plate due to a partially ...
Indian Academy of Sciences (India)
MS received 25 March 2004; revised 9 March 2005. Abstract. In this paper, we develop an integral transform to determine temper- ature distribution in a thin circular plate, subjected to a partially distributed and axisymmetric heat supply on the curved surface, and study the thermal deformation. The results, obtained in series ...
Thermal deformation in a thin circular plate due to a partially ...
Indian Academy of Sciences (India)
In this paper, we develop an integral transform to determine temperature distribution in a thin circular plate, subjected to a partially distributed and axisymmetric heat supply on the curved surface, and study the thermal deformation. The results, obtained in series form in terms of Bessel's functions, are illustrated numerically.
What drives microplate motion and deformation in the northeastern Caribbean plate boundary region?
van Benthem, S.A.C.; Govers, R.; Wortel, R.
2014-01-01
The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the “Bahamas Collision”) is generally invoked as a cause of this fragmentation. We propose that a second
Prediction of Welding Deformation and Residual Stress of Stiffened Plates Based on Experiments
Bai, R. X.; Guo, Z. F.; Lei, Z. K.
2017-12-01
Thermo-elastic-plastic (TEP) method is a method that can accurately predict welding deformation and residual stresses, but the premise is to select the appropriate heat source parameters. Aiming at the two welded joints in the stiffened plate studied in this paper, the welding experiments of simple components were carried out respectively, and the corresponding welding deformation and residual stresses were measured. Based on the welding experiment, the corresponding TEP model was established, and the corresponding heat source parameters were obtained according to the experimental data. The comparison between the experimental results and the numerical results shows that the obtained heat source parameters can well predict the welding deformation and residual stress of the welded structure. And then, the obtained heat source parameters were applied to the TEP model of the stiffened plate. The prediction results show that the T-type fillet welds of the stiffened plate can reduce the angular deformation caused by the butt welds to a certain extent. In addition, we can also find that the heat of the subsequent welds can reduce the residual stresses at the completed welds. This method not only can save a lot of experimental costs and time, but also can accurately predict the welding deformation and residual stresses.
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
Buckling and fracture behaviour of cracked thin plates under shear loading
International Nuclear Information System (INIS)
Brighenti, Roberto; Carpinteri, Andrea
2011-01-01
Thin-walled structural components are widely used in several engineering applications such as in aerospace, naval, nuclear power plant, pressure vessel, mechanical and civil fields. Since they are frequently characterised by a high slenderness, the safety assessment of such structural components requires to carefully consider the buckling collapse which can heavily limit their allowable bearing capacity. For very thin plates, buckling collapse can occur under compression, shear, or even under tension. In the present paper, the buckling and fracture collapse mechanisms in an elastic rectangular thin-plate with a central straight crack under shear loading are analysed. Different boundary conditions, crack length and orientation are considered. Through a parametric finite elements (FE) numerical analysis, the crack sensitivity of the collapse load of such a structural component is examined. The obtained results are discussed, and some interesting and useful conclusions are drawn. The collapse mechanism occurring earlier (buckling or fracture) is found by varying the fracture toughness of the material, and some failure-type maps depending on the geometrical parameters of the crack are determined.
Energy Technology Data Exchange (ETDEWEB)
Naei, Mohammad Hassan; Rastgoo, Abbas [University of Tehran, Tehran (Iran, Islamic Republic of); Ebrahimi, Farzad [Faculty of Engineering and Technology, lmam Khomeini International University, Qazvin (Iran, Islamic Republic of)
2009-08-15
A theoretical model for geometrically nonlinear vibration analysis of piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff's-Love hypothesis with von-Karman type geometrical large nonlinear deformations. To determine the initial stress state and pre-vibration deformations of the smart plate a nonlinear static problem is solved followed by adding an incremental dynamic state to the pre-vibration state. The derived governing equations of the structure are solved by exact series expansion method combined with perturbation approach. The material properties of the FGM core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Control of the FGM plate's nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixture of ceramic and metal are presented in dimensionless forms. In a parametric study the emphasis is placed on investigating the effect of varying the applied actuator voltage as well as gradient index of FGM plate on vibration characteristics of the smart structure
Oulaid, Othmane; Saad, Abdul-Khalik W; Aires, Pedro S; Zhang, Junfeng
2016-01-01
The tank-treading rotation of red blood cells (RBCs) in shear flows has been studied extensively with experimental, analytical, and numerical methods. Even for this relatively simple system, complicated motion and deformation behaviors have been observed, and some of the underlying mechanisms are still not well understood. In this study, we attempt to advance our knowledge of the relationship among cell motion, deformation, and flow situations with a numerical model. Our simulation results agree well with experimental data, and confirm the experimental finding of the decrease in frequency/shear-rate ratio with shear rate and the increase of frequency with suspending viscosity. Moreover, based on the detailed information from our simulations, we are able to interpret the frequency dependency on shear rate and suspending viscosity using a simple two-fluid shear model. The information obtained in this study thus is useful for understanding experimental observations of RBCs in shear and other flow situations; the good agreement to experimental measurements also shows the potential usefulness of our model for providing reliable results for microscopic blood flows.
Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.
2008-01-01
Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.
Emergence of coherent localized structures in shear deformations of temperature dependent fluids
Katsaounis, Theodoros
2016-11-25
Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.
Sound transmission across orthotropic cylindrical shells using third-order shear deformation theory
Directory of Open Access Journals (Sweden)
M. H. Shojaeefard
Full Text Available The objective of this paper is representation of an analytical solution to calculate transmission loss (TL of an arbitrarily thick cylindrically orthotropic shell, immersed in a fluid medium with a uniform external airflow and contains internal fluids. The shell is assumed to be infinitely long and is excited by an oblique plane wave. The displacements are expanded as cubic functions of the thickness coordinate to present an analytical solution based on Third-order Shear Deformation Theory (TSDT. Equations of motion of the shell are then obtained using virtual work method. By solving shell vibration as well as acoustic wave equations simultaneously, the exact solution for TL is obtained. Predictions with the presented models are compared with those of previous models (CST and FSDT for thin shells. Similar results are achieved as the effects of shear and rotation on TL are not noticeable in a thin shell. However, the model introduced here exhibits more accurate results for thick shells where the shear and rotation effects become more significant in lower R/h ratios. Additionally, the effects of related parameters on TL such as material and geometrical properties are discussed.
La Femina, P. C.; Govers, R. M. A.; Ruiz, G.; Geirsson, H.; Camacho, E.; Mora-Paez, H.
2015-12-01
The collision of the Panamanian isthmus with northwestern South America is thought to have initiated as early as Oligocene - Miocene time (23-25 Ma) based on geologic and geophysical data and paleogeographic reconstructions. This collision was driven by eastward-directed subduction beneath northwestern South America. Cocos - Caribbean convergence along the Middle America Trench, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex deformation of the southwestern Caribbean since Miocene - Pliocene time. Subduction and collision of the aseismic Cocos Ridge is thought to have initiated migration of the volcanic arc toward the back-arc in Costa Rica; 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 5) Quaternary to present outer fore-arc uplift of Nicoya Peninsula above the seamount domain, and the Osa and Burica peninsulas above the ridge; and 6) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA) and northeastward motion of the Panama Region. We investigate the geodynamic effects of Cocos Ridge collision on motion of the Panama Region with a new geodynamic model. The model is compared to a new 1993-2015 GPS-derived three-dimensional velocity field for the western Caribbean and northwestern South America. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation in the western Caribbean. Our models indicate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama Region. The Panama Region is driven into the Caribbean across the NPDB and into northwestern South America, which is also converging with the Panama Region, pushing it toward the west-northwest. Therefore, recent (South America is driven by Cocos
Pesin, A.; Pustovoytov, D.; Lokotunina, N.
2017-12-01
The mechanism of severe plastic deformation comes from very significant shear strain. Shear-compression testing of materials is complicated by the fact that a state of large equivalent strain with dominant shear strain is not easily achievable. This paper presents the novel technique of laboratory simulation of severe plastic deformation by multi-cycle shear-compression testing at room temperature with equivalent strain e=1…5. The specimen consisted of a parallelepiped having an inclined gauge section created by two diametrically opposed semi-circular slots which were machined at 45°. Height of the specimen was 50 mm, section dimensions were 25×25 mm, gauge thickness was 5.0 mm and gauge width was 6.0 mm. The specimen provided dominant shear strain in an inclined gauge-section. The level of shear strain and equivalent strain was controlled through adjustment of the height reduction of the specimen, load application direction and number of cycles of shear-compression. Aluminium alloy Al-6.2Mg-0.7Mn was used as a material for specimen. FE simulation and analysis of the stress-strain state were performed. The microstructure of the specimen after multi-cycle shear-compression testing with equivalent strain e=1…5 was examined by optical and scanning electron microscope.
Guido, Christopher; Shaqfeh, Eric
2017-11-01
The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.
Directory of Open Access Journals (Sweden)
Y. Zhao
2017-06-01
Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.
Numerical analysis of thermal deformation in laser beam heating of a steel plate
Energy Technology Data Exchange (ETDEWEB)
Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)
2017-05-15
Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.
Correction of bone angular deformities: experimental analysis of staples versus 8-plate.
Goyeneche, Rodolfo A; Primomo, Claudio E; Lambert, Norberto; Miscione, Horacio
2009-01-01
Hemi-epiphysiodesis should always be considered as an effective treatment to correct axial limb deformity in children. The use of the 8-plate as opposed to conventional staples provides firm fixation to both sides of the physis, acting mainly upon the epiphyseal growth site of the implant insertion. The aim of our study is to compare the effectiveness of both devices for performing angular corrections. Seventeen rabbits of 18 months of age were treated with an 8-plate in the distal femur and a staple in the contralateral femur. Eight weeks later, the level of deformity produced by each device was evaluated both radiographically and histologically. Axial deformity: the staples produced an average deviation of 48.1 degrees, and the 8-plate produced an average deviation of 49.1 degrees (P=0.44). Final longitudinal growth of the femurs: we recorded an average of 83.17 degrees for the staples and 85.7 degrees for the 8-plate. Histologic analysis: no significant difference was observed between both femurs of the same specimen; however, a slight difference was recorded when analyzing the results of different animals. Correction was achieved in less time when using conventional staples. The long-term effectiveness of both epiphysiodesis is similar. Longitudinal growth inhibition is lower when using 8-plate. Although both methods are effective in stopping the growth, the 8-plate has better grasp to the bone or epiphyseal cartilage avoiding extrusion in small children. The correction is faster using a staple and that is the reason why we prefer its usage in patients with little remnant growth.
Absorbable Plate as a Perpendicular Strut for Acute Saddle Nose Deformities
Directory of Open Access Journals (Sweden)
Jong Gyu Kim
2012-03-01
Full Text Available BackgroundNasal pyramid fractures accompanied by saddle nose deformities are not easily corrected by closed reduction. We used an absorbable plate as a perpendicular strut to support the collapsed "keystone area" and obtained good results.MethodsBetween September 2008 and June 2011, 18 patients who had nasal pyramid fractures with saddle nose deformities underwent surgery. Pre- and postoperative facial computed tomographic images and photographs were taken to estimate outcomes. The operative technique included the mucoperichondrial dissection of the nasal septum, insertion of an absorbable plate prepared to an appropriate length to support the "keystone area", and fixation of the absorbable plate strut to the cartilaginous septum.ResultsFunctional and esthetic outcomes were satisfactory in all patients. Eleven patients assessed the postoperative appearance of the external nose as 'markedly improved' and 7 patients as 'improved'. The 5 surgeons scored the results as a mean of 4.5 on a 5-point scale.ConclusionsThe use of an absorbable plate as a perpendicular strut requires no additional procedures because the plate is gradually absorbed. The mechanical strength provided by a buttress between the "keystone area" and the maxillary crest lasts for a long time before the strut is absorbed.
Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft
Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.
1975-01-01
The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.
Gion, Austin; Williams, Simon; Müller, Dietmar
2017-04-01
Present-day distributed plate deformation is being mapped and simulated in great detail, largely based on satellite observations. In contrast, the modelling of and data assimilation into deforming plate models for the geological past is still in its infancy. The recently released GPLates2.0 (www.gplates.org) software provides a framework for building plate models including diffuse deformation. Here we present an application example for the Eurekan orogeny, a Paleogene tectonic event driven by sea floor spreading in the Labrador Sea and Baffin Bay, resulting in compression between NW Greenland and the Canadian Arctic. The complexity of the region has prompted the development of countless tectonic models over the last 100 years. Our new tectonic model incorporates a variety of geological field and geophysical observations to model rigid and diffuse plate deformation in this region. Compression driven by Greenland's northward motion contemporaneous with sea floor spreading in the Labrador Sea, shortens Ellesmere Island in a "fan" like pattern, creating a series of thrust faults. Our model incorporates two phases of tectonic events during the orogeny from 63-35 Ma. Phase one from 63 to 55 Ma incorporates 85 km of Paleocene extension between Ellesmere Island and Devon Island with extension of 20 km between Axel Heiberg Island and Ellesmere Island and 85 km of left-lateral strike-slip along the Nares Strait/Judge Daly Fault System, matching a range of 50-100 km indicated by the offset of marker beds, facies contacts, and platform margins between the conjugate Greenland and Ellesmere Island margins. Phase two from 55 to 35 Ma captures 30 km of east-west shortening and 200 km of north-south shortening from Ellesmere Island to the Canadian Arctic Island margins. Our model extends the boundaries of the Eurekan Orogeny northward, considering its effect on the Lomonosov Ridge, Morris Jessup Rise, and the Yermak Plateau , favouring a model in which the Lomonosov Ridge moves
Directory of Open Access Journals (Sweden)
Ramazan-Ali Jafari-Talookolaei
2015-09-01
Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.
Roeloffs, Evelyn
2010-01-01
A multicomponent borehole strainmeter directly measures changes in the diameter of its cylindrical housing at several azimuths. To transform these measurements to formation strains requires a calibration matrix, which must be estimated by analyzing the installed strainmeter's response to known strains. Typically, theoretical calculations of Earth tidal strains serve as the known strains. This paper carries out such an analysis for 12 Plate Boundary Observatory (PBO) borehole strainmeters, postulating that each of the strainmeters' four gauges responds ("couples") to all three horizontal components of the formation strain tensor, as well as to vertical strain. Orientation corrections are also estimated. The fourth extensometer in each PBO strainmeter provides redundant information used to reduce the chance that coupling coefficients could be misleadingly fit to inappropriate theoretical tides. Satisfactory fits between observed and theoretically calculated tides were obtained for three PBO strainmeters in California, where the calculated tides are corroborated by other instrumentation, as well as for six strainmeters in Oregon and Washington, where no other instruments have ever recorded Earth tidal strain. Several strainmeters have unexpectedly large coupling coefficients for vertical strain, which increases the strainmeter's response to atmospheric pressure. Vertical coupling diminishes, or even changes the sign of, the apparent response to areal strain caused by Earth tides or deep Earth processes because near the free surface, vertical strains are opposite in sign to areal strain. Vertical coupling does not impair the shear strain response, however. PBO borehole strainmeters can provide calibrated shear strain time series of transient strain associated with tectonic or magmatic processes.
Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode
Church, P.; Cornish, R.; Cullis, I.; Lynch, N.
2000-03-01
Ballistic experiments have been performed using aluminum spheres against 10-mm rolled homogenous armour (RHA), MARS270, MARS300, and titanium alloy plates to investigate the influence of the plugging mechanism on material properties. The experiments have measured the threshold for plug mass and velocity as well as the recovered aluminum sphere mass over a range of velocities. Some of the experiments have been simulated using the in-house second generation Eulerian hydrocode GRIM. The calculations feature advanced material algorithms derived from interrupted tensile testing techniques and a triaxial failure model derived from notched tensile tests over a range of strain rates and temperatures. The effect of mesh resolution on the results has been investigated and understood. The simulation results illustrate the importance of the constitutive model in the shear localization process and the subsequent plugging phenomena. The stress triaxiality is seen as the dominant feature in controlling the onset and subsequent propagation of the crack leading to the shear plug. The simulations have demonstrated that accurate numerics coupled with accurate constitutive and fracture algorithms can successfully reproduce the observed experimental features. However, extrapolation of the fracture data leads to the simulations overpredicting the plug damage. The reasons for this are discussed.
Parametric study of the deformation of U3Si2-Al dispersion fuel plates
International Nuclear Information System (INIS)
Vieira, Edeval
2011-01-01
The Nuclear and Energy Research Institute - IPEN-CNEN/SP produces routinely the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U 3 Si 2 -Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed with base on information obtained from literature, which were used as premises for defining the current manufacturing procedures, according to a methodology with essentially empirical character. Despite the current rolling process to be perfectly stable and highly reproducible, it is not well characterized and therefore is not fully known. The objective of this work is to characterize the rolling process for producing fuel plates, specifically the evolution of dimensional parameters of the fuel plate as a function of its deformation in the rolling process. Results are presented in terms of the evolution of the thickness of the fuel meat and cladding of the fuel plate along the deformation, as well as the terminals defects, microstructure and porosity of the fuel meat. (author)
The Peano-series solution for modeling shear horizontal waves in piezoelectric plates
Directory of Open Access Journals (Sweden)
Ben Ghozlen M.H.
2012-06-01
Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.
Middle cretaceous crustal anatexis associated to contractional deformation on Eden's shear zone
International Nuclear Information System (INIS)
Calderon, M.; Herve, F; Godoy, E.; Suarez, M; Watters, W.A
2001-01-01
The Puerto Eden's igneous and metamorphic complex (PEIMC) is composed by amphibolite facies schists, melanocratic and leucocratic diatexites (with biotite in schlieren structure), and orthomylonites intruded by schlieren bearing porphyritic biotite monzogranite, tabular garnet - tourmaline and white mica - garnet leucogranites, pegmatitic felsic dikes, andesitic dikes, and biotite hornblende granodiorites belonging to the South Patagonian Batholith (SPB). This locality represent the westernmost outcrop of the Eastern Andean Metamorphic Complex (EAMC), situated at 49 o 8min. 20.seg S - 74 o 23min.20seg. W, on the eastern margin of the SPB. A common relationship exists in convergent orogenic belts between a shear zone system, high-grade metamorphic rocks, and granites, which suggests a feedback relationship between crustal anatexis and contractional deformation that helps granite extraction and focusses granite ascent (Solar et al, 1998). The aim of this study is to constraint the temporal relationship between the magmatic and deformational evolution in Puerto Eden, associated to one or more events of crustal anatexis recorded. This work is based on geochemistry and K-Ar radiometric age data set previously presented as part of first author's MSc thesis related to the petrogenesis of PEIMC (au)
Kosenkov, V. M.; Bychkov, V. M.
2017-08-01
We have experimentally studied the influence of discharge-circuit inductance on the efficiency of conversion of energy stored in a capacitor bank, evolved in the electric-discharge channel in water, and spent for the resulting plastic deformation of plates. It is established for the first time that a growth in inductance of the discharge circuit produces a positive effect on the deformation of plates by increasing the amount of energy spent in this process.
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)
2017-01-15
Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.
Okaya, D. A.; Stern, T. A.; Davey, F. J.
2012-12-01
Continental collision occurs at strike-slip plate boundaries where transform motion and oblique convergence create processes of surficial mountain building and deformation within the deeper crust and lithospheric mantle. The Pacific/Australian transform plate boundary in South Island, New Zealand, is characterized by active oblique continent-continent collision with an associated Southern Alps orogen that exhibits both high exhumation rates and rapid strike-slip movement. Beginning in the 1990s, this system was the focus of a decade-long collaborative USA-New Zealand multi-disciplinary study to understand lithospheric structure and processes involved in this transpression. Funded primarily by the NSF Continental Dynamics program and the New Zealand Science Foundation, this project known as SIGHT (South Island Geophysical Transect) with its companion SAPSE (Southern Alps Passive Seismic Experiment) included the following disciplines that involved substantial field observation experiments: seismic reflection, explosion refraction, onshore-offshore wide-angle reflection/refraction, regional and teleseismic passive seismology, magnetotellurics, laboratory petrophysics, gravity, regional geological investigations, and rheological analyses. More than fifty scientists and students from both nations participated in the combined set of studies that have led to over forty-five journal publications, an AGU Monograph, and a dozen graduate theses. Primary results of the project indicate the Pacific-Australian strike-slip plate boundary (Alpine fault) is not vertical but is eastward dipping and rheologically weak based on diverse geophysical data. Most deformation is within the Pacific plate that hosts the Southern Alps orogen. High mantle seismic velocities vertically disposed beneath the orogen suggest Pacific and perhaps Australian mantle lithosphere contribute to a zone of plate-boundary-parallel distributed mantle shortening. The crustal root of the overlying Southern Alps
Boutelier, D. A.; Cruden, A. R.
2013-12-01
-dimensional. Three-dimensional, non-cylindrical thermomechanical laboratory experiments of arc-continent collision investigate the impact of the flexural strength of the orogen and along-strike coupling of the neighboring segments of the plate boundary in the cases of diachronous collisions because of obliquity of the subducting passive margin or obliquity of the convergence in the subduction zone. The experiments reveal that deformation is continuous along-strike, but also fundamentally three-dimensional. Progressive along-strike structural variations arise because coupling between neighboring segments induces either advanced or delayed failure of the arc lithosphere and passive margin. The modeling results suggest that orogenic belts should experience deeper subduction of continental crust and hence higher-pressure metamorphism where the two plates first collided than elsewhere along the plate boundary where collision subsequently propagated. Furthermore, during the initial stage of collision the accretionary wedge is partially subducted, which leads to lubrication of the interplate zone and a reduction of shear traction. Therefore, a large convergence obliquity angle does not produce a migrating fore-arc sliver. Rather, the pressure force generated by subduction of the buoyant continental crust causes fore-arc motion. It follows that convergence obliquity during collision does not yield trench-parallel deformation of the fore arc and its influence on the collision process is limited.
A biaxial method for inplane shear testing. [shear strain in composite materials
Bush, H. G.; Weller, T.
1978-01-01
A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.
Schellart, W. P.
2007-01-01
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for
Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.
Ran, Chun; Chen, Pengwan
2018-01-05
To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.
Leahy, Lauren N.; Haslach, Henry W.
2018-02-01
During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.
Wu, Wenbin; Liu, Junlai; Zhang, Lisheng; Qi, Yinchuan; Ling, Chengyang
2017-05-01
Structural and microstructural characteristics, deformation temperatures and flow vorticities of the northern Ailao Shan (ALS) high-grade metamorphic belt provide significant information regarding the nature and tectonic evolution of the Ailao Shan-Red River (ASRR) shear zone. Mineral deformation mechanisms, quartz lattice-preferred orientation (LPO) patterns and the opening angles of quartz c-axis fabrics of samples from the Gasa section indicate that the northern ALS high-grade metamorphic belt has experienced progressive shear deformation. The early stage shearing is characterized by a gradual decrease of deformation temperatures from >650 °C at the northeastern unit to ca. 300 °C at the southwestern unit, that results in the formation of migmatites, mylonitic gneisses, thin bedded mylonites, mylonitic schists and phyllonites from the NE to SW across the strike of the shear zone. The late stage low-temperature (300-400 °C) shearing is superimposed on the early deformation throughout the belt with the formation of discrete, small-scale shear zones, especially in the thin-banded mylonitic rocks along both margins. The kinematic vorticity values estimated by rotated rigid porphyroclast method and oblique grain-shaped/quartz c-axis-fabric method imply that the general shear-dominated flow (0.49-0.77) progressively changed to a simple shear-dominated flow (0.77-1) toward the late stage of ductile deformation. The two stages of shearing are consistent with early shortening-dominated and late extrusion-controlled regional tectonic processes. The transition between them occurred at ca. 27 Ma in the ALS high-grade metamorphic belt along the ASRR shear zone. The large amount of strike-slip displacement along the ASRR shear zone is predominantly attributed to accelerated flow along the shear zone during the late extrusion-controlled tectonic process.
Akilan, A.; Abdul Azeez, K. K.; Schuh, H.; Yuvraaj, N.
2015-10-01
The dynamics of the planet Earth are manifestations of diverse plate tectonic processes which have been occurring since the Archean period of the Earth's evolution and continue to deform the plate boundaries. Very long baseline interferometry (VLBI) is an efficient space geodetic method that enables precise measurement of plate motion and associated deformations. We analyze here VLBI measurements made during a period of approximately three decades at five locations on the Eastern hemisphere of the globe, which are geographically distributed over five continents (plates) around the Indian Ocean. Computed rate of change of baseline length show the deformation pattern and its rate at the boundaries between the major tectonic plates constituting the Eastern hemisphere of the Earth. The African (Nubian) and Antarctic plates are moving apart at 13.5 mm/year, which is mostly attributed to spreading of the South West Indian Ridge. Similarly, spreading of 59.0 mm/year is observed for the South East Indian Ridge that separates the Antarctic and Australian plates. Shortening at the rate of 3.9 mm/year is estimated across the subduction boundary between Africa (Nubia) and Eurasia. Similar convergence is evident between the Australian and Sunda blocks (of the Eurasian plate). The associated deformation of -54.8 mm/year seems to be chiefly accommodated along the Banda arc system, where the Australian plate is subducting under the Sunda block. VLBI sites within the Eurasian plate, Wettzell in Germany, and Seshan on the South China block, are moving apart at 3.6 mm/year. This relative motion between locations on the same plate is interpreted as a result of the deformation process along a large strike-slip fault, which is identified as the Western boundary of the South China block. Expansion of the Indian Ocean, at +91.5 m2/year, is also estimated from the rate of deformation estimated within the five baselines studied here. From the Hurst exponent values, which are indicators of
Keiding, Marie
2010-07-01
We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.
Stock, J. M.
2013-12-01
Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical
DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique
2014-12-01
We combine new, well-determined GPS velocities from Clarion, Guadalupe and Socorro islands on young seafloor in the eastern Pacific basin with newly estimated velocities for 26 GPS sites from older seafloor in the central, western and southern parts of the Pacific Plate to test for deformation within the interior of the Pacific Plate and estimate the viscosity of the asthenosphere below the plate. Relative to a Pacific Plate reference frame defined from the velocities of the 26 GPS sites in other areas of the Pacific Plate, GPS sites on Clarion and Guadalupe islands in the eastern Pacific move 1.2 ± 0.6 mm yr-1 (1σ) towards S09°W ± 38° and 1.9 ± 0.3 mm yr-1 towards S19°E ± 10°, respectively. The two velocities, which are consistent within their 95 per cent uncertainties, both differ significantly from Pacific Plate motion. Transient volcanic deformation related to a 1993-1996 eruption of the Socorro Island shield volcano renders our GPS velocity from that island unreliable for the tectonic analysis although its motion is also southward like those of Clarion and Guadalupe islands. We test but reject the possibilities that drift of Earth's origin in ITRF2008 or unmodelled elastic offsets due to large-magnitude earthquakes around the Pacific rim since 1993 can be invoked to explain the apparent slow southward motions of Clarion and Guadalupe islands. Similarly, corrections to the Pacific Plate GPS velocity field for possible viscoelastic deformation triggered by large-magnitude earthquakes since 1950 also fail to explain the southward motions of the two islands. Viscoelastic models with prescribed asthenospheric viscosities lower than 1 × 1019 Pa s instead introduce statistically significant inconsistencies into the Pacific Plate velocity field, suggesting that the viscosity of the asthenosphere below the plate is higher than 1 × 1019 Pa s. Elastic deformation from locked Pacific-North America Plate boundary faults is also too small to explain the southward
The transverse shear deformation behaviour of magneto-electro-elastic shell
Energy Technology Data Exchange (ETDEWEB)
Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)
2016-01-15
Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.
The transverse shear deformation behaviour of magneto-electro-elastic shell
International Nuclear Information System (INIS)
Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed
2016-01-01
Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour
C sub 6 sub 0 fullerene and its molecular complexes under axial and shear deformation
Spitsina, N G; Bashkin, I V; Meletov, K P
2002-01-01
We have studied the pristine C sub 6 sub 0 and its molecular complexes with the organic donors bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) and tetramethyltetraselenafulvalene (TMTSF) by means of ESR and Raman spectroscopy at high pressure. The important changes in the ESR signal of C sub 6 sub 0 were observed under axial pressure combined with shear deformation. It is shown that the treatment at a anisotropic pressure of 4 GPa results in a reduction in the symmetry of the C sub 6 sub 0 molecule and the formation of radicals. Treatment of the molecular complex of (ET) sub 2 centre dot C sub 6 sub 0 at a pressure of approx 4.5 GPa and a temperature of 150 deg. C leads to the formation of C sub 6 sub 0 dimers. The Raman spectra of the molecular complex C sub 6 sub 0 centre dot TMTSF centre dot 2(CS sub 2) were measured in situ at ambient temperature and pressures up to 9.5 GPa. The pressure behaviour of the Raman peaks reveals singularity at 5.0 +- 0.5 GPa related to the softening and splitting of so...
Kadota, Michio; Tanaka, Shuji
2016-07-01
There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.
Rheological responses to plate boundary deformation at the Eastern Volcanic Zone in Iceland
Tariqul Islam, Md.; Sturkell, Erik
2017-10-01
Located on the mid-Atlantic ridge, Iceland allows for direct measurement of crustal deformation. Global Positioning System (GPS) data from the Eastern Volcanic Zone (EVZ), Iceland, and crustal deformation of the rift near its southern end at 64°N show a spreading rate of 13.8 ± 1.8 mm yr- 1. About 90% of the deformation occurs in an 80 to 90-km wide zone. To understand how the rheology of the lithosphere influences rifting, we applied a thermo-mechanical stretching model that includes thermal states in Iceland using temperature- and stress-dependent wet and dry olivine rheology. We attempt to reproduce the thermal structure of a rift by defining 700 °C from 5- to 15-km depth at the rift axis that leads to variation in rheological structure, and to estimate the layer (from surface to a depth of 700 °C) where the elastic deformation of the lithosphere is the greatest. At a fixed spreading rate, the deformation field is controlled by the sub-surface thermal state. The vertical subsidence rate at the ridge axis increases almost linearly as the half-velocity increases. The best fitted model suggests a thermal gradient of 54 °C km- 1 at depth below where 700 °C occurs at the ridge axis. The models have little sensitivity to the wet or dry olivine rheology. Estimated viscosity is 1 × 1019 Pa s at 20-km depth at the ridge axis and 1 × 1018 Pa s up to 100-km depth in the model. The spreading rate influences the tangential (non-linearity) shape of the deformation field, and a change in spreading rate affects the deformation field the most. After spreading velocity, the model's second most sensitive parameter is the location of the 700 °C at the rift axis. The thermomechanical model confirms that the rheological responses at the central part of the rift zone in the EVZ, Iceland caused of plate spreading is nonlinear, comparable with surface deformation observed by GPS measurement.
Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue
2017-04-01
Archean granitic gneiss domes and greenstone belts are well-preserved in eastern NCC, one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups were sheared, but some Archean granitic gneisses were also involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400 to 550°C.LA-ICP-MS zircon U-Pb ages of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was
Directory of Open Access Journals (Sweden)
Şandru Mirela
2016-09-01
Full Text Available This paper presents an analytical study which deals with the behavior of the circular plates in bending theory, considering the soil-structure interaction under Winkler's hypothesis. It was intended to illustrate the variation of internal forces and deformations according to the flexibility coefficient of plates considering three models: a fixed solid circular plate subjected to a uniformly distributed load, a fixed solid circular plate acted by a displacement applied on the exterior contour and a solid plate subjected to a temperature gradient. For this study the computation relations were written as a product between a dimensional and a non-dimensional factor, the last one indicating the variation of internal forces and deformations. For each type of action there are presented results obtained using the finite element method to illustrate the differences between this method and the analytical computation.
Analysis of deformation of aluminum plates under the influence of nano- and microsecond laser pulses
Jach, K.; Świerczyński, R.; Ostrowski, R.; Rycyk, A.; CzyŻ, K.; Strzelec, M.; Sarzyński, A.
2017-10-01
The paper presents numerical modeling of interaction of strong laser radiation with conventional aluminum sheets, similar to those used in military technology. The theoretical model uses equations of continuum mechanics (equations of hydrodynamics and the equations of mechanics of solid bodies in a cylindrical coordinates r, z), enriched with equations describing the typical effects of high temperature, such as absorption of laser radiation within the Al shield, electronic and radiative thermal conductivity, and energy loss on phase transitions (melting, evaporation, ionization). Semiempirical equations of state were used to describe the properties of material in the conditions of large deformation and the Johnson-Cook's model. The equations were solved using the method of free points developed by one of the authors. Two kinds od laser pulses were considered: microsecond pulse with duration of 200 μs and a low peak power of 10 kW/cm2 (CW laser), and nanosecond pulse with duration of 10 ns and high peak power of 5 GW/cm2 (pulsed laser). The aim of this study was to determine the shapes and temperatures of Al plates under the influence of these pulses for the comparison of the numerical results with future experiments and to verify the possibility to determine the distribution of the energy density of the laser beam on the basis of the plate deformation.
Improved design of a cone-shaped rotating disk for shear force loading in a cell culture plate
Keawprachum, Boonrit; Limjeerajarus, Nuttapol; Nakalekha Limjeerajarus, Chalida; Srisungsitthisunti, Pornsak
2018-01-01
In our previous study, a cone-shaped rotating disk had been designed and proposed for generating shear force on the cell in a cell culture plate. This study aims to improve the design of the rotating disk that could provide a better uniformity of shear stress distribution. The top of the cone was designed to be trimmed off to obtain a flat head area. The effect of tilt angle (θ) was numerically studied using computational fluid dynamics (CFD) technique in ANSYS-Fluent software. The results revealed that for 500 rpm, the new designed rotating disk with a height of cone-shaped top to the plate bottom h = 1 mm and θ = 25° provided the best uniformity of 0.820 which was better than that of the previously designed.
Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier
2017-04-01
Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition
A Step in the D'' Shear Velocity Discontinuity Beneath the Cocos Plate Imaged by Kirchhoff Migration
Hutko, A.; Lay, T.; Garnero, E.; Revenaugh, J.
2005-12-01
We use 270 horizontally-polarized S waves from 15 deep earthquakes under South America recorded at broadband stations in western North America to image shear-velocity structure in the deep mantle beneath the Cocos Plate. We use a Kirchhoff migration approach, assuming isotropic scattering from a three-dimensional grid of possible scattering nodes in the lowermost mantle. Several 3D mantle tomography models are used to correct for first-order travel-time perturbations due to volumetric heterogeneity, and waveforms are migrated with respect to either S or ScS arrivals. We observe an East-West striking abrupt 50-150 km change in the depth of the D'' shear velocity discontinuity near 6°N. This feature is apparent in migrations for a 1D reference model and in migrations that use different 3D aspherical models to account for volumetric velocity effects. Our results do not contain significant topography elsewhere on the boundary, and are compatible with a relatively flat D'' discontinuity on either side of the step. The vertical step is constrained to occur over less than 100 km laterally. The step may be due to strong temperature and or chemical gradients, both of which require an active dynamical process to sustain such a steep feature. One dynamical process that can account for the step is folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, resulting in a 100 km elevation of the post-perovskite phase boundary due to a 700K lateral temperature reduction in the folded slab. We also detect localized low velocities along the boundary of the imaged D'' discontinuity, which may involve upwellings caused by the slab laterally displacing a thin hot thermal boundary layer. Preliminary efforts to migrate broadband and short period P wave data also reveal complicated D'' structure in this region, however these results are much lower resolution and will be explored in greater detail.
Compressive Deformation Behavior of Thick Micro-Alloyed HSLA Steel Plates at Elevated Temperatures
Directory of Open Access Journals (Sweden)
Lee J.-H.
2017-06-01
Full Text Available The hot deformation behavior of a heavy micro-alloyed high-strength low-alloy (HSLA steel plate was studied by performing compression tests at elevated temperatures. The hot compression tests were carried out at temperatures from 923 K to 1,223 K with strain rates of 0.002 s−1 and 1.0 s−1. A long plateau region appeared for the 0.002 s−1 strain rate, and this was found to be an effect of the balancing between softening and hardening during deformation. For the 1.0 s−1 strain rate, the flow stress gradually increased after the yield point. The temperature and the strain rate-dependent parameters, such as the strain hardening coefficient (n, strength constant (K, and activation energy (Q, obtained from the flow stress curves were applied to the power law of plastic deformation. The constitutive model for flow stress can be expressed as σ = (39.8 ln (Z – 716.6 · ε(−0.00955ln(Z + 0.4930 for the 1.0 s−1 strain rate and σ = (19.9ln (Z – 592.3 · ε(−0.00212ln(Z + 0.1540 for the 0.002 s−1 strain rate.
Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue
2017-05-01
Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone
Hagag, W.; Moustafa, R.; Hamimi, Z.
2018-01-01
The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.
A New Accurate yet Simple Shear Flexible Triangular Plate Element with Linear Bending Strains
DEFF Research Database (Denmark)
Damkilde, Lars; Pedersen, Ronnie
2010-01-01
The paper describes a new shear flexible triangular element. The formulation is based on displacement interpolation of the transverse displacement of the midsurface and the rotations of the cross-sections, and the element is fully compatible. The basic principle is to use a so-called balanced...... interpolation so that the part of the shear strains that relates to the transverse displacement has the same polynomial variation as the part of the shear strains that relates to the rotations of the cross-section. This balanced interpolation in combination with complete polynomial interpolations prevents shear...... are virtually the same. The slightly incompatible formulation can be implemented directly into commercial codes....
Torbahn, Lutz; Weuster, Alexander; Handl, Lisa; Schmidt, Volker; Kwade, Arno; Wolf, Dietrich E.
2017-06-01
The interdependency of structure and mechanical features of a cohesive powder packing is on current scientific focus and far from being well understood. Although the Discrete Element Method provides a well applicable and widely used tool to model powder behavior, non-trivial contact mechanics of micron-sized particles demand a sophisticated contact model. Here, a direct comparison between experiment and simulation on a particle level offers a proper approach for model validation. However, the simulation of a full scale shear-tester experiment with micron-sized particles, and hence, validating this simulation remains a challenge. We address this task by down scaling the experimental setup: A fully functional micro shear-tester was developed and implemented into an X-ray tomography device in order to visualize the sample on a bulk and particle level within small bulk volumes of the order of a few micro liter under well-defined consolidation. Using spherical micron-sized particles (30 μm), shear tests with a particle number accessible for simulations can be performed. Moreover, particle level analysis allows for a direct comparison of experimental and numerical results, e.g., regarding structural evolution. In this talk, we focus on density inhomogeneity and shear induced heterogeneity during compaction and shear deformation.
Fu, Rong-Shan; Huang, Jian-Hua; Xu, Yao-Min; Li, Li-Gang; Chang, Xiao-Hua
2000-01-01
In this paper the continental lithosphere of the East Asia is regarded as a continuum in a power law rheology. It lays on a relative soft upper mantle and limited in a trapezoid geological frame. The movement of the Indian Plate at the rate of 5 cm/a is assumed to be the main driving force for the Tibet Plateau’s uplift and the lithosphere deformation of the Chinese continent. The numerical simulation shows that the predicted horizontal deformation model of the Chinese continent is comparable with the results of the GPS observation. It implicates that the collision and compression between India and Eurasia Plates is the main driving force of the horizontal deformations of the Chinese continent. It is also shows that the patterns of the continental deformation are controlled by many factors such as the dynamical parameters of the lithosphere and the boundary conditions as well.
Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu
2017-11-01
In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift
DEFF Research Database (Denmark)
Hong, C.S.; Tao, N.R.; Huang, Xiaoxu
2010-01-01
Microstructural evolution associated with the shear banding in nano-scale twin/matrix (T/M) lamellae of a Cu–Al alloy processed by means of dynamic plastic deformation was investigated using transmission electron microscopy (TEM) and high-resolution TEM. The development of a shear band was found...
Directory of Open Access Journals (Sweden)
Atteshamuddin S. Sayyad
Full Text Available Abstract In the present study, a simple trigonometric shear deformation theory is applied for the bending, buckling and free vibration of cross-ply laminated composite plates. The theory involves four unknown variables which are five in first order shear deformation theory or any other higher order theories. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The transverse displacement includes bending and shear components. The present theory satisfies the zero shear stress conditions at top and bottom surfaces of plates without using shear correction factor. Equations of motion associated with the present theory are obtained using the dynamic version of virtual work principle. A closed form solution is obtained using double trigonometric series suggested by Navier. The displacements, stresses, critical buckling loads and natural frequencies obtained using present theory are compared with previously published results and found to agree well with those.
Miller, M. Meghan; Johnson, Daniel J.; Rubin, Charles M.; Dragert, Herb; Wang, Kelin; Qamar, Anthony; Goldfinger, Chris
2001-04-01
High-precision GPS geodesy in the Pacific Northwest provides the first synoptic view of the along-strike variation in Cascadia margin kinematics. These results constrain interfering deformation fields in a region where typical earthquake recurrence intervals are one or more orders of magnitude longer than the decades-long history of seismic monitoring and where geologic studies are sparse. Interseismic strain accumulation contributes greatly to GPS station velocities along the coast. After correction for a simple elastic dislocation model, important residual motions remain, especially south of the international border. The magnitude of northward forearc motion increases southward from western Washington (3-7 mm/yr) to northern and central Oregon (˜9 mm/yr), consistent with oblique convergence and geologic constraints on permanent deformation. The margin-parallel strain gradient, concentrated in western Washington across the populated Puget Lowlands, compares in magnitude to shortening across the Los Angeles Basin. Thus crustal faulting also contributes to seismic hazard. Farther south in southern Oregon, north-westward velocities reflect the influence of Pacific-North America motion and impingement of the Sierra Nevada block on the Pacific Northwest. In contrast to previous notions, some deformation related to the Eastern California shear zone crosses northernmost California in the vicinity of the Klamath Mountains and feeds out to the Gorda plate margin.
Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements
VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone
1997-01-01
diagnostics of flames are, however, necessarily limited to detection of radiative emission in the visible range, and offer only qualitative information about the nature of the processes in the flame. In particular, the study sought to understand the structure of the inhibitor-perturbed flames with regard to temperature and species concentration in the outer region of the flame. Whereas thermocouple measurements can be used in ground based studies, their implementation in drop-tower rigs is limited. A possible approach to determine the temperature field around the flame is to use interferometric techniques. The implementation and testing of a shear-plate interferometry technique is described below.
Comparison between deformation modulus of rock mass measured by plate jacking and dilatometer tests
Directory of Open Access Journals (Sweden)
Mohsen Rezaei
2017-09-01
Full Text Available For determination of the in-situ deformation modulus of rock mass at Bakhtiari Dam site, located in south-west of Iran, plate jacking tests (PJT and dilatometer tests (DLT carried out during the geotechnical investigations. In this study, the results of PJTs and DLTs were compared. This comparison involves 89 vertical and horizontal PJTs and 83 DLTs carried out in 6 rock units of Sarvak formation. Although, both PJTs and DLTs in the Bakhtiari Dam site were performed in same geological and geotechnical conditions, but there are not sufficient side by side data to make a paired two samples correlation. Therefore, the mean of in-situ data was compared at each rock unit. Besides Mann–Whitney U tests were performed to compare in-situ test results. The comparison shows that the deformation modulus measured by both methods has no significant differences. However, in low quality rock masses the moduli measured by the use of DLTs were greater than the modulus measured by PJTs. Conversely, in high quality rock masses the results of PJTs were greater than DLT’s.
Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen
2017-08-01
The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.
Cheng, Win-Bin
2018-01-01
Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.
Ideal shear strength and deformation behaviours of L10 TiAl from ...
Indian Academy of Sciences (India)
The stress–strain relationships for four different shear processes of L1 0 TiAl have been investigated from first-principles calculations, and the peak shear stresses in ... Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Guangxi Teachers Education University, Nanning 530023, China ...
Jung, H.; Park, M.
2017-12-01
Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.
Yankovskii, A. P.
2018-01-01
On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction
Thatcher, W. R.; Murray-Moraleda, J. R.
2009-12-01
a simple block description may not be useful. It is notable that a number of documented disagreements between GPS and geologic slip rates occur on faults in these complex deforming zones (e.g. central Garlock fault, Eastern California Shear Zone, Big Bend San Andreas), in part reflecting the substantial epistemic uncertainty in GPS rate estimates for these faults. Our analysis suggests new GPS measurements and InSAR imaging that could refine slip rate estimates on a number of faults. However, in some cases GPS slip rate uncertainties are endemic and cannot be rectified by even higher station density or greater measurement precision. The difficulty arises because interseismic deformation is due to aseismic slip or localized ductile shearing on the down-dip extensions of faults that are locked (not slipping) in the seismogenic upper crust, smearing out the geodetically measured strain over a scale length of several times the locking depth of each fault (10-20 km). Where faults are closely spaced and slip at comparable rates, velocity gradients are quasi-uniform and the effects of individual faults cannot be distinguished. Better geologic slip rate constraints could ameliorate this non-uniqueness, but only under the assumption that geologic and GPS rates should agree.
Sinha, Kumari Priti; Thaokar, Rochish M.
2018-03-01
Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.
Khan, Arshad; ul Karim, Faizan; Khan, Ilyas; Ali, Farhad; Khan, Dolat
2018-03-01
The present paper aims to report irreversibility analysis in unsteady flow of viscous fluid over a vertical flat plate with ramped wall temperature and arbitrary wall shear stress in the presence of thermal radiation. The equations which governing the problem are solved by the method of Laplace transform. The expression for Bejan number and volumetric entropy generation rate are calculated. The effects of different embedded parameters on the Bejan number and the entropy generation number are elaborated by graphs. It is noted that entropy production in thermal system can be minimized by decreasing thermal radiation. It is also observed that heat transfer increases the entropy of the system.
Wu, Rongxing; Wang, Ji; Du, Jianke; Huang, Dejin; Yan, Wei; Hu, Yuantai
2012-01-01
We investigated the nonlinear vibrations of the coupled thickness-shear and flexural modes of quartz crystal plates with the nonlinear Mindlin plate equations, taking into consideration the kinematic and material nonlinearities. The nonlinear Mindlin plate equations for strongly coupled thickness- shear and flexural modes have been established by following Mindlin with the nonlinear constitutive relations and approximation procedures. Based on the long thickness-shear wave approximation and aided by corresponding linear solutions, the nonlinear equation of thickness-shear vibrations of quartz crystal plate has been solved by the combination of the Galerkin and homotopy analysis methods. The amplitude frequency relation we obtained showed that the nonlinear frequency of thickness-shear vibrations depends on the vibration amplitude, thickness, and length of plate, which is significantly different from the linear case. Numerical results from this study also indicated that neither kinematic nor material nonlinearities are the main factors in frequency shifts and performance fluctuation of the quartz crystal resonators we have observed. These efforts will result in applicable solution techniques for further studies of nonlinear effects of quartz plates under bias fields for the precise analysis and design of quartz crystal resonators. © 2012 IEEE
Babaie, H. A.; Broda, C. M.; Kumar, A.; Hadizadeh, J.
2010-12-01
Web access to data that represent knowledge acquired by investigators studying the microstructures in the core samples of the SAFOD (San Andreas Observatory at Depth) project can help scientists efficiently integrate and share knowledge, query the data, and update the knowledge base on the Web. To achieve this, we have used OWL (Web Ontology Language) to build the brittle deformation ontology for the microstructures observed in the SAFOD core samples, by explicitly formalizing the knowledge about deformational processes, geological objects undergoing deformation, and the underlying mechanical and environmental conditions in brittle shear zones. The developed Web-based ‘SAFOD Brittle Microstructure and Mechanics Knowledge base’ (SAFOD BM2KB), which instantiates this ontology and is available at http://codd.cs.gsu.edu:9999/safod/index.jsp, will host and serve data that pertains to spatial objects, such as microstructure, gouge, fault, and SEM image, acquired by the SAFOD investigators through the studies of the SAFOD core samples. Deformation in shear zones involves complex brittle and ductile processes that alter, create, and/or destroy a wide variety of one- to three-dimensional, multi-scale spatial entities such as rocks and their constituent minerals and structure. These processes occur through a series of sub-processes that happen in different time intervals, and affect the spatial objects at granular to regional scales within shear zones. The processes bring about qualitative change to the spatial entities over time intervals that start and end with events. Processes, such as mylonitization and cataclastic flow, change the spatial location, distribution, dimension, size, shape, and orientation of some objects through translation, rotation and strain. These processes may also result in newly formed entities, such as a new mineral, gouge, vein, or fault, during one or more phases of deformation. Deformation processes may also destroy entities, such as a
Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.
2012-12-01
, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.
Bradley, K. E.; Feng, L.; Hill, E. M.; Natawidjaja, D. H.; Sieh, K.
2017-01-01
Oblique plate convergence between Indian Ocean lithosphere and continental crust of the Sunda plate is distributed between subduction on the Sunda megathrust and upper plate strike-slip faulting on the Sumatran Fault Zone, in a classic example of slip partitioning. Over the last decade, a destructive series of great earthquakes has brought renewed attention to the mechanical properties of these faults and the intervening fore-arc crustal block. While observations of fore-arc deformation over the earthquake cycle indicate that the fore-arc crust is fundamentally elastic, the spatial pattern of slip vector azimuths for earthquakes sourced by rupture of the Sunda megathrust is strongly inconsistent with relative motion of two rigid plates. Permanent and distributed deformation therefore occurs in either the downgoing lithospheric slab or the overriding fore-arc crust. Previous studies have inferred from geodetic velocities and geological slip rates of the Sumatran Fault that the fore-arc crust is undergoing rapid trench-parallel stretching. Using new geological slip rates for the Sumatran Fault and an updated decadal GPS velocity field of Sumatra and the fore-arc islands, we instead show that permanent deformation within the fore-arc sliver is minor and that the Sumatran Fault is a plate boundary strike-slip fault. The kinematic data are best explained by diffuse deformation within the oceanic lithosphere of the Wharton Basin, which accommodates convergence between the Indian and Australian plates and has recently produced several large earthquakes well offshore of Sumatra. The slip partitioning system in Sumatra is fundamentally linked with the mechanical properties of the subducting oceanic lithosphere.
ten Veen, Johan H.
2004-03-01
The Pliocene-Quaternary Eşen Çay Basin in southwestern Turkey has a key position in the southern Aegean to gain insight into both lateral and temporal changes in stresses exerted by plate convergence at the Hellenic-Cyprus arc junction. A tectonosedimentary study of the basin development in combination with a structural analysis helped to reveal internal basin deformation and adjacent basement kinematics in order to delineate 3D strain through time. In the Pliocene the basin originated as a fluviolacustrine basin situated in a depression related to a ramp-fold geometry in the Lycian nappe stack. During the late Pliocene, E-W extension caused the development of N-S normal faults, displacement along which caused the differentiation of the relief and deposition of local alluvial fan systems. The Pleistocene is also marked by widespread alluvial-fluvial sedimentation that is triggered by activity at 020° faults. This fault system resulted from WNW-ESE extension and caused disruption of the former basin floor by uplift and tilting of intrabasinal areas, which initiated development of new source areas for the fan sedimentation. The Holocene-Recent period is characterized by a complex combination of faults of which 070° sinistral strike-slip faults are the most important. Fault-slip analysis reveals that deformation occurred in transtension, explained by the addition of a sinistral shear component. This implies that stresses evolved from simple tensional to transtensional over the Pliocene-Quaternary period. The initial extension phase is explained by the kinematic effects of outward growth of the Hellenic forearc, comparable with observations from the island of Rhodes and the eastern Anaximander Mountains. The time-transgressive addition of a sinistral shear component was likely produced by the northeastward propagating transcurrent motions of forearc slivers sheared from the expanding forearc as has been previously inferred for Crete and Rhodes. The latter process
Thrust plate prosthesis for proximal femoral deformity: a series of 15 patients.
Karatosun, Vasfi; Unver, Bayram; Gültekin, Alper; Günal, Izge
2010-01-01
Patients with coxarthrosis and proximal femoral deformity experience problems with total hip arthroplasty. A custom-made prosthesis or a proximal osteotomy is required for such cases, and these also increase the rate of complications. The purpose of this study was to evaluate the results of the thrust plate prosthesis (TPP) in patients with deformity of the proximal femur. Fifteen patients (7 females, 8 males) with a mean age of 56.4 years (range 19-75 years) at the time of the surgery were included in the study. The etiology was traumatic coxarthrosis in 12, and nonunion of a femoral neck fracture with osteonecrosis of the femoral head in the remaining three. While the femoral component was a third-generation TPP in all patients, the acetabular component was a Protek expansion cup in 12, and a cementless standard cup in three patients. All operations were performed through a Hardinge approach. Patients were followed up for at least 3 years (range 36-116 months) and evaluated clinically with the Harris Hip Score. The mean preoperative Harris Hip Score increased from 51.2 (range 15-79) to 92.7 (range 60-100) at the latest assessment. In two cases, loosening of the femoral component was observed in zone 3, both 12 months postoperatively. One was replaced by an intramedullary prosthesis, and the other was asymptomatic. TPP is a good alternative for patients with malformations of the proximal femur. The use of TPP avoids technical difficulties and a custom-made prosthesis.
Simonetti, Matteo; Carosi, Rodolfo; Montomoli, Chiara; Langone, Antonio; D'Addario, Enrico; Mammoliti, Elisa
2018-02-01
In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollières shear zone) cross-cuts Variscan migmatites in the Argentera-Mercantour External Crystalline Massif. Structural analysis joined with kinematic vorticity and finite strain analyses allowed to recognize a high-temperature deformation associated with dextral transpression characterized by a variation in the percentage of pure shear and simple shear along a deformation gradient. U-Th-Pb dating of syn-kinematic monazites was performed on mylonites. The oldest 340 Ma ages were obtained in protomylonites, whereas ages of 320 Ma were found in mylonites from the core of the shear zone. These ages indicate that the Ferriere-Mollières shear zone is a still preserved Variscan shear zone. Ages of 320 Ma obtained in this work are in agreement with ages of the dextral transpressional shear zones occurring in the Maures-Tanneron Massif and Corsica-Sardinia. However, transpression in the Argentera-Mercantour Massif started earlier than in other sectors of the southern Variscan Belt. This is possibly caused by the curvature of the belt triggering the progressive migration of shear deformation. Our data allow a correlation between the Argentera-Mercantour Massif and other segments of the Southern European Variscan Belt, in particular with Maures-Tanneron Massif and Corsica-Sardinia, and contribute to fill a gap in the age of activity and in the kinematics of the flow of the system of dextral shear zones of the southern portion of the EVSZ.
Crystallographically controlled crystal-plastic deformation of zircon in shear zones
Kovaleva, Elizaveta; Klötzli, Urs
2014-05-01
Plastically-deformed zircons from various types of strained natural metamorphic rocks have been investigated in-situ by electron backscatter diffraction analysis (EBSD), allowing crystallographic orientation mapping at high spatial resolution. Plastic deformation often forms under the control of grain-internal heterogeneities. At the crystal structure scale deformation is controlled by the physical anisotropy of the lattice. Three most common slip systems in zircon are [100]{010}, [010]{001} and [001]{010} (Leroux et. al., 1999; Reddy et. al., 2007). They are genetically connected with the main zircon crystallographic directions: [001] (c-axis), [100] and [010] (a and b axes). Atomic models show weak planes normal to these directions that preferably evolve to glide planes in the deforming crystal. The visualization of seismic (elastic) properties of zircon with the MATLAB toolbox MTEX shows a similar pattern. The slowest S-wave velocities are observed in directions parallel to [100], [010] and [001] crystallographic directions. The highest Young's modulus values lie in the same directions. In natural zircon grains, the common slip systems are preferably activated when zircon is hosted by rheologically comparatively weaker phases or a fine-grained matrix. In these cases zircon behaves as a rigid clast. During progressive deformation high deviatoric stresses together with high strain rates concentrate at crystal tips, as shown by numerical modeling. Softer host phases allow more degrees of freedom for zircon to be deformed according to its crystallographic and internal properties. These conclusions are supported by the misorientation axes density distribution maps, derived with MTEX. Deformed zircon hosted by a relatively soft phase (mostly biotite) develops a crystallographic preferred orientation (CPO), which has not been documented for zircon before. At the same time deformation of zircon hosted by a rheologically stronger matrix causes the activation of less
Steel shear strength of anchors with stand-off base plates.
2013-09-01
Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever...
Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon
2017-01-01
Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921
Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon
2017-01-25
Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.
Directory of Open Access Journals (Sweden)
Tamara J. Everall
2018-04-01
Full Text Available This study uses the uniaxial compressive strength (UCS, the indirect tensile strength (ITS and the point load tests (PLT to determine the strength and deformation behavior of previously deformed and altered tonalite and anorthosite. In general, veined samples show higher strength because the vein material has both cohesive and adhesive properties while fractures have no cohesion, only frictional resistance. This implies that each rock category has to be treated independently and absolute strength predictions are inaccurate. Thus, the conversion factor k is a sample specific parameter and does not have a universal value. The ratio of UCS/ITS appears to be related to the rock strength and can be used to classify rocks based on their strength. The shear strength parameters, the friction angle and the cohesion, cannot be calculated for rocks with pre-existing planes of weakness. Reactivation is favoured only for planes oriented less than 20° to the maximum stress. For planes oriented between 20° and 50° to the maximum stress, failure occurs by a combination of reactivation and newly formed fractures, while for orientations above 50°, new shear fractures are favoured. This suggest that the Byerlee’s law of reactivation operates exclusively for planes oriented ≤10° to the maximum stress.
Development of Shear Deformable Laminated Shell Element and Its Application to ANCF Tire Model
2015-04-24
DEFORMABLE LAMINATED SHELL ELEMENT AND ITS APPLICATION TO ANCF TIRE MODEL Hiroki Yamashita Department of Mechanical and Industrial Engineering...for application to the modeling of fiber-reinforced rubber (FRR) structure of the physics-based ANCF tire model. The complex deformation coupling...cornering forces. Since a tire consists of layers of plies and steel belts embedded in rubber , the tire structure needs to be modeled by cord- rubber
Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator
International Nuclear Information System (INIS)
Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong
2002-02-01
The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB
Energy Technology Data Exchange (ETDEWEB)
Ozalaybey, S.; Savage, M.K. (Univ. of Nevada, Reno, NV (United States). Seismological Lab.); Silver, P.G. (Carnegie Inst., Washington, DC (United States))
1993-04-01
The western margin of the North American plate includes subduction, transform faulting and a migrating triple junction. The authors have measured polarization azimuths ([phi]) and delay-times ([delta]t) of split shear waves. Stations located close to the northern end of the San Andreas fault, near the San Francisco Bay area yielded well-constrained but azimuthally varying splitting parameters. These can be explained by a model consisting of two anisotropic layers: an upper layer with fast direction parallel to the strike of the San Andreas fault and a lower layer with E-W fast direction. Both layers have average delay-times of 1[+-]0.3 s. The authors have found that an east-west fast feature is also present beneath stations in the Sierra-Nevada, the Mojave Desert and the Los Angeles area. These latter measurements do not require more than one layer. The E-W fast layer diminishes near the southern edge of the Gorda plate. The authors interpret their measurements as caused by single or double layers of homogeneously, transversely anisotropic material with horizontal symmetry axes due to strain-induced preferred orientation of olivine in the upper mantle. They suggest that the fault-parallel fast layer is the result of finite strain associated with the transform plate motion between the North American and Pacific plates. The deeper layer with E-W fast direction can not be associated with known surface tectonic features. One possible mechanisms for this E-W fast feature is that it may be related to the passage of the trailing edge of the Farallon plate as the slab migrated northward beneath central California. The shear associated with the different motion between the slab and the asthenosphere may cause mineral alignment leading to shear-wave splitting.
Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008
Directory of Open Access Journals (Sweden)
Zhu Ze
2012-08-01
Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.
Directory of Open Access Journals (Sweden)
Chen Pengwan
2015-01-01
Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.
Ideal shear strength and deformation behaviours of L10 TiAl from ...
Indian Academy of Sciences (India)
strain relationships for four different shear processes of L10 TiAl have been investigated .... aThis work; bRef. [27]. Figure 3. The structural unit cell and the bond length vs. true strain for (a) 〈1¯10]{111},. (b) 〈0¯11]{111}), (c) 〈11¯2]{111} and (d) ...
Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys
Directory of Open Access Journals (Sweden)
Chun Ran
2018-01-01
Full Text Available To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64 alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511 alloy, a series of forced shear tests on flat hat shaped (FHS specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M. Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.
Deformation mechanisms in experimentally deformed Boom Clay
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.
Structure of boron carbide after applying shear deformations under a pressure to 55 GPa
Annenkov, M. R.; Kulnitskiy, B. A.; Perezhogin, I. A.; Ovsyannikov, D. A.; Popov, M. Yu.; Blank, V. D.
2017-05-01
Transmission electron microscopy has been used to study the structural features of boron carbide treated in a high-pressure shear chamber with diamond anvils in the pressure range 25-55 GPa. Such a treatment has been shown to lead to the predominant crack formation along planes {10 11 } and {10 12} and also the formation of polytypes in the {10 11} planes and strain bands in the {10 12} planes.
Energy Technology Data Exchange (ETDEWEB)
Karami, M.; Mahmudi, R., E-mail: mahmudi@ut.ac.ir
2014-06-01
The flow and work hardening behaviors of extruded and equal-channel angularly pressed (ECAPed) Mg–6Li–1Zn (LZ61) and Mg–12Li–1Zn (LZ121) alloys were studied by tensile and shear punch testing methods. It was shown that the Kocks–Mecking type plots for tensile and shear deformation of both alloys, exhibited similar work hardening (WH) stages in both extruded and ECAPed conditions. WH rates were found to be lower for the ECAPed materials, due to a reasonably uniform and well-refined microstructure. In the case of hcp LZ61 alloy, textural studies showed that the extruded fiber-type texture was replaced by a typical ECAP texture, in which basal planes rotated about 45° to the extrusion axis. This was found to be responsible for the lower tensile strength and higher shear strength in the ECAPed material, as compared to the extruded condition. For the bcc LZ121 alloy, it was observed that the grain refinement achieved after ECAP increases the strength and ductility in both tensile and shear deformation, compared with those of extruded condition. Stage II of the Kocks–Mecking plot in both shear and tensile deformation of LZ121 was eliminated most likely due to stacking fault energy improvement caused by higher Li content of the Mg lattice structure. The shear punch testing (SPT) method was found to yield the flow and WH curves similar to those obtained in tensile testing.
Trippanera, D.
2015-10-22
The shallow transport of magma occurs through dikes causing surface deformation. Our understanding of the effects of diking at the surface is limited, especially on the long term, for repeated intrusive episodes. We use analogue models to study the upper crustal deformation induced by dikes. We insert metal plates within cohesive sand with three setups: in setup A, the intrusion rises upward with constant thickness and in setups B and C, the intrusion thickens at a fixed depth, with final rectangular (setup B) or triangular (setup C) shape in section. Setup A creates a doming delimited by reverse faults, with secondary apical graben, without close correspondence in nature. In setups B and C, a depression flanked by two uplifted areas is bordered by inward dipping normal faults propagating downward and, for deeper intrusions in setup B, also by inner faults, reverse at the surface; this deformation is similar to what is observed in nature, suggesting a consistent physical behavior. Dikes in nature initially propagate developing a mode I fracture at the tip, subsequently thickened by magma intrusion, without any host rock translation in the propagation direction (as in setup A). The deformation pattern in setups B and C depends on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages resemble the structure of mature rifts (i.e., Krafla, Iceland), confirming diking as a major process in shaping divergent plate boundaries.
Directory of Open Access Journals (Sweden)
M.E. Shimpi
2012-06-01
Full Text Available This investigation aims at analyzing the behaviour of a magnetic fluid based squeeze film between two rotating transversely rough porous circular plates taking bearing deformation into consideration. The results presented in graphical form inform that the transverse surface roughness introduces an adverse effect on the performance characteristics while the magnetic fluid lubricant turn in an improved performance. It is found that the combined effect of rotation and deformation causes significantly reduced load carrying capacity. However, this investigation establishes that the adverse effect of porosity, deformation and standard deviation can be compensated up to some extent by the positive effect of magnetic fluid lubricant in the case of negatively skewed roughness by choosing curvature parameters. To compensate, the rotational inertia needs to have smaller values.
Epackachi, Siamak
The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were
The stress field in an edge cracked plate in antiplane deformation
Li, V. C.; Lim, H. S.
1988-01-01
The antiplane strain problem of an edge cracked elastic plate subjected to a surface displacement load is solved, and the surface line loads are obtained using conformal mapping techniques. Results are presented for the yield, stress, strain and displacement distributions, and stress intensity factors in the plate. A superposition technique and Green's functions are used to determine the strain field on the upper plate surface due to arbitrarily applied tensile stress on the lower plate surface.
Energy Technology Data Exchange (ETDEWEB)
Vieira, E.; Durazzo, M., E-mail: evieira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2010-07-01
The Nuclear and Energy Research Institute - IPEN-CNEN/SP produces routinely the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U{sub 3}Si{sub 2}-Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed with base on information obtained from literature, which were used as premises for defining the current manufacturing procedures, according to a methodology with essentially empirical character. Despite the current rolling process to be perfectly stable and highly reproducible, it is not well characterized and therefore is not fully known. The objective of this work is to characterize the rolling process for producing fuel plates, presenting results of the evolution of all parameters of technological interest, after each rolling pass, obtaining information along the fuel plate deformation during the rolling process. (author)
Arefi, Mohammad; Zenkour, Ashraf M.
2017-10-01
This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.
Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation
Energy Technology Data Exchange (ETDEWEB)
Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)
2016-07-18
There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.
Directory of Open Access Journals (Sweden)
Ruta M Kulkarni
2015-01-01
Full Text Available Background: Guided growth through temporary hemiepiphysiodesis has gained acceptance as the preferred primary treatment in treating pediatric lower limb deformities as it is minimally invasive with a lesser morbidity than the traditional osteotomy. The tension band plate is the most recent development in implants used for temporary hemiepiphysiodesis. Our aim was to determine its safety and efficacy in correcting coronal plane deformities around the knee in children younger than 10 years. Materials and Methods: A total of 24 children under the age of 10 were operated for coronal plane deformities around the knee with a single extra periosteal tension band plate and two nonlocking screws. All the children had a pathological deformity for which a detailed preoperative work-up was carried out to ascertain the cause of the deformity and rule out physiological ones. The average age at hemiepiphysiodesis was 5 years 3 months (range: 2 years to 9 years 1 month. Results: The plates were inserted for an average of 15.625 months (range: 7 months to 29 months. All the patients showed improvement in the mechanical axis. Two patients showed partial correction. Two cases of screw loosening were observed. In the genu valgum group, the tibiofemoral angle improved from a preoperative mean of 19.89° valgus (range: 10° valgus to 40° valgus to 5.72° valgus (range: 2° varus to 10° valgus. In patients with genu varum the tibiofemoral angle improved from a mean of 28.27° varus (range: 13° varus to 41° varus to 1.59° valgus (range: 0-8° valgus. Conclusion: Temporary hemiepiphysiodesis through the application of the tension band plate is an effective method to correct coronal plane deformities around the knee with minimal complications. Its ease and accuracy of insertion has extended the indication of temporary hemiepiphysiodesis to patients younger than 10 years and across a wide variety of diagnosis including pathological physis, which were traditionally
Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang
2010-02-01
We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD
Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.
2015-01-01
The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.
Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.
2011-12-01
A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15
Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions
Peng, Yan; Gounley, John
2015-11-01
Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.
Ye, Swe Soe; Ng, Yan Cheng; Tan, Justin; Leo, Hwa Liang; Kim, Sangho
2014-05-13
Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. The ability of the 2D-LD model to
Szubartowski, Damian; Ganczarski, Artur
2016-10-01
This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation if only stress field is homogeneous in domain and at boundary. Finally, couple examples of application to an engineering problem are presented.
Drewes, H.; Kaniuth, K.; Stuber, K.; Tremel, H.; Hernandez, J. N.; Hoyer, M.
2002-05-01
The first GPS observations along the Caribbean - South American plate boundary were carried out within the Central and South American Geodynamics Project (CASA UNO) in 1988. The precision of the results was quite poor due to the imperfect operation of the GPS system at that time. Since 1993 regular re-measurements of more than 20 stations in the eastern part of the network along the Bocono - El Pilar fault system in Venezuela have been performed. The paper presents the continuous deformations derived from the 1993, 1996, 1999 and 2002 complete network observations and some additional partial measurements. The long-term deformations in the order of one to two centimeters per year are now significantly confirmed and may be interpreted in the context of regional plate tectonics and geodynamics. The co-seismic displacements during the Cariaco (Sucre) 1997 earthquake are analyzed separately using detailed GPS observations in 1997. They are discussed as well as the local post-seismic deformations from 1997 to 2002.
Klitschke, S.; Huberth, F.
2017-09-01
The influence of strain rate on the beginning of instable deformation and failure behavior of a DP1000 steel is investigated for a wide range of stress states with experimental methods. Therefore quasistatic and high speed tests have been performed for four different loading situations, shear loading, uniaxial tension loading, plane strain loading and equi-biaxial tension loading. The deformation of the specimens up to fracture in the highly deformed zones has been captured with high speed video recording and evaluated with digital image correlation (DIC). The beginning of instable local deformation behavior designated as beginning of instability has been detected with one uniform procedure. For tensile dominated loading situations the development of the local thinning rate in the necking zone on the surface of the specimen has been analyzed. For the determination of the beginning of shear instability, the development of the major and minor strain rate in the shear zone has been investigated. The difference between strain at beginning of instability and failure strain, determined as the largest strain at the location of failure prior to fracture, gives hints to the material’s crash performance under the investigated stress state. The largest difference has been observed for uniaxial tension loading and increases with increasing strain rate. However, under dynamic shear loading, fracture occurs without previous instability and at significant lower strains than under quasistatic shear loading. The proposed evaluation procedure to determine the beginning of instability for a wide range of stress states including shear loading is applied to the investigated DP1000 and strain rate effects are discussed.
What Actually Happens When Granular Materials Deform Under Shear: A Look Within
Viggiani, C.
2012-12-01
We all know that geomaterials (soil and rock) are composed of particles. However, when dealing with them, we often use continuum models, which ignore particles and make use of abstract variables such stress and strain. Continuum mechanics is the classical tool that geotechnical engineers have always used for their everyday calculations: estimating settlements of an embankment, the deformation of a sheet pile wall, the stability of a dam or a foundation, etc. History tells us that, in general, this works fine. While we are happily ignoring particles, they will at times come back to haunt us. This happens when deformation is localized in regions so small that the detail of the soil's (or rock's) particular structure cannot safely be ignored. Failure is the perfect example of this. Researchers in geomechanics (and more generally in solid mechanics) have long since known that all classical continuum models typically break down when trying to model failure. All sorts of numerical troubles ensue - all of them pointing to a fundamental deficiency of the model: the lack of microstructure. N.B.: the term microstructure doesn't prescribe a dimension (e.g., microns), but rather a scale - the scale of the mechanisms responsible for failure. A possible remedy to this deficiency is represented by the so-called "double scale" models, in which the small scale (the microstructure) is explicitly taken into account. Typically, two numerical problems are defined and solved - one at the large (continuum) scale, and the other at the small scale. This sort of approach requires a link between the two scales, to complete the picture. Imagine we are solving at the small scale a simulation of an assembly of a few grains, for example using the Discrete Element Method, whose results are in turn fed back to the large scale Finite Element simulation. The key feature of a double scale model is that one can inject the relevant physics at the appropriate scale. The success of such a model crucially
DEFF Research Database (Denmark)
Riskaer, Sven
1966-01-01
The present investigations of the free-carrier piezobirefringence phenomenon verify that in n-type germanium and silicon as well as in p-type silicon this effect can be ascribed to intraband transitions of the carriers. It is demonstrated how a combined investigation of the low-stress and high......-stress piezobirefringence in these materials provides a direct and independent method for determining deformation-potential constants. For n-type germanium we obtain Ξu=18.0±0.5 eV, for n-type silicon Ξu=8.5±0.4 eV; for p-type silicon a rather crude analytical approximation yields b=-3.1 eV and d=-8.3 eV. Finally...
Dynamics of Mid-Palaeocene North Atlantic rifting linked with European intra-plate deformations
Nielsen, S.B.; Stephenson, R.A.; Thomsen, E.
2007-01-01
The process of continental break-up provides a large-scale experiment that can be used to test causal relations between plate tectonics and the dynamics of the Earth's deep mantle. Detailed diagnostic information on the timing and dynamics of such events, which are not resolved by plate kinematic
Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems
Badriev, I. B.; Paimuhin, V. N.
2018-01-01
The coupled problem of planar acoustic wave propagation through a composite plate covered with a second damping layer with a large logarithmic decrement of oscillations is formulated. The aerohydrodynamic interaction of a plate with external acoustic environment is described by three-dimensional wave equations and the mechanical behavior of a two-layer plate by the classical Kirchhoff-Love model. An exact analytic solution of the problem is found for the case of hinged support of the edges of a plate. On the basis of this, the parameters of the covering damping layer were found, under which it is possible to achieve a practically complete damping of the plate vibration under resonant modes of its acoustic loading.
Jung, Woo-Young; Han, Sung-Cheon
2013-01-01
Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution) of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM) nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear defo...
Hindle, D.; Mackey, K.
2011-02-01
Recorded seismicity from the northwestern Okhotsk plate, northeast Asia, is currently insufficient to account for the predicted slip rates along its boundaries due to plate tectonics. However, the magnitude-frequency relationship for earthquakes from the region suggests that larger earthquakes are possible in the future and that events of ˜Mw 7.5 which should occur every ˜100-350 years would account for almost all the slip of the plate along its boundaries due to Eurasia-North America convergence. We use models for seismic slip distribution along the bounding faults of Okhotsk to conclude that relatively little aseismic strain release is occurring and that larger future earthquakes are likely in the region. Our models broadly support the idea of a single Okhotsk plate, with the large majority of tectonic strain released along its boundaries.
Karimi, Morteza; Shahidi, Ali Reza
2017-05-01
The theories of nonlocal, refined plate, and surface effects are used in this study to investigate the free vibration of magnetoelectroelastic (MEE) nanoplates resting on elastic foundations. For this purpose, the MEE nanoplate is subjected not only to external magnetic and electric potentials but also to thermal and shear in-plane loads. The refined plate theory is used and the Maxwell equations and magnetoelectric boundary conditions employed to determine the variations in the electric and magnetic potentials along the direction of the nanoplate thickness. This is followed by deriving the governing equations based on the Hamilton's principle, which are then solved via the generalized differential quadrature method. In a later stage of the study, the effects of electric and magnetic potentials, nonlocal parameter, thermal and shear in-plane loading, Winkler and shear moduli, different boundary conditions, and aspect ratio are explored in a parametric study on the surface effects of vibration characteristics of MEE nanoplates. It is found that the effect of surface parameters enhanced with increases in nonlocal parameter, electric potential, in-plane shear load, and temperature change. However, this effect is observed to decrease when the magnetic potential, dimensionless Winkler and shear moduli, and nanoplate thickness are augmented.
A novel approach to modeling plate deformations in fluid–structure interactions
International Nuclear Information System (INIS)
Howard, T.K.; Marcum, W.R.; Jones, W.F.
2015-01-01
Highlights: • A new method for computing fluid structure interactions of flat plates is presented herein. • The method is validated through consideration of a single plate subject to hydraulic loading. • The model is compared against solution forms computed via ABAQUS and experimental data. • The model compares well against experimental data and the commercial computational code. - Abstract: As computational power increases, so does the desire to use computational simulations while designing fuel plates. The downside is multi-physics simulations – or more specifically, fluid–structure interactions (FSI) as addressed herein – require a larger amount of computational resources. Current simulations of a single plate can take weeks on a desktop computer, thus requiring the use of multiple servers or a cluster for FSI simulations. While computational fluid dynamic (CFD) codes coupled to computational structural mechanics (CSM) codes can provide a wealth of information regarding flow patterns, there should be some skepticism in whether or not they are the only means of achieving the desired solution. When the parameters of interest are the onset of plate collapse and the associated fluid channel velocities, coupled CFD–CSM simulations provide superfluous information. The paper provides an alternative approach to solving FSI problems using a 1-D, semi-analytical model derived from first principles. The results are compared and contrasted to the numerical and experimental work performed by Kennedy et al. (2014. Experimental Investigation of Deflection of Flat Aluminium Plates Under Variable Velocity Parallel Flow, Columbia: University of Missouri TherMec Research Group).
Drouin, Vincent; Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Ofeigsson, Benedikt G.; Sturkell, Erik; Islam, Tariqul
2014-05-01
Iceland is a subaerial part of the Mid-Atlantic Ridge, where the divergent plate boundary between the North-American and Eurasian Plates can be studied. The Northern Volcanic Zone (NVZ) of Iceland, comprised of several volcanic systems, is particularly well suited to study interplay between volcanoes, geothermal areas and plate spreading, as the zone is relatively simple and accommodates the full spreading of the plates (18.6 mm/yr in a direction of 105 degrees according to NUVEL-1A predictions). The most recent volcanic activity in the area was the Krafla rifting episode (1975-1984). In 2007-2008 two intrusive events were detected: one in Upptypingar and the other in Þeistareykir. Extensive crustal deformation studies have been carried out in the NVZ; we report the results of recent GPS and Interferometric Synthetic Aperture Radar (InSAR) studies focusing on Krafla, Þeistareykir and Askja volcanic systems in the NVZ. An extensive GPS survey was undertaken in 2013, with over 135 stations occupied. This data was evaluated in conjunction with data acquired since 2008, to generate a velocity field spanning this entire time period. In addition to an existing continuous GPS (cGPS) station, three cGPS stations were installed in the area in 2011-2012. The 2008-2013 GPS velocities were compared to earlier GPS results, and complementary analysis of InSAR images was undertaken. Earlier studies have shown that the Krafla caldera underwent uplift during 1984-1989, followed by subsidence. Since 1995, the maximum subsidence in Krafla has shifted from directly above the shallow magma chamber towards an array of boreholes (geothermal exploitation) in Leirbotnar. Similar subsidence has been observed around another array of boreholes in Bjarnaflag, 7 km further south. The most significant signal on the velocities calculated from campaign GPS data over the 5 year period, is plate spreading with an E-W velocity of about 12 mm/yr over a 30 km wide area. However it also shows an
Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna
2017-08-01
In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.
Random vibrations of composite beams and plates
Abdelnaser, Ahmad Shehadeh
In this study, a generalized modal approach is presented to solve more general vibration problems of composite beams and plates. The coupled systems of partial differential equations, representing the equations of motion, are uncoupled into modal equations by utilizing the eigenfunctions of the system and its adjoint. A method is presented to obtain these eigenfunctions for beams with arbitrary boundary conditions and for plates with Levy-type boundary conditions. The forced vibration solutions obtained by this method are then used to calculate the random response characteristics of beams and plates subjected to spatially and temporally correlated random loads. In the analysis of beams, both symmetric cross-ply and angle-ply configurations have been considered. In the symmetric cross-ply configuration with no torsional loads, of course, the warping effects are absent. The angle-ply case, however, includes torsion-warping effects and coupled bending-torsion motions. A simple displacement field is introduced to reflect warping in the third-order shear deformation theory. In the analysis of plates two configurations of the laminates have also been considered: symmetric cross-ply and antisymmetric angle-ply. At this time, these are the only two configurations which can be solved by the closed-form modal analysis approach for the Levy-type boundary conditions. In both cases of the beams and plates, the numerical results with and without shear deformations are obtained and compared. The result for no shear deformation theory are obtained with the classical lamination theory. The results have also been obtained for the first-order shear deformation theory with a somewhat simpler displacement field which has been commonly used in the past. The numerical results are obtained for the global response quantities such as frequencies, displacements, and crossing rates as well as for the local response quantities such as normal and shear stresses across a cross section. The
Directory of Open Access Journals (Sweden)
A. M. Pankov
2017-08-01
Full Text Available A pressure-induced phase transition of multiwall carbon nanotubes (MWNT to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS, transmission electron microscope (TEM and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.
2017-08-01
A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2013-04-01
The Badajoz-Córdoba Shear Zone is a is 30-40 km wide and 400 km long, NW-SE trending structure located at the boundary between the Ossa-Morena and Central-Iberian Zones of the Iberian Massif. Two elongated domains can be differentiated inside: the Obejo-Valsequillo domain to the NE and the Ductile Shear Belt (DSB) to the SW. The former exhibits Precambrian to Cambrian volcano-sedimentary rocks unconformably overlaying a Neoproterozoic basement formed by the "Serie Negra". The latter, 5-15 km wide, is composed mainly of metamorphic tectonites including the "Serie Negra" and other units located structurally under it. The petrofabric of "Serie Negra" black quartzites from the DSB is analyzed in this study with the Electron Back-Scattered Diffraction technique (EBSD). Black quartzites represent originally siliceous, chemical-biochemical shallow-water marine deposits, currently composed almost exclusively of quartz and graphite. Macroscopically they exhibit an outstanding planolinear tectonic fabric. Petrographically, coarse- and fine-grained dynamically recrystallized quartz bands alternate. The former contain quartz grains with irregular shapes, mica inclusions and "pinning" grain boundaries. Oriented mica grains and graphite particles constrain irregular quartz grain shapes. Quartz ribbons with chessboard microstructures also occur, indicating recrystallization under elevated temperatures coeval with extreme stretching. Fine-grained recrystallized quartz bands are dominated by quartz grains with straight boundaries, triple junctions, a scarcer evidence of bulging, and a higher concentration of dispersed, minute graphite grains. Quartz lattice-preferred orientation (LPO) patterns permit to identify two well-developed maxima for [c] axes: one close to the Y structural direction and the other one around Z, and -axes girdles normal to Y and Z. Although both [c] axis maxima appear in the coarse- and fine-grained bands, subsets can be isolated with grain cluster
On the lamb wave propagation in anisotropic laminated composite plates
International Nuclear Information System (INIS)
Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng
1998-01-01
This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.
Directory of Open Access Journals (Sweden)
M. E. Shimpi
2012-01-01
Full Text Available Efforts have been directed to study and analyze the squeeze film performance between rotating transversely rough curved porous annular plates in the presence of a magnetic fluid lubricant considering the effect of elastic deformation. A stochastic random variable with nonzero mean, variance, and skewness characterizes the random roughness of the bearing surfaces. With the aid of suitable boundary conditions, the associated stochastically averaged Reynolds' equation is solved to obtain the pressure distribution in turn, which results in the calculation of the load-carrying capacity. The graphical representations establish that the transverse roughness, in general, adversely affects the performance characteristics. However, the magnetization registers a relatively improved performance. It is found that the deformation causes reduced load-carrying capacity which gets further decreased by the porosity. This investigation tends to indicate that the adverse effect of porosity, standard deviation and deformation can be compensated to certain extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by choosing the rotational inertia and the aspect ratio, especially for suitable ratio of curvature parameters.
Buckling Response of Thick Functionally Graded Plates
Directory of Open Access Journals (Sweden)
BOUAZZA MOKHTAR
2014-11-01
Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.
GEOPHYSICS. Layered deformation in the Taiwan orogen.
Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N
2015-08-14
The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. Copyright © 2015, American Association for the Advancement of Science.
International Nuclear Information System (INIS)
Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Eligehausen, Rolf
2009-12-01
A model for predicting the nonlinear shear behaviour of reinforced concrete beam column joints based on principal stresses reaching limits is proposed. The joint model proposes shear springs for the column region and rotational spring for the beam region of the joint. This is based on the actual displacement behaviour of the shear buildings. The spring characteristics are calculated based on well-known principal of mechanics using the principal stresses as the failure criteria. The model reasonably accurately predicts the shear behaviour of the joint and also can consider the effect of axial loads on the column. The model does not need any special element or special program for implementation and can be used for nonlinear static pushover analysis of RC framed structures giving due consideration to joint deformations. The model is therefore extremely useful for practical displacement based analysis of old RC buildings where the joints were not designed and detailed as per current codal requirements, invariably making them the weakest link in the structure. The background theory, assumptions followed and the complete formulations for generating the joint characteristics are given in this report. The model is validated with experimental results of tests on exterior and interior beam-column connections given in the published literature having substandard detailing using deformed bars. (author)
Barbosa, Paola; Lagoeiro, Leonardo
2013-04-01
The evidences of fluid activity in rocks are well recognized. In many cases, the fluid is responsible to remobilize many elements (e.g. Au, Mn, Si) that may be transported over a long distance and precipitated as new minerals in regions of low stress of the rock. In many deformed rocks, the origin of a large number of structures (veins, pressure shadows, dissolved grain boundaries, etc) may be correlated to the fluid activity. However, the fluids are important not only during the crack-and-seal process but also after the sealing ceases. As an example of how the fluids are responsible to rearrange the structure of the rock, we studied many quartz veins of one iron-formation from Brazil. The rocks were collected in Quadrilátero Ferrífero (QF), Brazil, that is one of the most important metalogenetic provinces in the world. It is assumed the existence of a deformational and metamorphic gradient in the rocks of QF, increasing the occurrence of penetrative structures from southwest to northeast. However, the effects of the local shear zones in the deformation pattern of QF may not be neglected. Shear zones are generally recognized as structures that accommodate deformation, eventually with intense fluid percolation. It is indubitable that there is a relationship between the fluid activity and the deformation accommodation in shear zones. So, to investigate how the fluid activity can affect the mechanisms of accommodation of deformation in rocks of shear zones from QF, we characterized the crystallographic preferred orientation (CPO) of some quartz vein by EBSD (electron backscattering diffraction). All the samples came from the same outcrop and from the same dextral shear zone, localized in the low-deformation region of QF, under greenschist metamorphic conditions. The samples were oriented according to the XYZ reference system, with X parallel to the foliation and Z normal to the XY plane. The veins are quartz-rich layers parallel to the rock foliation. They do not
Directory of Open Access Journals (Sweden)
BOL’SHAKOV V. I.
2016-01-01
Full Text Available Abstract. The study was conducted the effect of the final deformation temperature in the intercritical interval on the structure and properties of heavy plate, produced by the controlled rolling method. Methodology. There are used the methods: qualitative and quantitative metallography, transmission and scanning electron microscopy, testing of mechanical properties. The purpose of the study - based on theoretical and experimental results to formulate the requirements for temperature and deformation parameters of production, providing higher strength and plastic properties than the existing industrial versions of controlled rolling. Results. It is shown that at a fixed degree of deformation the simultaneous increase in strength and plastic properties versus temperature has a weakly expressed extremum. Practical value. It is proposed the regim of controlled rolling at temperatures of finite deformation 785 ... 810° C with accelerated controlled cooling and the regime that increases insufficiently high plastic properties, which are obtained in heavy plates by random deviations of the standard technology
Directory of Open Access Journals (Sweden)
Я.О. Слободян
2004-04-01
Full Text Available The results of numerical researches of experimental models of plates of designs with application of new information technologies of automation of designing are given on the basis of a program complex LIRA also estimation of an error of linear account in comparison with results of the decision of a nonlinear task step-by-step method and finite element method.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
DEFF Research Database (Denmark)
Kling, Joyce; Hjulmand, Lise-Lotte
2008-01-01
’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...... of academic teaching and lecturing into account....
Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen
2018-03-01
The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.
Insights into asthenospheric anisotropy and deformation in Mainland China
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
Load bearing and deformation behaviour of dynamically loaded wide plate specimens
International Nuclear Information System (INIS)
Julisch, P.; Haedrich, H.J.; Stadtmueller, W.; Sturm, D.
1989-01-01
For the testing of large-scale specimens, a 12 MN-High Loading Rate Tensile Testing Machine was designed and built at MPA Stuttgart. The aim was to determine the influence of high loading rates on the stress and strain behaviour of unwelded and welded components of ferritic and austenitic materials. This new generation of testing machines is driven by a propellant charge, and generates a maximum tensile force of 12 MN with a piston velocity of 25 m/s after a stroke of 20 mm, or a maximum velocity of 60 m/s after a stroke of 400 mm. In a first test programme, welded and unwelded wide plate specimens made of material X 6 CrNi 18 11 were tested at room temperature with different strain rates from 10 -3 /s to 63/s. In addition to a description of the 12 MN-High Loading Rate Tensile Testing Machine, the results of the high loading rate tensile tests performed will be presented and compared with quasistatically tested wide plate specimens. (orig.)
Puskas, C. M.; Phillips, D. A.; Mattioli, G. S.; Meertens, C. M.; Hodgkinson, K. M.; Crosby, C. J.; Enders, M.; Feaux, K.; Mencin, D.; Baker, S.; Lisowski, M.; Smith, R. B.
2013-12-01
The EarthScope Plate Boundary Observatory (PBO), operated by UNAVCO, records deformation of the geologically diverse North America western plate boundary, with subnetworks of instruments concentrated at selected active and potentially active volcanoes. These sensors record deformation and earthquakes and allow monitoring agencies and researchers to analyze changes in ground motion and seismicity. The intraplate volcanoes at Yellowstone and Long Valley are characterized by uplift/subsidence cycles, high seismicity, and hydrothermal activity but there have been no historic eruptions at either volcano. PBO maintains dense GPS networks of 20-25 stations at each of these volcanoes, with an additional 5 boreholes at Yellowstone containing tensor strainmeters, short-period seismometers, and borehole tiltmeters. Subduction zone volcanoes in the Aleutian Arc have had multiple historic eruptions, and PBO maintains equipment at Augustine (8 GPS), Akutan (8 GPS, 4 tiltmeters), and Unimak Island (14 GPS, 8 tiltmeters). The Unimak stations are at the active Westdahl and Shishaldin edifices and the nearby, inactive Isanotski volcano. In the Cascade Arc, PBO maintains networks at Mount St. Helens (15 GPS, 4 borehole strainmeters and seismometers, 8 borehole tiltmeters), Shasta (7 GPS, 1 borehole strainmeter and seismometer), and Lassen Peak (8 GPS). Data from many of these stations in the Pacific Northwest and California are also provided as realtime streams of raw and processed data. Real-time GPS data, along with high-rate GPS data, will be an important new resource for detecting and studying future rapid volcanic deformation events and earthquakes. UNAVCO works closely with the USGS Volcano Hazards Program, archiving data from USGS GPS stations in Alaska, Cascadia, and Long Valley. The PBO and USGS networks combined provide more comprehensive coverage than PBO alone, particularly of the Cascade Arc, where the USGS maintains a multiple instruments near each volcano. Ground
Ma, Wenying; Ma, Changwei; Wang, Weimin
2018-03-01
Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.
Piazolo, Sandra; Passchier, Cees W.
2002-10-01
Deformation experiments with initially spherical and prolate viscous inclusions suspended in a viscous Newtonian matrix in a circular high strain annular shear rig provide insights on the shape development of inclusions in high strain shear zones during progressive deformation. Inclusions with a specific viscosity ratio with respect to the matrix material show distinct types of three-dimensional shape development. For instance, at a high viscosity ratio between matrix and inclusion a pulsating ellipsoid develops, which both continuously rotates and changes its shape from a sphere to an ellipsoid and back to a sphere. The experiments show that the shape of an inclusion that has a viscosity different to the matrix material cannot be taken as a reliable indicator for the magnitude or type of finite strain. In naturally formed shear zones, in which strain rates are heterogeneous from boundary to center, viscosity contrast and power law flow will result in a large number of different shape developments trends for inclusions such as mafic and microgranitic enclaves, pebbles or mineral aggregates.
Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza
2014-01-01
The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates. Copyright © 2013 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Nachbagauer, Karin, E-mail: karin.nachbagauer@jku.at; Pechstein, Astrid S., E-mail: astrid.pechstein@jku.at; Irschik, Hans, E-mail: hans.irschik@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@lcm.at [Linz Center of Mechatronics GmbH (Austria)
2011-10-15
Many widely used beam finite element formulations are based either on Reissner's classical nonlinear rod theory or the absolute nodal coordinate formulation (ANCF). Advantages of the second method have been pointed out by several authors; among the benefits are the constant mass matrix of ANCF elements, the isoparametric approach and the existence of a consistent displacement field along the whole cross section. Consistency of the displacement field allows simpler, alternative formulations for contact problems or inelastic materials. Despite conceptional differences of the two formulations, the two models are unified in the present paper.In many applications, a nonlinear large deformation beam element with bending, axial and shear deformation properties is needed. In the present paper, linear and quadratic ANCF shear deformable beam finite elements are presented. A new locking-free continuum mechanics based formulation is compared to the classical Simo and Vu-Quoc formulation based on Reissner's virtual work of internal forces. Additionally, the introduced linear and quadratic ANCF elements are compared to a fully parameterized ANCF element from the literature. The performance of the respective elements is evaluated through analysis of conventional static and dynamic example problems. The investigation shows that the obtained linear and quadratic ANCF elements are advantageous compared to the original fully parameterized ANCF element.
Directory of Open Access Journals (Sweden)
Arnaud Caron
2015-08-01
Full Text Available We combine non-contact atomic force microscopy (AFM imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111 and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111 are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.
Tadokoro, K.; Ikuta, R.; Ando, M.; Okuda, T.; Sugimoto, S.; Besana, G. M.; Kuno, M.
2005-12-01
The Mw7.3 and 7.5 earthquakes (Off Kii-Peninsula Earthquakes) occurred close to the source region of the anticipated Tonankai Trough in September 5, 2004. The focal mechanisms of the two earthquakes have no low angle nodal planes, which shows that the earthquakes are intraplate earthquakes in the Philippine Sea Plate. We observed coseismic horizontal displacement due to the Off Kii-Peninsula Earthquakes by means of a system for observing seafloor crustal deformation, which is the first observation of coseismic seafloor displacement in the world. We have developed a system for observing seafloor crustal deformation. The observation system is composed of 1) acoustic measurement between a ship transducer and sea-bottom transponders, and 2) kinematic GPS positioning of the observation vessel. We have installed a seafloor benchmark close to the epicenters of the Off Kii-Peninsula Earthquakes. The benchmark is composed of three sea-bottom transponders. The location of benchmark is defined as the weight center of the three transponders. We can determine the location of benchmark with an accuracy of about 5 cm at each observation. We have repeatedly measured the seafloor benchmark six times up to now: 1) July 12-16 and 21-22, 2004, 2) November 9-10, 3) January 19, 2005, 4) May 18-20, 5) July 19-20, and 6) August 18-19 and 29-30. The Off Kii-Peninsula Earthquakes occurred during the above monitoring period. The coseismic horizontal displacement of about 21 cm toward SSE was observed at our seafloor benchmark. The displacement is 3.5 times as large as the maximum displacement observed by on land GPS network in Japan, GEONET. The monitoring of seafloor crustal deformation is effective to detect the deformations associated with earthquakes occurring in ocean areas. This study is promoted by "Research Revolution 2002" of Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural
LES with acoustics and FSI for deforming plates in gas flow
International Nuclear Information System (INIS)
Nilsson, Per; Lillberg, Eric; Wikström, Niklas
2012-01-01
This concerns Flow Induced Vibrations (FIV) in nuclear reactors and numerical analysis of such. Special attention is paid to structural excitation by sound generated remotely and turbulent flow around the structure. One hypothesis was that these phenomena can interact, so that the structure accumulates more energy from the flow if it also excited by sound from another source. In the studies, Fluid–Structure Interaction (FSI) is simulated with Large Eddy Simulations (LESs). It is shown possible to simulate excitation due to both acoustic and turbulence loads using the reported methods, at least qualitatively. The excitation levels are even of the right order of magnitude in some parts. However, there are some shortcomings in the modeling. The most important is perhaps the lack of non-reflecting boundary conditions. Another problem is the strong numerical damping in combination with demanding numerics for the selected solid solution methodology. Three cases are simulated, two for validation and one applied about steam dryers. For the applied case, it is concluded unlikely that excitation by the acoustic and turbulence loads can interact. The main reason is that the flow is controlled more by static geometrical factors, such as solid rotation sharp edges, than small deformations due to vibrations.
International Nuclear Information System (INIS)
Brown, G.W.; Hawley, M.E.; Markiewicz, D.J.; Spaepen, F.; Barth, E.P.
1999-01-01
Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. copyright 1999 American Institute of Physics
Li, Peng; Jin, Feng
2018-01-01
The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.
Energy Technology Data Exchange (ETDEWEB)
Adoua, S.R
2007-07-15
This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)
Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.
2018-03-01
The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.
Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Pezzino, Antonino; Wenk, Hans-Rudolf; Goswami, Shalini; Mamtani, Manish A.
2017-10-01
In the geologic record, the quartz c-axis patterns are widely adopted in the investigation of crystallographic preferred orientations (CPO) of naturally deformed rocks. To this aim, in the present work, four different methods for measuring quartz c-axis orientations in naturally sheared rocks were applied and compared: the classical universal stage technique, the computer-integrated polarization microscopy method (CIP), the time-of-flight (TOF) neutron diffraction analysis , and the electron backscatter diffraction (EBSD). Microstructural analysis and CPO patterns of quartz, together with the ones obtained for feldspars and micas in mylonitic granitoid rocks, have been then considered to solve structural and geological questions related to the Montalto crustal scale shear zone (Calabria, southern Italy). Results obtained by applying the different techniques are discussed, and the advantages as well as limitations of each method are highlighted. Importantly, our findings suggest that patterns obtained by means of different techniques are quite similar. In particular, for such mylonites, a subsimple shear (40% simple shear vs 60% pure shear) by shape analysis of porphyroclasts was inferred. A general tendency of an asymmetric c-maximum near to the Z direction (normal to foliation) suggesting dominant basal slip, consistent with fabric patterns related to dynamically recrystallization under greenschist facies, is recognized. Rhombohedral slip was likely active as documented by pole figures of positive and negative rhombs (TOF), which reveal also potential mechanical Dauphiné twinning. Results showed that the most complete CPO characterization on deformed rocks is given by the TOF (from which also other quartz crystallographic axes can be obtained as well as various mineral phases may be investigated). However, this use is restricted by the fact that (a) there are very few TOF facilities around the world and (b) there is loss of any domainal reference, since TOF is a
Failure analysis of multiple delaminated composite plates due
Indian Academy of Sciences (India)
The present work aims at the first ply failure analysis of laminated composite plates with arbitrarily located multiple delaminations subjected to transverse static load as well as impact. The theoretical formulation is based on a simple multiple delamination model. Conventional first order shear deformation is assumed using ...
Bending analysis of laminated composite plates using finite element ...
African Journals Online (AJOL)
In this paper, a number of finite element analyses have been carried out for various side-to-thickness ratios, aspect ratios and modulus ratios to study the effect of transverse shear deformation on deflection and stresses of laminated composite plates subjected to uniformly distributed load. The numerical results showed, ...
Directory of Open Access Journals (Sweden)
P. G. Dyadkov
2017-01-01
Full Text Available Based on the data on earthquake focal mechanisms, we estimated seismotectonic deformation related to the 2010 Мw 8.8 Maule earthquake and analyzed the deformation at different depths. In the main seismic dislocation of the Maule earthquake and the northern area, the deformation field to a depth of 70 km is typical of subduction zones as evidenced by shortening in the direction of the oceanic plate subduction. Below a depth of 70 km, the deformation pattern changes sharply to horizontal stretching. After the main seismic event, as well as before it, nearlatitudinal shortening was dominant in the focal zone, while the region of the main seismic dislocations was surrounded by separate areas of near-latitudinal stretching, which is an opposite type of deformation. We conducted a detailed analysis of the seismotectonic deformations in the oceanic uplift area to the west of the deep-water trough and identified local zones of near-latitudinal stretching near the southern and northern boundaries of the future Maule earthquake zone. Detecting such zones can provide important data for early forecasting of regions wherein strong subduction-related earthquakes are being prepared.
Brothers, Daniel Stephen
Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on
Ultrasonic plate waves in wood-based composite panels
Tucker, Brian James
Two key shortcomings of current ultrasonic nondestructive evaluation (NDE) techniques for plywood, medium density fiberboard (MDF), and oriented strandboard are the reliance on empirical correlations and the neglect of valuable waveform information. The research reported herein examined the feasibility of using fundamental physical relationships along with advanced signal analysis to evaluate material properties and locate defects in wood-based composite panels. Dispersion curves were constructed exhibiting the variation of ultrasonic flexural plate wave phase velocity with frequency. Based on shear deformation plate wave theory, flexural and transverse shear rigidity values for a variety of wood-based composite panels were obtained from the dispersion curves. Axial rigidity values were obtained directly from extensional plate wave phase velocity. Excellent agreement (within 5%) of flexural rigidity values was obtained between NDE and mechanical testing for thin panels (less than or equal to 6.4 mm). Transverse shear rigidity values were obtained from NDE, but no reliable mechanical results were obtained for comparison. Tensile and compressive axial rigidity values obtained from NDE were from 12% to 31% and from 22% to 41% higher than mechanical tension and compression test results, respectively. These differences between NDE and axial mechanical testing results are likely due to load-rate effects. Nondestructive rigidity results for thicker panels using the setup described herein were either unreliable or not interpretable due to highly attenuated signals and/or violation of plate wave assumptions. Shear deformation laminated plate theory was used to predict flexural and axial laminate rigidity values of wood-based laminates from NDE measurements to within 3% and 25%, respectively. Plate wave NDE was also used to successfully locate a 60-mm square delaminated area within a 6.4-mm thick MDF laminate. This fundamental research advances the state-of-the-art of wood
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone
2009-01-01
We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10â4 to 10 sâ...
Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.
2015-12-01
The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a
Thermo-mechanical buckling analysis of FGM plate using generalized plate theory
Sharma, Kanishk; Kumar, Dinesh; Gite, Anil
2016-05-01
This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).
Schellart, W. P.; Moresi, L.
2013-01-01
We present numerical subduction models to investigate overriding plate deformation at subduction zones. All models show forearc shortening, resulting predominantly from shear stresses at the subduction zone interface and opposite-sense mantle shear stresses at the base of the forearc lithosphere.
Mathematical methods for elastic plates
Constanda, Christian
2014-01-01
Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...
Afsar, Mohammed; Sassanis, Vasilis
2017-11-01
The small amplitude unsteady motion on a transversely sheared mean flow is determined by two arbitrary convected quantities with a particular choice of gauge in which the Fourier transform of the pressure is linearly-related to a scalar potential whose integral solution can be written in terms of one of these convected quantities. This formulation becomes very useful for studying Rapid-distortion theory problems involving solid surface interaction. Recent work by Goldstein et al. (JFM, 2017) has shown that the convected quantities are related to the turbulence by exact conservation laws, which allow the upstream boundary conditions for interaction of a turbulent shear flow with a solid-surface (for example) to be derived self-consistently with appropriate asymptotic separation of scales. This result requires the imposition of causality on an intermediate variable within the conservation laws that represents the local particle displacement. In this talk, we use the model derived in Goldstein et al. for trailing edge noise and compare it to leading edge noise on a semi-infinite flat plate positioned parallel to the level curves of the mean flow. Since the latter represents the leading order solution for the aerofoil interaction problem, these results are expected to be generic. M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellor's Fellowship.
San-in shear zone in southwest Japan, revealed by GNSS observations
Nishimura, Takuya; Takada, Youichiro
2017-06-01
A right-lateral shear zone in the San-in region, southwest Japan, has been proposed by previous geological and seismological studies. It locates 350 km north of the Nankai Trough, that is, the main plate boundary between the subducting Philippine Sea and overriding Amurian plates and presumably accommodates a part of the relative plate motion. We present a geodetic evidence of the proposed shear zone using GNSS velocity data. Distinct shear deformation is identified only between 132.5°E and 135°E along a coastline which is a part of the proposed shear zone, and we propose to call the geodetically identified shear zone as the San-in shear zone (SSZ). The SSZ is a concentrated deformation zone with a width of 50 km and can be modeled by a deep creep on a vertical strike slip fault with a creep rate of 5 mm/year. There are some active faults parallel and oblique to the overall trend of the SSZ, but no single active fault coincides with the SSZ. Lineaments of microseismicity and source faults of large earthquakes are almost oriented in NNW-SSE in the SSZ and oblique to the overall trend of the SSZ. They are interpreted as conjugate Riedel shears. Based on these geodetic, seismological, and geomorphological observations, we suggest that the SSZ is a developing and young shear zone in a geological time scale.[Figure not available: see fulltext.
Directory of Open Access Journals (Sweden)
Abbas Hosseini
2017-10-01
Full Text Available A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs under the bias extension test is presented, based on a new instability analysis. The analysis is aimed to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and an equivalent structure composed of bars and different types of springs is proposed, mimicking the behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent structure are derived based on geometric and mechanical characteristics of the PWCP. The principle of minimum total potential energy is employed to formluate the model, and experimental validation is carried out to reveal the effectiveness of the derived wrinkling prediction equation.
Sissingh, W.
Sequence stratigraphic correlations indicate that intermittent changes of the kinematic far-field stress-field regimes, and the associated geodynamic re-organisations at the plate-tectonic contacts of the African, Apulian, Iberian and European plates, affected the Tertiary palaeogeographic evolution
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
Metzger, Sabrina
2014-08-20
In North Iceland, extensional plate motion is accommodated by the Northern Volcanic Zone, a set of en-echelon volcanic systems, and the Tjörnes Fracture Zone, a transform offset in the mid-Atlantic Ridge consisting of two parallel transform lineaments. The southern lineament, the Húsavík–Flatey fault, is a 100 km-long right-lateral strike slip fault that has not ruptured for more than 140 years and poses a significant seismic hazard to Húsavík, a fishing town located by the fault, and to other coastal communities. We present results of InSAR time-series analysis data spanning almost two decades (1992–2009) that show extensional and interseismic deformation within the Northern Volcanic Zone and the on-shore part of the Tjörnes Fracture Zone. The results also exhibit transient inflation at Theistareykir volcano, deflation at Krafla central volcano and a broad uplift north of Krafla. The current plate extension is not uniform across the Northern Volcanic Zone, but concentrated at the western fissures of the Theistareykir volcanic system and the outermost fissures of the Krafla fissure swarm. We combine a back-slip plate boundary model with a set of point pressure sources representing volcanic changes to describe the current extensional plate boundary deformation and update the previous estimations of the locking depth and slip rate of the Húsavík–Flatey fault that were based on GPS data alone. Using different combinations of input data, we find that the Húsavík–Flatey fault has a locking depth of 6–10 km and, with a slip rate of 6–9 mm/yr, is accommodating about a third of the full transform motion. We furthermore show that while the InSAR data provide important constraints on the volcanic deformation within the NVZ, they do not significantly improve the model parameter estimation for the HFF, as the dense GPS network appears to better capture the deformation across the fault.
Structural Performance of Composite Shear Walls under Compression
Directory of Open Access Journals (Sweden)
Tingyue Hao
2017-02-01
Full Text Available In order to research the effect of different layout forms of steel plate on the axial compression behavior of a steel plate-concrete composite shear wall, this paper presents the experimental results and analysis of the axial compression behavior of a composite shear wall, with different layout forms of steel plate. A total of three tests were carried out, composed of two composite walls with built-in steel plate, and one composite wall with two skins of steel plate. The gross dimensions of the three specimens were 1206 mm × 2006 mm × 300 mm. Experimental results show that the composite wall with two skins of steel plate has an optimal ability of elastic-plastic deformation, and the maximum axial compressive bearing capacity among the three specimens. Using the energy method, the critical local buckling stresses of steel plate were calculated, and compared with the yield stresses. According to different confined actions of concrete, concrete constitutive models were proposed, and the axial compressive strengths of confined concrete were calculated. Considering the local buckling of steel plate and confined concrete, the calculation formula of the axial compression of the composite wall was put forward, and the calculated results were in good agreement with the test results. Therefore, the different layout forms of steel plate have a great influence on its buckling, and on the concrete inhibition effect, which can affect the axial compressive bearing capacity of the composite wall.
International Nuclear Information System (INIS)
Anjomshoa, Amin; Tahani, Masoud
2016-01-01
In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.
Poul, J; Urbášek, K; Ročák, K
2013-01-01
The aim of the study was to compare the exactness of correction of proximal femoral deformities between the patients treated with AO angled blade plates and those managed by the cannulated paediatric osteotomy system (CAPOS). In the period from 1994 to 2003, corrective osteotomy of the proximal femur using the conventional AO angled blade plate (90°, 120°, 130°) was performed on 57 hips in 42 children. In the period 2004-2012, 68 hips in 59 children were treated by the CAPOS method. In each child, the pre- and post-operative X-ray views were compared and a real deviation from the pre-operative plan was determined. A deviation larger than 10° in the frontal plane was recorded as an error. Penetration of the blade into either the posterior or the anterior femoral neck cortex seen on axial views was regarded as an error as well. Corrective osteotomy with AO angled blade plates performed on 57 hips failed in 12 (21.1%) on anteroposterior views and six hips (10.5%) on axial views. Of 68 hips treated by the CAPOS, failure was recorded in four (5.9%) and one (1.5%) on anteroposterior and axial views, respectively. DISCUSSION No information on the CAPOS technique is available in either international or national literature, with the exception of our preliminary report. On the other hand, locking compression plates for paediatric hips, developed later, have been described in several publications. The authors appreciate a higher accuracy of bone correction and higher stability for the whole fixation, which results in earlier mobilisation of the treated extremity. These advantages are also true for CAPOS instrumentation. The CAPOS can be seen as an intermediate stage of development between conventional angled blade plates and locking compression plates for paediatric hips. However, it should be noted that surgery involving insertion of an angled blade plate takes less time than insertion of a locking compression plate. For this reason, in procedures combining femoral
Obana, K.; Takahashi, T.; No, T.; Kaiho, Y.; Kodaira, S.; Yamashita, M.; Sato, T.; Noguchi, N.; Nakamura, T.
2011-12-01
A Mw 7.4 normal-faulting earthquake occurred 150 km east of Chichi-jima Island, Bonin Islands, Japan on December 21, 2010 (UTC). This is an earthquake occurred within the Pacific plate beneath the outer trench-slope region along the Izu-Ogasawara (Bonin) trench, where the Pacific plate subducts beneath the Philippine Sea plate. According to Japan Meteorological Agency (JMA), the associated tsunami was observed over a wide area along the Pacific coast of Japan. Normal faulting earthquakes in outer trench-slope region are a result of the bending of the incoming/subducting oceanic plates. The bending-related normal faults cutting the oceanic plate are likely associated with hydration of the oceanic plate prior to subduction [e.g., Ranero et al., 2003]. The normal faulting earthquakes can be a key to understand deformation and resulting hydration of the oceanic plate. That is also important for consideration of tsunami generation in shallow outer trench-slope region. Aftershock observation of the 2010 Bonin Islands earthquake were conducted by R/V Kairei of Japan Agency for Marine-Earth Science and Technology (JAMSTEC) using ocean bottom seismographs (OBSs). First OBS was deployed in the source area on December 25, 2010 and retrieved on January 7, 2011. Other 4 OBSs were deployed on January 6 and 7 and retrieved on March 11 and 12, 2011. Overall aftershocks distributed in a 130 km long area extended in a NW-SE direction although Izu-Bonin trench extends N-S direction in this area. Most of the aftershocks were located at depths shallower than 30 km, corresponding to the oceanic crust and the uppermost mantle of the Pacific plate. The aftershocks show a complicated distribution. In the central part of the aftershock area, aftershocks formed three subparallel lines with roughly 15 km intervals oriented NW-SE direction. In the southeastern part of the aftershock area away from the trench, the aftershocks distributed along ESE-WNW direction. We estimated aftershock
Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco
2012-01-01
This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.
Directory of Open Access Journals (Sweden)
Treshchev Aleksandr Anatol'evich
2014-03-01
Full Text Available The arithmetic model of reinforced concrete slab distortion with a polymer-concrete layer exposed to aggressive influences is introduced. The relevance of this object choice as a matter of actual practice. The least contradictory model for specification of the strain-stress state of reinforced concrete constructions is sampled. The most efficient way of solving such tasks is the finite elements method, which lacks the drawbacks of the finite differences method. In this article, the arithmetic model of hybrid finite element qualification for the armored reinforced concrete slabs design is considered. The problem of reinforced concrete slab with a polymer-concrete layer bending is dealt with in the presence of dynamic deformation and simple loading, which gives the opportunity to introduce concrete as a nonlinear material with its elastic-plastic properties, which stay within the strain potential limits. The deformation of creep is not taken into account. The incremental equations connecting stress and deformation increments are provided.
Directory of Open Access Journals (Sweden)
M. E. Shimpi
2010-06-01
Full Text Available An attempt has been made to study and analyze the performance of a magnetic fluid based squeeze film between rotating porous transversely rough circular plates with concentric circular pockets. The porous housing is considered to be elastically negligibly deformable with its contact surface transversely rough. The stochastic film thickness characterizing the random roughness is assumed to be asymmetric with non zero mean and variance. The pressure distribution is obtained by solving the associated stochastically averaged Reynolds equation with appropriate boundary conditions. This results in the calculation of the load carrying capacity. All the results in graphical form establish that the transverse roughness in conjunction with the deformation has a strong negative effect on the performance of the bearing system. The bearing suffers on account of transverse surface roughness in general which probably is due to the fact that the roughness of the bearing surfaces tends to retard the motion of the lubricant resulting in decreased load carrying capacity. However, this negative effect of roughness, porosity and deformation can be minimized by the positive effect of the magnetization parameter in the case of negatively skewed roughness by choosing a suitable combination of pocket radius and rotational inertia. Lastly, the effect of radii ratio is noted to be quite significant.
Koulali, A.; McClusky, S.; Susilo, S.; Leonard, Y.; Cummins, P. R.; Tregoning, P.; Meilano, I.; Efendi, J.; Wijanarto, A. B.
2016-12-01
Slip partitioning models have been used extensively to describe the broad zones of deformation in oblique convergence zones. Traditionally these models have exploited course spatial and temporal constraints from geomorphology, seismology and geodesy. However, the development of high resolution geodetic measurements in the recent years have allowed the imaging of multiple transient processes occurring during the seismic cycle ranging from post-seismic relaxation to slow slip events, which raise questions about our ability to understand the long-term patterns of relative motion in actively convergent deforming regions. Here we present the example of West Java, where continuous GPS observations show a time-dependent change in the linear rate of surface motion, which we interpret as an ongoing long-term post-seismic deformation following the 2006 Mw 7.8 Java earthquake. We use a combination of a regional tectonic block model and a viscoelastic relaxation model to consider the post-seismic transient and we propose a kinematic model of convergence of the Australian Plate and the Sunda Block, involving a slip partitioning between the Java Trench and a left-lateral structure extending E-W along Java, with most of the normal component is occurring onto the subduction Thrust and a much smaller parallel motion accommodated along the Barabis ( 5± 0.2 mm/yr) and Kendeng (˜ 0.8 ± 0.3 mm/yr) Thrusts. Our findings correlate with observations from historical seismicity and highlight a new potential seismic hazard in Java Island.
Directory of Open Access Journals (Sweden)
Douwe J.J. van Hinsbergen
2015-09-01
Full Text Available The Gobi Altai region of southern Mongolia has been in the Eurasian plate interior since the mid-Mesozoic, yet has experienced episodic phases of deformation since that time. In this paper, we document field evidence to characterize and date the intra-plate tectonic history of the Gobi Altai region from the Triassic to the present. To this end, we provide detailed mapping of the structure and stratigraphy of the eastern flanks of Mt. Ih Bogd that contains the widest variety of rock-time units in the area. We carry out geochronological analysis of basaltic lavas and basement granite in the area. We demonstrate that a crystalline basement with a 502 ± 8 Ma granitoid (U/Pb underwent two phases of basin formation in the Mesozoic, which we date with new 40Ar/39Ar lava ages of 218.5 ± 1.5, 123.2 ± 0.7 and 124.8 ± 1.2 Ma, respectively. Both phases are linked to deposition of fluvio-lacustrine sediments and trap-like basaltic volcanics, with cumulative thicknesses of 1000–1500 m. Both basins were likely north-facing half-grabens that developed under ∼N–S extension, but were subsequently overthrusted by Paleozoic and older crystalline basement during a less well constrained, but likely mid-Cretaceous phase of N–S shortening and basin inversion. Our results are consistent with recent seismic imaging of rift basins ∼100 km to the NE of the study area where a similar history was reconstructed. The multiple phases of intra-plate deformation appear to have parallel structural trends, most likely due to reactivated Paleozoic basement structures created during the original terrane amalgamation of the Central Asian Orogenic Belt continental crust. This strong basement heterogeneity may predispose it to reactivation, and make it sensitive to changes in the overall stress field of the Eurasian plate driven by forces at its margins and base. Detailed study of Mongolia's multi-stage tectonic history may thus provide a key proxy for the long
Active faulting on the Ninetyeast Ridge and its relation to deformation of the Indo-Australian plate
Digital Repository Service at National Institute of Oceanography (India)
Sager, W.W.; Bull, J.M.; Krishna, K.S.
extents are poorly defined. New multichannel seismic reflection profiles image active faults along the entire length of the NER and show spatial changes in the style of deformation along the ridge. The northern NER (0°N–5°N) displays transpressional motion...
Oosterhout, G.M.; van der Hoogt, Peter; Spiering, R.M.E.J.
1995-01-01
Various computational methods have been studied with respect to their suitability for obtaining very accurate solutions of plate vibration problems, especially for the higher modes. Because of the interest in the higher modes, also higher order effects such as transverse shear deformation and
Calignano, E.
2015-01-01
Mountain ranges are impressive tectonic features that characterize the Earth’s surface. Their formation is often associated with regions where two tectonic plates, making up the Earth surface, collide, as in the case of the Himalaya. While the surface is forced to uplift, the displacement of rocks
Refined Zigzag Theory for Laminated Composite and Sandwich Plates
Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco
2009-01-01
A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.
Prakash, T.; Singha, M. K.; Ganapathi, M.
2009-02-01
Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle.
Exact vibration analysis of variable thickness thick annular isotropic and FGM plates
Efraim, E.; Eisenberger, M.
2007-02-01
Annular plates are used in many engineering structures. In many cases variable thickness is used in order to save weight and improve structural characteristics. In recent years functionally graded materials (FGM) are used in many engineering applications. A FGM plate is an inhomogeneous composite made of two constituents (usually ceramic and metal), with both the composition and the material properties varying smoothly through the thickness of the plate. An optimal distribution of material properties may be obtained. The plate vibrations will have a strong bending-stretching coupling effect. The equations of motion including the effect of shear deformations using the first-order shear deformation theory are derived and solved exactly for various combinations of boundary conditions. The solution is obtained by using the exact element method. Exact vibration frequencies and modes are given for several examples for the first time.
Directory of Open Access Journals (Sweden)
D. Babbucci
1997-06-01
Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.
Directory of Open Access Journals (Sweden)
Labudková Jana
2014-06-01
Full Text Available The purpose of this paper is to compare the measured subsidence of the foundation in experiments and subsidence obtained from FEM calculations. When using 3D elements for creation of a 3D model, it is, in particular, essential to choose correctly the size of the modelled area which represents the subsoil, the boundary conditions and the size of the finite element network. The parametric study evaluates impacts of those parameters on final deformation. The parametric study is conducted of 168 variant models.
Leitner, Beate
Two examples of Pacific rim plate boundary deformation are presented. In the first part of the thesis crustal models are derived for the northwestern part of the Vizcaino block in California using marine seismic and gravity data collected by the Mendocino Triple Junction Seismic Experiment. A northwest-southeast trending kink in the Moho is imaged and interpreted to have formed under compression by reactivation of preexisting thrust faults in the paleoaccretionary prism at the seaward margin of the Vizcaino block. The study suggests that the deformation resulted from mainly north-south compression between the Pacific-Juan de Fuca plates across the Mendocino transform fault and predates late Pliocene Pacific-North America plate convergence. In the second part, 195 earthquakes recorded during the duration of the Southern Alps Passive Seismic Experiment (SAPSE) are analysed. Precise earthquake locations and focal mechanisms provide unprecedented detail of the seismotectonics in the central South Island. The short term (6 month) SAPSE seismicity is compared with long term (8 years) seismicity recorded by the New Zealand National Seismic network and the Lake Pukaki network. The seismicity rate of the Alpine fault is low, but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Changes of the depth of the seismogenic zone, generally uniform at about 10--12 km, occur only localised over distances smaller than 30 km, suggesting that thermal perturbations must be of similar scale. This implies that the thermal effects of the uplift of the Southern Alps do not change the seismogenic depth significantly and are not in accordance with most of the present thermal models. Both the Hope and Porters Pass fault zones are seismically active and deformation is accommodated near the fault zones and in the adjacent crust. North of Mt Cook, a triangular shaped region along the Alpine fault is characterised by absence of earthquakes. We interpret this
DeTora, Michael D; Boudrieau, Randy J
2016-09-20
To describe the surgical technique of complex distal femoral deformity correction with the aid of stereolithography apparatus (SLA) biomodels, stabilized with locking plate fixation. Full-size replica epoxy bone biomodels of the affected femurs (4 dogs/ 5 limbs) were used as templates for surgical planning. A rehearsal procedure was performed on the biomodels aided by a guide wire technique and stabilized with locking plate fixation. Surgery performed in all dogs was guided by the rehearsal procedure. All pre-contoured implants were subsequently used in the definitive surgical procedure with minimal modification. All dogs had markedly improved, with near normal functional outcomes; all but one had a mild persistent lameness at the final in-hospital follow-up examination (mean: 54.4 weeks; range: 24-113 weeks after surgery). All femurs healed without complications (mean: 34 weeks, median: 12 weeks; range: 8-12 weeks for closing osteotomies, and 26-113 weeks for opening wedge osteotomies). Long-term follow-up examination (mean: 28.6 months; range: 5-42 months) revealed all but one owner to be highly satisfied with the outcome. Complications were observed in two dogs: prolonged tibiotarsal joint decreased flexion that resolved with physical therapy. In one of these dogs, iatrogenic transection of the long digital extensor tendon was repaired, and the other had a peroneal nerve neurapraxia. Stereolithography apparatus biomodels and rehearsal surgery simplified the definitive surgical corrections of complex femoral malunions and resulted in good functional outcomes.
Buckling Analysis of Functionally Graded Plates with Simply Supported Edges
Directory of Open Access Journals (Sweden)
Megueni ABDELKADER
2009-12-01
Full Text Available Thermal buckling analyses of S-FGM are investigated by using first order shear deformation theory. Material properties are varied continuously in the thickness direction according to a sigmoid distribution. The thermal buckling behaviours under uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the classic plate theory (CPT.
Bennett, Scott E. K.; Darin, Michael H.; Dorsey, Rebecca J.; Skinner, Lisa A.; Umhoefer, Paul J.; Oskin, Michael E.
2016-01-01
Although the majority of late Miocene to present Pacific-North America plate boundary strain has been accommodated by faults of the San Andreas and Gulf of California systems, growing evidence of dextral shear east of the San Andreas Fault indicates that a component of plate boundary deformation occurred in the lower Colorado River (LoCR) region. Large-scale tectonic reconstructions across the Gulf of California and Salton Trough (GCAST) region (Fig. 1), a ~500 km-wide zone of deformation that affected the western margin of North America, provide important constraints on the location, timing, style, and magnitude of crustal deformation in the LoCR region (Fig. 2). Characterizing Miocene to present deformation in the LoCR region is important to resolve the presence and kinematics of upper crustal structures that accommodated intracontinental strain and improves our understanding of the processes that promoted localized or diffuse strain during reorganization of the Pacific-North America plate boundary.
Ioannidi, Paraskevi Io; Le Pourhiet, Laetitia; Moreno, Marcos; Agard, Philippe; Oncken, Onno; Angiboust, Samuel
2017-04-01
Determination of the subduction interface rheological parameters is an interesting aspect of geodynamics since it can help better understand the physical nature of plate locking and its relation to surface deformation patterns observed at different time scales (GPS displacements during the seismic cycle). Since direct rheological measurements are not possible, unfortunately, we herein try to determine the effective rheological parameters of a subduction interface using finite element modelling. We use the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions trying to find the one that can best mimic simple shear experiments performed on rock samples. After examining different parameters including the shearing velocity, the temperature and the viscosity, we added complexity to the geometry by including a second phase. This complexity arose from field observations, where composite shear zone outcrops often characterize the subduction interface. Stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. In order to test our methodology, we first use clast-in-matrix geometries from thin sections taken through lab experiments. In a second stage, we upscale the method to outcrop scale clast-in-matrix geometries. By sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction of a natural interface. In a next step, these effective frictions will be used as input into seismic cycle deformation models in an attempt to assess the
Rouzegar, J.; Abbasi, A.
2018-03-01
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal
2017-10-01
Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are
van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris
2010-05-01
The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic
Caribbean plate tectonics from seismic tomography
Ten Brink, U. S.; Villasenor, A.
2012-12-01
New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.
Fusseis, Florian; Gilgannon, James; Burns, Thomas; Menegon, Luca
2017-04-01
Mid-crustal shear zones host deep slow slip events and play a critical role in transferring stress from viscously deforming lower-crustal domains to the frictional, seismogenic upper crust. At the same time, these shear zones act as conduits for trans-crustal fluid transfer. Deformation in shear zones at the frictional-viscous transition is accommodated by a complex combination of deformation mechanisms that is dominated by grain-size sensitive creep in fine-grained ultramylonites. Over the past years, the significance of synkinematic creep cavitation in the deformation of these ultramylonites has been established, and Fusseis et al. (2009) have formulated the dynamic granular fluid pump model to consider this form of porosity in models of fluid transfer through the middle crust. In this presentation we analyse amphibolite-facies ultramylonitic samples from the Redbank Shear Zone (Australia) that have been exhumed from the frictional-viscous transition without any significant retrograde overprint. The ultramylonites, which were derived from a granitic protolith, appear compositionally layered, with alternating layers of extremely fine-grained ( 1-2 um) polymineralic mixtures of feldspar, quartz, mica, epidote and ilmenite and mono-mineralic quartz layers. The latter exhibit abundant creep cavities, which are the focus of this contribution. A hierarchy of creep cavities are found to exists in the quartz domains. This porosity can be considered to have formed synkinematically by two distinct mechanisms: Zener-Stroh cracking and superplastic void growth. The porosity is shown to have evolved with the disaggregation of the dynamically recrystallising quartz ribbons during ultramylonitisation. In initially thick and coherent quartz ribbons, pores generated by Zener-Stroh cracking emerge on grain-boundaries aligned with the YZ plane of finite strain. With decreasing quartz domain thickness and increasing quartz dispersion into the fine-grained ( 1-2 μm) polyphase
Directory of Open Access Journals (Sweden)
Pham Hong Cong
2016-12-01
Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.
Ghisetti, Francesca; Sibson, Richard H.; Hamling, Ian
2016-12-01
Tectonic activity in the South Island of New Zealand is dominated by the Alpine Fault component of the Australia-Pacific plate boundary. West of the Alpine Fault deformation is recorded by Paleogene-Neogene basins coeval with the evolution of the right-lateral/transpressive plate margin. Initial tectonic setting was controlled by N-S normal faults developed during Late Cretaceous and Eocene-early Miocene rifting. Following inception of the Alpine Fault (c. 25 Ma) reverse reactivation of the normal faults controlled tectonic segmentation that became apparent in the cover sequences at c. 22 Ma. Based on restored transects tied to stratigraphic sections, seismic lines and wells, we reconstruct the vertical mobility of the Top Basement Unconformity west of Alpine Fault. From c. 37-35 Ma to 22 Ma subsidence was controlled by extensional faulting. After 22 Ma the region was affected by differential subsidence, resulting from eastward crustal flexure towards the Alpine Fault boundary and/or components of transtension. Transition from subsidence to uplift started at c. 17 Ma within a belt of basement pop-ups, separated by subsiding basins localised in the common footwall of oppositely-dipping reverse faults. From 17 to 7-3 Ma reverse fault reactivation and uplift migrated to the WSW. Persistent reverse reactivation of the inherited faults in the present stress field is reflected by the close match between tectonic block segmentation and topography filtered at a wavelength of 25 km, i.e. at a scale comparable to crustal thickness in the region. However, topography filtered at wavelength of 75 km shows marked contrasts between the elevated Tasman Ranges region relative to regions to the south. Variations in thickness and rigidity of the Australian lithosphere possibly control N-S longitudinal changes, consistent with our estimates of increase in linear shortening from the Tasman Ranges to the regions located west of the Alpine Fault bend.
Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement
Directory of Open Access Journals (Sweden)
Heecheul Kim
2015-01-01
Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.
Klepaczko, J. R.
1998-10-01
A review is presented on recent progress in shear testing of materials at high and very high strain rates. Some experimental techniques are discussed which allow for materials testing in shear up to 10 6 ls. More detailed informations are provided on experimental techniques based on the Modified Double Shear specimen loaded by direct impact. This technique has been applied so far to test a variety of materials, including construction, armor and inoxidable steels, and also aluminum alloys. The double shear configuration has also been applied to test sheet metals, mostly used in the automotive industry, in a wide range of strain rates. Details of both techniques, including measuring systems and elastic wave propagation in tubes, are discussed. In addition, a new experimental configuration which can be applied for experimental studies of adiabatic shear propagation and high speed machining is discussed. The role of adiabatic heating at different rates of shearing is also discussed, including transition from pure isothermal to pure adiabatic deformation. It appears that the initial impact velocity is an important parameter in development of plastic localization. Finally, a new development is discussed in determination of the Critical Impact Velocity in shear. A comparison is shown between recent experimental findings and a simple analytic estimation. The CIV in shear is a certain mode of adiabatic failure which occurs at relatively high shear velocities of adjacent material layers. Numerical simulations support the existence of the CIV in shear which can be recognized to some extent as a material constant.
Analyses of functionally graded plates with a magnetoelectroelastic layer
Sladek, J.; Sladek, V.; Krahulec, S.; Pan, E.
2013-03-01
A meshless local Petrov-Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner-Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed.
Analyses of functionally graded plates with a magnetoelectroelastic layer
International Nuclear Information System (INIS)
Sladek, J; Sladek, V; Krahulec, S; Pan, E
2013-01-01
A meshless local Petrov–Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner–Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed. (paper)
Jagtap, K. R.; Lal, Achchhe; Singh, B. N.
2013-04-01
This paper presents the stochastic post-buckling response of elastically supported FGM plate with random system properties subjected to uniform and nonuniform temperature change with temperature-dependent and -independent material properties. The FGMs plate is supported with two parameters of Pasternak foundation with Winkler cubic nonlinearity. The basic formulation is based on higher-order shear deformation theory (HSDT) with von-Karman nonlinearity using modified C0 continuity. A direct iterative-based nonlinear finite element method combined with first-order perturbation technique is used to compute the second-order statistics (mean and coefficient of variation) of post-buckling response of FGM plates.
A Comparative Study of Solutions Concerning Thick Elastic Plates on Bi-modulus Foundation
Directory of Open Access Journals (Sweden)
Ioana Vlad
2004-01-01
Full Text Available The classical bending theory of elastic plates is based upon the assumption that the internal moments are proportional to the curvatures of the median deformed surface. This theory does not include the effects of shear and normal pressure in the plate. The model of a bi-modulus foundation is a realistic generalization of the Winkler’s classical one and is widely used to represent the subgrade of railroad systems, airport lanes [1], [2]. The derived equation of elastic thick plates on bi-modulus foundation considers shear and normal stress as linear variable across the plate thickness. This paper presents numerical solutions for thick plate resting on bi-modulus subgrade. These solutions take into account the shear distortion, and they are compared to the solution obtained by Finite Element Analysis and with the Winkler’s model. Particular solutions for the rectangular plate of clamped boundary, for the hinged rectangular plate and for a semi-elliptical plate, are discussed. The numerical solutions consist of double power series and they were obtained based on the minimum of the total strain energy [1]. Parametric studies have been performed in order to emphasize the effects of the chosen foundation and that of the geometry.
Effect of matrix cracking and material uncertainty on composite plates
International Nuclear Information System (INIS)
Gayathri, P.; Umesh, K.; Ganguli, R.
2010-01-01
A laminated composite plate model based on first order shear deformation theory is implemented using the finite element method. Matrix cracks are introduced into the finite element model by considering changes in the A, B and D matrices of composites. The effects of different boundary conditions, laminate types and ply angles on the behavior of composite plates with matrix cracks are studied. Finally, the effect of material property uncertainty, which is important for composite material on the composite plate, is investigated using Monte Carlo simulations. Probabilistic estimates of damage detection reliability in composite plates are made for static and dynamic measurements. It is found that the effect of uncertainty must be considered for accurate damage detection in composite structures. The estimates of variance obtained for observable system properties due to uncertainty can be used for developing more robust damage detection algorithms.
Influence of elastic supports on non-linear steady-state vibrations of Zener material plates
Litewka, Przemysław; Lewandowski, Roman
2018-01-01
The paper reports numerical results of analyses of steady-state harmonic vibrations of von Kármán non-linear plates made from Zener material with various elastic support conditions. Influences of shear deformation and rotary inertia are taken into account, thus the model is able to predict the behaviour of plates with a moderate thickness. The amplitude equation for the plate is obtained using the time-averaged principle of virtual work for the assumed harmonic form of excitation and plate displacements as well as the harmonic balance method for Zener material and non-linear elastic supports. Plates are discretised using 8-noded rectangular plate finite elements. The discretised amplitude equation is solved for the response curves using a path-following method. Results of two numerical examples are presented and the qualitative and quantitative influence of support elastic properties is discussed.
The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.
Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain
2017-01-01
The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.
International Nuclear Information System (INIS)
Astill, M.; Sunderland, A.; Waine, M.G.
1980-01-01
A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Vieira, Edeval
2011-07-01
The Nuclear and Energy Research Institute - IPEN-CNEN/SP produces routinely the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U{sub 3}Si{sub 2}-Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed with base on information obtained from literature, which were used as premises for defining the current manufacturing procedures, according to a methodology with essentially empirical character. Despite the current rolling process to be perfectly stable and highly reproducible, it is not well characterized and therefore is not fully known. The objective of this work is to characterize the rolling process for producing fuel plates, specifically the evolution of dimensional parameters of the fuel plate as a function of its deformation in the rolling process. Results are presented in terms of the evolution of the thickness of the fuel meat and cladding of the fuel plate along the deformation, as well as the terminals defects, microstructure and porosity of the fuel meat. (author)
Study on load-deflection characteristics of heavily reinforced concrete shear walls
International Nuclear Information System (INIS)
Fukuzawa, R.; Chiba, O.; Hatori, T.; Yagishita, K.
1987-01-01
Twenty seven specimens of reinforced concrete shear walls are employed and many effective results are obtained. The outline of this experimental study, the equation to estimate the maximum shear strength, the skeleton curves and the hysteresis loops on the shear deformation, and the shear deformations at the maximum shear strength, etc. are introduced. (orig./HP)
Houlie, N.; Stern, T. A.
2012-12-01
The strain rate and vertical velocity fields for New Zealand are computed using GPS data from GEONET (NZ) collected during the past decade. Two domains for shear in the mantle are inferred by comparing the principal shortening direction with the fast direction of shear wave splitting. Beneath the central- southern part of the South Island the strains are low and its unclear if irrotational strain is taking place or if the splitting here is dominated by anisotropy in the asthenosphere. In contrast, data for the central and northern South Island suggest simple shear is dominant and distributed over a zone 200 km wide. An analysis of the major strike-slip faults confirms that the strike of the major South Island fault systems makes a 60±15 deg. angle with the shortening direction. A map of the vertical component of GEONET GPS velocities shows regions of surface uplift >5mm/y in both the central South and North Islands. While the pattern of uplift in central South Island is consistent with known geology, the rate of uplift in the central North Island is an order of magnitude higher than the geological rate estimated on a my timescale.
Dynamic slip of polydisperse linear polymers using partitioned plate
Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Hatzikiriakos, Savvas G.
2018-03-01
The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.
Giese, Jörg; Schreurs, Guido; Berger, Alfons; Herwegh, Marco
2017-09-01
Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly metasedimentary units of the Ikalamavony and Itremo Groups of the Southwest Madagascar Block. The generally west-dipping tectonic contact can be traced for more than 750 km from NW to SE and is referred to here as the Itremo-Ikalamavony thrust. The basal units of the SW Madagascar Block comprise metasedimentary quartzites with the potential to preserve a multistage deformation history in their microstructures. Previous studies suggest contrasting structural evolutions for this contact, including eastward thrusting, top-to-the-west directed extension and right-lateral strike-slip deformation during the late Neoproterozoic/Ediacaran. In this study, we integrate remote sensing analyses, structural and petrological fieldwork, as well as microstructural investigations of predominantly quartz mylonites from the central southern segment of the contact between Ankaramena and Maropaika. In this area, two major phases of ductile deformation under high-grade metamorphic conditions occurred in latest Neoproterozoic/early Phanerozoic times. A first (Andreaba) phase produces a penetrative foliation, which is parallel to the contact between the two blocks and contemporaneous with widespread magmatism. A second (Ihosy) phase of deformation folds Andreaba-related structures. The investigated (micro-)structures indicate that (a) juxtaposition of both blocks possibly already occurred prior to the Andreaba phase, (b) (re-)activation with top-to-the-east thrusting took place during the latest stages of the Andreaba phase, (c) the Ihosy phase resulted in regional-scale open folding of the tectonic contact and (d) reactivation of parts of the contact took place at distinctively lower temperatures post-dating the major ductile deformations.
Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula
2008-07-01
The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally
International Nuclear Information System (INIS)
Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko
2008-01-01
The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally
Trexler, C. C.; Cowgill, E.; Niemi, N. A.; Godoladze, T.
2015-12-01
Between the Black and Caspian Seas, the Greater Caucasus Mountains (GC) delineate the northern margin of the Arabia-Eurasia collision zone. The role of subduction in formation of the GC is not widely recognized, despite patterns of subcrustal seismicity attesting to its importance at the E end of the range. The GC currently absorbs most orogen-perpendicular plate convergence (11 mm/yr, 70% of total), but its tectonic evolution relation to subduction remain unclear. Proposed models include 1) subduction of an ~400 km wide backarc ocean basin followed by slab breakoff under the W end of the range; 2) loss of a lithospheric root followed by buoyancy-driven uplift; and 3) closure of a small (~100 km?) basin with no/minimal subduction. Patterns of modern seismicity, exhumation, and shortening are most consistent with the subduction/slab breakoff model, suggesting the western GC may capture the surface expression of processes associated with recent slab breakoff. Each model of the GC makes specific predictions for the amount of shortening within the orogen, with the subduction/breakoff model predicting large magnitudes of convergence. Here we estimate orogenic shortening by balancing mass along several, orogen-perpendicular, crustal-scale cross sections across the GC. First we estimate the original length of undeformed crust by comparing the modern deformed volume (determined from modern topography and moho depth and assuming no net erosional loss) with hypothesized end-member original crustal thicknesses (based on seismic data in the Eastern Black Sea and Scythian platform). These end-member assumptions allow shortening magnitudes as great as ~700 km (12 km-thick oceanic crust), and as small as ~100 km (39 km-thick Scythian margin). Second, we use line-length balanced crustal-scale geologic cross sections to estimate shortening in the western and central GC. We generated these sections using previously published 1:200k geologic maps and our own focused field
Eliseus, A.; Bilad, M. R.
2017-10-01
Harvesting microalgae is challenging due to the nature of microalgae having very small size, about similar density to water, and high membrane fouling propensity. Numerous techniques have been implemented for membrane fouling control including periodical cleanings, optimizing operational conditions and imposing shear-rates, such as using air bubbles. Nevertheless, air bubbles effectiveness can still be further improved by maximizing the shear-rates impact to scour foulant on membrane surface. In this paper, a new method to enhance membrane cleaning effect of air bubbles is presented. It was done by tilting the module to maximize contacts of air bubbles on the membrane surface. First of all, we investigate the effect of tilting angle, followed by the effect of switching period, and lastly the effect of aeration rate. The tests were conducted in a lab-scale submerged filtration treating microalgae broth solution. The filtration performance was judged based on steady state permeability. The results showed that increasing tilting lead to further improvement the cleaning efficiency by offering higher permeability. It was also identified that operating at one-sided membrane under optimum tilting angle matches permeability of a two-sided membrane at the same tilting angle, in which the later involved switching mode. Higher aeration rates lead to higher permeability and tilting membrane at 15° can reduce up to 30% of specific aeration demand, and thus improves energy saving. This tilted membrane module can lead to significant cost reduction as well as offers energy saving for membrane fouling control.
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2013-01-01
Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.
Kim, S E; Lewis, D D
2014-03-01
This report describes the treatment of severe procurvatum because of distal femoral physeal fracture malunion in two skeletally immature dogs. Both dogs presented with severe right hindlimb lameness and markedly reduced stifle extension at less than 5 months of age. Severe distal femoral procurvatum and mild-to-moderate femoral shortening secondary to distal femoral physeal fracture malunion were evident on radiographs. The sagittal plane deformities were addressed with a caudal opening-wedge osteotomy in one dog and cranial closing wedge ostectomy in the other dog. String-of-Pearls locking plates were used to stabilise the osteotomies. Functional stifle extension range of motion and femoral length were improved post surgery in both dogs. Explantation of the plates was required in both dogs because of local soft tissue irritation. Both dogs had excellent outcomes based on subjective and objective measures (pressure sensitive walkway, force platform analysis) when assessed at skeletal maturity. Corrective osteotomy stabilised with String-of-Pearls locking plates is a viable treatment option for improving limb function in dogs with severe procurvatum deformities caused by distal femoral physeal fracture malunion. © 2014 Australian Veterinary Association.
International Nuclear Information System (INIS)
Allibone, A.H.; Tulloch, A.J.
2008-01-01
The character, timing, and significance of deformation within the Median Batholith has been debated since at least 1967, with allochthonous and autochthonous models proposed to account for internal variations in the character of the batholith. Stewart Island provides excellent exposures of intrabatholithic structures, allowing many aspects of the deformation history within the batholith to be analysed, far removed from the effects of later deformation related to the current plate boundary. Median Batholith rocks in northern and central Stewart Island are deformed by three major structures: the Freshwater Fault System, Escarpment Fault, and Gutter Shear Zone. Lineation orientations, Al in hornblende geobarometry, and Ar-Ar thermochronology indicate up to c. 7 km of NNE-directed uplift of the hanging wall of the Escarpment Fault between c. 110 and 105 Ma. Unlike the Escarpment Fault, a wide range of mineral elongation lineation orientations, including many oblique to the strike and dip of related foliations, characterise both the Gutter Shear Zone and Freshwater Fault System. Lineation and limited sense of shear data indicate dextral-reverse movement on both structures during development of their dominant ductile fabrics. Crosscutting and intrusive relationships indicate movement on the Freshwater Fault System after c. 130 Ma and on the Gutter Shear Zone between 120 and 112 Ma. The amount of movement on the Freshwater Fault System and Gutter Shear Zone remains largely unconstrained. However, the 342 ± 24 Ma age of a granite clast in a Paterson Group lithic tuff horizon at Abrahams Bay overlaps that of Carboniferous plutons in the block immediately south of the Freshwater Fault System, implying that the Paterson Group is little displaced from the basement rocks through which it was erupted. The three structures mapped on Stewart Island form part of a narrow transpressional mobile belt active within the Jurassic-Cretaceous arc on the outboard margin of the Western
Finite element analysis of actively controlled smart plate with patched actuators and sensors
Directory of Open Access Journals (Sweden)
M. Yaqoob Yasin
Full Text Available The active vibration control of smart plate equipped with patched piezoelectric sensors and actuators is presented in this study. An equivalent single layer third order shear deformation theory is employed to model the kinematics of the plate and to obtain the shear strains. The governing equations of motion are derived using extended Hamilton's principle. Linear variation of electric potential across the piezoelectric layers in thickness direction is considered. The electrical variable is discretized by Lagrange interpolation function considering two-noded line element. Undamped natural frequencies and the corresponding mode shapes are obtained by solving the eigen value problem with and without electromechanical coupling. The finite element model in nodal variables are transformed into modal model and then recast into state space. The dynamic model is reduced for further analysis using Hankel norm for designing the controller. The optimal control technique is used to control the vibration of the plate.
Gürer, Derya; van Hinsbergen, Douwe J J; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio
2016-01-01
Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted
International Nuclear Information System (INIS)
Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.
2011-01-01
This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.
Swift, D. C.
1994-07-01
The yield stress of materials exhibiting work-hardening and thermal softening can reach a maximum, at which they are unstable to further strain. Deformation then localizes as shear bands. This critical strain has been calculated using parameters for the Steinberg-Guinan strength model. A simple model to predict the onset of shear-banding in the impact of flat-ended rods on plates produces results consistent with known experiments in steel/Ti-6Al-4V, using the calculated critical strain. Conduction effects can modify the critical strain by reducing the rate of thermal softening, introducing a dependence on strain rate. The magnitude of the conduction effects caused by a microstructure of spherical grains in a matrix and by solitary inclusions is estimated. Comparison with experiments indicates that the rate-dependence is consistent with conduction between the phases of the Ti-6Al-4V microstructure.
Zhang, Chunli; Liu, Nan; Yang, Jiashi; Chen, Weiqiu
2011-03-01
We study thickness-shear (TSh) vibration of a rotated Y-cut quartz crystal resonator (QCR) carrying finitesize circular particles that have a rotational degree of freedom and rotatory inertia. The particles are elastically attached to the QCR and are allowed to roll without sliding on the QCR surface. An analytical solution for particle-induced frequency shifts in the QCR is obtained. Examination of the frequency shifts shows that although they can be used to measure geometric/physical properties of the particles, the frequency shifts can have relatively complicated behaviors that cause deviations from the Sauerbrey equation and other anomalies in mass sensing. A frequency-dependent effective particle mass is introduced to classify and characterize different aspects of the particle-induced frequency shifts.
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
Matonti, C.; Auger, A. T.; Groussin, O.; Jorda, L.; Attree, N.; Viseur, S.; El Maarry, M. R.
2016-12-01
Fractures and faults are widespread and pervasive in Earth crustal and sedimentary rocks. They result from deviatoric stresses applied on brittle materials. In various contexts, their geometry often allows one to infer the direction and sometimes the magnitude of the stress that led to their formation. The Rosetta spacecraft has orbited comet 67P for two years and has acquired images of the nucleus surface with an unprecedented spatial resolution, down to 20 cm/px. These data open the way for entirely new geological interpretations of the structures observed at the surface of cometary nuclei. In this work, we focus on the structural interpretations of the meter to hectometer scale lineaments observed on the surface from the OSIRIS-NAC images. To improve interpretations, we performed the digitalization of lineaments in selected zones. In brittle material regions (essentially Atum and Khonsu), we observed structures that nicely match fault splay, duplexes blocks and anastomosing or "en-échelon" patterns. Such structures strongly suggest the occurrence of sheared zones and "strike-slip fault" arrays, which are observed here for the first time at the surface of a comet nucleus. Despite the large differences in the gravity magnitude and nucleus material strength compared to Earth, the observation of such structures seems to confirm comparable gravity to strength ratio between 67P and the Earth (Groussin et al., 2015). Most of these shear structures are sub-parallel and located inside or near the nucleus neck regions (Hapi, Sobek and Wosret), which is consistent with an increased relative shear stress at the boundary of the two lobes (Hirabayashi et al., 2016). These results emphasize mechanisms that may have important implications on the nucleus strength estimation and how it is eroded. Indeed, considering the fault propagation laws along with multiple angles views of structures, the observed faults likely propagate inside the nucleus over several tenths to hundreds of
Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil
Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.
1994-04-01
. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.
Vibration Analysis of Steel-Concrete Composite Box Beams considering Shear Lag and Slip
Directory of Open Access Journals (Sweden)
Zhou Wangbao
2015-01-01
Full Text Available In order to investigate dynamic characteristics of steel-concrete composite box beams, a longitudinal warping function of beam section considering self-balancing of axial forces is established. On the basis of Hamilton principle, governing differential equations of vibration and displacement boundary conditions are deduced by taking into account coupled influencing of shear lag, interface slip, and shear deformation. The proposed method shows an improvement over previous calculations. The central difference method is applied to solve the differential equations to obtain dynamic responses of composite beams subjected to arbitrarily distributed loads. The results from the proposed method are found to be in good agreement with those from ANSYS through numerical studies. Its validity is thus verified and meaningful conclusions for engineering design can be drawn as follows. There are obvious shear lag effects in the top concrete slab and bottom plate of steel beams under dynamic excitation. This shear lag increases with the increasing degree of shear connections. However, it has little impact on the period and deflection amplitude of vibration of composite box beams. The amplitude of deflection and strains in concrete slab reduce as the degree of shear connections increases. Nevertheless, the influence of shear connections on the period of vibration is not distinct.
Analysis of Shear Flexible Layered Isotropic and Composite Shells by ‘EPSA’
Directory of Open Access Journals (Sweden)
Pawel Woelke
2012-01-01
Full Text Available We present a simple and efficient method for the analysis of shear flexible isotropic and orthotropic composite shells. Classical thin shell constitutive equations used in the explicit finite element code EPSA to model homogenous isotropic shells using "through-the-thickness-integration" and layered orthotropic composite shells [1–3,5] are modified to account for transverse shear deformation. This effect is important in the analysis of thick plates and shells as well as composite laminates, where interlaminar effects matter. Transverse shear stresses are calculated using a linear normal strain distribution, where first the shear forces are calculated and then the stresses are calculated by means of the generalized section properties, i.e., first and second moments of area. The formulation is a generalization of the analytical method of analyzing composite beams. It is simple and computationally inexpensive, and it yields accurate results without employing higher order displacement interpolations. In the case of isotropic shells, the transverse shear stresses are distributed parabolically, based on the assumption of linear normal strain distribution through the thickness and on application of the quadratic shape function to transverse shear strains. The transverse shear stresses are included in the elastic-perfectly plastic yield function of the Huber-Mises-Hencky type.
Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.
2017-12-01
Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed
Formation of Lithospheric Shear Zones: Effect of Temperature on Two-Phase Grain Damage
Mulyukova, E.; Bercovici, D.
2016-12-01
Shear localization in the lithosphere is an important element of the planetary scale dynamics. Being a characteristic feature of the tectonic plate boundaries, as is geologically evidenced by the presence of small grain mylonites and ultramylonites, understanding shear localization can shed light on the initiation and evolution of plate tectonics. Shear localization in the ductile portion of the lithosphere can arise when its constituting polycrystalline material deforms by diffusion creep, which has a grain size sensitive viscosity, in combination with the Zener pinning, which reduces grain size and impedes grain growth. We explore the deformation conditions under which these self-weakening effects take place, and, in particular, the effect of temperature on these conditions. In the presented model, the lithosphere-like polycrystalline material is deformed in a two-dimensional simple shear set-up by applying a constant stress or strain rate at the boundaries. The mineral grains evolve to a stable size, which is obtained when the rate of coarsening by normal grain growth and the rate of grain size reduction by damage are in balance. The rates of these microstructural transformations are dictated by the applied rate of mechanical work and temperature. The temperature-dependence enters through its influence on the diffusion and dislocation creep compliances, as well as the coarsening coefficient for grain growth, and the value of the damage partitioning fraction, which is the fraction of deformational work that goes into creating new surface energy. We demonstrate that the increase of temperature with depth can lead to a significant change in the microstructure and influence the degree of localization in the ductile portion of the lithosphere. Within the framework of the two-phase grain damage model, we present the theoretical constraints on the temperature-dependent material properties that can best explain the field observations of mylonites and ultramylonites.
Continuous shear - a method for studying material elements passing a stationary shear plane
DEFF Research Database (Denmark)
Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras
2003-01-01
Traditionally, material response to shear deformation has been studied with methods where the shear is gradually increasing from zero to the final value over a certain fixed deformation zone, e.g. in the well-known torsion test of a tube with a defined shear zone established by a machined...... circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....
Atmane, H. A.; Bedia, E. A. A.; Bouazza, M.; Tounsi, A.; Fekrar, A.
2016-03-01
We study the thermal buckling of a simply supported sigmoid functionally graded (SFGM) rectangular plate using first-order shear deformation theory. The S-FGM system consists of ceramic (Al2O3) and metal (Al) phases varying across the plate thickness according to a law described by two power-law functions. The effective properties of the composite are determined by the rule of mixtures, whose implementation is simpler than that of methods of micromechanics. The thermal heating is characterized by a uniform, linear, or sinusoidal temperature distribution across the plate thickness. The effects of the plate aspect ratio, the relative thickness, the gradient index, and the transverse shear on the buckling temperature difference are studied.
DEFF Research Database (Denmark)
Alfonso Lopez, Angel; Juul Jensen, Dorte; Luo, G.-N.
2015-01-01
Pure tungsten is considered as armor material for the most critical parts of fusion reactors (i.e. the divertor and the first wall), among other reasons due to its high melting point (3422 °C) and recrystallization temperature. The thermal stability of a pure tungsten plate warm-rolled to a high...
Energy Technology Data Exchange (ETDEWEB)
Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)
2015-08-15
We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.
Directory of Open Access Journals (Sweden)
Phaedra Upton
2014-07-01
Full Text Available The Miocene in Southern New Zealand was dominated by strike-slip tectonics. Stratigraphic evidence from this time attests to two zones of subsidence in the south: (a a middle Cenozoic pull-apart basin and (b a regionally extensive subsiding lake complex, which developed east and distal to the developing plate boundary structure. The lake overlay a block of crust with a significantly weak mid-crustal section and we pose the question: can rheological transitions at an angle to a plate boundary produce distal subsidence and/or uplift? We use stratigraphic, structural and geophysical observations from Southern New Zealand to constrain three-dimensional numerical models for a variety of boundary conditions and rheological scenarios. We show that coincident subsidence and uplift can result from purely strike-slip boundary conditions interacting with a transition from strong to weak to strong mid-crustal rheology. The resulting pattern of vertical displacement is a function of the symmetry or asymmetry of the boundary conditions and the extent and orientation of the rheological transitions. For the Southern New Zealand case study, subsidence rates of ~0.1 mm/yr are predicted for a relative plate motion of 25 mm/yr, leading to ~500 m of subsidence over a 5 Ma time period, comparable to the thickness of preserved lacustrine sediments.
Torres Carbonell, Pablo J.; Cao, Sebastián J.; Dimieri, Luis V.
2017-06-01
Superposed structural fabrics in the easternmost Fuegian Andes reveal two distinct, non-coaxial deformation phases across the transition from the orogenic core to the thrust-fold belt. Each phase is characterized by different metamorphic conditions and consistently different orientations, which allow the structural correlation between the orogenic core and the internal thrust-fold belt. The first deformation phase was coeval with regional metamorphism reaching upper greenschist facies, and featured simple shear deformation of the basement (Paleozoic and Jurassic) and cover (Cretaceous) in the top of the underthrusting South American plate. The second phase developed during collision of the orogenic wedge with the Río Chico Arch, a promontory in the underthrusting plate; this phase was characterized by thrust sheet emplacement and formation of a crustal duplex, with rock uplift and consequent low to very-low grade metamorphism. Buttressing against the Río Chico Arch is responsible for the change in shortening orientation that distinguishes both phases.
International Nuclear Information System (INIS)
Toro Toro, Luz Mary; Hincapie Jaramillo, Gustavo; Ossa Meza, Cesar Augusto
2010-01-01
Metagabbro of Rio Olivares (Toro et al., 2010), is a lithological unit located on the Rio Olivares shore, NNW Sector of the Manizales city. The primary minerals belonging to this unit are calcic plagioclase and clinopiroxene. This unit has ductile shear zones in which mylonites series are formed, brittle shear zones with development of rocks of the cataclasites series are superimposed to the previous one. In the mylonites there are pyroxene, and plagioclases porphyroclasts, with asymmetrical tails that indicate dextral shear. Also, pseudotachylites veins are developed, that indicate paleo earthquakes. Plagioclases have microstructures of ductile deformation such as flexed twinned crystals, sweeping undulatory extinction, core mantle structures and dynamic recrystallization by grain boundary migration. This mineral also has brittle microstructures such as micro fractures, micro fault sand deformation twins. The clinopyroxenes show patches and sweeping undulatory extinction like ductile microstructures and micro fractures as fragile microstructures. Mesoscopic and microscopic dextral movements and the shape of the shear zones indicate partitioning of the deformation. The above could be explained by a dextral oblique collision of plates.
Zhang, Juyi; Jiang, Hao; Liu, Junlai
2017-04-01
Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500
Zhou, N.; Wang, J. X.; Tang, S. Z.; Tao, Q. C.; Wang, M. X.
2018-01-01
A stereomicroscope, microscopic metallograph, scanning electron microscope, and the ANSYS/LS-DYNA 3D finite-element code were employed to investigate the failure and energy absorption mechanism of two-layer steel/aluminum and three-layer steel/aluminum/steel and aluminum/steel/aluminum explosively welded composite plates impacted by spherical fragments. The effects of layer number, target order, and the combination state of interfaces on the failure and energy absorption mechanism are analyzed based on experimental and numerical results. Results showed that the effect of the combination state of interfaces on the failure mode was pronounced the most compared with other factors. The failure mechanism of the front and middle plates were shearing and plugging, and that of rear plate was ductile deformation when the tied interface failed by tension (or by shearing and plugging when the interface combination remained connected). A narrow adiabatic shear band was formed in the locally yielding plate damaged by shearing and plugging during the penetration process. The amount of energy needed to completely perforate the three-layer composite target was greater than that for a two-layer composite target with the same areal density and total thickness. The protective performance of the steel/aluminum/steel target was better than that of the aluminum/steel/aluminum target with the same areal density.
Bajolet, Flora; Robert, Alexandra; Chardon, Dominique; Rouby, Delphine
2017-04-01
The aim of our project is to simulate the long-wavelength, flexural isostatic response of the African plate to sediment transfers due to Meso-Cenozoic erosion - deposition processes in order to extract the residual topography driven by mantle dynamics. The first step of our project consists in computing crustal and lithospheric thickness maps of the African plate considering its main geological components (cratons, mobile belts, basins, rifts and passive margins of various ages and strengths). In order to consider these heterogeneities, we compute a 2D distribution of crustal densities and thermal parameters from geological data and use it as an input of our modeling. We combine elevation and geoid anomaly data using a thermal analysis, following the method of Fullea et al. (2007) in order to map crustal and lithospheric thicknesses. In this approach, we assume local isostasy and consider a four-layer model made of crust and lithospheric mantle plus seawater and asthenosphere. In addition, we compare our results with crustal and lithospheric thickness datasets compiled from bibliography and existing global models. The obtained crustal thicknesses range from 28 to 42km, with the thickest crust confined to the northern part of the West African Craton, the Kaapvaal craton, and the Congo cuvette. The crust in the East African Rift appears unrealistically thick (40-45 km) as it is not isotatically compensated, highlighting the dynamic effect of the African superswell. The thinnest crust (28-34km) follows a central East-West trend coinciding with Cretaceous rifts and the Cameroon volcanic line. The lithosphere reaches 220 km beneath the Congo craton, but remains globally thin (ca. 120-180 km) compared to tomographic models and considering the age of most geological provinces. As for the crust, the thinnest lithosphere is located in areas of Cretaceous-Jurassic rifting, suggesting that the lithosphere did not thermally recover from Mesozoic rifting. A new elastic
Directory of Open Access Journals (Sweden)
L. X. Peng
2014-01-01
Full Text Available Based on the first-order shear deformation theory (FSDT and the moving least-squares approximation, a new meshless model to study the geometric nonlinear problem of ribbed rectangular plates is presented. Considering the plate and the ribs separately, the displacement field, the stress, and strain of the plate and the ribs are obtained according to the moving least-squares approximation, the von Karman large deflection theory, and the FSDT. The ribs are attached to the plate by considering the displacement compatible condition along the connections between the ribs and the plate. The virtual strain energy formulation of the plate and the ribs is derived separately, and the nonlinear equilibrium equation of the entire ribbed plate is given by the virtual work principle. In the new meshless model for ribbed plates, there is no limitation to the rib position; for example, the ribs need not to be placed along the mesh lines of the plate as they need to be in FEM, and the change of rib positions will not lead to remeshing of the plate. The proposed model is compared with the FEM models from pieces of literature and ANSYS in several numerical examples, which proves the accuracy of the model.
International Nuclear Information System (INIS)
Daraji, A H; Hale, J M
2014-01-01
This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)
Active damping of multiferroic composite plates using 1-3 piezoelectric composites
Kattimani, S. C.
2017-12-01
A layer-wise shear deformation theory is used to analyze the smart damping of multiferroic composite or magneto-electro-elastic (MEE) plates. The intent of this analysis is to investigate the need for incorporating additional smart elements for controlling the vibrations of multiferroic composite plates. Active constrained layer damping (ACLD) treatment has been incorporated to alleviate the vibration of MEE plate. A layer of viscoelastic material is used as constrained layer for the ACLD treatment. The coupled constitutive equations of multiferroic (ferroelectric and ferromagnetic) composite materials along with the total potential energy principle are used to derive the finite element formulation for the overall multiferroic or MEE plate. Maxwell’s electrostatic and electromagnetic relations are used to compute the electric and magnetic potential distribution. Influence of obliquely reinforced piezoelectric fibers in the piezoelectric layer of the ACLD treatment has also been investigated. In order to investigate the importance of using ACLD treatment for an active damping of multiferroic or MEE plate, an active control of MEE plate has also been analyzed by providing the control voltage directly to the piezoelectric layers of the MEE substrate plate without using the ACLD treatment. The present study suggests that for an optimal control of MEE plates, the smartness element such as the ACLD treatment is essentially required.
International Nuclear Information System (INIS)
Chen, Jia Nen; Liu, Jun; Zhang, Wei; Yao, Ming Hui; Sun, Min
2016-01-01
Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude
International Nuclear Information System (INIS)
Fujisawa, N; Oguma, Y; Nakano, T
2009-01-01
Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV
A yield criterion based on mean shear stress
Emmens, W.C.; van den Boogaard, Antonius H.
2014-01-01
This work investigates the relation between shear stress and plastic yield considering that a crystal can only deform in a limited set of directions. The shear stress in arbitrary directions is mapped for some cases showing relevant differences. Yield loci based on mean shear stress are con-
Compression behavior of delaminated composite plates
Peck, Scott O.; Springer, George S.
1989-01-01
The response of delaminated composite plates to compressive in-plane loads was investigated. The delaminated region may be either circular or elliptical, and may be located between any two plies of the laminate. For elliptical delaminations, the axes of the ellipse may be arbitrarily oriented with respect to the applied loads. A model was developed that describes the stresses, strains, and deformation of the sublaminate created by the delamination. The mathematical model is based on a two dimensional nonlinear plate theory that includes the effects of transverse shear deformation. The model takes into account thermal and moisture induced strains, transverse pressures acting on the sublaminate, and contact between the sublaminate and plate. The solution technique used is the Ritz method. A computationally efficient computer implementation of the model was developed. The code can be used to predict the nonlinear-load-strain behavior of the sublaminate including the buckling load, postbuckling behavior, and the onset of delamination growth. The accuracy of the code was evaluated by comparing the model results to benchmark analytical solutions. A series of experiments was conducted on Fiberite T300/976 graphite/epoxy laminates bonded to an aluminum honeycomb core forming a sandwich panel. Either circles or ellipses made from Teflon film were embedded in the laminates, simulating the presence of a delamination. Each specimen was loaded in compression and the strain history of the sublaminate was recorded far into the postbuckling regime. The extent of delamination growth was evaluated by C-scan examination of each specimen. The experimental data were compared to code predictions. The code was found to describe the data with reasonable accuracy. A sensitivity study examined the relative importance of various material properties, the delamination dimensions, the contact model, the transverse pressure differential, the critical strain energy release rate, and the relative
Hidden Earthquake Potential in Plate Boundary Transition Zones
Furlong, Kevin P.; Herman, Matthew; Govers, Rob
2017-04-01
the Pacific plate (without a triple junction). Here, the short-term, earthquake-cycle signal recorded by GPS shows a reduction in plate motion-directed displacements, which has been interpreted to reflect reduced coupling along the southernmost segment. However, this signal records both the subduction interface coupling effects related to the megathrust earthquake cycle and the shear deformation produced by the extensive right-lateral shear of the Marlborough Fault system (MFS). This superposition of deformation signals combine to mask a strongly coupled interface. The relevance of this effect is seen in the recent (November 2016) Kaikoura earthquake ,which appears to have both ruptured the megathrust interface and produced strike slip displacements on upper-plate crustal faults. These effects seen at these locations and elsewhere may cause misinterpretations of short-term deformation signals in terms of the longer term tectonic behavior of the plate boundary, missing a significant component of the earthquake potential.
Effect of crack on the impact response of plates by the extended finite element method (X-FEM)
Energy Technology Data Exchange (ETDEWEB)
Tiberkak, Rachid [University of Blida, Soumaa (Algeria); Bachene, Mourad [University of Medea, Medea (Algeria); Rechak, Said [Ecole Nationale Polytechnique, Algiers (Algeria)
2014-06-15
The dynamic response of cracked isotropic plates subjected to impact loading is studied in this paper. The impact properties of cracked plate are compared with the virgin ones to predict the eventual presence of discontinuities in plates. The extended finite element method (X-FEM) is employed in the mathematical modeling of the impact problem, wherein the effects of shear deformation is considered. Conventional finite element without any discontinuity is initially conducted in the numerical implementation. Enriched functions are then added to the nodal displacement field for element nodes that contain cracks. The effects of crack length and crack position on contact force and on plate deflection are analyzed. Results show that the maximal contact force decreases as the deflection increases with increasing crack length a . The effect of crack position on the dynamic response is less pronounced when the crack is near the fixed end.
Graham, Rodney
2017-04-01
We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high
Experimental study on the adiabatic shear bands
International Nuclear Information System (INIS)
Affouard, J.
1984-07-01
Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr
Vibro-acoustic response and sound transmission loss analysis of functionally graded plates
Chandra, N.; Raja, S.; Nagendra Gopal, K. V.
2014-10-01
This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0-500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.
Low-rise shear wall failure modes
International Nuclear Information System (INIS)
Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.
1991-01-01
A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs
Shear localization and microstructure in coarse grained beta titanium alloy
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)
2016-01-15
Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.
Cao, L.; Kao, H.; Wang, K.; Wang, Z.
2016-12-01
Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence
VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; DEKKER, A; KIRKPATRICK, CJ; BUSSCHER, HJ
1994-01-01
In this study, human umbilical vein and human saphenous vein endothelial cells ware seeded on glass and exposed to fluid shear in a parallel-plate flow chamber. cell retention, morphology and migration were studied as a function of shear stress and of adhesion time prior to exposure to shear.
Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations
International Nuclear Information System (INIS)
Civalek, Omer; Acar, Mustafa Hilmi
2007-01-01
The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results
Boutelier, D.; Oncken, O.; Cruden, A.
2012-04-01
Three-dimensional thermomechanical laboratory experiments of arc-continent collision investigate the deformation of the fore arc at the transition between collision and subduction. The deformation of the plates in the collision area propagates into the subduction-collision transition zone via along-strike coupling of the neighboring segments of the plate boundary. In our experiments, the largest along-strike gradient of trench-perpendicular compression does not produce sufficiently localized shear strain in the transition zone to form a strike-slip system because of the fast propagation of arc lithosphere failure. Deformation is continuous along-strike, but the deformation mechanism is three-dimensional. Progressive along-strike structural variations arise because coupling between neighboring segments induces either advanced or delayed failure of the arc lithosphere and passive margin. The modeling results suggest that orogenic belts should experience deeper subduction of continental crust and hence higher-pressure metamorphism where the two plates first collided than elsewhere along the plate boundary where collision subsequently propagated. Furthermore, during the initial stage of collision the accretionary wedge is partially subducted, which leads to lubrication of the interplate zone and a reduction of shear traction. Therefore, a large convergence obliquity angle does not produce a migrating fore-arc sliver. Rather, the pressure force generated by subduction of the buoyant continental crust causes fore-arc motion. It follows that convergence obliquity during collision does not yield trench-parallel deformation of the fore arc and its influence on the collision process is limited. However, convergence obliquity may control the geometry of the active margin during the oceanic subduction stage prior to collision, and inherited structures may influence the propagation mechanism.
Shear behaviour of reinforced phyllite concrete beams
International Nuclear Information System (INIS)
Adom-Asamoah, Mark; Owusu Afrifa, Russell
2013-01-01
Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.
Foam rheology at large deformation
Géminard, J.-C.; Pastenes, J. C.; Melo, F.
2018-04-01
Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.
Azzouzi, R.
2009-04-01
Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames. By: R. Azzouzi*, M. Ettarid*, El H. Semlali*, et A. Rimi+ * Filière de Formation en Topographie Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts MAROC + Département de la Physique du Globe Université Mohammed V Rabat MAROC This study focus on the use of the geodetic spatial technique GPS for geodynamic purposes generally in the Western Mediterranean area and particularly in Morocco. It aims to exploit this technique first to determine the geodetic coordinates on some western Mediterranean sites. And also this technique is used to detect and to determine movements cross the boundary line between the two African and Eurasian crustal plates on some well chosen GPS-Geodynamics sites. It will allow us also to estimate crustal dynamic parameters of tension that results. These parameters are linked to deformations of terrestrial crust in the region. They are also associated with tectonic constraints of the study area. The usefulness of repeated measurements of these elements, the estimate of displacements and the determination of their temporal rates is indisputable. Indeed, sismo-tectonique studies allow a good knowledge of the of earthquake processes, their frequency their amplitude and even of their prediction in the world in general and in Moroccan area especially. They allow also contributing to guarantee more security for all most important management projects, as projects of building great works (dams, bridges, nuclear centrals). And also as preliminary study, for the most important joint-project between Europe and Africa through the Strait of Gibraltar. For our application, 23 GPS monitoring stations under the ITRF2000 reference frame are chosen in Eurasian and African plates. The sites are located around the
International Nuclear Information System (INIS)
Saviz, M R
2015-01-01
In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain–displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman–type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations. (paper)
Compression and shear properties of elastomeric bearing using finite element analysis
Directory of Open Access Journals (Sweden)
2Faculty of Science and Technology, Chiang Mai Rajabhat University, Muang, Chiang Mai, 50300 Thailand.
2006-09-01
Full Text Available Standard size samples of four natural rubber compounds, varying the amount of carbon black from 10 to 70 phr, were characterised under uniaxial compression and simple shear tests in order to obtain the strain energy function constants. These constants were then used as hyperelastic material constants for the Windows-based finite element package (COSMOS/M version 1.75. The investigated bearings, made with those NR compounds, had the approximate area and thickness of 50x106 mm2 and 50 mm respectively. Each compound of bearing consisted of four different values of shape factor ranging from about 0.33 to 1.70, according to the number of reinforcing plates in the bearing. Three deformation modes of compression, shear and compression-shear were predicted. Good agreement was found between twelve compression model predictions and the corresponding experimental values of bearings, containing 10, 20 and 40 phr of carbon black and each of which consisted of four different layers of reinforcing metal plates (0, 1, 2 and 3 layers. On the other hand, deviation from the predicted valve was clearly seen in the 70 phr black bearing case. The percentage difference increased with respect to the increasing number of reinforcing plates or the rising shape factor. Therefore, the improved FEA model was supplemented with an imaginary elastic glue layer between the rubber block and metal plate as glue failure compensation. The optimum value of the elastic layers modulus is 8 MPa while the thickness of the layer depends on the total thickness or total volume of rubber block. This model can predict the 70 phr carbon black bearings, having shape factor ranging from 0.5 to 2.35 for 11 cases. The FEA prediction of shear behaviour agrees well with the experimental data for all four bearing compounds and there is no effect of shape factor on shear stress. Moreover, shear stress does not depend on the compressive force applied to like bearing before shear and the FEA results
Parametric Study of Rockbolt Shear Behaviour by Double Shear Test
Li, L.; Hagan, P. C.; Saydam, S.; Hebblewhite, B.; Li, Y.
2016-12-01
Failure of rockbolts as a result of shear or bending loads can often be found in underground excavations. The response of rock anchorage systems has been studied in shear, both by laboratory tests as well as numerical modelling in this study. A double shear test was developed to examine the shear behaviour of a bolt installed across two joints at different angles. To investigate the influence of various parameters in the double shear test, a numerical model of a fully grouted rockbolt installed in concrete was constructed and analysed using FLAC3D code. A number of parameters were considered including concrete strength, inclination between rockbolt and joints and rockbolt diameter. The numerical model considered three material types (steel, grout and concrete) and three interfaces (concrete-concrete, grout-concrete and grout-rockbolt). The main conclusions drawn from the study were that the level of bolt resistance to shear was influenced by rock strength, inclination angle, and diameter of the rockbolt. The numerical simulation of the bolt/grout interaction and deformational behaviour was found to be in close agreement with earlier experimental test results.
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-03-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
International Nuclear Information System (INIS)
Liao Lin; Yu Wenbin
2008-01-01
The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model
Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.
2018-01-01
The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.
Deformations of fractured rock
International Nuclear Information System (INIS)
Stephansson, O.
1977-09-01
Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)
International Nuclear Information System (INIS)
Lin, Jau-Wen
2014-01-01
This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied
Directory of Open Access Journals (Sweden)
Shuohui Yin
2013-01-01
Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.
Viscoelastic-cycle model of interseismic deformation in the northwestern United States
Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.
2010-01-01
We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.
Shear zones between rock units with no relative movement
DEFF Research Database (Denmark)
Koyi, H.; Schmeling, H.; Burchardt, S.
2012-01-01
Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... magma body (stoping). From the fluid dynamics point of view these shear zones can be regarded as the low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact (aspect ratio 1:1:1) moving bodies generate axial symmetric (cone like) shear zones...
Shear zones between rock units with no relative movement
DEFF Research Database (Denmark)
Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi
2013-01-01
Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... a partially molten magma body (stoping). From the fluid dynamics perspective these shear zones can be regarded as low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact moving bodies (aspect ratio 1:1:1) generate axial symmetric (cone like) shear zones...
Giarola, Diana; Capuani, Domenico; Bigoni, Davide
2018-03-01
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.
Evaluation of composite shear walls behavior (parametric study
Directory of Open Access Journals (Sweden)
Ali Nikkhoo
2017-11-01
Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.
Energy Technology Data Exchange (ETDEWEB)
Ave Lallemant, H.G.; Sisson, V.B.; Wright, J.E. (Rice Univ., Houston, TX (United States))
1993-02-01
Preliminary results of an on-going study of the Cordillera de la Costa belt between Puerto Cabello and Choroni, north-central Venezuela, indicate that the deformational history is far more complicated than expected from simple plate-tectonic models. The Cordillera de la Costa belt consists of oceanic rocks (e.g., serpentinites, amphibilites, with lenses of eclogite and blueschist) intimately intermixed with metamorphosed continental margin deposits (e.g., mica and graphite schist, quartzite, marble). Locally, large granitic (basement ) complexes of Lower Paleozoic age are included as well. In late Cretaceous time, the entire belt was involved in four synmetamorphic deformations phases (D[sub 1a] to D[sub 1d]); the first (D[sub 1a]) occurred at depths of at 35-40 km and the later ones at successively shallower depths. This deformation occurred in a subduction zone, related to right-oblique convergence of the Farallon and Atlantic plates. The most penetrative structures resulted from (all in present coordinates) north-south contraction and east-west dextral simple shear (D[sub 1b]). During an Early Tertiary ( ) event (D[sub 2]), the belt was emplaced southward onto the South American continental margin. Subsequent deformational structures (D[sub 3]) resulted in cross folds and faults (with small pull-apart basins) which are consistent with the eastward passage of the Caribbean past the South American plate.
Speckle Shearing Interferometry And Its Application
Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang
1983-12-01
The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.
Micromechanical modeling of the deformation of HCP metals
Energy Technology Data Exchange (ETDEWEB)
Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung
2008-12-04
Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization
Asadi, Hamed; Eynbeygi, Mehdi; Wang, Quan
2014-07-01
The instability of geometrically imperfect shape memory alloy (SMA) fibers reinforced with hybrid laminated composite (SMAHC) plates and subjected to a uniform thermal loading is analytically investigated. The material properties of the SMAHC plates are assumed to be functions of temperature. Nonlinear equations of the plates’ thermal stability are derived based on a higher order shear deformation theory incorporating von Karman geometrical nonlinearity via stationary potential energy. The structural recovery stress, which is generated by martensitic phase transformation of the prestrained SMA fibers, is calculated based on the one-dimensional thermodynamic constitutive model by Brinson. Adopting the Galerkin procedure, the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic equations, in which systems of equations are solved by introducing an analytical approach. Closed-form formulations are presented to determine the load-deflection path and critical buckling temperature of the plate. Based on the developed closed-form solutions, ample numerical results are presented to provide an insight into the effects of the volume fraction, prestrain, location and orientation of the SMA fibers, composite plate geometry, geometrical imperfection and temperature dependence on the stability of the SMAHC plates. It is shown that a proper application of SMA fibers results in a considerable delay of the thermal bifurcation and controllable thermal post-buckling deflection of the SMAHC plate.
Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout
Directory of Open Access Journals (Sweden)
Mostafa Mirzaei
2016-04-01
Full Text Available During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC. The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.
Boundary element solutions for plates on elastic foundations
International Nuclear Information System (INIS)
Puttonen, J.; Varpasuo, P.
1983-01-01
Applications of the boundary element method to plate bending problems are quite sparse. The usual approach has been to treat same specific problems or types of problems. However, many practically important problems have been left without consideration. Plates on elastic foundations is one of these practically important areas and, moreover, it seems to be especially suitable to be treated with boundary element method. The analysis presented in this paper is based on the Kirchhoff plate bending theory and a fundamental singular solution is a displacement field caused by a unit lateral load acting at a point of an infinite plate resting on a linearly elastic foundation, which can be either of Winkler or Pasternak types or an elastic half space or, more generally, a foundation for which an axisymmetric external stress will result in an axisymmetric state of deformation. The derived integral equations base on the so-called direct formulation of the boundary element method. The two solution equations are formulated in terms of displacement rotation, moment and resultant boundary shear in every boundary nodal point. From these four unknown variables in every boundary node at least two has to be prescribed. The considered boundary conditions are free, simply supported and rotationally restrained edges. The developed computer code was designed to include the singular solutions for plates on Winkler, Pasternak and elastic half space foundations. These solutions were plotted and compared with each other and with available solutions in literature. The developed method has the advantage that the treatment of plates with finite dimensions and varying boundary conditions will be greatly facilitated. The analytic solution for these types of problems are rare and, moreover, the evaluating of numerical results from these solutions is a cumbersome task. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong
2018-02-13
A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.
International Nuclear Information System (INIS)
Seamster, A.G.; Weitkamp, W.G.
1984-01-01
The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house
Pressure-shear experiments on granular materials.
Energy Technology Data Exchange (ETDEWEB)
Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)
2011-10-01
Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.
Study on the deformations of the lamina cribrosa during glaucoma.
Tian, Hanjing; Li, Long; Song, Fan
2017-06-01
The lamina cribrosa is the primary site of optic nerve injury during glaucoma, and its deformations induced by elevated intraocular pressure are associated directly with the optic nerve injury and visual field defect. However, the deformations in a living body have been poorly understood yet so far. It is because that integral observation and precise measurement of the deformations in vivo are now almost impossible in the clinical diagnosis and treatment of glaucoma. In the present study, a new mechanical model of the lamina cribrosa is presented by using Reissner's thin plate theory. This model accurately displays the stress and deformation states in the lamina cribrosa under elevated intraocular pressure, in which the shear deformation is not presented by the previous models, however, is demonstrated to play a key role in the optic nerve injury. Further, the deformations of the structures, involving the optic nerve channels and the laminar sheets in the lamina cribrosa, are first investigated in detail. For example, the dislocation of the laminar sheets reaches 18.6μm under the intraocular pressure of 40mmHg, which is large enough to damage the optic nerve axons. The results here confirm some previously proposed clinical speculations on the deformations of the pore shape in the lamina cribrosa under elevated intraocular pressure during glaucoma. Finally, some essentially clinical questions existed during glaucoma, such as the pathological mechanism of the open-angle glaucoma with normal intraocular pressure, are discussed. The present study is beneficial to deeply understanding the optic nerve injury during glaucoma. The lamina cribrosa is the primary site of the optic nerve injury induced by elevated intraocular pressure during glaucoma. Under high intraocular pressure, the optic nerve channel near to the periphery of the lamina cribrosa (Channel A) is deformed to become into a tortuous elliptical horn from a straight cylinder, while the optic nerve channel
Chulya, Abhisak; Mullen, Robert L.
1989-01-01
A linear finite strip plate element based on Mindlin-Reissner plate theory is developed. The analysis is suitable for both thin and thick plates. In the formulation, new transverse shear strains are introduced and assumed constant in each two-node linear strip. The element stiffness matrix is explicitly formulated for efficient computation and computer implementation. Numerical results showing the efficiency and predictive capability of the element for the analysis of plates are presented for different support and loading conditions and a wide range of thicknesses. No sign of shear locking is observed with the newly developed element.
Highly deformable bones: unusual deformation mechanisms of seahorse armor.
Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna
2013-06-01
Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.
2016-12-01
Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their
Surface shear inviscidity of soluble surfactants.
Zell, Zachary A; Nowbahar, Arash; Mansard, Vincent; Leal, L Gary; Deshmukh, Suraj S; Mecca, Jodi M; Tucker, Christopher J; Squires, Todd M
2014-03-11
Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 10(3)-10(4) times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants.
Directory of Open Access Journals (Sweden)
Yury V. Gabsatarov
2012-01-01
Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.
Characterization of impact behaviour of armour plate materials
Bassim, M. N.; Bolduc, M.; Nazimuddin, G.; Delorme, J.; Polyzois, I.
2012-08-01
Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs) which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM) were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.
Characterization of impact behaviour of armour plate materials
Directory of Open Access Journals (Sweden)
Nazimuddin G.
2012-08-01
Full Text Available Three armour plate materials, including two steels, namely HHA and Mars 300, and an aluminium alloy 5083, were studied under impact loading to determine their behaviour and the mechanisms of deformation that lead to failure. The experimental testing was carried out using either a direct impact compression Split Hopkinson Bar or a torsion Hopkinson Bar. The impact properties and stress-strain cures were obtained as a function of the impact momentum in compression and the angle of twist in torsion. It was found that at the high strain rates developed in the specimen during the tests, the deformation occurs by the formation of adiabatic shear bands (ASBs which may lead to the formation of cracks within the bands and the ultimate failure of the specimens. It was also found that below a certain impact momentum, the deformation is more uniform and no ASBs are formed. Also, ASBs are more likely to form in the BCC metals such as the two steels while diffuse ASBs associated with plastic flow are exhibited in the 5083 aluminum alloy. Microstructural techniques ranging from optical microscopy to atomic force microscopy (AFM were used to study the topography of the ASBs. Also, modelling of the formation was performed. The results provide a comprehensive understanding of the role of ASBs in the failure of these materials.
Girish, J.; Ramachandra, L. S.
2005-04-01
In the present paper the postbuckling and postbuckled vibrations of symmetrically laminated composite plate subjected to a uniform temperature distribution through the thickness is presented. The structural model is based on a higher-order shear deformation theory incorporating von Kármán nonlinear strain-displacement relations and initial geometric imperfections. Adopting a multi-term Galerkin's approximation, the governing nonlinear partial differential equations are converted into a set of nonlinear algebraic equations in the case of postbuckling analysis and nonlinear ordinary differential equations in the case of free vibration analysis. The critical buckling temperatures are obtained from the solution of the corresponding linear eigenvalue problems. Postbuckled equilibrium paths are traced by solving the nonlinear algebraic equations, via the Newton-Raphson iterative procedure. The free vibration frequencies of a thermally postbuckled plate are reported by solving the eigenvalue problem for different postbuckled deflections.
Comparative thermal buckling analysis of functionally graded plate
Directory of Open Access Journals (Sweden)
Čukanović Dragan V.
2017-01-01
Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.
Ebrahimi, Farzad; Reza Barati, Mohammad
2017-02-01
This article investigates the thermo-mechanical vibration frequencies of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates in the framework of refined four-unknown shear deformation plate theory. The present nanoplate is subjected to various kinds of thermal loads with uniform, linear and nonlinear distributions. The nonlinear distribution is considered as heat conduction and sinusoidal temperature rise. The present refined theory captures the influences of shear deformations without the need for shear correction factors. Thermo-magneto-electro-elastic coefficients of the FG nanoplate vary gradually along the thickness according to the power-law form. The scale coefficient is taken into consideration implementing the nonlocal elasticity of Eringen. The governing equations are derived through Hamilton's principle and are solved analytically. The frequency response is compared with those of previously published data. The obtained results are presented for the thermo-mechanical vibrations of the FG nanobeams to investigate the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.
Dynamic Stability of a Circular Pre-Stressed Elastic Orthotropic Plate Subjected to Shock Excitation
Directory of Open Access Journals (Sweden)
Yuriy A. Rossikhin
2006-01-01
Full Text Available The problem on low-velocity impact of an elastic body upon a pre-stressed circular orthotropic plate possessing cylindrical anisotropy is considered. The dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Longitudinal compressing forces are uniformly distributed along the plate’s median plane. Contact interaction is modeled by a linear spring, and a force arising in it is the linear approximation of Herts’z contact force. During the shock interaction of the impactor with the plate, the waves which are the surfaces of strong discontinuity are generated in the plate and begin to propagate. Behind the fronts of these waves, the solution is constructed in terms of ray series, which coefficients are the different order discontinuities in partial time-derivatives of the desired functions, and a variable is the time elapsed after the wave arrival at the plate’s point under consideration. The ray series coefficients are determined from recurrent equations within accuracy of arbitrary constants, which are then determined from the conditions of dynamic contact interaction of the impactor with the target. The found arbitrary constants allow one to construct the solution both within and out of the contact region. The analysis of the solution obtained enables one to find out the new effect and to make the inference that under a certain critical magnitude of the compression force the orthotropic plate goes over into the critical state, what is characterized by ‘locking’ the shear wave within the contact region, resulting in plate damage within this zone as soon as the compression force exceeds its critical value.
Coupling between shear and bending in the analysis of beam problems: Planar case
Shabana, Ahmed A.; Patel, Mohil
2018-04-01
The interpretation of invariants, such as curvatures which uniquely define the bending and twist of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. Accurate representations of curve and surface invariants, which enter into the definition of the strain energy equations, is particularly important in the case of large displacement analysis. This paper discusses this important subject in view of the fact that shear and bending are independent modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using simple examples, that shear without bending and bending without shear at an arbitrary point and along a certain direction are scenarios that higher-order finite elements (FE) can represent with a degree of accuracy that depends on the order of interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes of deformation is evaluated in order to examine the effect of the order of the polynomial interpolation on the accuracy of representing these two independent modes. It is also shown in this paper that not all the curvature vectors contribute to bending deformation. In view of the conclusions drawn from the analysis of simple beam problems, the material curvature used in several previous investigations is evaluated both analytically and numerically. The problems associated with the material curvature matrix, obtained using the rotation of the beam cross-section, and the fundamental differences between this material curvature matrix and the Serret-Frenet curvature matrix are discussed.
Experimental Study on Mechanical Behavior of Shear Connectors of Square Concrete Filled Steel Tube
Directory of Open Access Journals (Sweden)
Qiyun Qiao
2017-08-01
Full Text Available In order to quantitatively evaluate the shear-bearing capacity of shear connectors of square concrete filled steel tube (CFST, push-out tests on 14 square CFSTs with shear connectors have been carried out. Among the 14 CFSTs, there are 13 specimens with steel plate connectors and one specimen with steel bar connectors. The following factors are investigated to figure out their influences on the performance of CFSTs, which are the width to thickness ratio of steel tube, thickness of steel plate, length of steel plate, strength of concrete, welding condition of steel plate, number of steel plate layer and interlayer spacing. The test results show that the ultimate bearing capacity and the elastic stiffness increase with decreasing width to thickness ratio of the steel tube, and increasing thickness and length of the steel plate. With increasing concrete strength, the ultimate bearing capacity also increases. However, the welding condition has no effect on the ultimate bearing capacity. The ultimate bearing capacity of the CFST with double-layer steel plate is greater than that with single-layer steel plate. The ultimate bearing capacity of steel bar type shear connector is 87% greater than that of the steel plate type shear connector, and the steel bar specimen shows good ductility. A formula for calculating the shear-bearing capacity of shear connectors has been developed, and the calculated shear-bearing capacities are in good agreement with the test data.
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
Interfacial stresses in strengthened beam with shear cohesive zone ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... This paper presents an analytical solution, based on Smith and Teng's equations, for interfacial shear and normal stresses in reinforced concrete (RC) beams strengthened with a fibre reinforced polymer (FRP) plate. However, the shear stress–strain relationship is considered to be bilinear curve.
Directory of Open Access Journals (Sweden)
Zainudin A. Rasid
2014-02-01
Full Text Available Shape memory alloy (SMA wires were embedded within laminated composite plates to take advantage of the shape memory effect property of the SMA in improving post-buckling behavior of composite plates. A nonlinear finite element formulation was developed for this study. The plate-bending formulation used in this study was developed based on the first order shear deformation theory, where the von Karman's nonlinear moderate strain terms were added to the strain equations. The effect of the SMA was captured by adding recovery stress term in the constitutive equation of the SMA composite plates. Values of the recovery stress of the SMA were determined using Brinson's model. Using the principle of virtual work and the total Lagrangian approach, the final finite element nonlinear governing equation for the post-buckling of SMA composite plates was derived. Buckling and post-buckling analyses were then conducted on the symmetric angle-ply and cross-ply SMA composite plates. The effect of several parameters such as the activation temperature, volume fraction, and the initial strain of the SMA on the post-buckling behavior of the SMA composite plates were studied. It was found that significant improvements in the post-buckling behavior for composite plates can be attained.
A new look on blood shear thinning
Abkarian, Manouk; Lanotte, Luca; Fromental, Jean-Marc; Mendez, Simon; Fedosov, Dmitry; Gompper, Gerhard; Mauer, Johannes; Claveria, Viviana
2015-11-01
Blood is a shear-thinning fluid. At shear rates γ˙ cells (RBCs). For higher γ˙ in the range 10 - 1000 s-1 , where RBCs flow as single elements, studies demonstrated that RBCs suspended in a viscous fluid mimicking the viscosity of whole blood, deformed into ellipsoids aligned steadily in the direction of the flow, while their membrane rotated about their center of mass like a tank-tread. Such drop-like behavior seemed to explain shear-thinning. Here, using rheometers, microfluidics and simulations, we show that the dynamics of single RBCs in plasma-like fluids display a different sequence of deformation for increasing shear rates going from discocytes to successively, stomatocytes, folded stomatocytes, trilobes and tetralobes, but never ellipsoids. This result is also identical for physiological hematocrits. We correlate this shape diagram to the different regimes in blood rheology for high shear rates and propose a new-look on the interpretation of blood shear-thinning behavior.
Two-Stage Deformation of Olivine Aggregates with Changing Deformation Kinematics
Mahan, B. M.; Skemer, P. A.; Griera, A.
2011-12-01
Two-stage deformation experiments have been conducted on synthetic olivine aggregates to investigate the influence of pre-existing fabric on the evolution of lattice-preferred orientation (LPO), seismic anisotropy, and grain morphology. This study is motivated by recent work on naturally and experimentally deformed peridotites, which suggest that the alignment of olivine axes with the shear plane requires more strain in samples with a strong pre-existing LPO than in samples with weak or random LPO. In the first stage of deformation, aggregates synthesized from San Carlos olivine are deformed at P = 1 GPa and T = 1500 K in a triaxial geometry to produce axi-symmetric LPOs of varying strength. In a second stage of deformation, the aggregates are re-deformed in simple shear to varying shear strains. Microstructural analyses are performed after each step (synthesis, triaxial deformation, simple shear deformation) using optical microscopy and electron backscatter diffraction (EBSD). These results are compared to numerical models of microstructural evolution. Our results provide constraints on the evolution of LPO and consequent seismic signature as a function of preexisting rock fabric. These data are necessary to interpret seismic anisotropy in settings where kinematics are complex, such as mid-ocean ridges and subduction zones.
Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano
2018-04-01
We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.
Huang, Xiao-Lin; Shen, Hui-Shen
2006-01-01
This paper deals with the nonlinear vibration and dynamic response of a functionally graded material (FGM) plate with surface-bonded piezoelectric layers in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction of the plate, and the electric field is assumed to be the transverse component Ez only. Material properties of the substrate FGM layer are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents, whereas the material properties of piezoelectric layers are assumed to be independent of the temperature and the electric field. The nonlinear formulations are based on the higher-order shear deformation plate theory and general von Kármán-type equation, which includes thermo-piezoelectric effects. The numerical illustrations concern nonlinear vibration characteristics of functional graded plates with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The effects of temperature change, control voltage and volume fraction distribution on the nonlinear vibration and dynamic response are examined in detail.
Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading
Jadhav, Priyanka A.; Bajoria, Kamal M.
2013-06-01
This paper investigates the free and forced vibration analysis of a newly introduced metal based functionally graded (FG) plate integrated with a piezoelectric actuator and sensor at the top and bottom faces respectively. The material properties of the FG plate are assumed to be graded along the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents, while the Poisson ratio is assumed to be constant. The plate is simply supported at all edges. The finite element model is based on higher order shear deformation theory (HOST), the von Karman hypothesis and degenerated shell elements. The displacement component of the present model is expanded in Taylor’s series in terms of the thickness co-ordinate. The Hamilton principle is used to derive the equation of motion for the piezoelectric functionally graded material (FGM) plate. The free and forced vibration analysis of the simply supported piezoelectric FG plate is carried out to present the effect of the power law index and the piezoelectric layer. The present analysis is carried out on a newly introduced FGM, which is a mixture of aluminum and stainless steel. Stainless steel is a high strength material but it can rust in extreme cases, and aluminum does not rust but it is a low strength material. The FGM exhibits corrosion resistance as well as the high strength property in a single material. This new FGM will definitely help in the construction as well as the metal industry.
Directory of Open Access Journals (Sweden)
Ali Ghorbanpour Arani
2017-07-01
Full Text Available In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTs are selected as a reinforcement of composite face sheets inside Poly methyl methacrylate (PMMA matrix. Higher order shear deformation theory (HSDT is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained by means of Hamilton’s principle and solved analytically. Influences of various parameters such as axially moving speed, volume fraction of CNTs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine vessels and aircrafts.
Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
Directory of Open Access Journals (Sweden)
Minghui Yao
2014-01-01
Full Text Available This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.
Directory of Open Access Journals (Sweden)
Hongmei Zhang
2014-01-01
Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.
Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.
2017-12-01
We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional
Human capability in the perception of extensional and shear viscosity.
Lv, Zhihong; Chen, Jianshe; Holmes, Melvin
2017-10-01
Shear and extensional deformation are two basic rheological phenomena which occur commonly in our daily life. Because of the very different nature of the two deformations, fluid materials may exhibit significant differences in their responses to shear and extensional forces. This work investigated the human perception of shear and extensional viscosity and tested the hypothesis that human have different discriminatory sensation mechanisms including scaling to the two deformations. A series of fluid samples were prepared using two common food thickeners, guar gum and sodium carboxylmethylcellulose (CMC-Na). The shear and extensional flow behavior of these fluids were assessed using shear and extensional rheometers and in addition two separate sensory analysis sessions were organized to assess human sensitivity in perceiving the two viscosities. Magnitude estimation was used in the first session to assess human sensitivity in the perception of the shear and extensional viscosities and just-noticeable-difference (JND) assessment was used for the second session to identify the typical threshold of viscosity discrimination. For the participants considered, it was found that the perception of both shear and extensional viscosity follow a power law relationship i.e. Steven's law. It was also observed that the human has a greater discriminatory capacity in perceiving extensional viscosity. JND analysis showed that the human threshold in detecting shear viscosity difference was 9.33%, but only 6.20% for extensional viscosity. Shear and extensional deformation are two basic rheological properties which occur during food manipulation, mastication, deglutition executed during oral consumption and also in the processing and packaging of foods. Fluid resistance against shear and extensional deformation differ widely and whilst this has been confirmed theoretically and experimentally, a clear understanding of human perception of these properties will have beneficial returns to
International Nuclear Information System (INIS)
Nishimura, A.; Nishijima, S.; Izumi, Y.
2008-01-01
It is known that an organic material is damaged by gamma ray irradiation, and the strength after irradiation has dependence on the gamma ray dose. These issues are important not only to make global understanding of electric insulating performance of glass fiber reinforced plastics (GFRP) under irradiation condition but also to develop new insulation materials. This paper presents the dependence of fracture mode and interlaminar shear strength (ILSS) on the material and the gamma ray irradiation effect on the fracture mode and the ILSS. 6 mm radius loading nose and supports were used to prompt ILS fracture for a short beam test. A 2.5 mm thick small specimen machined out of a 13 mm thick G-10CR GFRP plate (sliced specimen) showed lower ILSS and translaminar shear (TLS) fracture, although the same size specimen prepared from a 2.5 mm G-10CR GFRP plate (non-sliced specimen) showed ILS fracture and the higher ILSS. Both type of specimens showed the degradation of ILSS after gamma ray irradiation. The fracture mode of the non-sliced specimen changed from ILS to TLS fracture and no bending fracture was observed. The resistance to shear deformation of glass cloth/epoxy laminate structure would be damaged by the irradiation
Plating on some difficult-to-plate metals and alloys
International Nuclear Information System (INIS)
Dini, J.W.; Johnson, H.R.
1980-02-01
Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests
Polygonal deformation bands in sandstone
Antonellini, Marco; Nella Mollema, Pauline
2017-04-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Cerchiari, Anna; MIttempergher, Silvia; Remitti, Francesca; Festa, Andrea
2017-04-01
The shallowest part of active megathrusts has an intriguing behaviour, characterized by the coexistence of coseismic slips and aseismic creep, slow slip events, low and very low frequency earthquakes. Origins and interplays of these phenomena are actually little known. In this respect, the study of exhumed shallow parts of fossil megathrusts is an advantageous approach in terms of accessibility, costs and resolution. The Sestola-Vidiciatico tectonic Unit in the Northern Apennines has been interpreted as a possible analogue of a shallow, hectometer scale megathrust shear zone, which accommodated subduction of the Adria plate under the Ligurian prism during early-middle Miocene by involving sediments from the seafloor to burial depth corresponding to 150° C maximum temperature. Performing detailed microstructural analysis on samples through optical, cathodoluminescence and scanning electron microscopy, we studied a 5 m thick fault zone marking the base of the SVU. Here, more or less competent marls make up a heterogeneous fault zone assemblage, with a strongly deformed tectonic fabric characterized by mesoscopic cleavage, boudinage, faults and low-angle thrusts coated by calcite veins. At the top of the shear zone, a sharp and continuous shear vein, 20 cm thick cuts all other structures. At the microscale, we identified a primary sedimentary layering, consisting of alternating fine and coarse marly or shaly laminae that are crosscut by "soft-sediment"-type deformation bands derived from the reorientation of mineral grains without fracturing. Parallel to the sedimentary laminae, oriented phyllosilicates define a pervasive foliation in clay-rich domains. More competent calcareous portions are strongly boudinaged and cut by calcite shear veins displaying crack-and-seal texture and locally implosion breccias. Multiple mutually crosscutting generations of extensional veins are recognizable, with dispersed orientations and complex relations with shear veins. Calcite veins
Atomic structure of amorphous shear bands in boron carbide.
Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W
2013-01-01
Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.