WorldWideScience

Sample records for shear crack propagation

  1. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...

  2. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  3. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2012-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  4. Shear crack propagation in MBC strengthened concrete beams”

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas; Carolin, Anders

    2008-01-01

    thermal compatibility to the base concrete and are often sensitive to the surface nature and surrounding temperature. By using mineral based composites (MBC) some of these challenges can be overcome. MBC refers here to a cementitious bonding agent and a carbon FRP grid. This paper is a part of an ongoing......Repair and upgrading existing concrete structures using FRPs and an epoxy adhesive as the bonding agent has some disadvantages when it comes to compatibility to the base concrete. Epoxies are often restricted by regulations of use, have low permeability which may create freeze/thaw problems, poor...... study of MBC systems. Emphasis is placed on the cracking behavior of the MBC system used for shear strengthening of RC beams. Traditional foil strain gauges and photometric measurements have been used for monitoring of the cracking behavior. In this study it is shown that the use of mineral based shear...

  5. Dynamic propagation of a weak-discontinuous interface crack between two dissimilar functionally graded layers under anti-plane shear

    International Nuclear Information System (INIS)

    Shin, Jeong Woo; Lee, Young Shin

    2011-01-01

    The dynamic propagation of an interface crack between two functionally graded material (FGM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGM layers vary continuously along their thicknesses. The properties of the two FGM layers vary and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. The Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGM to show the effect of the gradient of material properties, crack moving velocity, and thickness of FGM layers. The following are helpful to increase resistance to interface crack propagation in FGMs: a) increasing the gradient of material properties, b) an increase of shear modulus and density from the interface to the upper and lower free surface, and c) increasing the thickness of the FGM layer. The DERR increases or decreases with increase of the crack moving velocity

  6. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  7. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  8. Internal shear cracking in bulk metal forming

    DEFF Research Database (Denmark)

    Christiansen, Peter; Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    This paper presents an uncoupled ductile damage criterion for modelling the opening and propagation of internal shear cracks in bulk metal forming. The criterion is built upon the original work on the motion of a hole subjected to shear with superimposed tensile stress triaxiality and its overall...... performance is evaluated by means of side-pressing formability tests in Aluminium AA2007-T6 subjected to different levels of pre-strain. Results show that the new proposed criterionis able to combine simplicity with efficiency for predicting the onset of fracture and the crack propagation path for the entire...... cracking to internal cracks formed undert hree-dimensional states of stress that are typical of bulk metal forming....

  9. Crack propagation in dynamic thermoelasticity

    International Nuclear Information System (INIS)

    Bui, H.D.

    1980-01-01

    We study the singular thermoelastic fields near the crack tip, in the linear strain assumption. The equations are coupled and non linear. The asymptotic expansions of the displacement and the temperature are given for the first and the second order. It is shown that the temperature is singular when the crack propagates. However, this field does not change the dominant singularity of the mechanical field which is the same as that obtained in the theory of isothermal elasticity [fr

  10. Multispecimen fatigue crack propagation testing

    International Nuclear Information System (INIS)

    Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.

    1981-01-01

    Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs

  11. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  12. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  13. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  14. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  15. Molecular dynamics simulation of propagating cracks

    Science.gov (United States)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  16. Crack retardation by load reduction during fatigue crack propagation

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon

    2003-01-01

    Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction

  17. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    Science.gov (United States)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress

  18. Crack propagation on spherical pressure vessels

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1975-01-01

    The risk presented by a crack on a pressure vessel built with a ductile steel cannot be well evaluated by simple application of the rules of Linear Elastic Fracture Mechanics, which only apply to brittle materials. Tests were carried out on spherical vessels of three different scales built with the same steel. Cracks of different length were machined through the vessel wall. From the results obtained, crack initiation stress (beginning of stable propagation) and instable propagation stress may be plotted against the lengths of these cracks. For small and medium size, subject to ductile fracture, the resulting curves are identical, and may be used for ductile fracture prediction. Brittle rupture was observed on larger vessels and crack propagation occurred at lower stress level. Preceedings curves are not usable for fracture analysis. Ultimate pressure can be computed with a good accuracy by using equivalent energy toughness, Ksub(1cd), characteristic of the metal plates. Satisfactory measurements have been obtained on thin samples. The risks of brittle fracture may then judged by comparing Ksub(1cd) with the calculated K 1 value, in which corrections for vessel shape are taken into account. It is thus possible to establish the bursting pressure of cracked spherical vessels, with the help of two rules, one for brittle fracture, the other for ductile instability. A practical method is proposed on the basis of the work reported here

  19. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  20. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  1. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  2. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  3. Crack propagation at stresses below the fatigue limit.

    Science.gov (United States)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  4. Analysis of 3D crack propagation by microfocus computed tomography

    International Nuclear Information System (INIS)

    Ao Bo; Chen Fuxing; Deng Cuizhen; Zeng Yabin

    2014-01-01

    The three-point bending test of notched specimens of 2A50 forging aluminum was performed by high frequency fatigue tester, and the surface cracks of different stages were analyzed and contrasted by SEM. The crack was reconstructed by microfocus computed tomography, and its size, position and distribution were visually displayed through 3D visualization. The crack propagation behaviors were researched through gray value and position of crack front of 2D CT images in two adjacent stages, and the results show that crack propagation is irregular. The projection image of crack was obtained if crack of two stages projected onto the reference plane respectively, a significant increase of new crack propagation was observed compared with the previous projection of crack, and the distribution curve of crack front of two stages was displayed. The 3D increment distribution of the crack front propagation was obtained through the 3D crack analysis of two stages. (authors)

  5. In-plane propagation of shear microcracks in brittle rocks under triaxial compression

    International Nuclear Information System (INIS)

    Janach, W.; Guex, L.H.

    1980-01-01

    The localized separation of the two cracks faces near the tip of a shear microcrack, which is otherwise kept closed by a normal pressure, is suggested as a possible mechanism for the propagation of microcracks in rocks loaded in triaxial compression. Finite element calculations show that when a shear crack runs along a surface of elastic discontinuity (interface between different minerals or between differently oriented domains of an anisotropic mineral), it can remain open at its tip while a normal pressure acts across that part of the crack which has reclosed. Such a separation bubble allows the shear crack to propagate in plane without frictional sliding taking place. It is speculated that dilatancy could be the result of a residual separation of the reclosed crack faces. On the basis this mechanism a heuristic failure model is derived, which can correlate the published trixial failure data of Westerly granite up to a confining pressure of 2000 MPa

  6. Crack propagation studies and bond coat properties in thermal

    Indian Academy of Sciences (India)

    High threshold load at the interface between the ceramic layer and the bond coat was required to propagate the crack further into the bond coat. Once the threshold load was surpassed the crack propagated into the brittle bond coat without an appreciable increase in the load. At temperatures of 800°C the crack propagated ...

  7. International Conference on Dynamic Crack Propagation

    CERN Document Server

    1973-01-01

    The planning meeting for a conference on Dynamic Crack Propagation was held at M.LT. in February 1971 and attended by research workers from several industrial, governmental and academic organizations. It was felt that a more specialized meeting would provide a better opportunity for both U.S. and foreign researchers to exchange their ideas and views on dynamic fracture, a subject which is seldom emphasized in national or international fracture conferences. Dynamic crack propagation has been a concern to specialists in many fields: continuum mechanics, metallurgy, geology, polymer chemistry, orthopedics, applied mathematics, as well as structural design and testing. It impinges on a wide variety of problems such as rock breaking and earthquakes, pressure vessels and line pipes, comminution and the per­ formance of armament and ordnance, etc. Advances have been numerous, covering theories and experiments from both the microscopic and macro­ scopic points of view. Hence, the need for comparing the theoretical ...

  8. In situ fatigue-crack-propagation experiment

    International Nuclear Information System (INIS)

    Ermi, A.M.; Chin, B.A.

    1981-01-01

    An in-reactor fatigue experiment was conducted in the Oak Ridge Research Reactor to determine the effects of dynamic irradiation on fatigue crack propagation. Eight 20% cold-worked 316 stainless steel specimens were precracked to various initial crack lengths, linked together to form a chain, and inserted into a specially designed in-reactor fatigue machine. Test conditions included a maximum temperature of 460 0 C, an environment of sodium, a frequency of 1 cycle/min, and a stress ratio of 0.10. Results indicated that (1) no effects of dynamic irradiation were observed for a fluence of 1.5 x 10 21 n/cm 2 (E > 0.1 MeV); and (2) crack growth rates in elevated temperature sodium were a factor of 3 to 4 lower than in room temperature air

  9. Fatigue crack propagation in additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Amin Yavari, S; Zadpoor, A A

    2017-07-01

    Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation and propagation in their critical points. In this study, the static and fatigue crack propagation in additively manufactured porous biomaterials with porosities between 66% and 84% is investigated using compact-tension (CT) samples. The samples were made using selective laser melting from Ti-6Al-4V and were loaded in tension (in static study) and tension-tension (in fatigue study) loadings. The results showed that displacement accumulation diagram obtained for different CT samples under cyclic loading had several similarities with the corresponding diagrams obtained for cylindrical samples under compression-compression cyclic loadings (in particular, it showed a two-stage behavior). For a load level equaling 50% of the yield load, both the CT specimens studied here and the cylindrical samples we had tested under compression-compression cyclic loading elsewhere exhibited similar fatigue lives of around 10 4 cycles. The test results also showed that for the same load level of 0.5F y , the lower density porous structures demonstrate relatively longer lives than the higher-density ones. This is because the high bending stresses in high-density porous structures gives rise to local Mode-I crack opening in the rough external surface of the struts which leads to quicker formation and propagation of the cracks. Under both the static and cyclic loading, all the samples showed crack pathways which were not parallel to but made 45 ° angles with respect to the notch direction. This is due to the fact that in the rhombic dodecahedron unit cell, the weakest struts are located in 45 ° direction with respect to the notch direction

  10. Design Against Propagating Shear Failure in Pipelines

    Science.gov (United States)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  11. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    Science.gov (United States)

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  12. Dynamic crack propagation through nanoporous media

    Science.gov (United States)

    Nguyen, Thao; Wilkerson, Justin

    2015-06-01

    The deformation and failure of nanoporous metals may be considerably different than that of more traditional bulk porous metals. The length scales in traditional bulk porous metals are typically large enough for classic plasticity and buckling to be operative. However, the extremely small length scales associated with nanoporous metals may inhibit classic plasticity mechanisms. Here, we motivate an alternative nanovoid growth mechanism mediated by dislocation emission. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive a simple stress-based criterion for emission activation. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is implemented into a commercial finite element software to simulate dynamic crack growth. The simulations reveal that crack propagation through a nanoporous media proceeds at somewhat faster velocities than through the more traditional bulk porous metal.

  13. Possibility of crack propagation in first wall by cyclic electromagnetic

    International Nuclear Information System (INIS)

    Teramoto, T.; Saito, M.

    1998-01-01

    A strong electromagnetic force due to plasma disruption damages the structural integrity of fusion reactor components. If a crack is generated on disruption, this crack may propagate to a critical length by the iteration of disruption. In this study, electro-magneto-mechanical analysis is conducted to evaluate the crack behavior under various field conditions. The crack propagation life is estimated by the experimental fatigue data. (author)

  14. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  15. Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures

    Directory of Open Access Journals (Sweden)

    Wada Kentaro

    2018-01-01

    Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.

  16. Crack propagation along polymer/non-polymer interfaces

    NARCIS (Netherlands)

    Vellinga, Willem-Pier; Fedorov, Alexander; De Hosson, Jeff T.

    2007-01-01

    Mechanisms of the propagation of crack fronts along interfaces between a glassy polymer and metal or glass are discussed. Specifically, the systems studied are Poly-Ethylene Terephthalate (PETG) spin-coated on A1, PETG-glass and PETG hot-pressed on Cr-sputtered glass. Cracks studied propagate in an

  17. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  18. Crack propagation of brittle rock under high geostress

    Science.gov (United States)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  19. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  20. FATIGUE CRACK PROPAGATION THROUGH AUSTEMPERED DUCTILE IRON MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Lukáš Bubenko

    2010-10-01

    Full Text Available Austempered ductile iron (ADI has a wide range of application, particularly for castings used in automotive and earth moving machinery industries. These components are usually subjected to variable dynamic loading that may promote initiation and propagation of fatigue cracks up to final fracture. Thus, it is important to determine the fatigue crack propagation behavior of ADI. Since fatigue crack growth rate (da/dN vs. stress intensity factor K data describe fatigue crack propagation resistance and fatigue durability of structural materials, da/dN vs. Ka curves of ADI 1050 are reported here. The threshold amplitude of stress intensity factor Kath is also determined. Finally, the influence of stress intensity factor amplitude to the character of fatigue crack propagation through the ADI microstructure is described.

  1. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  2. Ductile cast irons: microstructure influence on fatigue crack propagation resistance

    Directory of Open Access Journals (Sweden)

    Mauro Cavallini

    2010-07-01

    Full Text Available Microstructure influence on fatigue crack propagation resistance in five different ductile cast irons (DCI was investigated. Four ferrite/pearlite volume fractions were considered, performing fatigue crack propagation tests according to ASTM E647 standard (R equals to 0.1, 0.5 and 0.75, respectively. Results were compared with an austempered DCI. Damaging micromechanisms were investigated according to the following procedures: - “traditional” Scanning Electron Microscope (SEM fracture surfaces analysis; - SEM fracture surface analysis with 3D quantitative analysis; - SEM longitudinal crack profile analysis - Light Optical Microscope (LOM transversal crack profile analysis;

  3. Influence of a gaseous atmosphere on fatigue crack propagation

    International Nuclear Information System (INIS)

    Henaff, G.

    2002-01-01

    The paper presents a review of the current knowledge on the influence of gaseous atmospheres, and primarily ambient air, on fatigue crack propagation in metallic alloys. Experimental evidence of the effect of exposure to ambient air or any moist environment on fatigue crack propagation in steels is first proposed. The different interacting processes are analyzed so as to clearly uncouple the influence of the various factors on crack growth resistance. Two distinct mechanisms are identified: the adsorption of vapour molecules and hydrogen assisted fracture at crack tip. (author)

  4. Line Crack Subject to Antiplane Shear.

    Science.gov (United States)

    1978-07-01

    shear is obtained for the initiation of fracture. If the concept of the surface tension is usedone is able to calculate the cohesive stress for brittle ...Expression of the Griffith -racture criterion for brittle fracture. We have arrived at this result via the maximum shear-stress hypothesis, rather than...Crescent Beach Road, Glen Cove Prof. G.S. Heller Long Island, New York 11542 Division of Engineering Brown University Prof. Daniel

  5. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  6. Fatigue crack propagation under elastic plastic medium at elevated temperature

    International Nuclear Information System (INIS)

    Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.

    1980-01-01

    The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)

  7. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue

    International Nuclear Information System (INIS)

    Huang Zhiyong; Wagner, Daniele; Bathias, Claude; Paris, Paul C.

    2010-01-01

    In the very high cycle regime (N f > 10 7 cycles) cracks can nucleate on inclusions, 'supergrains' and pores, which leads to fish-eye propagation around the defect. The initiation from an inclusion or other defect is almost equal to the total crack growth lifetime, perhaps much more than 99% of this lifetime in many cases. Integration of the Paris law allows one to predict the number of cycles to crack initiation. A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number of cycles to crack initiation. A thermo-mechanical model has been developed. In this study several fish-eyes from various materials have been observed by scanning electron microscopy, and the fractographic results analyzed as they related to the mechanical and thermo-mechanical models.

  8. On governing equations for crack layer propagation

    Science.gov (United States)

    Chudnovsky, A.; Botsis, J.

    1988-01-01

    Results of analysis on damage distribution of a crack layer, in a model material, supported the self-similarity hypothesis of damage evolution which has been adopted by the crack layer theory. On the basis of measurements of discontinuity density and the double layer potential technique, a solution to the crack damage interaction problem has been developed. Evaluation of the stress intensity factor illustrated the methodology. Analysis of experimental results showed that Arrhenius type constitutive relationship described very well the expansion of the active zone of a crack layer.

  9. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  10. Suppression of Fatigue Crack Propagation of Duralumin by Cavitation Peening

    Directory of Open Access Journals (Sweden)

    Hitoshi Soyama

    2015-08-01

    Full Text Available It was demonstrated in the present paper that cavitation peening which is one of the mechanical surface modification technique can suppress fatigue crack propagation in duralumin. The impacts produced when cavitation bubble collapses can be utilised for the mechanical surface modification technique in the same way as laser peening and shot peening, which is called “cavitation peening”. Cavitation peening employing a cavitating jet in water was used to treat the specimen made of duralumin Japanese Industrial Standards JIS A2017-T3. After introducing a notch, fatigue test was conducted by a load-controlled plate bending fatigue tester, which has been originally developed. The fatigue crack propagation behavior was evaluated and the relationship between the fatigue crack propagation rate versus stress intensity factor range was obtained. From the results, the fatigue crack propagation rate was drastically reduced by cavitation peening and the fatigue life of duralumin plate was extended 4.2 times by cavitation peening. In addition, the fatigue crack propagation can be suppressed by 88% in the stable crack propagation stage by cavitation peening.

  11. Moving antiplane shear crack in hexagonal piezoelectric crystals

    International Nuclear Information System (INIS)

    Tupholme, G.

    1998-01-01

    Closed form solutions are obtained and discussed for the stress and electric displacement fields around a loaded Griffith-type antiplane shear strip crack moving in hexagonal piezoelectric crystals. Representative numerical results are presented for ZnO and PZT-5H. (author)

  12. FEM Modeling of Crack Propagation in a Model Multiphase Alloy

    Institute of Scientific and Technical Information of China (English)

    Lihe QIAN; Seishi NISHIDO; Hiroyuki TODA; Tosliro KOBAYASHI

    2006-01-01

    In this paper, several widely applied fracture criteria were first numerically examined and the crack-tip-region Jintegral criterion was confirmed to be more applicable to predict fracture angle in an elastic-plastic multiphase material. Then, the crack propagation in an idealized dendritic two-phase Al-7%Si alloy was modeled using an elastic-plastic finite element method. The variation of crack growth driving force with crack extension was also demonstrated. It is found that the crack path is significantly influenced by the presence of α-phase near the crack tip, and the crack growth driving force varies drastically from place to place. Lastly, the simulated fracture path in the two-phase model alloy was compared with the experimentally observed fracture path.

  13. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  14. Analysis of Unsteady Propagation of Mode Ⅲ Crack in Arbitrary Direction in Functionally Graded Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [Kyungpook National University, Daegu (Korea, Republic of); Cho, Sang Bong [Kyungnam University, Changwon (Korea, Republic of); Hawong, Jai Sug [Yeungnam University, Gyungsan (Korea, Republic of)

    2015-02-15

    The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode Ⅲ crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

  15. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  16. Study of regularities in propagation of thermal fatigue cracks

    International Nuclear Information System (INIS)

    Tachkova, N.G.; Sobolev, N.D.; Egorov, V.I.; Rostovtsev, Yu.V.; Ivanov, Yu.S.; Sirotin, V.L.

    1978-01-01

    Regularities in the propagation of thermal fatigue cracks in the Cr-Ni steels of the austenite class depending upon deformation conditions in the crack zone, have been considered. Thin-walled tube samples of the Kh16N40, Kh18N20 and Kh16N15 steels have been tested in the 10O reversible 400 deg C and 100 reversible 500 deg C regimes. The samples have possessed a slot-shaped stress concentrator. Stress intensity pseudocoefficient has been calculated for the correlation of experimental data. The formula for determining crack propagation rate has been obtained. The experiments permit to conclude that propagation rate of thermal fatigue cracks in the above steels depends upon the scope of plastic deformation during a cycle and stress intensity pseudocoefficient, and is determined by plastic deformation resistance during thermal cyclic loading

  17. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  18. Effects of friction and high torque on fatigue crack propagation in Mode III

    Science.gov (United States)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are

  19. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  20. Effect of copper on crack propagation in beryllium single crystals

    International Nuclear Information System (INIS)

    Aldinger, F.; Wilhelm, M.

    The effect of copper additives on the fracture energy and the development of cracks parallel to the basal plane was studied in zone-refined single crystalline beryllium. At 77 0 K the cleavage planes are very smooth, so the crack propagation energy, which is independent of copper content (less than 2 at. percent Cu) in the range of measurement accuracy, is only a little higher than the surface energy of the basal plane. At room temperature, due to intense plastic processes taking place in front of the crack tip, the fracture energy is an order of magnitude higher than at low temperatures. The effect of copper on the plastic processes can be divided into two regions. In region I (less than 1.2 at. percent Cu), in which the crack propagation energy increases sharply with increasing copper content, crack propagation is controlled by prism slips. The decrease in crack propagation energy in region II (greater than 1.2 at. percent Cu) can be attributed to a reduction of beryllium twinning energy with increasing copper content. (auth)

  1. Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Pavel; Vojtek, Tomáš; Náhlík, Luboš; Hutař, Pavel

    2017-01-01

    Roč. 185, NOV (2017), s. 2-19 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Fatigue crack propagation * crack closure * EA4T * Railway axle Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  2. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  3. Crack propagation and arrest simulation of X90 gas pipe

    International Nuclear Information System (INIS)

    Yang, Fengping; Huo, Chunyong; Luo, Jinheng; Li, He; Li, Yang

    2017-01-01

    To determine whether X90 steel pipe has enough crack arrest toughness or not, a damage model was suggested as crack arrest criterion with material parameters of plastic uniform percentage elongation and damage strain energy per volume. Fracture characteristic length which characterizes fracture zone size was suggested to be the largest mesh size on expected cracking path. Plastic uniform percentage elongation, damage strain energy per volume and fracture characteristic length of X90 were obtained by five kinds of tensile tests. Based on this criterion, a length of 24 m, Φ1219 × 16.3 mm pipe segment model with 12 MPa internal gas pressure was built and computed with fluid-structure coupling method in ABAQUS. Ideal gas state equation was used to describe lean gas behavior. Euler grid was used to mesh gas zone inside the pipe while Lagrangian shell element was used to mesh pipe. Crack propagation speed and gas decompression speed were got after computation. The result shows that, when plastic uniform percentage elongation is equal to 0.054 and damage strain energy per volume is equal to 0.64 J/mm"3, crack propagation speed is less than gas decompression speed, which means the simulated X90 gas pipe with 12 MPa internal pressure can arrest cracking itself. - Highlights: • A damage model was suggested as crack arrest criterion. • Plastic uniform elongation and damage strain energy density are material parameters. • Fracture characteristic length is suggested to be largest mesh size in cracking path. • Crack propagating simulation with coupling of pipe and gas was realized in ABAQUS. • A Chinese X90 steel pipe with 12 MPa internal pressure can arrest cracking itself.

  4. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    Bousquet, Amaury

    2013-01-01

    with ductile shear zones between the different planes of cracking. The study of the surface fraction of ductile shear zones and associated closing stress tends to justify the established criterion. An analytical model is proposed to justify the criterion deduced from numerical modeling. This model assumes that the ligaments hold the crack lips and therefore induce closing stress at the crack tip which has to be compensated to achieve the effective cleavage stress at the crack tip. This resistance of ligaments is directly related to the mechanical behavior of the material and justifies the dependence of fracture stress criterion with strain rate. Lastly, the crack branching was analyzed thanks to movies obtained with the high-speed camera. The cleavage crack propagates in a straight way over few millimeters. Then, new cracks appear on both sides of the initial crack lips which leads to the arrest of the initial crack. One of the new cracks leads to the failure of the CT specimen. The essential role of the thickness and loading on this branching mechanism is emphasized. The increased thickness reduces the frequency of occurrence of this mechanism and eventually even cancel. Low thicknesses lead to more extensive plasticity at the crack tip and generates the germs for the triggering of secondary cracks that appear. Logically, the intensity of loading must be large enough to create this extended plastic zone: the experiments with a straight path are the tests for which the initial loadings are the lowest. (author)

  5. Modeling of crack propagation in strengthened concrete disks

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Stang, Henrik

    2013-01-01

    Crack propagation in strengthened concrete disks is a problem that has not yet been addressed properly. To investigate it, a cracked half-infinite disk of concrete is strengthened with a linear elastic material bonded to the surface, and analyzed using two different finite element modeling...... instead of 3D calculations to predict the response of a structure and that it opens up for simpler evaluation of strengthened concrete structures using the finite element method....

  6. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  7. Fatigue crack propagation in self-assembling nanocomposites

    Science.gov (United States)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  8. Fatigue crack propagation in self-assembling nanocomposites

    International Nuclear Information System (INIS)

    Klingler, Andreas; Wetzel, Bernd

    2016-01-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  9. Compressive performance and crack propagation in Al alloy/Ti{sub 2}AlC composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, D.A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Hu, L. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Kan, W.H.; Proust, G. [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Foley, M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Karaman, I.; Radovic, M. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-08-30

    Composite materials comprising a porous Ti{sub 2}AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti{sub 2}AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti{sub 2}AlC phase interfaces are key considerations in the design of high performance metal/Ti{sub 2}AlC phase composites.

  10. Effects of friction and high torque on fatigue crack propagation in mode III

    International Nuclear Information System (INIS)

    Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.

    1982-01-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle

  11. Infrared thermography study of the fatigue crack propagation

    Directory of Open Access Journals (Sweden)

    O.A. Plekhov

    2012-07-01

    Full Text Available The work is devoted to the experimental study of heat dissipation process caused by fatigue crack propagation. To investigate a spatial and time temperature evolution at the crack tip set of experiments was carried out using specimens with pre-grown centered fatigue crack. An original mathematical algorithm for experimental data treatment was developed to obtain a power of heat source caused by plastic deformation at crack tip. The algorithm includes spatial-time filtration and relative motion compensation procedures. Based on the results of mathematical data treatment, we proposed a way to estimate the values of J-integral and stress intensity factor for cracks with pronounced the plastic zone.

  12. Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian

    2013-01-01

    Correlation technique was used to locate the crack tip and monitor the crack growth. For the specimens with H45 core, unstable crack growth took place initially. Following the unstable propagation, the crack propagated in the core underneath the resin-rich cell layer approaching the interface. However......, the crack did not kink into the interface. For the specimens with H100 core, the crack propagated initially in the core and then returned into the interface and continued to propagate in the interface. For the specimens with H250 core, the crack initially propagated in the core and then kinked...

  13. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  14. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  15. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  16. A microstructural study of dynamic crack propagation in nuclear graphites

    International Nuclear Information System (INIS)

    Burchell, T.D.; McEnaney, B.; Tucker, M.O.; Rose, A.P.G.

    1986-01-01

    This paper reports a new microstructural study of dynamic crack propagation in three nuclear graphites: (i) PGA, the moderator material in UK Magnox reactors; (ii) IMl-24, the moderator material in UK Advanced gas cooled reactors (AGR); and (iii) a pitch coke graphite, which is used in the fabrication of AGR fuel sleeves. The fracture mechanisms in nuclear graphites are initiated by microcrack formation at low stresses. Typically, microcracks form in regions of well-aligned binder or at favourably-oriented pores, where stress is concentrated. With increasing applied loads, microcracks propagate taking advantage of easy cleavage paths or linking with pores. Eventually, coalescence of such cracks and inherent porosity produces a crack of critical length for fast fracture. (orig./MM)

  17. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    Science.gov (United States)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  18. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L

    1998-01-01

    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  19. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    shrinkage in material as a result of variations of capillary pressure, surface tension or disjoining pressure. When the permeability of concrete is very low, the non uniform distribution of capillary pressure is generated and induces hydraulic gradient in the material. It is then necessary to take into account poro-mechanical coupling in partial conditions. The damage related to desiccation can be distinguished in two different processes. The first, called local effect, is related to micro-structural heterogeneity of cement-based materials. Local shear and tensile stresses can be generated at the grain scale, leading to nucleation and propagation of microcracks. In the second process, called structural effect, tensile strains or stress may be generated by non-uniform distribution of desiccation. Finally, with further coalescence of some of these defects results, the macroscopic cracks appear in the structure. After the initiation of these macro-cracks and fractures, they begin to propagate until the total failure of the structure. Thus, two failure phases could be distinguished: the inception and growth of micro-cracks and then the initiation and propagation of macroscopic discontinuous. For the first phase, the inception and growth of micro-cracks for the partially saturated porous media, a number of numerical modelling has been proposed. These works are mainly concerning the development the diffuse micro-cracks based on the continuum approaches. For avoiding pathological mesh dependence, these models generally require regularization, such as the famous non-local approach. From the computational standpoint, the numerical simulation of crack initiation and propagation in structures under mechanical loading, such as concrete beams, still represents a challenging work. More recently, in the framework of finite element methods, significant progress has been made, that is the use of extended finite element methods (XFEM) based on the partition of unity methods for the crack

  20. Low temperature spalling of silicon: A crack propagation study

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana; Uberg Naerland, Tine; Stoddard, Nathan; Guimera Coll, Pablo

    2017-06-08

    Spalling is a promising kerfless method for cutting thin silicon wafers while doubling the yield of a silicon ingot. The main obstacle in this technology is the high total thickness variation of the spalled wafers, often as high as 100% of the wafer thickness. It has been suggested before that a strong correlation exists between low crack velocities and a smooth surface, but this correlation has never been shown during a spalling process in silicon. The reason lies in the challenge associated to measuring such velocities. In this contribution, we present a new approach to assess, in real time, the crack velocity as it propagates during a low temperature spalling process. Understanding the relationship between crack velocity and surface roughness during spalling can pave the way to attain full control on the surface quality of the spalled wafer.

  1. Prediction of crack propagation in layered ceramics with strong interfaces

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Šestáková, L.; Hutař, Pavel; Bermejo, R.

    2010-01-01

    Roč. 77, č. 11 (2010), s. 2192-2199 ISSN 0013-7944 R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ceramic laminate * Crack propagation direction * Residual stress * Flaw tolerant ceramics * Optimal design Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.571, year: 2010

  2. Basic study on development of monitoring for crack propagation

    International Nuclear Information System (INIS)

    Enoki, Manabu; Kishi, Teruo; Kawasaki, Hirotsugu; Aoto, Kazumi

    2000-03-01

    The system for detecting the generation and propagation of cracks in products and materials has been investigated in this research. Firstly, in order to apply the method to harsh environment such as plant equipment, the system with laser interferometer which cables to detect fracture in non-contact way was tried. It was confirmed that the heterodyne interferometer with He-Ne laser could detect elastic waves propagating through materials, and the non-contact system with four interferometers to detect acoustic emission (AE) wave was developed. It was applied to the thermal stress fracture in alumina coating materials. AE wave during cooling of specimens due to microfracture near the interfaces was detected and the generation time, location, size and fracture mode could be evaluated by the inverse analysis. Thus, the quantitative system for evaluating AE wave was developed and the validity of this system was confirmed. Secondly, in order to predict the crack initiation, the detection tests which were performed to detect a change in damage in the pre-stage of micro crack initiation were tried. For the components that were subject to transient cyclic thermal loading changes, the ultrasonic detection test was performed, and the obtained echo was analyzed. Furthermore, the measurement of micro hardness was performed by using the micro hardness tester for the grain boundary at near crack. The ultrasound velocity which could detect damaged state before crack initiation was estimated from the wavelet analysis of ultrasonic echoes obtained here. It was confirmed to be possible to predict the crack initiation from the change of micro hardness on the grain boundary. (author)

  3. Crack propagation in touch ductile materials. Phase II

    International Nuclear Information System (INIS)

    Venter, R.D.; Sinclair, A.N.; McCammond, D.

    1989-06-01

    The thrust of this work was to investigate published J material resistance and stress-strain data applicable to the understanding of crack propagation in tough ductile steels, particularly SA 106 Grade B pipe steel. This data has been assembled from PIFRAC, AECB report INFO-0254-1 and Ontario Hydro sources and has been uniformly formatted and presented to facilitate comparison and assessment. While the data is in many aspects incomplete it has enabled an evaluation of the influence of temperature, specimen thickness and specimen orientation to be made in the context of the experimental J-R curves so determined. Comparisons of the stress-strain data within the Ramburg-Osgood formulation are also considered. A further component of this report addresses the development of the required software to utilize what is referred to as the engineering approach to elasto-plastic analysis to investigate the load carrying capacity of selected cracked pipe geometries which are representative of applied crack propagation studies associated with piping systems in the nuclear industry. Three specific geometries and loading situations, identified as Condition A, B and C have been evaluated; the results are presented and illustrate the variation in applied load as a function of an initial and final crack extension leading to instability

  4. Propagation of stress-corrosion cracks in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Norring, K.; Haag, Y.; Wikstroem, C.

    1982-01-01

    Propagation of iodine-induced stress-corrosion cracks in Zircaloy was studied using pre-cracked and internally pressurized cladding tubes. These were recrystallized at different temperatures, to obtain grain sizes between 4 μm and 10 μm. No statistically significant difference in propagation rate due to the difference in grain size was observed. If the obtained data, with Ksub(I) values ranging from 4 to 11 MNmsup(-3/2), were log-log plotted (da/dt = CKsub(I)sup(N)), as usual, they fell within the scatter-band of data reported earlier. But from this plot it could also be seen that the Ksub(I) interval can be divided into two separate parts having different da/dt-Ksub(I) relations. The transition takes place at a Ksub(I) value of about 8 MNmsup(-3/2). The region with lower Ksub(I) values shows a substantially lower n value than the upper region (2.4 and 9.8 respectively), and earlier reported values (n = 7 to 10). This transition is in good agreement with a transition from an intergranular to a transgranular propagation mode of the stress-corrosion crack. (orig.)

  5. Radiation efficiency during slow crack propagation: an experimental study.

    Science.gov (United States)

    Jestin, Camille; Lengliné, Olivier; Schmittbuhl, Jean

    2017-04-01

    Creeping faults are known to host a significant aseismic deformation. However, the observations of micro-earthquake activity related to creeping faults (e.g. San Andreas Faults, North Anatolian Fault) suggest the presence of strong lateral variabilities of the energy partitioning between radiated and fracture energies. The seismic over aseismic slip ratio is rather difficult to image over time and at depth because of observational limitations (spatial resolution, sufficiently broad band instruments, etc.). In this study, we aim to capture in great details the energy partitioning during the slow propagation of mode I fracture along a heterogeneous interface, where the toughness is strongly varying in space.We lead experiments at laboratory scale on a rock analog model (PMMA) enabling a precise monitoring of fracture pinning and depinning on local asperities in the brittle-creep regime. Indeed, optical imaging through the transparent material allows the high resolution description of the fracture front position and velocity during its propagation. At the same time, acoustic emissions are also measured by accelerometers positioned around the rupture. Combining acoustic records, measurements of the crack front position and the loading curve, we compute the total radiated energy and the fracture energy. We deduce from them the radiation efficiency, ηR, characterizing the proportion of the available energy that is radiated in form of seismic wave. We show an increase of ηR with the crack rupture speed computed for each of our experiments in the sub-critical crack propagation domain. Our experimental estimates of ηR are larger than the theoretical model proposed by Freund, stating that the radiation efficiency of crack propagation in homogeneous media is proportional to the crack velocity. Our results are demonstrated to be in agreement with existing studies which showed that the distribution of crack front velocity in a heterogeneous medium can be well described by a

  6. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  7. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    The purpose of this PhD study is to predict the propagation and arrest of cleavage cracks in a French PWR vessel steel (16MND5). This is accomplished through use of a local criterion based on the critical stress calculated ahead of crack tip. Previous work has shown that fracture mechanism was cleavage associated with the ductile shear zone between the different planes of cracking. Thus, the critical stress at crack tip depends on stain rate. This thesis consists of numerical optimization, identification and validation of a local criterion based on experiments which have complex thermomechanical loads. The criterion accounts for various crack paths, deepening the knowledge about micro mechanisms during crack propagation in order to justify the established criterion. Criterion identification was carried out by using numerical simulations of tension tests performed on CT (Compact Tension) specimens at four different temperatures (-150 C, -125 C, -100 C and -75 C). The eXtended Finite Element Method (X-FEM) was used in CAST3M FE software to model dynamic crack propagation and arrest. The analysis results in 2D and 3D showed that the critical stress at crack tip increased with the inelastic strain rate. Therefore, a criterion based on the critical stress was established. An analytical model was developed to justify the identified criterion. The critical stress given by the local criterion was considered as the sum of the critical cleavage stress and the stress generated by the deformation of ligaments behind the crack tip. In order to quantify this phenomenon, measurements of ligaments' characteristics have been performed on fracture surfaces and on cross-sections of the specimens. The stress profile of the crack lips generated by ligaments was calculated by modeling of multi-cracks on specimen's cross-section. The contribution of stress generated by ligaments to the critical stress at crack tip was obtained with this method, and then the analytical model of

  8. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  9. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  10. Simulation of crack propagation in rock in plasma blasting technology

    Science.gov (United States)

    Ikkurthi, V. R.; Tahiliani, K.; Chaturvedi, S.

    Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time τ , we have determined the P- τ curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures Ppeak. We have determined the E- Ppeak curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal Ppeak that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.

  11. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  12. Brutal crack propagation in dynamic fracture: industrial application to the length of the crack arrest

    International Nuclear Information System (INIS)

    Dumouchel, P.E.

    2008-03-01

    This research thesis aims at understanding and analysing some mechanisms involved in the dynamic failure under various loadings which are notably present in industrial environment, and more particularly in some parts of EDF's plants where networks of micro-cracks may steadily grow: heterogeneous zones, defects under coating. The author presents a simplified model based on the de-bonding of a film to understand the mechanisms of a sudden failure under a quasi-static loading. He develops a similar model to explore the influence of a defect on crack propagation under a quasi-static loading, and then under a sudden loading. This model is then generalized to the case of several defects, and more particularly very small defects. Finally, the author gives a numerical interpretation of a sudden propagation under quasi-static loading

  13. Exact scattering and diffraction of antiplane shear waves by a vertical edge crack

    Science.gov (United States)

    Tsaur, Deng-How

    2010-06-01

    Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.

  14. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    Science.gov (United States)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  15. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    Science.gov (United States)

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    Science.gov (United States)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  17. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  18. In-situ investigation of crack propagation in {gamma}-TiAl alloys using atomic force, focus ion beam and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Farasat; Goeken, Mathias [Lehrstuhl Allgemeine Werkstoffeigenschaften, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); Pyczak, Florian [GKSS Research Centre Geesthacht, Geesthacht (Germany)

    2009-07-01

    The present study is focused on crack propagation mechanism in Ti-45Al-1Cr and Ti-45Al-5Nb alloys with lamellar microstructure. Atomic force microscopy (AFM) is a versatile technique to study the crack propagation in-situ. AFM was employed to investigate the local deformations near the crack tip. Scanning electron microscopy (SEM) supplements the in-situ observations and was used to get a basic understanding of the crack propagation path over larger distances.A focused ion beam (FIB) was used to investigate the structures and deformation traces underneath the surface. It is concluded that the {gamma}/{alpha}2 interfaces act as favorable sites for new interfacial crack nucleation and also for interlamellar crack propagation. Nucleation of new cracks was often preceded by the interaction of deformation twins with interfaces and also by strong shear band activity in the {gamma}-TiAl lamellae visible as significant surface topography in AFM.Mostly the underneath crack path follows the {gamma}/{alpha}2 interface similar to the situation observed at the surface. The local misorientation measured with electron backscattered diffraction (EBSD) shows {gamma}-lamellae as the region of high deformation as compare to neighboring {alpha}2 -lamellae around the crack tip and its surroundings.

  19. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  20. Fatigue crack propagation under combined cyclic mechanical loading and electric field in piezoelectric ceramics

    International Nuclear Information System (INIS)

    Shirakihara, Kaori; Tanaka, Keisuke; Akiniwa, Yoshiaki; Suzuki, Yasuyoshi; Mukai, Hirokatsu

    2006-01-01

    Fatigue crack propagation tests of PZT specimens were performed under cyclic four-point bending with and without superposition of electric fields. The specimens were poled in the longitudinal direction (PL specimens) perpendicular to the crack plane. The crack propagation rate for the case of open circuit was faster than that for the case of short circuit. The application of a negative or positive electric field parallel to the poling direction accelerated the crack propagation rate, and the amount of acceleration was larger for the case of the negative field. The change of the crack propagation rate with crack extension can be divided into three regions. In the region I, the crack propagation rate decreases with increasing crack length, and then turn to increase in the region III. In the region II, the propagation rate is nearly constant. The mechanisms of fatigue crack propagation were correlated to domain switching near the crack tip. The grain boundary fracture was predominant in the low-rate region, while transgranular fracture became abundant on the unstable fracture surface. (author)

  1. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  2. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    Directory of Open Access Journals (Sweden)

    Juyi Pan

    Full Text Available FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress–strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10−3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3–43.4 MPa. The maximum value of stress–strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10−4. On the crack tip, the stress changed as 32.24–40.16 MPa, the strain is at 1.292 × 10−4–1.897 × 10−4. Keywords: FV520B, Crack propagation, Mises stress, Stress–strain, Numerical investigation

  3. Crack propagation behavior of TiN coatings by laser thermal shock experiments

    International Nuclear Information System (INIS)

    Choi, Youngkue; Jeon, Seol; Jeon, Min-seok; Shin, Hyun-Gyoo; Chun, Ho Hwan; Lee, Youn-seoung; Lee, Heesoo

    2012-01-01

    Highlights: ► The crack propagation behavior of TiN coating after laser thermal shock experiment was observed by using FIB and TEM. ► Intercolumnar cracks between TiN columnar grains were predominant cracking mode after laser thermal shock. ► Cracks were propagated from the coating surface to the substrate at low laser pulse energy and cracks were originated at coating-substrate interface at high laser pulse energy. ► The cracks from the interface spread out transversely through the weak region of the columnar grains by repetitive laser shock. - Abstract: The crack propagation behavior of TiN coatings, deposited onto 304 stainless steel substrates by arc ion plating technique, related to a laser thermal shock experiment has been investigated using focused ion beam (FIB) and transmission electron microscopy (TEM). The ablated regions of TiN coatings by laser ablation system have been investigated under various conditions of pulse energies and number of laser pulses. The intercolumnar cracks were predominant cracking mode following laser thermal shock tests and the cracks initiated at coating surface and propagated in a direction perpendicular to the substrate under low loads conditions. Over and above those cracks, the cracks originated from coating-substrate interface began to appear with increasing laser pulse energy. The cracks from the interface also spread out transversely through the weak region of the columnar grains by repetitive laser shock.

  4. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  5. Effect of overloads on fatigue crack propagation rate

    International Nuclear Information System (INIS)

    Kogaev, V.P.; Bojtsov, B.V.; Petukhov, Yu.V

    1986-01-01

    An overload coefficient Q, the number of overload cycles Nsub(0), the value of the stress intensity coefficient swing of basic loading conditions ΔK are experimentally studied for their effect on the delay of the fatigue crack propagation Nsub(D) in 30KhGSNA steel. Results of the study are presented. It is shown that as a result of single overloads the value attains 60 - 10 thous. cycles. The delay Nsub(D) grows with the overload coefficient Q=Ksub(max)sup(0)/Ksub(max) and the number of the overload cycles Nsub(0). The regularity indicated is described by the equations valid within the limits of variation in Q and Nsub(0) values studied in the paper

  6. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  7. Transient dynamic crack propagation in gas pressurised pipelines

    International Nuclear Information System (INIS)

    Caldis, E.S.; Owen, D.R.J.; Taylor, C.

    1983-01-01

    The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)

  8. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    International Nuclear Information System (INIS)

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-01-01

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error

  9. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  10. Sheared semi-infinite crack originating at the boundary of a circular ...

    African Journals Online (AJOL)

    The configuration studied is that of a non-homogeneous infinite solid containing a central hole and a semi-infinite crack, originating from one side of the hole. Longitudinal shear loads of magnitude Tj, j = 1, 2 are applied on parts of the crack surface. It is found that the dominant fracture characteristic is that of a hole or semi ...

  11. Analysis of crack propagation in concrete structures with structural information entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The propagation of cracks in concrete structures causes energy dissipation and release, and also causes energy redistribution in the structures. Entropy can characterize the energy redistribution. To investigate the relation between the propagation of cracks and the entropy in concrete structures, cracked concrete structures are treated as dissipative structures. Structural information entropy is defined for concrete structures. A compact tension test is conducted. Meanwhile, numerical simulations are also carried out. Both the test and numerical simulation results show that the structural information entropy in the structures can characterize the propagation of cracks in concrete structures.

  12. Experimental study of fatigue crack propagation in type 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Mostafa, M.; Vessiere, G.; Hamel, A.; Boivin, M.

    1983-01-01

    In this work, are grouped and compared the crack propagation rates in type 316 austenitic stainless steel in two loading cases: plane strain and plane stress. Plane strain has been obtained on axisymmetric cracked specimens, plane stress on thin notched specimens, subjected to alternative bending. The results show that the crack propagation rate is greater for plane strain, i.e. in the case of the smallest plastic zone. The Elber concept was also used for explaining the different values of the crack propagation rate. It's noteworthy to find out that the Paris' law coefficients for different loading levels and those fo Elber's law are correlated [fr

  13. Experimental Study on the Shear Transfer Across Cracks in Reinforced Concrete

    DEFF Research Database (Denmark)

    Weiqing, Liu; Nielsen, Mogens Peter; Ding, Dajun

    1999-01-01

    In this paper the influence of the concrete compressive strength and the reinforcement ratio on the shear transfer across cracks are studied experimentally and theoretically. Tests on 84 specimens of the push-off type are reported. Most of the specimens were precracked along the shear plane. Among...

  14. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    Science.gov (United States)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  15. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation

    Directory of Open Access Journals (Sweden)

    Keming Sun

    2016-03-01

    Full Text Available Shale gas reservoirs are different from conventional ones in terms of their bedding architectures, so their hydraulic fracturing rules are somewhat different. In this paper, shale hydraulic fracturing tests were carried out by using the triaxial hydraulic fracturing test system to identify the effects of natural bedding directions on the crack propagation in the process of hydraulic fracturing. Then, the fracture initiation criterion of hydraulic fracturing was prepared using the extended finite element method. On this basis, a 3D hydraulic fracturing computation model was established for shale gas reservoirs. And finally, a series of studies were performed about the effects of bedding directions on the crack propagation created by hydraulic fracturing in shale reservoirs. It is shown that the propagation rules of hydraulically induced fractures in shale gas reservoirs are jointly controlled by the in-situ stress and the bedding plane architecture and strength, with the bedding direction as the main factor controlling the crack propagation directions. If the normal tensile stress of bedding surface reaches its tensile strength after the fracturing, cracks will propagate along the bedding direction, and otherwise vertical to the minimum in-situ stress direction. With the propagating of cracks along bedding surfaces, the included angle between the bedding normal direction and the minimum in-situ stress direction increases, the fracture initiation and propagation pressures increase and the crack areas decrease. Generally, cracks propagate in the form of non-plane ellipsoids. With the injection of fracturing fluids, crack areas and total formation filtration increase and crack propagation velocity decreases. The test results agree well with the calculated crack propagation rules, which demonstrate the validity of the above-mentioned model.

  16. On the mechanism of crack propagation resistance of fully lamellar TiAl alloy

    International Nuclear Information System (INIS)

    Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.

    2006-01-01

    The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious

  17. Study on shear transfer analysis of reinforced concrete across a crack

    Energy Technology Data Exchange (ETDEWEB)

    Endoh, Takao; Katoh, Osamu

    1984-11-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained.

  18. A study on shear transfer analysis of reinforced concrete across a crack

    International Nuclear Information System (INIS)

    Endoh, Takao; Katoh, Osamu

    1984-01-01

    It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained. (author)

  19. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    Science.gov (United States)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  20. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    Science.gov (United States)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  1. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  2. Reinforcement against crack propagation of PWR absorbers by development of boron-carbon-hafnium composites

    International Nuclear Information System (INIS)

    Provot, B.; Herter, P.

    2000-01-01

    In order to improve the mechanical behaviour of materials used as neutron absorbers in nuclear reactors, we have developed CERCER or CERMET composites with boron and hafnium. Thus a new composite B 4 C/HfB 2 has been especially studied. We have identified three kinds of degradation under irradiation (thermal gradient, swelling due to fission products and accidental corrosion) that induce imposed deformations cracking phenomena. Mechanical behaviour and crack propagation resistance have been studied by ball-on-three-balls and double torsion tests. A special device was developed to enable crack propagation and associated stress intensity factor measurements. Effects of structure and of a second phase are underline. First results show that these materials present crack initiation and propagation resistance much higher than pure boron carbide or hafnium diboride. We observe R-Curves effects, crack bridging or branching, crack arrests, and toughness increases that we can relate respectively to the composite structures. (author)

  3. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  4. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling of fatigue crack propagation assisted by gaseous hydrogen in metallic materials

    International Nuclear Information System (INIS)

    Moriconi, C.

    2012-01-01

    Experimental studies in a hydrogenous environment indicate that hydrogen created by surface reactions, then drained into the plastic zone, leads to a modification of deformation and damage mechanisms at the fatigue crack tip in metals, resulting in a significant decrease of crack propagation resistance. This study aims at building a model of these complex phenomena in the framework of damage mechanics, and to confront it with the results of fatigue crack propagation tests in high pressure hydrogen on a 15-5PH martensitic stainless steel. To do so, a cohesive zone model was implemented in the finite element code ABAQUS. A specific traction-separation law was developed, which is suitable for cyclic loadings, and whose parameters depend on local hydrogen concentration. Furthermore, hydrogen diffusion in the bulk material takes into account the influence of hydrostatic stress and trapping. The mechanical behaviour of the bulk material is elastic-plastic. It is shown that the model can qualitatively predict crack propagation in hydrogen under monotonous loadings; then, the model with the developed traction-separation law is tested under fatigue loading. In particular, the simulated crack propagation curves without hydrogen are compared to the experimental crack propagation curves for the 15-5PH steel in air. Finally, simulated fatigue crack propagation rates in hydrogen are compared to experimental measurements. The model's ability to assess the respective contributions of the different damage mechanisms (HELP, HEDE) in the degradation of the crack resistance of the 15-5PH steel is discussed. (author)

  6. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  7. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  8. Stable propagation of interacting crack systems and modeling of damage

    International Nuclear Information System (INIS)

    Bazant, Z.P.; Tabbara, M.R.

    1989-01-01

    This paper presents general thermodynamic criteria for the stable states and stable path of structures with an interacting system of cracks. In combination with numerical finite element results for various cracked structure geometries, these criteria indicate that the crack response path of structures may exhibit bifurcations, after which the symmetry of the crack system is broken and some cracks grow preferentially. The problem is of interest for the prediction of ultimate loads, ductility and energy absorption capability of nuclear concrete structures as well as structures made of composites and ceramics

  9. Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys

    Science.gov (United States)

    Gupta, Vipul K.

    The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of

  10. The influence of creep properties on crack propagation in thermal barrier coatings

    International Nuclear Information System (INIS)

    Baeker, Martin

    2010-01-01

    Thermal barrier coatings are used to protect turbine blades from the high temperature of the process gas inside a turbine. They consist of a metallic bond coat and of a ceramic top coat with low thermal conductivity. During service, an additional oxide layer forms between bond coat and top coat that eventually causes failure. Finite element simulations show that the roughness of the interface between top and bond coat is crucial for determining the stress state. Lifetime models have been inferred that assume that cracks form in the peak positions at small oxide thickness and propagate when the oxide layer grows and the stress field shifts. A two-dimensional finite element model of crack propagation in the TBC layer is presented. Since the cracks propagate near a material interface and since plasticity may occur in the bond coat, standard tools of fracture mechanics for predicting the crack propagation direction are difficult to apply. This problem is circumvented in a very simple way by propagating short 'test cracks' in different directions and optimising to find the crack direction with the maximum energy release rate. It is shown that the energy release rate and the crack propagation direction are sensitive to the details of the stress state and especially to the creep properties of the materials. Implications for failure models are discussed.

  11. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    Science.gov (United States)

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  12. Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach

    Directory of Open Access Journals (Sweden)

    Sofiane Maachou

    2014-04-01

    Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.

  13. On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading

    Directory of Open Access Journals (Sweden)

    Hadi Haeri

    Full Text Available The pre-existing cracks in the brittle substances seem to be the main cause of their failure under various loading conditions. In this study, a simultaneous analytical, experimental and numerical analysis of crack propagation, cracks coalescence and failure process of brittle materials has been performed. Brazilian disc tests are being carried out to evaluate the cracks propagation paths in rock-like Brazilian disc specimens containing single and double cracks (using rock-like specimens which are specially prepared from Portland Pozzolana Cement (PPC, fine sands and water in a rock mechanics laboratory. The failure load of the pre-cracked disc specimens are measured showing the decreasing effects of the cracks and their orientation on the final failure load. The same specimens are numerically simulated by a higher order indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the existing analytical and experimental results proving the accuracy and validity of the proposed numerical method. The numerical and experimental results obtained from the tested specimens are in good agreement and demonstrate the accuracy and effectiveness of the proposed approach.

  14. Investigation of Helicopter Longeron Cracks

    Science.gov (United States)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  15. Probabilistic aspects of fatigue crack propagation data for zirconium-2.5 % niobium

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Reich, A.R.

    1976-11-01

    Fatigue crack propagation data for Zr-2.5 % Nb pressure tube material at 20 and 400 deg C are presented. The practical application of these data in terms of error analysis and extrapolation errors is discussed. (author)

  16. Effect of short-term overloads on crack propagation under creep

    International Nuclear Information System (INIS)

    Sushok, V.V.; Sobolev, N.D.; Zolotukhin, S.Yu.

    1986-01-01

    Kinetics of crack propagation after overload has been studied using plane samples of Kh18N10T steel. Tests of samples with a notch have been carried out in the air at 293 K. Observation of the crack growth has been carried out by the microscope and the method of electric potential difference. It is established that during overload besides crack tip blunting, decrease of creep rate of the material stregthened near it, that leads to crack retardation, decrease of plasticity and formation of microcracks in front of the tip of the main-line crack occurs. It is marked that, estimating serviceability of a member, it is necessary to take into account the decrease of crack propagation rate after short term overloads

  17. Crack propagation under conditions of low cycle fatigue

    International Nuclear Information System (INIS)

    Hellmann, D.

    1988-01-01

    A literature review is given of convenient concepts describing the mechanical behaviour of a cracked body under cyclic loading. Only the range of high growth rates is considered. However, caused by large scale yielding in this range, the application of linear elastic fracture mechanics is no longer possible. Mechanical parameters which control fatigue crack growth are a modified stress intensity factor, the J-integral, the crack tip opening displacement and a suitable strain amplitude. (orig.) With 20 figs [de

  18. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  19. A method for the 3-D quantification of bridging ligaments during crack propagation

    International Nuclear Information System (INIS)

    Babout, L.; Janaszewski, M.; Marrow, T.J.; Withers, P.J.

    2011-01-01

    This letter shows how a hole-closing algorithm can be used to identify and quantify crack-bridging ligaments from a sequence of X-ray tomography images of intergranular stress corrosion cracking. This allows automatic quantification of the evolution of bridging ligaments through the crack propagation sequence providing fracture mechanics insight previously unobtainable from fractography. The method may also be applied to other three-dimensional materials science problems, such as closing walls in foams.

  20. Identifying and Understanding Environment-Induced Crack propagation Behavior in Ni-based Superalloy INCONEL 617

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Longzhou

    2012-11-30

    The nickel-based superalloy INCONEL 617 is a candidate material for heat exchanger applications in the next-generation nuclear plant (NGNP) system. This project will study the crack propagation process of alloy 617 at temperatures of 650°C-950°C in air under static/cyclic loading conditions. The goal is to identify the environmental and mechanical damage components and to understand in-depth the failure mechanism. Researchers will measure the fatigue crack propagation (FCP) rate (da/dn) under cyclic and hold-time fatigue conditions, and sustained crack growth rates (da/dt) at elevated temperatures. The independent FCP process will be identified and the rate-controlled sustained loading crack process will be correlated with the thermal activation equation to estimate the oxygen thermal activation energy. The FCP-dependent model indicates that if the sustained loading crack growth rate, da/dt, can be correlated with the FCP rate, da/dn, at the full time dependent stage, researchers can confirm stress-accelerated grain-boundary oxygen embrittlement (SAGBOE) as a predominate effect. Following the crack propagation tests, the research team will examine the fracture surface of materials in various cracking stages using a scanning electron microscope (SEM) and an optical microscope. In particular, the microstructure of the crack tip region will be analyzed in depth using high resolution transmission electron microscopy (TEM) and electron energy loss spectrum (EELS) mapping techniques to identify oxygen penetration along the grain boundary and to examine the diffused oxygen distribution profile around the crack tip. The cracked sample will be prepared by focused ion beam nanofabrication technology, allowing researchers to accurately fabricate the TEM samples from the crack tip while minimizing artifacts. Researchers will use these microscopic and spectroscopic results to interpret the crack propagation process, as well as distinguish and understand the environment or

  1. Crack propagation under thermal cycling loading inducing a thermal gradient in the specimen thickness

    International Nuclear Information System (INIS)

    Le, H.N.

    2009-05-01

    This study aims to figure out the crack growth phenomenon by thermal fatigue induced by thermal gradient through thickness of specimen. Firstly, an experimental facility has been developed: a rectangular parallelepiped specimen is subjected to thermal cycling between 350 C and 100 C; the specimen is freed to expand and contract. Two semi-circular notches (0,1 mm depth and 4 mm length) have been machined on the surface of the specimen. A series of interrupted tests has been carried out to characterize and quantify the crack growth in depth and surface of the pre-existing crack. Next, a three-dimensional crack growth simulation has been implemented in ABAQUS. Automation using Python was used to simulate the propagation of a crack under thermal cycling, with re-meshing at crack front after each calculation step. No assumption has been taken on the crack front during the crack propagation. A comparison with test results showed very good agreement on the evolution of crack front shape and on the kinetics of propagation on the edge and the heart of pre-existing crack. An analytical approach was also developed based on the calculation of stress intensity factors (SIC). A two-dimensional approach was first introduced enabling us to better understand the influence of various thermal and geometric parameters. Finally, a three dimensional approach, with an elliptical assumption crack shape during the propagation, leading to a prediction of crack growth on the surface and in depth which is very similar to that obtained numerically, but with computational time much lower. (author)

  2. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2016-01-01

    Roč. 89, AUG (2016), s. 99-107 ISSN 0142-1123. [International Conference on Characterisation of Crack Tip Fields /3./. Urbino, 20.04.2015-22.04.2015] Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Mixed mode * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  3. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks

    Science.gov (United States)

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen

    2002-01-01

    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  4. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Štegnerová, Kateřina; Hutař, Pavel

    2015-01-01

    Roč. 9, č. 34 (2015), s. 116-124 ISSN 1971-8993. [International Conference on Crack Paths /5./. Ferrara, 16.09.2015-18.09.2015] R&D Projects: GA ČR(CZ) GA15-09347S Institutional support: RVO:68081723 Keywords : Ceramic laminates * Crack behaviour * Residual stresses * Strain energy density factor * Crack propagation direction Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.fracturae.com/index.php/fis/article/view/IGF-ESIS.34.12

  5. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  6. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  7. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  8. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    Science.gov (United States)

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  9. Pipe stress intensity factors and coupled depressurization and dynamic crack propagation. 1976 Annual report

    International Nuclear Information System (INIS)

    Emery, A.F.; Kobayashi, A.S.; Love, W.J.

    1978-04-01

    This report contains the description of predictive models for the initiation and propagation of cracks in pipes and the numerical results obtained. The initiation of the crack was studied by evaluating stress intensity factors under static conditions for a series of representative flaws. Three-dimensional static stress intensity factors were determined for quarter-elliptical cracks at the corner of a hole in an infinite plate and at the corner of a bore in a rotating disk. Semi-elliptical cracks for plates in bending and in pressurized and thermally stressed hollow cylinders were also evaluated. The stress fields, in the absence of a crack, were used in the ''alternating technique'' to compute the stress intensity factors along the crack front. Parametric studies were made to assess the effects of crack thickness, the ratio of the major and minor axes of the ellipse and the thickness of the cylinders or plates. These parametric results may be used to predict critical flaw sizes for the initiation of the running crack. The initiation and propagation of axial through cracks in pressurized pipes was studied by using an elastic-plastic finite different shell code coupled with a one-dimensional thermal-hydraulic code which computed the leakage through the crack opening and the depressurization of the fluid in the pipe. The effects of large deflections and different fluid pressure profiles were investigated. The results showed that the crack opening shape is dependent upon the fracture criterion used and upon the average pressure on the crack flaps, but not upon the specific pressure profile. The consideration of large deflections changed the opening size of the crack and through the coupling with the pipe pressures, strongly affected the crack tip speed. However, for equal crack lengths, there was little difference between calculations made for large and small deflection

  10. 3D characterization of crack propagation in building stones

    Science.gov (United States)

    Fusi, N.; Martinez-Martinez, J.; Crosta, G. B.

    2012-04-01

    Opening of fractures can strongly modify mechanical characteristics of natural stones and thus significantly decrease stability of historical and modern buildings. It is commonly thought that fractures origin from pre-existing structures of the rocks, such as pores, veins, stylolythes (Meng and Pan, 2007; Yang et al., 2008). The aim of this study is to define relationships between crack formation and textural characteristics in massive carbonate lithologies and to follow the evolution of fractures with loading. Four well known Spanish building limestones and dolostones have been analysed: Amarillo Triana (AT): a yellow dolomitic marble, with fissures filled up by calcite and Fe oxides or hydroxides; Blanco Tranco (BT): a homogeneous white calcitic marble with pore clusters orientated parallel to metamorphic foliation; Crema Valencia (CV): a pinkish limestone (mudstone), characterized by abundant stilolythes, filled mainly by quartz (80%) and kaolin (11%); Rojo Cehegin (RC): a red fossiliferous limestone (packstone) with white veins, made up exclusively by calcite in crystals up to 300 micron. All lithotypes are characterized by homogeneous mineralogical composition (calcitic or dolomitic) and low porosity (<10%). Three cores 20 mm in diameter have been obtained for each lithotype. Uniaxial compressive tests have been carried out in order to induce sample fracturing by a series of successive steps with application of a progressive normal stress. Crack propagation has been checked after each stress level application by microCT-RX following Hg impregnation of the sample (in a Hg porosimeter). Combination of both tests (microCT-RX and Hg porosimeter) guarantees a better characterization of small defects and their progressive propagation inside low-porous rocks than by employing solely microCT-RX (Fusi et al., 2009). Due to the reduced dimensions of sample holder (dilatometers) in porosimeter, cores have been cut with a non standard h/d = 1.5. Several cycles of: a) Hg

  11. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  12. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions

    International Nuclear Information System (INIS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Martens, B.; Deconinck, J.

    2009-01-01

    The crack propagation rate of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions was modelled. A film rupture/dissolution/repassivation mechanism is assumed and extended to cold worked materials by including a stress-dependent bare metal dissolution current density. The chemical and electrochemical conditions within the crack are calculated by finite element calculations, an analytical expression is used for the crack-tip strain rate and the crack-tip stress is assumed equal to 2.5 times the yield stress (plane-strain). First the model was calibrated against a literature published data set. Afterwards, the influence of various variables - dissolved hydrogen, boric acid and lithium hydroxide content, stress intensity, crack length, temperature, flow rate - was studied. Finally, other published crack growth rate tests were modelled and the calculated crack growth rates were found to be in reasonable agreement with the reported ones

  13. Crack propagation in disordered materials: how to decipher fracture surfaces

    Science.gov (United States)

    Ponson, L.

    For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure. Propagation de fissures dans les matériaux désordonnés : comment déchiffrer les surfaces de rupture. Depuis près d'un demi-siècle, les ingénieurs savent décrire et prévoir la propagation d'une fissure dans un milieu élastique homogène modèle. Le cas des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de telles

  14. Analysis of parameters effects on crack breathing and propagation in shaft of rotor dynamic systems

    Directory of Open Access Journals (Sweden)

    M. Serier

    2013-01-01

    Full Text Available In this paper the design of experiment method is used to investigate and explain the effects of the rotor parameters on crack breathing and propagation in the shaft. Three factors are considered which have an influence on the behavior and the propagation of the crack: the rotational speed, the length of the rotor and the diameter of the shaft. The elaborated mathematical model allows determining the effects and interaction of speed, diameter and length on crack breathing mechanism.The model also determines the optimal values of the parameters to achieve high performance.

  15. Study of fatigue crack propagation in laminated metal composites alluminium 1100/alluminium 2024

    International Nuclear Information System (INIS)

    Tavares, R.I.

    1984-01-01

    A study has been made of fatigue crack propagation in laminated metal composites with different volume fraction of constituents. The composites were produced by hot rolling, combining 1100 and 2024 aluminum alloys in crack divider orientation. Mechanical and metallurgical properties of the composites and original alloys sheets have been evaluated. Paris type relationship, corresponding to stage II of fatigue crack propagation curves, has been determined by two different methods, wich have shown to be equivalent. A computer software in FORTRAN language was developed for all the mathematical manipulation of fatigue data including statistical analysis and graphics. (Author) [pt

  16. Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Directory of Open Access Journals (Sweden)

    Walter Per-Ole

    2004-11-01

    Full Text Available Abstract Background Slow crack growth can be described in a v (crack velocity versus KI (stress intensity factor diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. Methods We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly disappeared. Results We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. Conclusion The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness, which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials

  17. Avalanche weak layer shear fracture parameters from the cohesive crack model

    Science.gov (United States)

    McClung, David

    2014-05-01

    Dry slab avalanches release by mode II shear fracture within thin weak layers under cohesive snow slabs. The important fracture parameters include: nominal shear strength, mode II fracture toughness and mode II fracture energy. Alpine snow is not an elastic material unless the rate of deformation is very high. For natural avalanche release, it would not be possible that the fracture parameters can be considered as from classical fracture mechanics from an elastic framework. The strong rate dependence of alpine snow implies that it is a quasi-brittle material (Bažant et al., 2003) with an important size effect on nominal shear strength. Further, the rate of deformation for release of an avalanche is unknown, so it is not possible to calculate the fracture parameters for avalanche release from any model which requires the effective elastic modulus. The cohesive crack model does not require the modulus to be known to estimate the fracture energy. In this paper, the cohesive crack model was used to calculate the mode II fracture energy as a function of a brittleness number and nominal shear strength values calculated from slab avalanche fracture line data (60 with natural triggers; 191 with a mix of triggers). The brittleness number models the ratio of the approximate peak value of shear strength to nominal shear strength. A high brittleness number (> 10) represents large size relative to fracture process zone (FPZ) size and the implications of LEFM (Linear Elastic Fracture Mechanics). A low brittleness number (e.g. 0.1) represents small sample size and primarily plastic response. An intermediate value (e.g. 5) implies non-linear fracture mechanics with intermediate relative size. The calculations also implied effective values for the modulus and the critical shear fracture toughness as functions of the brittleness number. The results showed that the effective mode II fracture energy may vary by two orders of magnitude for alpine snow with median values ranging from 0

  18. Measurements of delayed hydride cracking propagation rate in the radial direction of Zircaloy-2 cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan); Uchikoshi, H. [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The delayed hydride cracking (DHC) velocity of Zircaloy-2 was measured. Black-Right-Pointing-Pointer The velocity followed the Arrhenius law up to 270 Degree-Sign C. Activation energy was 49 kJ/mol. Black-Right-Pointing-Pointer The threshold stress intensity factor for the DHC was from 4 to 6 MPa m{sup 1/2}. Black-Right-Pointing-Pointer An increase in material strength accelerated the DHC. Black-Right-Pointing-Pointer Precipitation and fracture of hydrides at a crack tip is responsible for the DHC. - Abstract: Delayed hydride cracking (DHC) tests of Zircaloy-2 cladding tubes were performed in the chamber of a scanning electron microscope (SEM) to directly observe the crack propagation and measure the crack velocity in the radial direction of the tubes. Pre-cracks were produced at the outer surfaces of the tubes. Hydrogen contents of the tubes were from 90 ppm to 130 ppm and test temperatures were from 225 Degree-Sign C to 300 Degree-Sign C. The crack velocity followed the Arrhenius law at temperatures lower than about 270 Degree-Sign C with apparent activation energy of about 49 kJ/mol. The upper temperature limit for DHC, above which DHC did not occur, was about 280 Degree-Sign C. The threshold stress intensity factor for the initiation of the crack propagation, K{sub IH}, was from about 4 MPa m{sup 1/2} to 6 MPa m{sup 1/2}, almost independent of temperature. An increase in 0.2% offset yield stress of the material accelerated the crack velocity and slightly decreased K{sub IH}. Detailed observations of crack tip movement showed that cracks propagated in an intermittent fashion and the propagation gradually approached the steady state as the crack depth increased. The SEM observations also showed that hydrides were formed at a crack tip and a number of micro-cracks were found in the hydrides. It was presumed from these observations that the repetition of precipitation and fracture of hydrides at the crack tip would be

  19. Dislocations, the elastic energy momentum tensor and crack propagation

    International Nuclear Information System (INIS)

    Lung, Chi-wei

    1979-07-01

    Based upon dislocation theory, some stress intensity factors can be calculated for practical cases. The results obtained by this method have been found to agree fairly well with the results obtained by the conventional fracture mechanics. The elastic energy momentum tensor has been used to calculate the force acting on the crack tip. A discussion on the kinetics of migration of impurities to the crack tip was given. It seems that the crack tip sometimes may be considered as a singularity in an elastic field and the fundamental law of classical field theory is applicable on the problem in fracture of materials. (author)

  20. Effect of random microstructure on crack propagation in cortical bone tissue under dynamic loading

    International Nuclear Information System (INIS)

    Gao, X; Li, S; Adel-Wahab, A; Silberschmidt, V

    2013-01-01

    A fracture process in a cortical bone tissue depends on various factors, such as bone loss, heterogeneous microstructure, variation of its material properties and accumulation of microcracks. Therefore, it is crucial to comprehend and describe the effect of microstructure and material properties of the components of cortical bone on crack propagation in a dynamic loading regime. At the microscale level, osteonal bone demonstrates a random distribution of osteons imbedded in an interstitial matrix and surrounded by a thin layer known as cement line. Such a distribution of osteons can lead to localization of deformation processes. The global mechanical behavior of bone and the crack-propagation process are affected by such localization under external loads. Hence, the random distribution of microstructural features plays a key role in the fracture process of cortical bone. The purpose of this study is two-fold: firstly, to develop two-dimensional microstructured numerical models of cortical bone tissue in order to examine the interaction between the propagating crack and bone microstructure using an extended finite-element method under both quasi-static and dynamic loading conditions; secondly, to investigate the effect of randomly distributed microstructural constituents on the crack propagation processes and crack paths. The obtained results of numerical simulations showed the influence of random microstructure on the global response of bone tissue at macroscale and on the crack-propagation process for quasi-static and dynamic loading conditions

  1. Propagation of cracks and damage in non aging linear viscoelastic media

    International Nuclear Information System (INIS)

    Nguyen, S.T.

    2010-01-01

    Most of France's energy is nuclear. The reactor building comprises a internal and external containment. The internal containment is prestressed to limit the flow of leakage in the internal-external space. The prestress decreases during time by the creep of concrete. It may propagate the cracks by the accidental internal pressure. So we define two research problems: propagation of macro-cracks in viscoelastic structure; effective behavior of micro-cracked viscoelastic material. Firstly, we develop a Burger viscoelastic model of concrete with two approaches: numerical and analytical. Then we solve the problem of single cracks in developing thermodynamically the concept of energy release rate. In the third part we develop a viscoelastic model to study the effective behavior of micro-cracked materials in the case without propagation. The problem of propagation of microcracks is then studied by a numerical approach based on the 'representative pattern morphology'. These studies are finally applied to solve the problems of crack propagation and damage of containment under accidental internal pressure. (authors)

  2. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  3. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  4. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  5. Evaluation of crack propagation of alloy 600 tube in high temperature water, (1)

    International Nuclear Information System (INIS)

    Hirano, Hideo; Kawamura, H.; Kawamura, Kohji; Matsubara, Masaaki

    1990-01-01

    This report describes the analysis of stress intensity factors at cracks in alloy 600 steam generator tubes. Based on the results of the analysis, IGA/SCC tests were carried out to examine the effect of stress intensity and water quality on the crack propagation rate. The main test result are as follows: (1) Hoop stress was caused by the pressure difference between the internal and external surface of the steam generator tube. The calculated hoop stress was about 7 kg/mm 2 . In addition, the temperature difference between the internal and external surface caused thermal stress. The thermal stress was about 10 kg/mm 2 at the external surface and the one at the internal surface was about -10 kg/mm 2 . Total stress at the external and internal surface was 17 kg/mm 2 and -3 kg/mm 2 , respectively. (2) The stress intensity factor at the crack tip increased with increasing crack length. For a long crack, the stress intensity factor decreased with increasing crack number. However, for a short crack, the stress intensity factor decreased little with increasing crack number. (3) Under high stress-intensity conditions, i.e. 40∼50 kg·mm -3/2 , the IGA/SCC test showed that IGA/SCC propagated in AVT and AVT/boric-acid solution at 320degC and 350degC. However, the propagation rate was low. (author)

  6. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  7. High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Directory of Open Access Journals (Sweden)

    S. Foletti

    2013-10-01

    Full Text Available This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept.

  8. Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-09-01

    Full Text Available This paper explores the fracture process based on finite element simulation. Both probabilistic and deterministic methods are employed to model crack initiation, and several commonly used criteria are utilized to predict crack growth. It is concluded that the criteria of maximum tensile stress, maximum normal stress, and maximum Mises stress, as well as the Coulomb-Mohr criterion are able to predict the initiation of the first crack. The mixed-mode criteria based on the stress intensity factor (SIF, energy release rate, and the maximum principal stress, as well as the SIF-based maximum circumferential stress criterion are suitable to predict the crack propagation.

  9. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, Steen; Brincker, Rune

    1995-01-01

    An analytical model for load-displacement curves of concrete beams is presented. The load-displacement curve is obtained by combining two simple models. The fracture is modeled by a fictitious crack in an elastic layer around the midsection of the beam. Outside the elastic layer the deformations...... are modeled by beam theory. The state of stress in the elastic layer is assumed to depend bilinearly on local elongation corresponding to a linear softening relation for the fictitious crack. Results from the analytical model are compared with results from a more detailed model based on numerical methods...... for different beam sizes. The analytical model is shown to be in agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. It is shown that the point on the load-displacement curve where the fictitious crack starts to develop and the point where the real crack...

  10. On the thermally activated crack propagation in alumina

    International Nuclear Information System (INIS)

    Devezas, T.C.

    1983-01-01

    Subcritical crack growth was studied in the temperature 25-100 0 C in two commercial aluminas containing different amounts of a glassy phase. The experimental method employed was that of double torsion under constant load, using a device specially built to carry out mechanical tests at constant compressive load and high temperatures. Activation enthalpies of subcritical crack growth were determined for the two materials. (Author) [pt

  11. Fatigue Crack Propagation Simulation in Plane Stress Constraint

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes; Spinelli, Dirceu

    2010-01-01

    Nowadays, structural and materials engineers develop structures and materials properties using finite element method. This work presents a numerical determination of fatigue crack opening and closure stress intensity factors of a C(T) specimen. Two different standard variable spectrum loadings...... are utilized, Mini-Falstaff and Wisper. The effects in two-dimensional (2D) small scale yielding models of fatigue crack growth were studied considering plane stress constraint....

  12. Estimation of stepwise crack propagation in ceramic laminates with strong interfaces

    Directory of Open Access Journals (Sweden)

    K. Štegnerová

    2015-10-01

    Full Text Available During the last years many researchers put so much effort to design layered structures combining different materials in order to improve low fracture toughness and mechanical reliability of the ceramics. It has been proven, that an effective way is to create layered ceramics with strongly bonded interfaces. After the cooling process from the sintering temperature, due to the different coefficients of thermal expansion of individual constituents of the composite, significant internal residual stresses are developed within the layers. These stresses can change the crack behaviour. This results to the higher value of so-called apparent fracture toughness, i.e. higher resistance of the ceramic laminate to the crack propagation. The contribution deals with a description of the specific crack behaviour in the layered alumina-zirconia ceramic laminate. The main aim is to clarify crack behaviour in the compressive layer and provide computational tools for estimation of crack behaviour in the field of strong residual stresses. The crack propagation was investigated on the basis of linear elastic fracture mechanics. Fracture parameters were computed numerically and by author’s routines. Finite element models were developed in order to obtain a stress distribution in the laminate containing a crack and to simulate crack propagation. The sharp change of the crack propagation direction was estimated using Sih’s criterion based on the strain energy density factor. Estimated crack behaviour is qualitatively in a good agreement with experimental observations. Presented approach contributes to the better understanding of the toughening mechanism of ceramic laminates and can be advantageously used for design of new layered ceramic composites and for better prediction of their failure.

  13. Applicability assessment of plug weld to ITER vacuum vessel by crack propagation analysis

    International Nuclear Information System (INIS)

    Ohmori, Junji; Nakahira, Masataka; Takeda, Nobukazu; Shibanuma, Kiyoshi; Sago, Hiromi; Onozuka, Masanori

    2006-03-01

    In order to improve the fabricability of the vacuum vessel (VV) of International Thermonuclear Experimental Reactor (ITER), applicability of plug weld between VV outer shell and stiffening ribs/blanket support housings has been assessed using crack propagation analysis for the plug weld. The ITER VV is a double-wall structure of inner and outer shells with ribs and housings between the shells. For the fabrication of VV, ribs and housings are welded to outer shell after welding to inner shell. A lot of weld grooves should be adjusted for welding outer shell. The plug weld is that outer shells with slit at the weld region are set on ribs/housings then outer shells are welded to them by filling the slits with weld metal. The plug weld can allow larger tolerance of weld groove gap than ordinary butt weld. However, un-welded lengths parallel to outer sell surface remain in the plug weld region. It is necessary to evaluate the allowable un-welded length to apply the plug weld to ITER VV fabrication. For the assessment, the allowable un-welded lengths have been calculated by crack propagation analyses for load conditions, conservatively assuming the un-welded region is a crack. In the analyses, firstly allowable crack lengths are calculated from the stresses of the weld region. Then assuming initial crack length, crack propagation is calculated during operation period. Allowable initial crack lengths are determined on the condition that the propagated cracks should not exceed the allowable crack lengths. The analyses have been carried out for typical inboard straight region and inboard upper curved region with the maximum housing stress. The allowable initial cracks of ribs are estimated to be 8.8mm and 38mm for the rib and the housing, respectively, considering inspection error of 4.4mm. Plug weld between outer shell and ribs/housings could be applicable. (author)

  14. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  15. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  16. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    Science.gov (United States)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  17. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    Science.gov (United States)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  18. A methodology for the investigation of toughness and crack propagation in mouse bone.

    Science.gov (United States)

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of the crack propagation rate in the obtaining opening and closing stress intensity factor by finite element method

    OpenAIRE

    Luiz Carlos H. Ricardo; Carlos Alexandre J. Miranda

    2016-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique as criterion design. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading fr...

  20. The relationship between X-ray residual stress near the crack and crack opening/closing behavior controlling fatigue crack propagation in Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Torii, Tashiyuki; Toi, Norihiko; Nakano, Kohji; Honda, Kazuo

    1998-01-01

    Using the X-ray method of stress measurement for Ti-6Al-4V alloys, the residual stress near the crack was measured for annealed (AN) and solution treated and aged (STA) titanium alloys, under the condition that the measured X-ray stress was in satisfactory agreement with the applied stress under tension. The residual stress measured in the wake of the propagating fatigue crack, σ r , was compressive, resulting in a smaller crack opening displacement, COD, than theorized. The measured σ r and COD-values let us understand the fatigue crack propagation rate da/dN in terms of the effective stress intensity factor K eff . As a result, the da/dN under the same K eff -value was smaller in the AN specimen with zigzag crack growth than in the STA specimen with straight crack growth, although the da/dN-K eff relationship under various stress amplitudes was represented by a straight line in a log-log scale separately for the AN and STA specimens. (author)

  1. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  2. Analysis of Crack Propagation Path on the Anisotropic Bi-Material Rock

    Directory of Open Access Journals (Sweden)

    Chao-Shi Chen

    2010-01-01

    Full Text Available This paper presents a single-domain boundary element method (SDBEM for linear elastic fracture mechanics analysis in the 2D anisotropic bimaterial. In this formulation, the displacement integral equation is collocated on the uncracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. The complete fundamental solution (Green's function for anisotropic bi-materials was also derived and implemented into the boundary integral formulation so the discretization along the interface can be avoided except for the interfacial crack part. A special crack-tip element was introduced to capture exactly the crack-tip behavior. A computer program with the FORTRAN code has been developed to effectively calculate the stress intensity factors, crack initiation angle, and propagation path of an anisotropic bi-material. This SDBEM program has been verified having a good accuracy with the previous researches. In addition, a rock of type (1/(2 disk specimen with a central crack was made to conduct the Brazilian test under diametrical loading. The result shows that the numerical analysis can predict relatively well the direction of crack initiation and the path of crack propagation.

  3. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  4. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  5. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  6. Continuous monitoring of back-wall stress corrosion cracking propagation by means of potential drop techniques

    International Nuclear Information System (INIS)

    Sato, Yasumoto; Atsumi, Takeo; Shoji, Tetsuo

    2006-01-01

    In order to investigate the applicability of the potential drop techniques to the continuous monitoring of stress corrosion cracking (SCC) propagation, SCC tests were performed in a sodium thiosulfate solution at room temperature using plate specimens with weldments. The SCC propagation was monitored using the techniques of direct current potential drop (DCPD), alternating current potential drop (ACPD) and modified induced current potential drop (MICPD) on the reverse side that on which the SCC existed and effectiveness of each technique for the continuous monitoring from the reverse side of SCC was compared from the viewpoints of sensitivity to the crack propagation and measurement stability. The MICPD and DCPD techniques permit continuous monitoring of the back-wall SCC propagation, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC propagation is higher than that of the DCPD and ACPD techniques. (author)

  7. Fatigue crack propagation and delamination growth in Glare

    NARCIS (Netherlands)

    Alderliesten, R.C.

    2005-01-01

    Fibre Metal Laminate Glare consists of thin aluminium layers bonded together with pre-impregnated glass fibre layers and shows an excellent fatigue crack growth behaviour compared to monolithic aluminium. The fibres are insensitive to the occurring fatigue loads and remain intact while the fatigue

  8. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  9. Corrosion initiation and propagation in cracked concrete - a literature review

    NARCIS (Netherlands)

    Pacheco, J.; Polder, R.

    2012-01-01

    The major degradation mechanism in civil engineering concrete structures is corrosion of reinforcement due to chloride penetration. Corrosion reduces serviceability and safety due to cracking and spalling of concrete and loss of steel cross section. Recently, service life design has moved from

  10. Crack Propagation in Plane Strain under Variable Amplitude Loading

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    . In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...

  11. A review of shear wave splitting in the crack-critical crust

    Science.gov (United States)

    Crampin, Stuart; Chastin, Sebastien

    2003-10-01

    Over the last 15 years, it has become established that crack-induced stress-aligned shear wave splitting, with azimuthal anisotropy, is an inherent characteristic of almost all rocks in the crust. This means that most in situ rocks are pervaded by fluid-saturated microcracks and consequently are highly compliant. The evolution of such stress-aligned fluid-saturated grain-boundary cracks and pore throats in response to changing conditions can be calculated, in some cases with great accuracy, using anisotropic poro-elasticity (APE). APE is tightly constrained with no free parameters, yet dynamic modelling with APE currently matches a wide range of phenomena concerning anisotropy, stress, shear waves and cracks. In particular, APE has allowed the anisotropic response of a reservoir to injection to be calculated (predicted with hindsight), and the time and magnitude of an earthquake to be correctly stress-forecast. The reason for this calculability and predictability is that the microcracks in the crust are so closely spaced that they form critical systems. This crack-critical crust leads to a new style of geophysics that has profound implications for almost all aspects of pre-fracturing deformation of the crust and for solid-earth geophysics and geology. We review past, present and speculate about the future of shear wave splitting in the crack-critical crust. Shear wave splitting is seen to be a dynamic measure of the deformation of the rock mass. There is some good news and some bad news for conventional geophysics. Many accepted phenomena are no longer valid at high spatial and temporal resolution. A major effect is that the detailed crack geometry changes with time and varies from place to place in response to very small previously negligible changes. However, at least in some circumstances, the behaviour of the rock in the highly complex inhomogeneous Earth may be calculated and the response predicted, opening the way to possible control by feedback. The need is

  12. On the calculation of crack propagation behavior in disks and plates using a mixed finite method

    International Nuclear Information System (INIS)

    Fischer, W.

    1991-01-01

    According to the linear theory of elasticity, infinitely high stresses occur in the crack tips of cracked components. Plastic flow initiation or previous damage, however, will limit these stress singularities to an upper maximum stress for all real materials. To permit acquisition of this highly localized material behavior, while avoiding a very high physical nonlinear calculation effort for the evaluation of crack propagation behavior in disks and plates, models essentially based on Dugdale and Barenblatt are used. This involves determining the stress and displacement conditions required for the simulation of crack propagation by means of a mixed finite method introducing the disk cutting forces and plate curvatures or moments as unknown quantities. In addition to pure disk and plate problems, also coupled disk-plate problems are covered, where the coupling, on one hand, is due to the consideration of high deformations. (orig.) With 66 figs., 8 tabs [de

  13. Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Dan Huang

    2015-01-01

    Full Text Available An extended peridynamic approach for crack propagation analysis in concrete structures was proposed. In the peridynamic constitutive model, concrete material was described as a series of interacting particles, and the short-range repulsive force and anisotropic behavior of concrete were taken into account in the expression of the interactive bonding force, which was given in terms of classical elastic constants and peridynamic horizon. The damage of material was defined locally at the level of pairwise bond, and the critical stretch of material bond was described as a function of fracture strength in the classical concrete failure theory. The efficiency and accuracy of the proposed model and algorithms were validated by simulating the propagation of mode I and I-II mixed mode cracks in concrete slabs. Furthermore, crack propagation in a double-edge notched concrete beam subjected to four-point load was simulated, in which the experimental observations are captured naturally as a consequence of the solution.

  14. Development of fatigue crack propagation models for engineering applications at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.

    1975-05-01

    The value of modelling the fatigue crack propagation process is discussed and current models are examined in the light of increasing knowledge of crack tip deformation. Elevated temperature fatigue is examined in detail as an area in which models could contribute significantly to engineering design. A model is developed which examines the role of time-dependent creep cavitation on the failure process in an interactive creep-fatigue situation. (auth)

  15. G-control fatigue testing for cyclic crack propagation in composite structures

    DEFF Research Database (Denmark)

    Manca, Marcello; Berggreen, Christian; Carlsson, Leif A.

    2015-01-01

    This paper presents a computer controlled testing methodology called “The G-control Method” which allows cyclic crack growth testing using real-time control of the cyclic energy release rate. The advantages of using this approach are described and compared with traditional fatigue testing methods...... that the G-control method allows fatigue testing at a constant range of energy release rates leading to a constant crack propagation rate....

  16. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography

    International Nuclear Information System (INIS)

    Morgeneyer, T.F.; Helfen, L.; Sinclair, I.; Proudhon, H.; Xu, F.; Baumbach, T.

    2011-01-01

    Ductile crack initiation and propagation within a naturally aged aluminium alloy sheet has been observed in situ via synchrotron radiation-computed laminography, a technique specifically adapted to three-dimensional imaging of thin objects that are laterally extended. Voids and intermetallic particles, and their subsequent evolution during ductile crack extension at different associated levels of stress triaxiality, were clearly observed within fracture coupons of a reasonable engineering length-scale, overcoming the conventional sample size limitation of computed tomography at high resolutions.

  17. Fatigue crack propagation in additively manufactured porous biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Amin Yavari, S.; Zadpoor, A.A.

    2017-01-01

    Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear,

  18. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, S.; Brincker, Rune

    An analytical model for load-displacement curves of unreinforced notched and un-notched concrete beams is presented. The load displacement-curve is obtained by combining two simple models. The fracture is modelled by a fictitious crack in an elastic layer around the mid-section of the beam. Outside...... the elastic layer the deformations are modelled by the Timoshenko beam theory. The state of stress in the elastic layer is assumed to depend bi-lineary on local elongation corresponding to a linear softening relation for the fictitious crack. For different beam size results from the analytical model...... is compared with results from a more accurate model based on numerical methods. The analytical model is shown to be in good agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. Several general results are obtained. It is shown that the point on the load...

  19. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  20. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model

    International Nuclear Information System (INIS)

    Raquet, O.

    1994-01-01

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl 2 aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a 'riddle' for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author)

  1. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  2. Experimental investigation into the crack propagation in multiphase tantalum carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Bradford C. [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States); Lee, HeeDong; Mogilevsky, Pavel [UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894 (United States); Weinberger, Christopher R. [Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523 (United States); Parthasarathy, Triplicane A. [UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894 (United States); Matson, Lawrence E. [Air Force Research Laboratory Materials & Manufacturing Directorate, Structural Material Division (AFRL/RXLN), 2230 Tenth St., Wright-Patterson AFB, OH 4543307817 (United States); Smith, Chase [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States); Thompson, Gregory B., E-mail: gthompson@eng.ua.edu [Department of Metallurgical & Materials Engineering, The University of Alabama, 301 7th Avenue, 116 Houser Hall, Tuscaloosa, AL 35487-0202 (United States)

    2017-05-17

    Tantalum carbide ceramics with high volume fractions of the ζ-Ta{sub 4}C{sub 3} phase have been shown to exhibit high fracture strength and toughness as compared to those in absence of this phase. In this work, we investigated how microcracks propagated in this these high toughness ceramics using Knoop and Vickers microindentation. The Knoop indentations demonstrated that cracking preferentially occurred parallel to the lath structure in ζ-Ta{sub 4}C{sub 3}; however shorter cracks did form between the laths when a sufficient driving force was present. The resulting crack path was tortuous providing direct evidence for toughening through crack deflection; however, the microscale nature of the work cannot rule out crack bridging as a toughening mechanism as well. Plasticity is also observed under the indents, but is likely a result of the high confining pressures that occurred during indentation allowing for plastic flow.

  3. Hydrogen induced crack propagation in metal under plain-strain deformation

    International Nuclear Information System (INIS)

    Fishgojt, A.V.; Kolachev, B.A.

    1981-01-01

    A model of subcritical crack propagation conditioned by the effect of dissolved hydrogen in the case of plane-strain deformation of high-strength materials, is suggested. It is supposed that diffusion takes place in the isotropic material and hydrogen diffuses in the region of tensile stress maximum before crack tip under the effect of the stress gradient. When hydrogen achieves the critical concentration, microcrack growth takes place. Values of crack growth rates experimentally obtained agree with values calculated according to the suggested formula. Calculation and experimental data on the Ti-6Al-4V alloy, are presented [ru

  4. Crack propagation tests on the fundamental structure under cyclic thermal transients. Results of nondestructive inspection for cracks

    International Nuclear Information System (INIS)

    Kobayashi, S.; Horikiri, M.

    2001-06-01

    This report shows the results of crack inspection in crack propagation tests that were carried out at the Air-cooling Thermal Transient Test Facility (ATTF). Test specimens were made of 304 type austenitic stainless steel, and they were the same cylindrical shape, 1,500 mm in height, 130 mm in outer diameter and 30 mm in thickness. And they had initial slits machined on inner surfaces. Firstly the specimens were heated up to 650degC in a furnace, then cooled by pressurized air blowing through the specimen for 90 seconds. These cyclic changes of temperature gradients in the wall of specimens were loaded. Specimens were tested for several years. The specimen No. CPTT-102 with machined two circumferential slits and two semi-elliptical slits was tested up to 10,000 cycles. And the specimen No. CPTT-103 with machined six semi-elliptical slits of different length respectively was tested up to 5,000 cycles. Cracks of specimens were inspected nondestructively for a giving cycle in these tests. Applied inspection methods were ultra-sonic testing, potential-drop method and inner surface observation. Ultra-sonic testing was carried out by applying the pulse-echo method. Potential-drop testing was carried out by measurement of localized constant direct current beyond cracks. Photographs of the inner surface of specimens were taken using a bore-scope. The results of ultra-sonic testing have been close to destructive test results. The depth of crack by the potential-drop method was almost corresponding to destructive test results, too. Photographs of the inner surface were synthesized by the computer, and connection between main crack and hair crack was observed. (author)

  5. Investigation of Cracks Found in Helicopter Longerons

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Theoretical and numerical studies of crack initiation and propagation in rock masses under freezing pressure and far-field stress

    Directory of Open Access Journals (Sweden)

    Yongshui Kang

    2014-10-01

    Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.

  7. Crack propagation and acoustic emission behavior of silver-added Dy123 bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.

    2006-01-01

    The relationship between the crack propagation process and acoustic emission (AE) signals was investigated in 3-point bending tests in which stress loading was applied parallel to the c-axis of U-notched specimens cut from Dy123 bulk superconductors with and without the addition of silver (Ag). The average bending stress of the specimens containing 10 mass% of Ag was approximately 20% higher than that of the specimens without the addition of Ag; the total AE energy of the former specimens was approximately fourfold greater than that of the latter specimens. However, cracks initiated in all of the specimens at a bending stress level of around 25 MPa, regardless of the presence or absence of Ag. An analysis of the amplitude distribution revealed that the failure mode was matrix failure in both types of specimens. Cracks in the low-strength specimens without Ag propagated between gas holes or along cleavage planes, and the AE event count and total AE energy were low. By contrast, the high-strength Ag-added specimens had fewer gas holes and cleavage cracks on account of their improved microstructure. In these samples, crack propagation orthogonal to the cleavage planes caused Ag particles to separate from the matrix and induced cleavage cracks. The addition of Ag presumably had the effect of inhibiting crack propagation, with the result that the AE event count and AE energy increased. The results of this study indicate that failure phenomena can be interpreted by evaluating the amplitude distribution, AE event count and total AE energy. This suggests that the AE method is also applicable to evaluations of bulk superconductors

  8. Study of mathematical models for fatigue crack propagation

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Mel'nichok, L.S.

    1982-01-01

    Complex composition of mathematical models for description of experimental diagrams of fatigue fracture (EDFF) for different steels and alloys from the view point of their correspondence to experimental data is conducted. 5 simple formulas for EDFF description have been chosen from the known ones. It is revealed that the analytical expression should contain 6 parameters for the main peculiarities of typical EDFF. This conclusion agrees with the fact that the 6-parametric formula provides the best quality of experimental data approximation. It should be also noted that the necessary number of parameters coincides with the number of all the standard characteristics (main and additional) of cyclic crack resistance of materials

  9. ANALYTICAL EVALUATION OF CRACK PROPAGATION FOR BULB HYDRAULIC TURBINES SHAFTS

    Directory of Open Access Journals (Sweden)

    Mircea O. POPOVICU

    2011-05-01

    Full Text Available The Hydroelectric Power Plants uses the regenerating energy of rivers. The hydraulic Bulb turbines running with low heads are excellent alternative energy sources. The shafts of these units present themselves as massive pieces, with cylindrical shape, manufactured from low-alloyed steels. The paper analyses the fatigue cracks occurring at some turbines in the neighbourhood of the connection zone between the shaft and the turbine runner flange. To obtain the tension state in this zone ANSIS and AFGROW computing programs were used. The number of running hours until the piercing of the shaft wall is established as a useful result.

  10. Finite-element blunt-crack propagation: a modified J-integral approach

    International Nuclear Information System (INIS)

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is the behavior of concrete structures subjected to high temperatures. The potential of concrete cracking is an important parameter which could significantly influence the safety assessment of thermally attacked concrete. A new modified J-integral approach for the blunt crack model has been derived to provide a general procedure to accurately predict the direction of crack growth. This formulation has been incorporated into the coupled heat transfer-stress analysis finite element code TEMP-STRESS. A description of the formulation is presented in this paper. Results for the problems of a Mode I and mixed mode crack in a plate using regular and slanted meshes subjected to uniaxial and shear loading are presented

  11. Temperature dependency of external stress corrosion crack propagation of 304 stainless steel

    International Nuclear Information System (INIS)

    Hayashibara, Hitoshi; Mizutani, Yoshihiro; Mayuzumi, Masami; Tani, Jun-ichi

    2010-01-01

    Temperature dependency of external stress corrosion cracking (ESCC) of 304 stainless steel was examined with CT specimens. Maximum ESCC propagation rates appeared in the early phase of ESCC propagation. ESCC propagation rates generally became smaller as testing time advance. Temperature dependency of maximum ESCC propagation rate was analyzed with Arrhenius plot, and apparent activation energy was similar to that of SCC in chloride solutions. Temperature dependency of macroscopic ESCC incubation time was different from that of ESCC propagation rate. Anodic current density of 304 stainless steel was also examined by anodic polarization measurement. Temperature dependency of critical current density of active state in artificial sea water solution of pH=1.3 was similar to that of ESCC propagation rate. (author)

  12. Extending the XFEM approach for fast transient three-dimensional crack propagation in ductile materials

    International Nuclear Information System (INIS)

    Pelee-De-Saint-Maurice, Romains

    2014-01-01

    This PhD thesis presents numerical methods is dedicated to three-dimensional crack propagation in the framework of fast explicit structural dynamics using EUROPLEXUS software (currently abbreviated EPX, co-owned by CEA and EC/JRC). An approach based on the well-known XFEM method is proposed, representing the crack through level set functions. Special care is given to the update of the level set functions from the propagation velocity expressed on the crack edge, since the most widely used method based on the solution of Hamilton-Jacobi equations lacks robustness for fast transient crack propagations, even when level-sets are computed on an auxiliary regular finite difference grid. It is therefore chosen instead to implement a 3D approximated geometric method to update both level-sets. As far as failure mechanics is concerned, a local stress criterion on the edge of the crack, first developed by Haboussa et al., gives characteristic parameters of the material fracture. Mechanical equivalent quantities (strain, deformation) around the crack front are weighted by a Gaussian function, which gives more importance to Gauss integration points located near the crack tip. The maximum of the equivalent stress tensor near the crack tip gives the direction of the crack, and the Kanninen equation gives the crack velocity. Besides, because of the discontinuous displacement field, the numerical integration for elements cut by the crack yields performance issues. Increasing the number of quadrature points is CPU time consuming and quite hard to handle if it is chosen to change the number of points only for elements in the vicinity of the crack. Another approach tested here consists in keeping constant the number and position of quadrature points and modifying their weights in cut elements to obtain an accurate integration of several reference discontinuous fields. The proposed methods are tested and validated on significant examples, both two-dimensional, to ensure the backward

  13. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  14. Third harmonic generation of shear horizontal guided waves propagation in plate-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-04-15

    The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

  15. Influence of the crack propagation rate in the obtaining opening and closing stress intensity factor by finite element method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2016-03-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique as criterion design. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyhole Specimen Test Load Histories by finite element analysis. The crack propagation simulation was based on release nodes at the minimum loads to minimize convergence problems. To understand the crack propagation processes under variable amplitude loading, retardation effects are discussed.

  16. Static and dynamic experimental study of strengthened reinforced short concrete corbel by using carbon fabrics, crack path in shear zone

    Directory of Open Access Journals (Sweden)

    I. Ivanova

    2015-10-01

    Full Text Available The paper presents an experimental analysis of tracking the path of the cracks and crack growth in strengthened or repair reinforced concrete short corbels bonded by carbon fiber fabrics under static and dynamic loads. The reinforced short concrete corbel is a used precast element, for industrial buildings and structures. In fact, their functioning interestingly unconventional is compared to classical beam type elements. Then the effects of bending and shearing are combined in this case. The horizontal reinforced steel is localized to resist to tensile strength induced in bending top and a transversal strength-absorbing contribution. The introduction of carbon fiber composite in the field of Civil Engineering allows to strengthen or repair reinforced concrete structures using adhesive. So the carbon fiber material has many advantages as its low weight, flexibility, easier handling and also interesting physicochemical properties. However maintenance of civil engineering works is to protect them by ensuring better sealing or limiting corrosion. Then strengthening is to repair structures by using bonding technique to compensate their rigidity loss and limit the cracking. This allows to improve their performance and durability. Bonding of composite material in tensile zone of corbel retrieves most tensile stress and allows the structure to extend their load-bearing capacity. The local behavior of the structure is measured by means of the extensometer technique based on electrical strain gauges. This technique allowed to measure strains of steel, carbon fiber fabrics and concrete. The results of this investigation showed that strengthened reinforced concrete corbel bonded by carbon fiber fabrics can improve the ultimate load to twice and stiffens less than a third. The ultimate load, strain and displacement of the specimen are compared to reference experimental model of monotonic and cyclic applied loads. The success of strengthening depends strongly

  17. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  18. Notch fatigue crack propagation - A consistent concept for calculating flawed service life

    International Nuclear Information System (INIS)

    Dankert, M.

    1999-01-01

    The research report presents a consistent concept of elastic-plastic fatigue fracture mechanics, to be used for numerical description of crack initiation and propagation behaviour within and out of notched areas of circular notched specimens for Woehler tests, two-phase fatigue tests and tests under service conditions. It is shown that a fracture-mechanics approach yields results capable of describing the load history over the whole service life of a structural member. A J-integral-related crack propagation model is derived that takes into account the crack opening and closure behaviour. The model is based on specially developed formulas, algorithms and approximation formulas required for description of crack opening and closure behaviour as well as calculation of the stress intensity factor K and the J-integral of cracks at notches. The values relating to crack opening were compared with experimental data, and those describing the stress intensity factor K and the J-integrals with 2D and 3D elastic-plastic FE calculations. Good and very good agreement of results was achieved. (orig./CB) [de

  19. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    Science.gov (United States)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  20. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Cimini Junior, Carlos Alberto; Godefroid, Leonardo Barbosa

    2005-01-01

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  1. Influence of stress relieve heat treatment on fatigue crack propagation in structural steel resistant to atmospheric corrosion welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Rabello, Emerson Giovani [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: gpm@cdtn.br; jjv@cdtn.br; egr@cdtn.br; Cimini Junior, Carlos Alberto[Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: cimini@demet.ufmg.br; Godefroid, Leonardo Barbosa [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Metalurgia]. E-mails: leonardo@demet.em.ufop.br

    2007-07-01

    In this work, the influence of stress relieve heat treatment (SRHT) on the fatigue crack propagation in USI-SAC 50 structural welded joints at the heat affected zone (HAZ) region was studied. Hardness measurements before and after the SRHT were made and crack propagation tests in specimens as welded (AW) and in specimens that were submitted to SRHT, which were accomplished. A reduction in hardness at the regions of HAZ and melted zone (MZ) after the SRHT were observed. It were also verified that the crack propagation rates (da/dN) versus DK on the specimens AW presented regions of retardation on the crack propagation rate, and in the specimens that were submitted to SRHT the crack propagation rate were homogeneous. (author)

  2. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method

    OpenAIRE

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-01-01

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack...

  3. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.

    Science.gov (United States)

    Dong, X D; Ruse, N D

    2003-07-01

    The human tooth structures should be understood clearly to improve clinically used restorative materials. The dentinoenamel junction (DEJ) plays a key role in resisting crack propagation in teeth. The aim of this study was to determine the fracture toughness of the enamel-DEJ-dentin complex and to investigate the influence of the DEJ on the fatigue crack propagation path across it by characterizing fatigue-fractured enamel-DEJ-dentin complexes using optical and scanning electron microscopy. The results of this study showed that the fracture toughness of the enamel-DEJ-dentin complex was 1.50 +/- 0.28 Mpa x m(1/2). Based on the results of this investigation, it was concluded that the DEJ complex played a critical role in resisting crack propagation from enamel into dentin. The DEJ complex is, approximately, a 100 to 150 microm broad region at the interface between enamel and dentin. The toughening mechanism of the DEJ complex may be explained by the fact that crack paths were deflected as cracks propagated across it. Understanding the mechanism of crack deflection could help in improving dentin-composite as well as ceramic-cement interfacial qualities with the aim to decrease the risk of clinical failure of restorations. Both can be viewed as being composed from a layer of material of high strength and hardness bonded to a softer but tougher substratum (dentin). The bonding agent or the luting cement layer may play the critical role of the DEJ in improving the strength of these restorations in clinical situations. Copyright 2003 Wiley Periodicals, Inc.

  4. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  5. Crack propagation behavior of Ti-5Ta alloy in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    1999-05-01

    The crack propagation behavior of Ti-5Ta alloy both in boiling nitric acid solution and in air at room temperature has been investigated. The crack growth rate of Ti-5Ta alloy was measured as a function of the stress intensity factor range. After the tests, the fracture surface morphology was observed by a scanning electron microscope and the crystallographic orientation was examined by X-ray diffraction analysis. Difference in the crack growth behavior was not observed in both environments. The crack growth rate in boiling nitric acid solution was similar to that in air at room temperature. Moreover, the crystallographic orientation of Ti-5Ta alloy had little effect on the fatigue behavior, because this alloy does not have the susceptibility to SCC in nitric acid solution. (author)

  6. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  7. Crack propagation behaviour in stainless steel AISI 316L at elevated temperatures under static and cyclic loading

    International Nuclear Information System (INIS)

    Lange, H.

    1991-01-01

    Experimental investigations of crack growth under creep and creep-fatigue conditions are presented. The experiments were performed with the austenitic steel AISI 316L, that will be used in fast breeder reactors. A comparison of crack propagation behaviour at temperatures of T = 550deg C and T = 700deg C in common through-thickness cracked specimens and in plates containing surface cracks is carried out by application of several fracture mechanics parameters. The quantitative description of crack initiation times and crack velocities is persued particularly. The propagation rate of one-dimensional cracks under cyclic loading conditions at T = 550deg C is also treated with fracture mechanical methods. The influence of the hold periods on crack speed is discussed. (orig.) [de

  8. Unstable propagation behavior of a ductile crack in SUS-304 stainless steel under high compliance tensile loading

    International Nuclear Information System (INIS)

    Tomoda, Yoshio

    1981-01-01

    In relation to the safe maintenance of nuclear power plants, it is necessary to prevent reactor coolant pipings from burst type failure caused by the unstable propagation of defects and cracks, such as stress corrosion cracking and fatigue cracks. In ductile materials, crack propagation is stable in tensile loading under fixed grip condition, when a specimen is controlled to deform in proportion to the increase of tensile load. However, it has been known that the instability of ductile cracks occurs after tensile load reached the maximum, especially under constant loading condition arising in the loading devices with high compliance or low tensile rigidity. In order to confirm the reliability of SUS 304 stainless pipes subjected to SCC, the crack propagation behavior was examined with the specimens having center cracks, using both testing machines with high compliance and low compliance. The instability of ductile cracks and the propagation velocity of unstable cracks were analyzed, and the calculated results were compated with the experimental results. Not only the compliance of testing machines but also the conditions of specimens affected the propagation of cracks. (Kako, I.)

  9. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  10. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  11. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  12. Influence of metallurgical variables on the velocity of crack propagation by delayed hydride cracking (DHC) in Zr-Nb

    International Nuclear Information System (INIS)

    Cirimelo, Pablo G.

    2002-01-01

    In the present thesis work the propagation of cracks due to the delayed hydride cracking (DHC) mechanism in Zr-2,5 % Nb pressure tubes is analyzed. For this purpose two different type of tubes of different origin were used: CANDU type (Canada) and RBMK type (Russia). The analyzed figurative parameters were: critical temperature Tc (highest temperature at which DHC phenomenon could occur) and crack propagation velocity by DHC, Vp, in the axial direction. The influence of the memory effect (phenomenon proper of hydride precipitation) was studied, as well as the type of cracks (fatigue or DHC) on Tc. However, no influence of these effects was found. Instead, it was found that Tc varies with the hydrogen content of the specimen, in agreement with previous works. Samples obtained from tubes with different microstructures and similar amounts of hydrogen presented similar Tc values. It was also shown that DHC propagation could occur without precipitated hydrides in the volume. Besides, Vp determinations were performed in temperature ranges and hydrogen amounts of technological importance. Two techniques were set up in order to determine Vp at different temperatures in a single specimen, thus saving time and material. An Arrhenius type variation was found for Vp vs. temperature, for temperatures lower than that corresponding to precipitation. For higher temperatures, but lower than the critical one, velocity decreases with temperature. Determination of Vp vs. temperature was performed for the two above-mentioned materials, whose microstructure and hardness were previously characterized. For RBMK material, which presents a spheroidal β phase, the velocity was lower than the corresponding to CANDU material, in which β phase is formed by continuous plates. In addition, yield stress σ Y is lower in RBMK material, which presents lower Vp. However, it is considered that the effect of microstructure is more important on Vp since it highly affects diffusion of hydrogen from the

  13. Numerical analysis of the influence of liquid on propagation of a rolling contact fatigue crack

    Directory of Open Access Journals (Sweden)

    M. Olzak

    2017-10-01

    Full Text Available Numerical investigations of the propagation of rolling contact fatigue crack filled by the liquid have been conducted. Two models of fluid crack interaction have been considered. In the first model called 䖓hydrostatic� the assumption of incompressible, inviscid and weightless liquid was accepted. It was also assumed that due to the wheel load the trapped liquid could not get outside the crack and its volume remained constant until the rising pressure would open up the crack mouth again. On this assumption the analysis has a steady-state character. In the second model it has been assumed that the crack is filled by the viscous, incompressible fluid and the fluid motion as well as the resulting pressure distribution can be represented by one-dimensional form of the Reynolds equation. The method for solving the problem of the coupled motion of liquid and crack faces has been developed and series of calculation were made. The method has been employed for the predicting of crack deformation in the course of wheel rolling

  14. Fracture predictions for cracks exposed to superimposed normal and shear stresses

    International Nuclear Information System (INIS)

    Richard, H.A.

    1985-01-01

    The author developed a special device and a fracture mechanics specimen and proposed a procedure for determining the fracture toughness when Mixed Mode and Mode II stresses are applied. This device makes it possible to generate pure normal stresses, superimposed normal and shearing stresses as well as pure shearing stresses in the cross section of the crack in the specimen, as desired. The so-called CTS fracture mechanics specimen has an edge crack. The load is transferred statically determind from the device to the specimen by means of six studs altogether. The experiments described, which were carried out with specimens made of the brittle materials PMMA (Plexiglas) and Araldit B, clearly show that it is possible to evaluate the validity of the individual fracture hypotheses by suitable experiments. It is also found that the fracture behaviour of different materials varies considerably both in quality and quantity. In conclusion, a practice-oriented fracture criterion is indicated which enables a practice-conforming evaluation of Mixed-Mode crack problems, as is shown by way of examples. (orig./HP) [de

  15. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR)

    International Nuclear Information System (INIS)

    Fuentes C, P.

    2003-01-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O 2 ; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  16. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  17. Fatique crack propagation in bimetallic welds influence of residual stresses and metallurgical look

    International Nuclear Information System (INIS)

    Zahouane, A.I.

    1988-06-01

    Generally, in nuclear power plants, many components made of austenitic stainless steels are very often replaced by low alloyed steels cladded with stainless steels, mainly for economical reasons. Due to cracks existing at the limit of the two kinds of steel, it is interesting to try to understand how they appear. Residual stresses are generally identified as one of the factors which act to produce these cracks. Measurements of such residual stresses have been performed, using the hole drilling method (drilling of a hole at the center of a gauge roset stuck at the surface of the material). Owing to the obtained results, it is possible to explain the decrease in the crack propagation rate observed, on fatigue crack growth test performed on specimens taken in the transition ferritic/austenitic zone. The stress intensity factor due to the residual stresses is valued by weight function method. It is possible to explain qualitatively the phenomena observed under cyclic loading when using the obtained value of this stress intensity factor. A more quantitative approach based on the use of an efficient stress intensity factor, allow to better describe the effect of residual stresses on the fatigue crack propagation in bimetallic welds [fr

  18. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  19. System for nucleation and propagation of fatigue cracks on SE(B) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Nirlando Antonio; Gomes Junyor, Jose Onesimo; Reis, Emil; Vilela, Jefferson Jose, E-mail: nar@cdtn.br, E-mail: ze_onezo@hotmail.com, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Moura, Cassio Melo, E-mail: cassio.moura@gerdau.com.br [Gerdau S.A., Ouro Branco, MG (Brazil)

    2015-07-01

    The degree of safety that a structural component has against catastrophic fracture in service can be obtained from fracture mechanics parameters. The master curve could be used for integrity evaluation in pressure vessel of nuclear power plant. The pre-crack specimens are used in this evaluation. The tests based on ASTM E 8M and ASTM E 647 standards to determination of material properties related to fracture mechanics, most often performed in a servo-hydraulic drive equipment, are time consuming and costly. This paper presents the development of a system for nucleation and propagation of fatigue cracks on SE(B) specimens. The operating principle consists of a cyclic loading, concentrated in the center of the specimen, transmitted and controlled by an eccentric mechanism. The main contribution of this work is the low-cost technology in the production of fatigue pre-crack, and the possibility of performing the nucleation and propagation of the pre-crack required for obtaining the J{sub IC} and CTOD parameters. The experimental results satisfied expectations with respect to the plastic deformation in the crack tip and met the requirements of the standards. (author)

  20. System for nucleation and propagation of fatigue cracks on SE(B) specimens

    International Nuclear Information System (INIS)

    Rocha, Nirlando Antonio; Gomes Junyor, Jose Onesimo; Reis, Emil; Vilela, Jefferson Jose; Moura, Cassio Melo

    2015-01-01

    The degree of safety that a structural component has against catastrophic fracture in service can be obtained from fracture mechanics parameters. The master curve could be used for integrity evaluation in pressure vessel of nuclear power plant. The pre-crack specimens are used in this evaluation. The tests based on ASTM E 8M and ASTM E 647 standards to determination of material properties related to fracture mechanics, most often performed in a servo-hydraulic drive equipment, are time consuming and costly. This paper presents the development of a system for nucleation and propagation of fatigue cracks on SE(B) specimens. The operating principle consists of a cyclic loading, concentrated in the center of the specimen, transmitted and controlled by an eccentric mechanism. The main contribution of this work is the low-cost technology in the production of fatigue pre-crack, and the possibility of performing the nucleation and propagation of the pre-crack required for obtaining the J IC and CTOD parameters. The experimental results satisfied expectations with respect to the plastic deformation in the crack tip and met the requirements of the standards. (author)

  1. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  2. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Murakawa, H. [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  3. Evaluation method for ductile crack propagation in pre-strained plates; Yohizumizai no ensei kiretsu denpa hyokaho

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y; Murakawa, H [Osaka Univ., Osaka (Japan). Welding Research Inst.; Tanigawa, M [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-31

    In order to investigate an effect of the plastic deformation, which was generated on ship side outer platings subjected to collision load before crack initiation, on the crack propagation behavior, crack propagation experiments using pre-strained specimens and simulation analysis by means of FEM method were carried out, to discuss about the practical simulation analysis method. As a result of the crack propagation experiments using pre-strained center notched plate specimens, a phenomenon where the crack is apt to propagate due to the pre-strains was confirmed, and measured data of crack tip opening angles were obtained. A method was proposed, in which the critical crack tip opening angle values are corrected by considering the difference between the crack shapes obtained from the FEM analysis model and actually measured, and its effectiveness was confirmed. The finite element size effect was also examined. A method using an equivalent plastic strain as the crack propagation condition was shown to determine the relationship between the element size and the critical value of equivalent plastic strain. 5 refs., 21 figs., 4 tabs.

  4. Incorporating plastic collapse into the linear elastic fracture mechanics methodology in determining crack propagation lifetimes

    International Nuclear Information System (INIS)

    Glasgow, B.B.; Wolfer, W.G.

    1986-01-01

    Crack growth can result in a breech of a pressure boundary causing coolant loss or in total structural failure. This paper discusses brittle and plastic failure in terms of a unified structural model called the Two Criteria model. The model takes into account the flow stress of the material as well as the fracture toughness. Our results indicate that for fusion reactor first wall structures, ferritic steel is better able to resist crack propagation and subsequent structural failure than 316 stainless steel under the same wall loadings and geometry

  5. Analysis of interfacial crack propagation under asymmetric loading in anisotropic materials

    International Nuclear Information System (INIS)

    Pryce, L; Mishuris, G; Morini, L

    2013-01-01

    This paper considers a steady-state crack propagating along an interface between dissimilar orthotropic materials under an asymmetric load. Although most of the known results so far deal with symmetric loading, it has been shown recently that a significant asymmetry in the applied loading may lead to a pronounced effect in terms of the values of the SIFs. The aim of the paper is to extend these results from the static case to a moving crack. In particular, we show the significance of the asymmetry of the loading for computing the energy release rate

  6. Fatigue crack growth in mode II of adhesively joined composites

    DEFF Research Database (Denmark)

    Biel, Anders; Toftegaard, Helmuth Langmaack

    2017-01-01

    , experiments are performed to derive material data for a crack propagation in shear i.e. in mode II. The shear loading of the crack is achieved by use of double cantilever beam specimens loaded with uneven bending moments. The experiments are performed under a constant cyclic displacement. An initial mode I...... loading is used to make the crack start in the adhesive. The crack length is measured using a load synchronized camera. Due to the shear loading the crack deviates from the adhesive layer into the laminate. A stable crack propagation is detected in the laminate. No influence have been detected due...... to an increasing crack length. It is also observed that the crack is trapped in the laminate; if the loading is changed to mode I the crack continues to propagate in the laminate....

  7. Was Mesopithecus a seed eating colobine? Assessment of cracking, grinding and shearing ability using dental topography.

    Science.gov (United States)

    Thiery, Ghislain; Gillet, Geoffrey; Lazzari, Vincent; Merceron, Gildas; Guy, Franck

    2017-11-01

    Extant colobine monkeys have been historically described as specialized folivores. However, reports on both their behavior and dental metrics tend to ascribe a more varied diet to them. In particular, several species, such as Pygathrix nemaeus and Rhinopithecus roxellana, are dedicated seasonal seed eaters. They use the lophs on their postcanine teeth to crack open the hard endocarp that protects some seeds. This raises the question of whether the bilophodont occlusal pattern of colobine monkeys first evolved as an adaptation to folivory or sclerocarpic foraging. Here, we assess the sclerocarpic foraging ability of the oldest European fossil colobine monkey, Mesopithecus. We use computed microtomograpy to investigate the three-dimensional (3D) dental topography and enamel thickness of upper second molars ascribed to the late Miocene species Mesopithecus pentelicus from Pikermi, Greece. We compare M. pentelicus to a sample of extant Old World monkeys encompassing a wide range of diets. Furthermore, we combine classic dietary categories such as folivory with alternative categories that score the ability to crack, grind and shear mechanically challenging food. The 3D dental topography of M. pentelicus predicts an ability to crack and grind hard foods such as seeds. This is consistent with previous results obtained from dental microwear analysis. However, its relatively thin enamel groups M. pentelicus with other folivorous cercopithecids. We interpret this as a morphological trade-off between the necessity to avoid tooth failure resulting from hard food consumption and the need to process a high amount of leafy material. Our study demonstrates that categories evaluating the cracking, grinding or shearing ability, traditional dietary categories, and dental topography combine well to make a powerful tool for the investigation of diet in extant and extinct primates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking

    International Nuclear Information System (INIS)

    Musienko, Andrey; Cailletaud, Georges

    2009-01-01

    The motivation of the study is the development of a coupled approach able to account for the interaction between environment and plasticity in a polycrystalline material. The paper recalls first the constitutive equations used to describe the behavior of the grain core and of the grain boundary (GB). The procedure that is applied to generate synthetic polycrystalline aggregates with an explicit representation of the grain boundary area by 2D or 3D finite elements is then described. The approach is applied to the modeling of iodine-assisted stress corrosion cracking (IASCC) in Zircaloy tubes used in nuclear power plants.

  9. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  10. A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-04-15

    In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

  11. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    Science.gov (United States)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  12. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  13. Fatigue crack propagation of super duplex stainless steel and time-frequency analysis of acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Kee; Nam, Ki Woo; Kang, Chang Yong; Do, Jae Yoon

    2000-01-01

    On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at 1200 deg. C had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was 200∼300 kHz having no correlation with heat treatment and crack length, and 500 kHz was obtained by dimple and separate of inclusion

  14. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method

    International Nuclear Information System (INIS)

    Menouillard, T.

    2007-09-01

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  15. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.

    Science.gov (United States)

    Mitov, Gergo; Lohbauer, Ulrich; Rabbo, Mohammad Abed; Petschelt, Anselm; Pospiech, Peter

    2008-02-01

    The mechanical properties and slow crack propapagation of the all-porcelain system Empress 2 (Ivoclar Vivadent, Schaan, Liechtenstein) with its framework compound Empress 2 and the veneering compounds "Empress 2 and Eris were examined. For all materials, the fracture strength, Weibull parameter and elastic moduli were experimentally determined in a four-point-bending test. For the components of the Empress 2 system, the fracture toughness K(IC) was determined, and the crack propagation parameters n and A were determined in a dynamic fatigue method. Using these data, life data analysis was performed and lifetime diagrams were produced. The development of strength under static fatigue conditions was calculated for a period of 5 years. The newly developed veneering ceramic Eris showed a higher fracture strength (sigma(0)=66.1 MPa) at a failure probability of P(F)=63.2%, and crack growth parameters (n=12.9) compared to the veneering ceramic Empress 2 (sigma(0)=60.3 MPa). For Empress 2 veneer the crack propagation parameter n could only be estimated (n=9.5). This is reflected in the prognosis of long-term resistance presented in the SPT diagrams. For all materials investigated, the Weibull parameter m values (Empress 2 framework m=4.6; Empress 2 veneer m=7.9; Eris m=6.9) were much lower than the minimum demanded by the literature (m=15). The initial fracture strength value alone is not sufficient to characterize the mechanical resistance of ceramic materials, since their stressability is time-dependent. Knowledge about the crack propagation parameters n and A are of great importance when preclinically predicting the clinical suitability of dental ceramic materials. The use of SPT diagrams for lifetime calculation of ceramic materials is a valuable method for comparing different ceramics.

  16. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  17. Propagation of cracks by stress corrosion in conditions of BWR type reactor

    International Nuclear Information System (INIS)

    Merino C, F.J.; Fuentes C, P.

    2004-01-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  18. Results from ultrasonic wave inspections for the detection and dimensioning of fatigue crack propagation

    International Nuclear Information System (INIS)

    Gondard, C.

    1989-01-01

    The results from a study performed on the fatigue crack propagation in PWR vessels are discussed. The purpose of the investigation is to establish a relationship between the length, the place of a defect and the structure's residual life. The tests and the 6 inspections carried out during 5 years are reported. The results show that a defect traversing the structure is expected at the end 1989. The large amount of data allowed a statistical analysis showing the reproductibility of the method [fr

  19. Study of crack propagation velocity in steel tanks of PWR type reactor

    International Nuclear Information System (INIS)

    Amzallac, C.; Bernard, J.L.; Slama, G.

    1983-05-01

    Description and results of a serie of tests carried out on crack propagation velocity of steels in PWR environment (pressurized high temperature water), in order to examine the effects of metallurgical parameters such as chemical composition of steel, especially sulfur and carbon content, and steel type (laminate or forged steels), effects of mechanical parameters such as loading ratio, cycle form, frequency and application mode of loads and of chemical parameters (anodal dissolution or fatigue with hydrogen) [fr

  20. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Seitl, Stanislav; Knésl, Zdeněk

    2006-01-01

    Roč. 37, 1-2 (2006), s. 51-57 ISSN 0927-0256 R&D Projects: GA ČR GA101/03/0331; GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue crack propagation rate * Constraint * Two-parameter fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.104, year: 2006

  1. Energy budget and propagation of faults via shearing and opening using work optimization

    Science.gov (United States)

    Madden, Elizabeth H.; Cooke, Michele L.; McBeck, Jessica

    2017-08-01

    We present numerical models of faults propagating by work optimization in a homogeneous medium. These simulations allow quantification and comparison of the energy budgets of fault growth by shear versus tensile failure. The energy consumed by growth of a fault, Wgrow, propagating by in-line shearing is 76% of the total energy associated with that growth, while 24% is spent on frictional work during propagation. Wgrow for a fault propagating into intact rock by tensile failure, at an angle to the parent fault, consumes 60% of the work budget, while only 6% is consumed by frictional work associated with propagation. Following the conservation of energy, this leaves 34% of the energy budget available for other activities and suggests that out-of-plane propagation of faults in Earth's crust may release energy for other processes, such as permanent damage zone formation or rupture acceleration. Comparison of these estimates of Wgrow with estimates of the critical energy release rate and earthquake fracture energy at several scales underscores their theoretical similarities and their dependence on stress drop.

  2. Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression

    Science.gov (United States)

    Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security

  3. 3D Mapping Of Density And Crack Propagation Through Sintering Of Catalysis Tablets By X-Ray Tomography

    DEFF Research Database (Denmark)

    Jacobsen, Hjalte Sylvest; Puig-Molina, A.; Dalskov, N.

    2016-01-01

    sintering of the rejected tabletized support material are studied by 3D X-ray tomography. This is a powerful technique, which due to its nondestructive nature is suitable to study the development of internal cracks in the tablets during sintering. Cracks could be identified in the green tablet (before...... properly, cracks may arise and propagate during the sintering of the tablets. This can lead to weak sintered tablets that get rejected in the quality control. For this work, crack-containing samples of rejected tabletized support were provided. The formation, growth and closure of internal cracks during...

  4. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Denis, E-mail: thibault.denis@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Bocher, Philippe, E-mail: philippe.bocher@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Thomas, Marc, E-mail: marc.thomas@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Lanteigne, Jacques, E-mail: lanteigne.jacques@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Hovington, Pierre, E-mail: hovington.pierre@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Robichaud, Patrice, E-mail: patrice.robichaud@riotinto.com [Centre de recherche et de developpement Arvida (CRDA), 1955, boul. Mellon, Jonquiere, Quebec, G7S 4K8 (Canada)

    2011-08-15

    Highlights: {yields} Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. {yields} Low cycle fatigue tests showed that this transformation to martensite is gradual. {yields} XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  5. Assessment of damage localization based on spatial filters using numerical crack propagation models

    International Nuclear Information System (INIS)

    Deraemaeker, Arnaud

    2011-01-01

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  6. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    International Nuclear Information System (INIS)

    Thibault, Denis; Bocher, Philippe; Thomas, Marc; Lanteigne, Jacques; Hovington, Pierre; Robichaud, Patrice

    2011-01-01

    Highlights: → Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. → Low cycle fatigue tests showed that this transformation to martensite is gradual. → XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  7. Effect of residual stress in layered ceramic microcomposites on crack propagation during fracture

    International Nuclear Information System (INIS)

    Tomaszewski, H.; Strzeszewski, J.; Gebicki, W.

    1998-01-01

    Laminar composites, containing layers of Y-ZrO 2 and either Al 2 O 3 or a mixture of Al 2 O 3 and ZrO 2 have been fabricated using a sequential centrifuging technique of water solutions containing of suspended particles. Controlled crack growth experiments with notched beams of composites were done and showed the significant effect of barrier layer thickness and composition of the crack propagation path during fracture. Distinct crack deflection in alumina layers was observed. The increase of crack deflection angle with the alumina layer thickness was also found. In the case of the barrier layer made of mixture, crack deflection did not occur independently on layer thickness. The observed changes have been correlated with the radial distribution of residual stresses in barrier layers created during cooling of sintered composites from fabrication temperature. The stress found were the result of the differences in the thermal expansion and sintering shrinkage of alumina and zirconia and the crystallographically anisotropic thermal expansion of the alumina. The residual stress distribution has been measured by piezo-spectroscopy based on the optical fluorescence of Cr + dopants in alumina. (author)

  8. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    International Nuclear Information System (INIS)

    Haddad Andalag, R.E.

    1993-01-01

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  9. Dynamic steady-state analysis of crack propagation in rubber-like solids using an extended finite element method

    Science.gov (United States)

    Kroon, Martin

    2012-01-01

    In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.

  10. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  11. The effect of convection and shear on the damping and propagation of pressure waves

    Science.gov (United States)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection

  12. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  13. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  14. Initiation and propagation of rebar corrosion in carbonated and cracked concrete

    International Nuclear Information System (INIS)

    Ghantous, Rita-Maria

    2016-01-01

    This thesis aims to study the carbonation-induced corrosion initiation and propagation in cracked concrete under different conditions. It is performed in the framework of concrete ageing management of cooling towers of Electricity of France (EDF) nuclear power plants. Indeed some of them can be affected by cracks which may promote the carbonation of the concrete surrounding the cracks and induce a rapid reinforcement corrosion initiation in the carbonated area. Firstly, cracks representative of those encountered in the cooling towers concrete are reproduced on laboratory specimens using the three point bending test. Three crack openings are obtained (100 μm, 300 μm and 500 μm). Cracked specimens are thereafter exposed to accelerated carbonation for two aims. First for the acceleration of the concrete neutralization phase which ensure the suitable thermodynamic conditions for active corrosion initiation. Second, for the estimation of the length of the mechanically damaged steel/binder interface supposed to be comparable to the carbonated length along the rebar on both sides of the crack. It is found that carbonation at 50% CO_2 is not suitable here because it overestimated the damaged zone length, maybe due to enhanced carbonation shrinkage. The second part aims to investigate the corrosion initiation and propagation phases while varying several parameters. For this purpose, cracked and carbonated specimens are subjected to corrosion under different exposure conditions. Specimens showing different crack widths and different types of binder are corroded in a reference test in which 30 minutes of rain occurs each 3 days at 20 C. Additionally, some corrosion tests are realized under raining/drying cycles for 3 minutes rain, other at 40 C and other in natural environmental conditions. Moreover, some cracked specimens are exposed in different orientations with respect to rain. Furthermore, specimens with different bars locations are prepared in order to investigate

  15. Derivation of a general three-dimensional crack-propagation law: A generalization of the principle of local symmetry

    DEFF Research Database (Denmark)

    Hodgdon, Jennifer A.; Sethna, James P.

    1993-01-01

    We derive a general crack-propagation law for slow brittle cracking, in two and three dimensions, using discrete symmetries, gauge invariance, and gradient expansions. Our derivation provides explicit justification for the ‘‘principle of local symmetry,’’ which has been used extensively to describe...

  16. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria

    Czech Academy of Sciences Publication Activity Database

    Malíková, L.; Veselý, V.; Seitl, Stanislav

    2015-01-01

    Roč. 9, č. 33 (2015), s. 25-32 ISSN 1971-8993 Institutional support: RVO:68081723 Keywords : Near-crack-tip fields * Williams expansion * Crack propagation direction * Multi-parameter fracture criteria * Finite element analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics

  17. Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation

    Directory of Open Access Journals (Sweden)

    Tianjun Zhang

    2017-10-01

    Full Text Available For studying the law of crack propagation around a gas drilling borehole, an experimental study about coal with a cavity under uniaxial compression was carried out, with the digital speckle correlation method capturing the images of coal failure. A sequence of coal failure images and the full-field strain of failure were obtained. The strain softening characteristic was shown by the curve. A method of curve dividing—named fitting-damaging—was proposed, combining the least square fitting residual norm and damage fraction. By this method, the five stages and four key points of a stress-strain curve were defined. Then, the full-field stress was inverted by means of the theory of elasticity and the adjacent element weight sharing model. The results show that σci was 30.28–41.71 percent of σf and σcd was 83.08–87.34 percent of σf, calculated by the fitting-damaging method, agreeing with former research. The results of stress inversion showed that under a low stress level (0.15 σf < σ < 0.5 σf, microdamage evolving into plastic failure later was formed around the cavity. Under a high stress level (0.5 σf < σ < 0.85 σf, the region of stress concentration suddenly crazed and formed a brittle crack. When σ ≥ 0.85 σf, the crack was developing, crack lines were connecting with each other, and the coal finally failed. The outcome of the stress inversion was completely concomitant with the images of crack propagation. Additionally, the stress around the cavity was able to be calculated accurately.

  18. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae-Ho [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of); Choi, Myung-Je [Korea Aerospace Industry, Sacheon (Korea, Republic of); Goto, Masahiro [Department of Mechanical Engineering, Oita University, Oita (Japan); Lee, Hong-Chul [Republic of Korea Air Force (Korea, Republic of); Kim, Sangshik, E-mail: sang@gnu.ac.kr [Department of Materials Science and Engineering, RECAPT, Gyeongsang National University, Chinju (Korea, Republic of)

    2014-09-15

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanism of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.

  19. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  20. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    International Nuclear Information System (INIS)

    James, L.A.

    1996-01-01

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ''critical'' concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors

  1. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    International Nuclear Information System (INIS)

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  2. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gue Wan; Cho, Jae Ung [Kongju Univ., Kongju (Korea, Republic of); Cho, Chong Du [Inha Univ., Incheon (Korea, Republic of)

    2016-12-15

    CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of 60°.This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

  3. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle

    International Nuclear Information System (INIS)

    Hwang, Gue Wan; Cho, Jae Ung; Cho, Chong Du

    2016-01-01

    CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of 60°.This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens

  4. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].

    Science.gov (United States)

    Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu

    2014-10-01

    This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.

  5. Dislocation arrangement in the plastic zone for propagating cracks in nickel

    International Nuclear Information System (INIS)

    Kobayashi, S.; Ohr, S.M.

    1985-01-01

    Since nickel is a metal of high stacking fault energy, it is of interest to study the arrangement of dislocations in the plastic zone for propagating cracks and to compare the results with those found in metals of low stacking fault energy. It has been found that two distinct distributions of dislocations in the plastic zone are associated with cracks in nickel. In one of these, the plastic zone appeared as a thin ribbon and consisted of a number of partial dislocations with stacking fault fringes. From contrast analysis and stereoscopic observations, the crack was found to be approximately mode III type, and the plane of the plastic zone was identified as (111). The crack geometry was very similar to that observed in metals of low stacking fault energy, namely, stainless steel and copper. The second type of plastic zone observed was not in the form of a thin ribbon; that is, the dislocations in the plastic zone were not split into partial dislocations. Since the dislocations were not split, they cross-slipped readily from the original slip plane and formed a broad plastic zone

  6. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel

    Energy Technology Data Exchange (ETDEWEB)

    Chongchong, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Lihong, Dong, E-mail: lihong.dong@126.com [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Haidou, Wang [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Guolu, Li [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Binshi, Xu [National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China)

    2016-05-01

    Monitoring fatigue crack propagation behavior of ferromagnetic components is very important. In this paper, the tension–tension fatigue tests of center cracked tension (CCT) specimens were carried out; the variation regularity of both tangential and normal components of magnetic signals during fatigue process were investigated. The results showed that the initial abnormal signals which appeared at the notch were reversed after cyclic loading. The abnormal magnetic signals became more significant with the increase of fatigue cycles and reversed again after failure. The characteristic parameters, i.e., the peak value of tangential component, B{sub tp}, and maximum gradient value of normal component, K{sub m}, showed similar variation trends during the fatigue process, which can be divided into three different stages. An approximate linear relationship was found between the characteristic parameters and fatigue crack length 2a. The feasibility of predicting the fatigue crack propagation using the abnormal magnetic signals was discussed. What's more, the variation and distribution of the magnetic signals were also analyzed based on the theory of magnetic charge. - Highlights: • A novel and passive NDT method, i.e. MMMT method, is proposed. • Both tangential and normal components of magnetic signals were investigated. • The prediction of crack propagation by abnormal magnetic signals was discussed. • A linear relationship was found between the parameters and fatigue crack length 2a. • The parameters can be potentially used to evaluate the crack propagation state.

  7. Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment

    Directory of Open Access Journals (Sweden)

    Dongyang Li

    2017-01-01

    Full Text Available Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC beams strengthened with a new type carbon fiber reinforced polymer (CFRP named as carbon fiber laminate (CFL subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H environment pretreatment and indoor atmosphere (23°C, 78% R · H to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests.

  8. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    Science.gov (United States)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  9. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    International Nuclear Information System (INIS)

    Min, Zhang; Xi-ping, Song; Long, Yu; Hong-liang, Li; Ze-hui, Jiao; Hui-chen, Yu

    2015-01-01

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K max . Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C

  10. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C

    Energy Technology Data Exchange (ETDEWEB)

    Min, Zhang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xi-ping, Song, E-mail: xpsong@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Long, Yu; Hong-liang, Li [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Ze-hui, Jiao; Hui-chen, Yu [National Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-01-12

    In this paper, the fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy with nearly lamellar microstructure was studied by in situ scanning electron microscope observation at 750 °C. Dog-bone shaped specimens with a single-edge notch were used in the test. The results showed that the fatigue crack initiated first at the central portion of the notch, and then shifted to the edge portion. As the cycle numbers went on increasing, these cracks joined together and formed a main fatigue crack, which could propagate along the surface of the specimen. During the fatigue crack propagation two or three propagation stages were found depending on the microstructure of the crack tip. When the fatigue crack was parallel to the lamellar laths, it exhibited the rapid, steady and accelerated propagation stages successively, while when the fatigue crack was perpendicular to the lamellar laths, it exhibited only the steady and accelerated propagation stages, with no rapid propagation stage being found. In these different propagation stages the fatigue crack propagation rates were different and depended intensively on the lamellar laths orientation, lamellar colony size, equiaxed gamma grains and peak stress intensity factor K{sub max}. Based on the experimental data it was concluded that the fatigue crack initiation lifetime was much longer than the propagation lifetime for the single-edge notched specimens at 750 °C.

  11. Molecular dynamics simulation of mode-I-crack propagation and dislocation generation processes in α-Fe

    International Nuclear Information System (INIS)

    Wang Jianwei; Lu Guocai; Shang Xinchun

    2011-01-01

    The process of I-mode crack propagations in α-Fe for uniaxial tension experiments are simulated by molecular dynamics (MD) methods. The formation process of dislocation and fracture mechanisms in the crack growing under various temperatures were studied. The results show that the crack propagation is a process of successive emission of dislocation. The dislocation-free zone and the stacking faults were initially formed at crack tip. When the stress K I increased into 0. 566 MPam 1/2 , one layer of atoms near crack tip would be separated into two layers which produced a dislocation. The first dislocation was emitted when stress K I reached 0.669 MPam 1/2 . With the temperature increasing, the critical stress intensity factor decreased gradually and the dislocation emission correspondingly became faster as well. (authors)

  12. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  13. Effect of overload on the fatigue crack propagation in metastable beta Ti-V alloys

    International Nuclear Information System (INIS)

    Chakrabortty, S.B.; Starke, E.A. Jr.; Lee, E.W.

    1984-01-01

    The effects of overload on the fatigue crack propagation behavior of two Ti-V alloys having different deformation mechanisms were studied. The results are explained in terms of residual stress effects associated with the overload and the removal of these stresses during post-overload cycling. An additional effect occurs during multiple cycle overload when the deformation structure representative of the strain amplitude is believed to form in the overload reverse plastic zone. This structure must be rearranged during cycling at Delta Kb before the baseline FCGR is reached and the process is responsible for part of the delay period. 46 references

  14. Experimental and Numerical Study of Interface Crack Propagation in Foam Cored Sandwich Beams

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup; Borum, Kaj Kvisgård

    2007-01-01

    application example is to tear off one of the face laminates from the sandwich. This configuration can be found in many applications but is considered here to be occurring in a ship structure, particularly at the hard spot where the superstructure meets the deck. Face tearing experiments are carried out...... experiments and theory. For cores with higher density, the crack tends to propagate in the laminate itself with extensive fiber bridging leading to rather conservative numerical predictions. However, for structural configurations where LEFM can be applied, the presented procedure is sufficiently robust...... and accurate to be used in a number of important engineering applications, for example risk-based inspection and repair schemes....

  15. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  16. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    Science.gov (United States)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  17. A study of probabilistic fatigue crack propagation models in Mg Al Zn alloys under different specimen thickness conditions by using the residual of a random variable

    International Nuclear Information System (INIS)

    Choi, Seon Soon

    2012-01-01

    The primary aim of this paper was to evaluate several probabilistic fatigue crack propagation models using the residual of a random variable, and to present the model fit for probabilistic fatigue behavior in Mg Al Zn alloys. The proposed probabilistic models are the probabilistic Paris Erdogan model, probabilistic Walker model, probabilistic Forman model, and probabilistic modified Forman models. These models were prepared by applying a random variable to the empirical fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models for describing fatigue crack propagation models with these names. The best models vor describing fatigue crack propagation behavior in Mg Al Zn alloys were generally the probabilistic Paris Erdogan and probabilistic Walker models. The probabilistic Forman model was a good model only for a specimen with a thickness of 9.45mm

  18. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel

    International Nuclear Information System (INIS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    2010-01-01

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 10 8 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment. (author)

  20. Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens

    Directory of Open Access Journals (Sweden)

    Natália Ferreira

    2018-03-01

    Full Text Available Shot peening is an attractive technique for fatigue enhanced performance of metallic components, because it increases fatigue crack initiation life prevention and retards early crack growth. Engineering design based on fatigue crack propagation predictions applying the principles of fracture mechanics is commonly used in aluminum structures for aerospace engineering. The main purpose of present work was to analyze the effect of shot peening on the fatigue crack propagation of the 7475 aluminum alloy, under both constant amplitude loading and periodical overload blocks. The tests were performed on 4 and 8 mm thickness specimens with stress ratios of 0.05 and 0.4. The analysis of the shot-peened surface showed a small increase of the micro-hardness values due to the plastic deformations imposed by shot peening. The surface peening beneficial effect on fatigue crack growth is very limited; its main effect is more noticeable near the threshold. The specimen’s thickness only has marginal influence on the crack propagation, in opposite to the stress ratio. Periodic overload blocks of 300 cycles promotes a reduction of the fatigue crack growth rate for both intervals of 7500 and 15,000 cycles.

  1. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  2. Statistical analysis of fatigue crack propagation data of materials from ancient portuguese metallic bridges

    Directory of Open Access Journals (Sweden)

    J A F O. Correia

    2017-10-01

    Full Text Available In Portugal there is a number of old metallic riveted railway and highway bridges that were erected by the end of the 19th century and beginning of the 20th century, and are still in operation, requiring inspections and remediation measures to overcome fatigue damage. Residual fatigue life predictions should be based on actual fatigue data from bridge materials which is scarce due to the material specificities. Fatigue crack propagation data of materials from representative Portuguese riveted bridges, namely the Pinh�o and Luiz I road bridges, the Viana road/railway bridge, the F�o road bridge and the Trez�i railway bridge were considered in this study. The fatigue crack growth rates were correlated using the Pariss law. Also, a statistical analysis of the pure mode I fatigue crack growth (FCG data available for the materials from the ancient riveted metallic bridges is presented. Based on this analysis, design FCG curves are proposed and compared with BS7910 standard proposal, for the Paris region, which is one important fatigue regime concerning the application of the Fracture Mechanics approaches, to predict the remnant fatigue life of structural details

  3. Fatigue-crack propagation response of two nickel-base alloys in a liquid sodium environment

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1979-01-01

    The elevated temperature fatigue-crack propagation response of Inconel 600 and Inconel 718 was characterized within a linear-elastic fracture mechanics framework in air and low-oxygen liquid sodium environments. The crack growth rates of both nickel-base alloys tested in liquid sodium were found to be considerably lower than those obtained in air. This enhanced fatigue resistance in sodium was attributed to the very low oxygen content in the inert sodium environment. Electron fractographic examination of the Inconel 600 and Inconel 718 fatigue fracture surfaces revealed that operative crack growth mechanisms were dependent on the prevailing stress intensity level. Under low growth rate conditions, Inconel 600 and Inconel 718 fracture surfaces exhibited a faceted, crystallographic morphology in both air and sodium environments. In the higher growth rate regime, fatigue striations were observed; however, striations formed in sodium were rather ill-defined. These indistinct striations were attributed to the absence of oxygen in the liquid sodium environment. Striation spacing measurements were found to be in excellent agreement with macroscopic growth rates in both environments

  4. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  5. CT Identification and Fractal Characterization of 3-D Propagation and Distribution of Hydrofracturing Cracks in Low-Permeability Heterogeneous Rocks

    Science.gov (United States)

    Liu, Peng; Ju, Yang; Gao, Feng; Ranjith, Pathegama G.; Zhang, Qianbing

    2018-03-01

    Understanding and characterization of the three-dimensional (3-D) propagation and distribution of hydrofracturing cracks in heterogeneous rock are key for enhancing the stimulation of low-permeability petroleum reservoirs. In this study, we investigated the propagation and distribution characteristics of hydrofracturing cracks, by conducting true triaxial hydrofracturing tests and computed tomography on artificial heterogeneous rock specimens. Silica sand, Portland cement, and aedelforsite were mixed to create artificial heterogeneous rock specimens using the data of mineral compositions, coarse gravel distribution, and mechanical properties that were measured from the natural heterogeneous glutenite cores. To probe the effects of material heterogeneity on hydrofracturing cracks, the artificial homogenous specimens were created using the identical matrix compositions of the heterogeneous rock specimens and then fractured for comparison. The effects of horizontal geostress ratio on the 3-D growth and distribution of cracks during hydrofracturing were examined. A fractal-based method was proposed to characterize the complexity of fractures and the efficiency of hydrofracturing stimulation of heterogeneous media. The material heterogeneity and horizontal geostress ratio were found to significantly influence the 3-D morphology, growth, and distribution of hydrofracturing cracks. A horizontal geostress ratio of 1.7 appears to be the upper limit for the occurrence of multiple cracks, and higher ratios cause a single crack perpendicular to the minimum horizontal geostress component. The fracturing efficiency is associated with not only the fractured volume but also the complexity of the crack network.

  6. Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline

    International Nuclear Information System (INIS)

    Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong

    2015-01-01

    The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)

  7. Fabrication of irradiation capsule for IASCC irradiation tests (2). Irradiation capsule for crack propagation test (Joint research)

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Ishitsuka, Etsuo; Kawamura, Hiroshi; Kaji, Yoshiyuki; Ugachi, Hirokazu; Tsukada, Takashi

    2008-03-01

    It is known that irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, it is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported. (author)

  8. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  9. Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure

    International Nuclear Information System (INIS)

    Uematsu, Y.; Tokaji, K.; Horie, T.; Nishigaki, K.

    2007-01-01

    Fracture toughness and fatigue crack propagation (FCP) have been studied using compact tension (CT) specimens of as-cast and subzero-treated materials in a cast iron with spheroidal vanadium carbides (VCs) dispersed in the martensitic matrix microstructure. X-ray diffraction (XRD) analysis revealed that retained austenite was transformed to martensite by subzero treatment. Vickers hardness was increased from 738 for the as-cast material to 782 for the subzero-treated material, which could be attributed to retained austenite to martensite transformation. The subzero-treated material exhibited lower fracture toughness than the as-cast material because soft and ductile retained austenite which possesses high fracture toughness was transformed to martensite in the subzero-treated material. Intrinsic FCP resistance after taking account of crack closure was decreased by the subzero treatment, which was attributed to the predominant crack propagation through the interface between VCs and the matrix and the straight crack path in the matrix microstructure

  10. Fatigue crack propagation of super duplex stainless steel with dispersed structure and time-frequency analysis of acoustic emission

    Science.gov (United States)

    Nam, Ki-Woo; Kang, Chang-Yong; Do, Jae-Yoon; Ahn, Seok-Hwan; Lee, Sang-Kee

    2001-06-01

    The fatigue crack propagation of super duplex stainless steel was investigated for the effect of various volume fractions of the austenite phase by changing the heat treatment temperature. We also analyzed acoustic emission signals obtained during the fatigue crack propagation by the time-frequency analysis method. As the temperature of the heat treatment increased, the volume fraction of austenite decreased and coarse grain was obtained. The specimen treated at 1200 had a longer fatigue life and slower rate of crack growth. Results of time-frequency analysis of acoustic emission signals during the fatigue test showed the main frequency of 200-300 kHz to have no correlation with heat treatment and crack length, and the 500 kHz signal to be due to dimples and separation of inclusion.

  11. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    Science.gov (United States)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  12. Repair and Strengthening by Use of Superficial Fixed Laminates of Cracked Masonry Walls Sheared Horizontally-Laboratory Tests

    International Nuclear Information System (INIS)

    Kubica, Jan; Kwiecien, Arkadiusz; Zajac, Boguslaw

    2008-01-01

    There are many methods of crack repairing in masonry structures. One of them is repair and strengthening by using of superficial fixed laminates, especially in case of masonry walls with plastering on their both sides. The initial laboratory tests of three different types of strengthening of diagonal cracked masonry wallettes are presented. Tests concerned three clay brick masonry walls subjected to horizontal shearing with two levels of precompression and strengthened by flexible polymer injection, superficial glass fixed by polymer fibre laminate plates and using of CRFP strips stiff fixed to the wall surface by polymer and stiff resin epoxy fixing are presented and discussed

  13. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouared, Abderrahmane [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Kazemirad, Siavash; Montagnon, Emmanuel [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Cloutier, Guy, E-mail: guy.cloutier@umontreal.ca [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada)

    2016-04-15

    Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.

  14. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  15. Numerical Simulation Procedure for Modeling TGO Crack Propagation and TGO Growth in Thermal Barrier Coatings upon Thermal-Mechanical Cycling

    Directory of Open Access Journals (Sweden)

    Ding Jun

    2014-01-01

    Full Text Available This paper reports a numerical simulation procedure to model crack propagation in TGO layer and TGO growth near a surface groove in metal substrate upon multiple thermal-mechanical cycles. The material property change method is employed to model TGO formation cycle by cycle, and the creep properties for constituent materials are also incorporated. Two columns of repeated nodes are placed along the interface of the potential crack, and these nodes are bonded together as one node at a geometrical location. In terms of critical crack opening displacement criterion, onset of crack propagation in TGO layer has been determined by finite element analyses in comparison with that without predefined crack. Then, according to the results from the previous analyses, the input values for the critical failure parameters for the subsequent analyses can be decided. The robust capabilities of restart analysis in ABAQUS help to implement the overall simulation for TGO crack propagation. The comparison of the TGO final deformation profile between numerical and experimental observation shows a good agreement indicating the correctness and effectiveness of the present procedure, which can guide the prediction of the failure in TGO for the future design and optimization for TBC system.

  16. Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to

  17. Effect of residual stress on fatigue crack propagation at 200 C in a welded joint austenitic stainless steel - ferritic steel

    International Nuclear Information System (INIS)

    Zahouane, A.I.; Gauthier, J.P.; Petrequin, P.

    1988-01-01

    Fatigue resistance of heterogeneous welded joints between austenitic stainless steels and ferritic steels is evaluated for reactor components and more particularly effect of residual stress on fatigue crack propagation in a heterogeneous welded joint. Residual stress is measured by the hole method in which a hole is drilled through the center of a strain gage glued the surface of the materials. In the non uniform stress field a transmissibility function is used for residual stress calculation. High compression residual stress in the ferritic metal near the interface ferritic steel/weld slow down fatigue crack propagation. 5 tabs., 15 figs., 19 refs [fr

  18. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  19. Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels

    Directory of Open Access Journals (Sweden)

    Tohid Akhlaghi

    2014-01-01

    Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.

  20. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  1. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  2. C-130: Results of center wing residual strength and crack propagation test program

    Science.gov (United States)

    Reeder, F. L.; Dirkin, W. J.; Snider, H. L.

    1971-01-01

    Fourteen C-130 airplane center wings which had experienced from approximately 4,000 to 13,000 hours of flight service and its associated fatigue damage were tested to destruction, seven in upbending and seven in downbending. Six wings were tested directly for static residual strength in the fatigue-damaged condition as received from field service. The other eight wings were tested in crack propagation cyclic testing at a prescribed stress level for a maximum of 10,000 cycles. Then the stress level was reduced and testing was continued up to a maximum of 20,000 total cycles. Cyclic testing was performed with constant-amplitude stresses at a stress ratio of +0.1. Maximum cyclic skin stresses were approximately 18,000 psi. At the conclusion of cyclic testing, a static test to destruction was conducted to determine the residual strength of each fatigue-damaged specimen.

  3. Fatigue crack propagation of acrylic bone cements. Influence of the radio-opaque agents

    International Nuclear Information System (INIS)

    Ginebra, M. P.; Albuixech, L.; Fernandez-Barragan, E.; Gil, F. J.; Planell, J. A.; San Roman, J.; Vazquez, B.

    2001-01-01

    In this work the 2,5-diiodo-8-quinolyl methacrylate (IHQM), is proposed as a new radiopaque agent. The addition of the iodine containing methacrylate provided a statistically significant increase in the tensile strength, fracture toughness and ductility, with respect to the barium sulphate containing cement. This effect was attributed to the fact that the use of a radiopaque monomer eliminated the porosity associated to the barium sulphate particles. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent pros these, as is the case of acrylic bone cements, it is important to compare the fatigue properties of this new bone cement formulation with the radiolucent and the BaSO 4 containing bone cements. The results show that the absence of inorganic particles with no matrix adhesion plays a negative role when the fatigue crack propagation is considered. (Author) 26 refs

  4. Microstructural effects on the creep and crack propagation behaviors of γ-Ti aluminide alloy

    International Nuclear Information System (INIS)

    Lupinc, V.; Onofrio, G.; Nazmy, M.; Staubli, M.

    1999-01-01

    Gamma titanium aluminides class of materials possess several unique physical and mechanical properties. These characteristics can be attractive for specific industrial applications. By applying different heat treatment schedules one can change the microstructural features of this class of materials. In the present investigation, two heat treatment schedules were used to produce two different microstructures, duplex (D) and nearly lamellar (NL) in the cast and HIP'ed Ti-47Al-2W-0.5Si alloy. The tensile strength and creep behavior, in the 700--850 C temperature range, of this alloy have been determined and correlated to the corresponding microstructures. In addition, the fatigue crack propagation behavior in this alloy has been studied at different temperatures. The results on the creep behavior showed that the alloy with nearly lamellar microstructure has a strongly improved creep strength as compared with that of the duplex microstructure

  5. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  6. Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity.

    Science.gov (United States)

    Yamamoto, Takatsugu; Ferracane, Jack L; Sakaguchi, Ronald L; Swain, Michael V

    2009-04-01

    Polymerization contraction of dental composite produces a stress field in the bonded surrounding substrate that may be capable of propagating cracks from pre-existing flaws. The objectives of this study were to assess the extent of crack propagation from flaws in the surrounding ceramic substrate caused by composite contraction stresses, and to propose a method to calculate the contraction stress in the ceramic using indentation fracture. Initial cracks were introduced with a Vickers indenter near a cylindrical hole drilled into a glass-ceramic simulating enamel. Lengths of the radial indentation cracks were measured. Three composites having different contraction stresses were cured within the hole using one- or two-step light-activation methods and the crack lengths were measured. The contraction stress in the ceramic was calculated from the crack length and the fracture toughness of the glass-ceramic. Interfacial gaps between the composite and the ceramic were expressed as the ratio of the gap length to the hole perimeter, as well as the maximum gap width. All groups revealed crack propagation and the formation of contraction gaps. The calculated contraction stresses ranged from 4.2 MPa to 7.0 MPa. There was no correlation between the stress values and the contraction gaps. This method for calculating the stresses produced by composites is a relatively simple technique requiring a conventional hardness tester. The method can investigate two clinical phenomena that may occur during the placement of composite restorations, i.e. simulated enamel cracking near the margins and the formation of contraction gaps.

  7. Aftershock Sequences and Seismic-Like Organization of Acoustic Events Produced by a Single Propagating Crack

    Science.gov (United States)

    Alizee, D.; Bonamy, D.

    2017-12-01

    In inhomogeneous brittle solids like rocks, concrete or ceramics, one usually distinguish nominally brittle fracture, driven by the propagation of a single crack from quasibrittle one, resulting from the accumulation of many microcracks. The latter goes along with intermittent sharp noise, as e.g. revealed by the acoustic emission observed in lab scale compressive fracture experiments or at geophysical scale in the seismic activity. In both cases, statistical analyses have revealed a complex time-energy organization into aftershock sequences obeying a range of robust empirical scaling laws (the Omori-Utsu, productivity and Bath's law) that help carry out seismic hazard analysis and damage mitigation. These laws are usually conjectured to emerge from the collective dynamics of microcrack nucleation. In the experiments presented at AGU, we will show that such a statistical organization is not specific to the quasi-brittle multicracking situations, but also rules the acoustic events produced by a single crack slowly driven in an artificial rock made of sintered polymer beads. This simpler situation has advantageous properties (statistical stationarity in particular) permitting us to uncover the origins of these seismic laws: Both productivity law and Bath's law result from the scale free statistics for event energy and Omori-Utsu law results from the scale-free statistics of inter-event time. This yields predictions on how the associated parameters are related, which were analytically derived. Surprisingly, the so-obtained relations are also compatible with observations on lab scale compressive fracture experiments, suggesting that, in these complex multicracking situations also, the organization into aftershock sequences and associated seismic laws are also ruled by the propagation of individual microcrack fronts, and not by the collective, stress-mediated, microcrack nucleation. Conversely, the relations are not fulfilled in seismology signals, suggesting that

  8. Study on crack propagation of adhesively bonded DCB for aluminum foam using energy release rate

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hye Jin; Lee, Sang Kyo; Cho, Chong Du [Inha University, Incheon (Korea, Republic of); Cho, Jae Ung [Kongju National University, Choenan (Korea, Republic of)

    2015-01-15

    Aluminum foam with initial crack, which has a closed cell form adhesively bonded, is studied to compare and analyze the crack propagation behavior by using both experimental and finite element analysis techniques. The specimen is loaded in Mode I type of fracture as 15 mm/min speed of a displacement control method. The experimental results were used to accommodate the finite element analysis performed with commercial software ABAQUS 6.10. First, using a video recording, five steps of experiment were selected at random and then the energy release rate was calculated. The estimated energy release rate was then used as fracture energy into the finite element analysis. Comparing the experimental axial load-displacement graphs and the finite element analysis results, roughly equivalent peak values were observed in the cohesive strength of the aluminum foam double cantilever beam. However, force versus displacement patterns showed somewhat different: little deformation was observed in aluminum foam, whereas adhesive parts in double cantilever beam were significantly deformed.

  9. Evaluation of Fatigue Crack Propagation of Gears Considering Uncertainties in Loading and Material Properties

    Directory of Open Access Journals (Sweden)

    Haileyesus B. Endeshaw

    2017-11-01

    Full Text Available Failure prediction of wind turbine gearboxes (WTGs is especially important since the maintenance of these components is not only costly but also causes the longest downtime. One of the most common causes of the premature fault of WTGs is attributed to the fatigue fracture of gear teeth due to fluctuating and cyclic torque, resulting from stochastic wind loading, transmitted to the gearbox. Moreover, the fluctuation of the torque, as well as the inherent uncertainties of the material properties, results in uncertain life prediction for WTGs. It is therefore essential to quantify these uncertainties in the life estimation of gears. In this paper, a framework, constituted by a dynamic model of a one-stage gearbox, a finite element method, and a degradation model for the estimation of fatigue crack propagation in gear, is presented. Torque time history data of a wind turbine rotor was scaled and used to simulate the stochastic characteristic of the loading and uncertainties in the material constants of the degradation model were also quantified. It was demonstrated that uncertainty quantification of load and material constants provides a reasonable estimation of the distribution of the crack length in the gear tooth at any time step.

  10. Evaluations of environmental effect on micro crack initiation and propagation by surface observations of fatigue specimens

    International Nuclear Information System (INIS)

    Fujikawa, Ryosuke; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    Fatigue life of nuclear facilities tends to be decreased by the influence of reactor coolant, which is called environmental effect. The effect accelerates crack growth rate but the influence for crack initiation is not clarified. This study intends to discuss the environmental effect in crack initiation. The crack length and the number of cracks are measured from the investigation of fatigue test specimens in reactor coolant and air. The behavior of crack initiation is revealed from the measurement of number of cracks, crack sizes and fatigue life. From this study, environmental effect of reactor coolant is considered to influence crack initiation and increase the number of micro crack. It is also estimated that the coalescence of cracks influences the acceleration of crack growth. (author)

  11. Measurement and accompanying numerical simulation of fast crack propagation in modified DCB specimens made of Araldit B

    International Nuclear Information System (INIS)

    Stoeckl, H.

    1991-06-01

    Numerical simulations of fracture-mechanical experiments with the aim of determining the stress intensity factor and its relation to the fracture velocity from the measured data of the crack length are problematic with the conventional DCB specimen loaded through wedge and bolt namely because of the not clearly definable limiting conditions. Experiments were therefore carried out with modified DCB specimens made of ARALDIT B, with the loading wedge pressed directly into the crack mouth. In the case of suitable specimen dimensions, K I already in the initial phase of crack propagation before arrival of the first reflected waves covers a great part of the relevant range. Numerical simulations agree well with the shadow-optical measurements in this phase. A specimen variant with T-shaped extension at the counterbearing is suitable especially for crack arrest investigations, since high fracture velocities and brief crack jump lengths can be combined in tests with this specimen. The constant member in the series development of the stress distribution at the crack tip according to Williams determines the directional stability of the crack. The theories established by Cotterell, Schindler, Streit and Finnie are discussed by means of the kinking cracks observed during some experiments. (orig.) [de

  12. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    Science.gov (United States)

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  13. Fatigue-crack propagation behavior of steels in vacuum, and implications for ASME Section 11 crack growth analyses

    International Nuclear Information System (INIS)

    James, L.A.

    1985-08-01

    Section XI of the ASME Boiler and Pressure Vessel Code provides rules for the analysis of structures for which cracks or crack-like flaws have been discovered during inservice inspection. The Code provides rules for the analysis of both surface flaws as well as flaws that are embedded within the wall of the pressure vessel. In the case of surface flaws, the Code provides fatigue crack growth rate relationships for typical nuclear pressure vessel steels (e.g., ASTM A508-2 and A533-B) cycled in water environments typical of those in light-water reactors (LWR). However, for the case of embedded cracks, the Code provides crack growth relationships based on results from specimens that were cycled in an elevated temperature air environment. Although these latter relationships are often referred to as applying to ''inert'' environments, the results of this paper will show that an elevated temperature air environment is anything but inert, and that use of such relationships can result in overly pessimistic estimates of fatigue-crack growth lifetimes of embedded cracks. The reason, of course, is that embedded cracks grow in an environment that is probably much closer to a vacuum than an air environment

  14. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    OpenAIRE

    Correia, J.A.F.O.; de Jesus, A.M.P.; Fernández-Canteli, A.

    2014-01-01

    A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force asse...

  15. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    Science.gov (United States)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  16. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    Science.gov (United States)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  17. Fatigue crack detection and identification by the elastic wave propagation method

    Science.gov (United States)

    Stawiarski, Adam; Barski, Marek; Pająk, Piotr

    2017-05-01

    In this paper the elastic wave propagation phenomenon was used to detect the initiation of the fatigue damage in isotropic plate with a circular hole. The safety and reliability of structures mostly depend on the effectiveness of the monitoring methods. The Structural Health Monitoring (SHM) system based on the active pitch-catch measurement technique was proposed. The piezoelectric (PZT) elements was used as an actuators and sensors in the multipoint measuring system. The comparison of the intact and defected structures has been used by damage detection algorithm. One part of the SHM system has been responsible for detection of the fatigue crack initiation. The second part observed the evolution of the damage growth and assess the size of the defect. The numerical results of the wave propagation phenomenon has been used to present the effectiveness and accuracy of the proposed method. The preliminary experimental analysis has been carried out during the tension test of the aluminum plate with a circular hole to determine the efficiency of the measurement technique.

  18. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.X.; Kurtz, R.J.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack plane rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.

  19. Investigations of mode I crack propagation in fibre-reinforced plastics with real time X-ray tests and simultaneous sound emission analysis

    International Nuclear Information System (INIS)

    Brunner, A.; Nordstrom, R.; Flueeler, P.

    1992-01-01

    The described investigation of crack formation and crack propagation in mode I (tensile stress) in fibre-reinforced plastic samples, especially uni-directional carbon fibre reinforced polyether-ether ketone (PEEK) has several aims. On the one hand, the phenomena of crack formation and crack propagation in these materials are to be studied, and on the other hand, the draft standards for these tests are to be checked. It was found that the combination of real time X-ray tests and simultaneous sound emission analysis is excellently suited for the basic examination of crack formation and crack propagation in DCB samples. With the aid of picture processing and analysis of the video representation, consistent crack lengths and resulting G IC values can be determined. (orig./RHM) [de

  20. Exact analytic expressions for the evolution of polarization for radiation propagating in a plasma with non uniformly sheared magnetic field

    International Nuclear Information System (INIS)

    Segre, S. E.

    2001-01-01

    The known analytic expressions for the evolution of the polarization of electromagnetic waves propagating in a plasma with uniformly sheared magnetic field are extended to the case where the shear is not constant. Exact analytic expressions are found for the case when the space variations of the medium are such that the magnetic field components and the plasma density satisfy a particular condition (eq. 13), possibly in a convenient reference frame of polarization space [it

  1. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.

  2. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  3. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    Energy Technology Data Exchange (ETDEWEB)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun [College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao (China)

    2016-01-15

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate.

  4. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    International Nuclear Information System (INIS)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun

    2016-01-01

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate

  5. A non-linear procedure for the numerical analysis of crack development in beams failing in shear

    Directory of Open Access Journals (Sweden)

    P. Bernardi

    2016-01-01

    Full Text Available In this work, a consistent formulation for the representation of concrete behavior before and after cracking has been implemented into a non-linear model for the analysis of reinforced concrete structures, named 2D-PARC. Several researches have indeed pointed out that the adoption of an effective modeling for concrete, combined with an accurate failure criterion, is crucial for the correct prediction of the structural behavior, not only in terms of failure load, but also with reference to a realistic representation of crack initiation and development. This last aspect is particularly relevant at serviceability conditions in order to verify the fulfillment of structural requirements provided by Design Codes, which limit the maximum crack width due to appearance and durability issues. In more details, a constitutive model originally proposed by Ottosen and based on non-linear elasticity has been here incorporated into 2D-PARC in order to improve the numerical efficiency of the adopted algorithm, providing at the same time an accurate prediction of the structural response. The effectiveness of this procedure has been verified against significant experimental results available in the technical literature and relative to reinforced concrete beams without stirrups failing in shear, which represent a problem of great theoretical and practical importance in the field of structural engineering. Numerical results have been compared to experimental evidences not only in terms of global structural response (i.e. applied load vs. midspan deflection, but also in terms of crack pattern evolution and maximum crack widths.

  6. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

    Science.gov (United States)

    Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.

    2014-01-01

    In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822

  7. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    Science.gov (United States)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  8. Control of cracking in R.C. Structures: Numerical simulation of a squat shear wall

    NARCIS (Netherlands)

    Damoni, C.; Belletti, B.; Lilliu, G.

    2013-01-01

    In this paper the behavior of a squat shear wall subjected to monotonic shear loading is investigated. The study fits into the experimental program driven by CEOS.fr on modeling of the behavior of the tested mocks-ups (monotonic and cycling loading-under prevented or free shrinkage). The shear wall

  9. Enhancing PIV image and fractal descriptor for velocity and shear stresses propagation around a circular pier

    Directory of Open Access Journals (Sweden)

    Alireza Keshavarzi

    2017-07-01

    Full Text Available In this study, the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented. In the study reported herein, the fractal dimension of velocity fluctuations (u′, v′, w′ and the Reynolds shear stresses (u′v′ and u′w′ of flow around a bridge pier were computed using a Fractal Interpolation Function (FIF algorithm. The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter (ADV and Particle Image Velocimetry (PIV. The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots. In this study, PIV was used for detection of high resolution fractal scaling around a bridge pier. The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier. It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier. The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier. Furthermore, the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume. Finally, the results from ADV measurement were consistent with the result from PIV, therefore, the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.

  10. Crack wave propagation along fracture with an induced low-velocity layer; Teisokudo no chika kiretsu zone wo denpasuru kiretsuha no bunsan tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K [Muroran Institute of Technology, Hokkaido (Japan)

    1997-10-22

    A study has been performed on underground cracks working as a geothermy reservoir layer, with respect to characteristics of elastic waves propagating with their energy concentrated on a boundary between rocks around the cracks and fluid in the underground cracks, or `crack waves`. The study has modeled a multi-crack reservoir layer according to the three-layer structure of the fluid layer and low-velocity solid layers around the former layer, whereas crack waves propagating therein were discussed for their dispersion characteristics. As a result of discussions, a guideline to the crack wave measurement at actual fields was put together as follows: because the low-velocity layer affects the dispersion characteristics of the crack waves, the structure and characteristics of the multi-crack reservoir layer may possibly be evaluated by measuring the velocity of the crack waves; evaluating the low-velocity layers requires proper selection of frequency of the crack wave to be measured; for example, at the Higashi Hachimantai field, a crack wave of several hundred hertz must be analyzed; and thickness of the low-velocity layers around main cracks, which can be estimated from the velocity of the crack wave is two meters at the greatest. 6 refs., 3 figs., 2 tabs.

  11. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    Science.gov (United States)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  12. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints

    International Nuclear Information System (INIS)

    Curtit, F.

    2000-01-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C * . These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C * . These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C * s considers a continuous evolution of creep deformations rate during the all test. (author)

  13. Directionality and Orientation Effects on the Resistance to Propagating Shear Failure

    Science.gov (United States)

    Leis, B. N.; Barbaro, F. J.; Gray, J. M.

    Hydrocarbon pipelines transporting compressible products like methane or high-vapor-pressure (HVP) liquids under supercritical conditions can be susceptible to long-propagating failures. As the unplanned release of such hydrocarbons can lead to significant pollution and/or the horrific potential of explosion and/or a very large fire, design criteria to preclude such failures were essential to environmental and public safety. Thus, technology was developed to establish the minimum arrest requirements to avoid such failures shortly after this design concern was evident. Soon after this technology emerged in the early 1970sit became evident that its predictions were increasinglynon-conservative as the toughness of line-pipe steel increased. A second potentially critical factor for what was a one-dimensional technology was that changes in steel processing led to directional dependence in both the flow and fracture properties. While recognized, this dependence was tacitly ignored in quantifying arrest, as were early observations that indicated propagating shear failure was controlled by plastic collapse rather than by fracture processes.

  14. Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks

    Science.gov (United States)

    Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.

    2017-12-01

    The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

  15. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  16. Integrated FEM-DBEM simulation of crack propagation in AA2024-T3 FSW butt joints considering manufacturing effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, P.; Citarella, R.

    2015-01-01

    This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model...... of the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by means...

  17. The fatigue-crack propagation behavior of ASTM A533-B steel tested in vacuo at LWR operating temperatures

    International Nuclear Information System (INIS)

    James, L.A.

    1987-01-01

    The fatigue-crack propagation (FCP) behavior of ASTM A533-B-1 steel was characterized in vacuo at 288 0 C. Tests were conducted at two stress ratios: R = 0.05 and R = 0.7. Results of these tests were compared with results from previous studies for the same type of steel tested in an air environment, and FCP rates in vacuo were generally lower than those in air. Stress ratio effects in vacuo were not as great as those in air, and both stress ratio effects and environmental effects are discussed from the standpoint of crack closure concepts

  18. Angle-Beam Shear Wave Scattering from Buried Crack-like Defects in Bonded Specimens (Postprint)

    Science.gov (United States)

    2017-02-01

    defects: such as understanding the scattering behavior of fatigue cracks emanating from fastener holes in aluminum structural components [2]. Angle...Ultrasonic NDE techniques using angle-beam wedges coupled to PZT transducers have also been utilized in measuring the depth of surface-breaking cracks

  19. Asymmetric crack propagation near waterfall cliff and its influence on the waterfall lip shape

    Science.gov (United States)

    Vastola, G.

    2011-11-01

    By means of Finite Element Method (FEM) calculations and fatigue fracture mechanics analysis, we show that crack propagation in bedrocks close to the waterfall cliff is preferential towards the cliff face rather than upstream the river. Based on this effect, we derive the corresponding expression for the velocity of recession vr of the waterfall lip, and find that vr has a quadratic dependence on the hydrostatic pressure. Quantitatively, this erosion mechanism generates recession rates of the order of ~cm-dm/y, consistent with the recession rates of well-known waterfalls. We enclose our expression for vr into a growth model to investigate the time evolution of a waterfall lip subject to this erosional mechanism. Because of the dependence on hydrostatic pressure, the shape of the waterfall is influenced by the transverse profile of the river that generates the waterfall. If the river has a transverse concavity, the waterfall evolves a curved shape. Evolution for the case of meanders with asymmetric transverse profile is also given.

  20. Determination of I-SCC crack propagation rate of zircaloy-4

    International Nuclear Information System (INIS)

    Woo-Seog, Ryu

    2002-01-01

    Threshold stress intensity (K ISCC ) and propagation rate of iodine-induced SCC in recrystallized and stress-relieved Zircaloy-4 were determined using a DCPD method. Dynamic system flowing Ar gas through iodine chamber at 60 deg C provided a constant iodine pressure of 1000 Pa during test. The SCC curves of crack velocity vs. stress intensity showed the typical SCC curves that are composed of stages I, II and III. The threshold K ISCC at 350 deg C was about 9 and 9.5 MPa √m for the stress- relieved Zircaloy-4 and the recrystallized Zircaloy-4, respectively. The plateau velocity in the stage II at 350 deg C was 4-8x 10 -4 mm/sec in the range of 20-40 MPa√m. In comparison with recrystallized Zircaloy-4, stress-relieved Zircaloy-4 had a lower threshold stress intensity factor and a little higher SCC velocity, indicating that SRA Zircaloy-4 was more sensitive to SCC in respect of velocity. The fracture mode in recrystallized Zircaloy was mostly a transgranular fracture with river pattern. An intergranular mode and the flutting were scarcely observed. (author)

  1. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  2. The Reflective Cracking in Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Pais Jorge

    2013-07-01

    Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.

  3. Fatigue crack propagation behavior and acoustic emission characteristics of the heat affected zone of super duplex stainless steel

    International Nuclear Information System (INIS)

    Do, Jae Yoon; Kim, Jin Hwan; Ahn, Seok Hwan; Park, In Duck; Kang, Chang Yong; Nam, Ki Woo

    2002-01-01

    Because duplex stainless steel shows the good strength and corrosion resistance properties, the necessity of duplex stainless steel, which has long life in severe environments, has been increased with industrial development. The fatigue crack propagation behavior of Heat Affected Zone(HAZ) has been investigated in super duplex stainless steel. The fatigue crack propagation rate of HAZ of super duplex stainless steel was faster than that of base metal of super duplex stainless steel. We also analysed acoustic emission signals during the fatigue test with time-frequency analysis method. According to the results of time-frequency analysis, the frequency ranges of 200-400 kHz were obtained by striation and the frequency range of 500 kHz was obtained due to dimple and separate of inclusion

  4. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    stress corrosion cracking of austenitic stainless steels (SS) and to quantify the effect on the crack propagation rate, an experimental research program was performed using cold and warm worked 304, 316L and 347 SS. Stress corrosion crack growth rate tests, under BWR and PWR environments have been carried out. The results obtained have permitted to determine the yield strength effect in the crack propagation of austenitic stainless steels in PWR and BWR conditions. In addition, similarities on cold work and radiation hardening in enhancing the yield strength and the stress corrosion cracking propagation at high temperature water have been evaluated. (authors)

  5. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    Science.gov (United States)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  6. Numerical analysis on the crack propagation and failure characteristics of rocks with double fissures under the uniaxial compression

    Directory of Open Access Journals (Sweden)

    Leyong Chen

    2015-12-01

    Full Text Available The fissures and rock bridges with different dips had different contributions to crack's initiation, propagation, convergence and penetration. In this paper, based on the rock fracture theory, the crack's propagation and evolution process on rock specimen with double fissures under uniaxial compression was simulated. As a result, the crack propagation and evolution law of rocks with different fissure dips (α = 0°, 15°, 30°, 45°, 60°, 75°, 90°; β = 45° and different rock bridge dips (β = 0°, 30°, 45°, 60°, 90°; α = 45° was obtained by numerical tests. Meanwhile, the fissure and rock bridge dips influence on the macro mechanical properties of rock was analyzed. Besides, the paper investigated the influences of different fissure dips and different rock bridge dips on the bridge transfixion. The study is of great significance to reveal the impact of different dips on the mechanical mechanism of multiple-fissures rock under specific conditions, and it also has important theoretical significance for the research on multiple-fissure rock.

  7. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    KAUST Repository

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  8. Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs

    KAUST Repository

    Xu, Yanlong

    2015-08-01

    The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.

  9. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  10. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  11. Crack initiation and propagation paths in small diameter FSW 6082-T6 aluminium tubes under fatigue loading

    Directory of Open Access Journals (Sweden)

    Roberto Tovo

    2016-03-01

    Full Text Available This paper reports results of fatigue tests of friction stir welded (FSW aluminium tubes. Relatively small 38 mm diameter tubes were used and hence an automated FSW process using a retracting tool was designed for this project, as the wall thickness of the aluminium tube was similar to the diameter of the FSW tool. This is a more complex joint geometry to weld than the more usual larger diameter tube reported in the literature. S-N fatigue testing was performed using load ratios of R = 0.1 and R = -1. Crack path analysis was performed using both low magnification stereo microscopy and scanning electron microscopy, in order to identify crack initiation sites and to determine the direction of crack propagation. Work is still in progress to follow the crack path through the various microstructural zones associated with the weld. A simple statistical analysis was used to characterize the most typical crack initiation site. This work forms part of a wider project directed at determining multiaxial fatigue design rules for small diameter 6082-T6 aluminium tubes that could be of use in the ground vehicle industry.

  12. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    International Nuclear Information System (INIS)

    Liu, X; Luo, Y Y; Wang, Z W

    2014-01-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption

  13. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    Science.gov (United States)

    Liu, X.; Y Luo, Y.; Wang, Z. W.

    2014-03-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.

  14. Study of the initiation and the propagation of cracks under 3D thermal cyclic loading; Etude de l'amorcage et de la propagation des fissures sous chargement thermique cyclique 3D

    Energy Technology Data Exchange (ETDEWEB)

    Ancelet, O

    2005-07-01

    The incident which has occurred on the Civaux power plant has shown the noxiousness of thermal loading and the difficulty to take it into account at design level. The objective of this report is to study the initiation and the propagation of crack under thermal loading. In this aim the CEA has developed a new experiment named FAT3D. The various experiments carried out showed the harmfulness of a thermal loading, which makes it possible to rapidly initiate a network of cracks and to propagate one (or some) cracks through the totally thickness of the component under certain conditions. These experimental results associated with a mechanical analysis put at fault the usual criteria of damage based on the variations of the equivalent strain. In addition, the study of the propagation stage shows the importance of the plasticity which, in the case of a thermal loading, slows down the propagation of the crack. (author)

  15. Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2002-01-01

    .... Experiments were performed using two materials, nominally brittle polymethyl methacrylate and nominally ductile polycarbonate to quantify crack tip heating and identify dominant dissipative mechanisms...

  16. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    results. Concerning local approach, intergranular creep damage model of the Ecole des Mines de Paris is used for crack initiation and growth under creep and creep fatigue loading. Crack propagations are simulated with an adaptive re-meshing technique and are compared with experimental results for crack located in weld and base metal. A sensibility analysis shows that crack propagation strongly depend on the characteristic distance, which is needed to simulate crack growth with local approach, for the weld metal parameters. (author)

  17. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    . Concerning local approach, intergranular creep damage model of the Ecole des Mines de Paris is used for crack initiation and growth under creep and creep fatigue loading. Crack propagations are simulated with an adaptive re-meshing technique and are compared with experimental results for crack located in weld and base metal. A sensibility analysis shows that crack propagation strongly depend on the characteristic distance, which is needed to simulate crack growth with local approach, for the weld metal parameters. (author)

  18. Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method

    International Nuclear Information System (INIS)

    Ferrie, Emilie; Buffiere, Jean-Yves; Ludwig, Wolfgang; Gravouil, Anthony; Edwards, Lyndon

    2006-01-01

    The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained Al-Li alloy has been investigated using synchrotron radiation X-ray microtomography. In this material, the studied crack, despite its small dimension, can be considered as 'microstructurally long' and described in the frame of the linear elastic fracture mechanics. The extended finite element method is used to calculate the stress intensity factors along the crack front taking into account the three-dimensional geometry extracted from the tomographic images. For the same nominal value of the stress intensity factor range, crack propagation is faster in the bulk than at the surface. The observed anisotropy is attributed to the variation of the closure stress along the crack front between surface and bulk. The experimentally observed fatigue crack propagation is compared to numerical simulations. Good agreement is found when a linear variation of closure stress along the crack front is taken into account in the '3D crack propagation law' used for the simulation

  19. An Investigation of the Sub-Microsecond Features of Dynamic Crack Propagation in PMMA and the Rdx-Based Explosive PBX 9205

    Science.gov (United States)

    Washabaugh, P. D.; Hill, L. G.

    2007-12-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  20. An initial investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205

    Science.gov (United States)

    Washabaugh, Peter; Hill, Larry

    2007-06-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  1. Assisted crack tip flipping under Mode I thin sheet tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Nielsen, Kim Lau

    2017-01-01

    Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...

  2. Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack

    KAUST Repository

    Rajagopal, K. R.

    2011-01-06

    This paper is the first part of an extended program to develop a theory of fracture in the context of strain-limiting theories of elasticity. This program exploits a novel approach to modeling the mechanical response of elastic, that is non-dissipative, materials through implicit constitutive relations. The particular class of models studied here can also be viewed as arising from an explicit theory in which the displacement gradient is specified to be a nonlinear function of stress. This modeling construct generalizes the classical Cauchy and Green theories of elasticity which are included as special cases. It was conjectured that special forms of these implicit theories that limit strains to physically realistic maximum levels even for arbitrarily large stresses would be ideal for modeling fracture by offering a modeling paradigm that avoids the crack-tip strain singularities characteristic of classical fracture theories. The simplest fracture setting in which to explore this conjecture is anti-plane shear. It is demonstrated herein that for a specific choice of strain-limiting elasticity theory, crack-tip strains do indeed remain bounded. Moreover, the theory predicts a bounded stress field in the neighborhood of a crack-tip and a cusp-shaped opening displacement. The results confirm the conjecture that use of a strain limiting explicit theory in which the displacement gradient is given as a function of stress for modeling the bulk constitutive behavior obviates the necessity of introducing ad hoc modeling constructs such as crack-tip cohesive or process zones in order to correct the unphysical stress and strain singularities predicted by classical linear elastic fracture mechanics. © 2011 Springer Science+Business Media B.V.

  3. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  4. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  5. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  6. Crack Propagation on ESE(T) Specimens Strengthened with CFRP Sheets

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Jensen, Peter Holmstrøm; Dyrelund, Jens

    2009-01-01

    In this paper fatigue tests on side notched steel test specimens strengthened with adhesive bonded fibre reinforced polymer (FRP) sheets are presented. The specimens are subject to crack growth both in the steel and bond line. Influence of the load ratio and initial crack length on the overall...

  7. Eddy current testing. Evaluation of cracks propagation in austenitic steel cladding

    International Nuclear Information System (INIS)

    Pigeon, M.

    1983-12-01

    A low frequency eddy current method has been developed to evaluate the ligament between crack front and cladding surface and measure crack length. It uses a large surface probe to obtain a low sensitivity on surface variations and a good penetration of eddy current

  8. Effect of cold rolling on fatigue crack propagation of TiNi/A16061 shape memory composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Kyu Chang; Cho, Youn Ho; Lee, Joon Hyun

    2005-01-01

    TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 Shape Memory Alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with 0%, 3.2%, 5.2% and 7% volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by this method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied

  9. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel

    International Nuclear Information System (INIS)

    Zhong Yong; Xiao Furen; Zhang Jingwu; Shan Yiyin; Wang Wei; Yang Ke

    2006-01-01

    Microstructural refinement of structural materials generally improves their tensile properties but deteriorates their fatigue properties. However, pipeline steels with ultra-fine acicular ferrite (UFAF) possess not only high strength and toughness, but also a low fatigue-crack-growth rate (FCGR) and long fatigue-propagation life. In this paper, the micro-fracture mechanisms of an UFAF pipeline steel are investigated by in situ tensile testing in a transmission electron microscope. The results indicate that a grain-boundary-film structure composed of martensite/austenite could significantly influence the crack propagating behavior in the UFAF steel, consequently lowering the FCGR by enhancing roughness-induced crack closure during cyclic loading

  10. The Crack Initiation and Propagation in threshold regime and S-N curves of High Strength Spring Steels

    International Nuclear Information System (INIS)

    Gubeljak, N; Predan, J; Senčič, B; Chapetti, M D

    2016-01-01

    An integrated fracture mechanics approach is proposed to account for the estimation of the fatigue resistance of component. Applications, estimations and results showed very good agreements with experimental results. The model is simple to apply, accounts for the main geometrical, mechanical and material parameters that define the fatigue resistance, and allows accurate predictions. It offers a change in design philosophy: It could be used for design, while simultaneously dealing with crack propagation thresholds. Furthermore, it allows quantification of the material defect sensitivity. In the case of the set of fatigue tests carried out by rotational bending of specimens without residual stresses, the estimated results showed good agreement and that an initial crack length of 0.5 mm can conservatively explain experimental data. In the case of fatigue tests carried out on the springs at their final condition with bending at R = 0.1 our data shows the influence of compressive residual stresses on fatigue strength. Results also showed that the procedures allow us to analyze the different combinations of initial crack length and residual stress levels, and how much the fatigue resistance can change by changing that configuration. For this set of tests, the fatigue resistance estimated for an initial crack length equal to 0.35 mm, can explain all testing data observed for the springs. (paper)

  11. IGSCC crack propagation rate measurement in BWR environments. Executive summary of a Round Robin study

    International Nuclear Information System (INIS)

    Andresen, Peter L.

    1998-01-01

    Five of the world's best laboratories at performing stress corrosion crack growth studies - ABB Atom AB, AEA Technology, GE Corporate Research and Development Center, Studsvik Material AB, and VTT Manufacturing Technology, were selected to participate in a round robin to evaluate the quality and reproducibility of testing conditions and resulting stress corrosion crack growth rates in sensitized type 304 stainless steel in 288 deg C water. Heat treated, machined and fatigue pre-cracked specimens were provided to all laboratories, and detailed test procedures prescribed the use of active loading, reversed dc potential drop crack monitoring, a common reference electrode supplied to all laboratories by GE CRD (to be used along side each laboratory's own reference electrode), and highly specified water chemistry conditions. The ability of each laboratory to achieve optimal testing conditions varied, although all laboratories achieved an impressive standard of testing control. The most significant laboratory-to-laboratory differences were associated with their ability to achieve high purity autoclave outlet water, reproduce accurate measurements of corrosion potential on the test specimen, and provide high resolution crack following using a reversed dc potential drop. However, the most notable outcome of the program is the consistent observation by all laboratories that initiating and sustaining stress corrosion crack growth at constant load in sensitized type 304 stainless steel is difficult, despite the use of a moderately high stress intensity, and high dissolved oxygen and corrosion potential conditions. Concerns for specimen machining and pre-cracking were identified, although these factors were not the sole cause of difficulty in initiating and sustaining stress corrosion cracking. It was shown that many phases of specimen preparation and testing can have a large influence on the measured SCC response. Even under the best test conditions it is critical to ensure

  12. IGSCC crack propagation rate measurement in BWR environments. Executive summary of a Round Robin study

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Peter L. [GE Corporate Research and Development, Schenectady, NY (United States)

    1998-12-31

    Five of the world`s best laboratories at performing stress corrosion crack growth studies - ABB Atom AB, AEA Technology, GE Corporate Research and Development Center, Studsvik Material AB, and VTT Manufacturing Technology, were selected to participate in a round robin to evaluate the quality and reproducibility of testing conditions and resulting stress corrosion crack growth rates in sensitized type 304 stainless steel in 288 deg C water. Heat treated, machined and fatigue pre-cracked specimens were provided to all laboratories, and detailed test procedures prescribed the use of active loading, reversed dc potential drop crack monitoring, a common reference electrode supplied to all laboratories by GE CRD (to be used along side each laboratory`s own reference electrode), and highly specified water chemistry conditions. The ability of each laboratory to achieve optimal testing conditions varied, although all laboratories achieved an impressive standard of testing control. The most significant laboratory-to-laboratory differences were associated with their ability to achieve high purity autoclave outlet water, reproduce accurate measurements of corrosion potential on the test specimen, and provide high resolution crack following using a reversed dc potential drop. However, the most notable outcome of the program is the consistent observation by all laboratories that initiating and sustaining stress corrosion crack growth at constant load in sensitized type 304 stainless steel is difficult, despite the use of a moderately high stress intensity, and high dissolved oxygen and corrosion potential conditions. Concerns for specimen machining and pre-cracking were identified, although these factors were not the sole cause of difficulty in initiating and sustaining stress corrosion cracking. It was shown that many phases of specimen preparation and testing can have a large influence on the measured SCC response. Even under the best test conditions it is critical to ensure

  13. Study on Characteristics of Corrosion Fatigue Crack Propagation for Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Lim, Uh Joh; Kim, Bu Ahn

    1988-01-01

    The characteristics of the corrosion fatigue cracking of both TIG weld heat affected zone and base metal for austenitic stainless steel were investigated under the environments of various specific resistance and the air. The corrosion fatigue crack initiation sensitivity was quantitatively investigated for SUS 304 weldments in the various specific resistances. Also, the characteristics of corrosion fatigue cracking for the weldments were investigated from mechanical, electrochemical, and microstructural point of view. Main results obtained are as follows: (1) The corrosion fatigue crack initiation sensitivity on the base metal and weld hea affected zone increases as the specific resistance of corrosion environment decreases, and the sensitivity of the weld heat affected zone appears increasing more than that of the base metal. (2) The corrosion potentials of various specific resistances are almost constant in initial corrosion fatigue cracking, but the corrosion potential becomes less noble promptly with the corrosion fatigue crack growth as the specific resistances decrease. (3) The corrosion fatigue crack growth of the weld heat affected zone rapid than that of the base metal, because of the softening and the less noble potential caused by welding heat cycle

  14. Characteristics of SCC crack propagation in 22Cr-5. 5Ni-3Mo duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choong Un; Kang, Choon Sik

    1988-02-01

    The characteristics of SCC crack propagation in duplex stainless steel weldment made by SMAW, GTAW and GMAW processes were investigated in 42% MgCl/sub 2/ 142 deg C boiling solution. From these experiments, it could be concluded that the structure anisotropy of ..gamma.. phase as well as the phase ratio played an important role in SCC resistance. GTA and GMA weld metal showed higher SCC resistance than base metal because of randomly distributed ..gamma.. phase. The crack in weld metal had same opportunity of receiving keying effect as that in base metal, but it had less possibility of intersecting ..gamma.. phase. The SCC resistance of the SMA weld metal and the HAZ was lower than that of the base metal because their phase ratio deviated from the proper phase ratio.

  15. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  16. The use of COD and plastic instability in crack propagation and arrest in shells

    Science.gov (United States)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  17. A fracture mechanics model for iodine stress corrosion crack propagation in Zircaloy tubing

    International Nuclear Information System (INIS)

    Crescimanno, P.J.; Campbell, W.R.; Goldberg, I.

    1984-01-01

    A fracture mechanics model is presented for iodine-induced stress corrosion cracking in Zircaloy tubing. The model utilizes a power law to relate crack extension velocity to stress intensity factor, a hyperbolic tangent function for the influence of iodine concentration, and an exponential function for the influence of temperature and material strength. Comparisons of predicted to measured failure times show that predicted times are within a factor of two of the measured times for a majority of the specimens considered

  18. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Fintová, Stanislava; Arzaghi, M.; Kuběna, Ivo; Kunz, Ludvík; Sarrazin-Baudoux, C.

    2017-01-01

    Roč. 98, MAY (2017), s. 187-194 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : Titanium * Fatigue * Crack growth * Crack closure * Equal channel angular processing Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016 http://www.sciencedirect.com/science/article/pii/S014211231730035X

  19. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  20. Crack propagation from a filled flaw in rocks considering the infill influences

    Science.gov (United States)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  1. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  2. Fracture assessment of laser welde joints using numerical crack propagation simulation with a cohesive zone model; Bruchmechanische Bewertung von Laserschweissverbindungen durch numerische Rissfortschrittsimulation mit dem Kohaesivzonenmodell

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, I.

    2001-07-01

    This thesis introduces a concept for fracture mechanical assessment of structures with heterogenuous material properties like weldments. It is based on the cohesive zone model for numerical crack propagation analysis. With that model the failure of examined structures due to fracture can be determined. One part of the thesis contains the extension of the capabilities of the cohesive zone model regarding modelling threedimensional problems, shear fracture and unloading. In a second part new methods are developed for determination of elastic-plastic and fracture mechanical material properties, resp., which are based on optical determination of the specimen deformation. The whole concept has been used successfully for the numerical simulation of small laser welded specimens. (orig.) [German] In der vorliegenden Arbeit wird ein Konzept vorgestellt, mit dem es moeglich ist, Bauteile mit heterogenen Materialeigenschaften, wie z.B. Schweissverbindungen, bruchmechanisch zu bewerten. Es basiert auf einem Modell zur numerischen Rissfortschrittsimulation, dem Kohaesivzonenmodell, um das Versagen des zu untersuchenden Bauteils infolge von Bruch zu bestimmen. Ein Teil der Arbeit umfasst die Weiterentwicklung des Kohaesivzonenmodells zur Vorhersage des Bauteilversagens in Bezug auf die Behandlung dreidimensionaler Probleme, Scherbuch und Entlastung. In einem zweiten Teil werden Methoden zur Bestimmung sowohl der elastischplastischen als auch der bruchmechanischen Materialparameter entwickelt, die zum grossen Teil auf optischen Auswertungsmethoden der Deformationen beruhen. Das geschlossene Konzept wird erfolgreich auf lasergeschweisste Kleinproben angewendet. (orig.)

  3. Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti–6Al–4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Buirette, Christophe, E-mail: christophe.buirette@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Huez, Julitte, E-mail: julitte.huez@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Gey, Nathalie, E-mail: Nathalie.gey@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Île du Saulcy, 57045 METZ Cedex 1 (France); DAMAS, Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures, Université de Lorraine (France); Vassel, Alain, E-mail: alain.vassel@titane.asso.fr [Association Française du Titane, 16 quai Ernest Renaud, BP 70515, 44105 Nantes Cedex 4 (France); Andrieu, Eric, E-mail: eric.andrieu@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France)

    2014-11-17

    The impact toughness of two highly textured rolled plates of Ti–6Al–4V alloy with an α equiaxed and an α lamellar microstructures has been investigated. The results show a strong anisotropy of the fracture energy for both materials and underline that a coincidence of the prismatic planes with the shear bands at the notch tip is favorable for higher fracture energies. Moreover, it is pointed out, as it was already done by previous studies, that the α lamellar microstructure presents higher fracture energy than the α equiaxed one. Thanks to electron back scattering diffraction, and tensile tests, local microstructure heterogeneities, called macrozones, have been observed and characterized. Their size depends on microstructure element and is larger for α lamellar microstructure than for the α equiaxed. High strain is localized on the macrozones favorably oriented for prismatic slip with respect to the direction of impact and leads to a particular dimple free zone on the fracture surface. The contribution of these macrozones in the fracture behavior, and more precisely on the crack propagation rate was evaluated; thus the effects of the macroscopic texture and of the microstructure element on the impact toughness are discussed separately.

  4. Assessment of thermal fatigue crack propagation in safety injection PWR lines

    International Nuclear Information System (INIS)

    Simos, N.; Reich, M.; Costantino, C.J.; Hartzman, M.

    1990-01-01

    Cyclic thermal stratification resulting in alternating thermal stresses in pipe cross sections has been identified as the primary cause of high cycle thermal fatigue failure. A number of piping lines in operating plants around the world, susceptible to thermal stratification, have experienced circumferential cracking as a result of high levels of alternating bending stresses. This paper addresses the mechanisms of crack initiation and crack growth and provides estimates of fatigue cycles to failure for a typical safety injection line with such cyclic load history. Utilizing a 3-D finite element analysis, the temperature profile and the corresponding thermal stress field of a complete thermal cycle in a safety injection line consisting of a horizontal pipe section and an elbow, is obtained. Since the observed cracking occurred in the region of the elbow-to-horizontal pipe weld, the analysis performed assessed (1) the impact of the level of local geometric discontinuities on the initiation of an inside surface flaw is greatest and (2) the number of thermal cycles required to drive a small surface crack through the pipe wall. 12 refs., 14 figs., 2 tabs

  5. Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments

    Directory of Open Access Journals (Sweden)

    Taha Özyürek

    2017-11-01

    Full Text Available Objectives To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR, Mtwo-R, ProTaper Next (PTN, and Twisted File Adaptive (TFA systems. Materials and Methods The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU, Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ2 tests using SPSS 21.0 software. Results New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. Conclusions This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

  6. Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments.

    Science.gov (United States)

    Özyürek, Taha; Tek, Vildan; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR), Mtwo-R, ProTaper Next (PTN), and Twisted File Adaptive (TFA) systems. The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU), Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ 2 tests using SPSS 21.0 software. New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

  7. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu [Department of Civil and Environmental Engineering, KAIST, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyoung-Ki; Choi, Kiwan [Health and Medical Equipment, Samsung Electronics, 1003 Daechi-dong, Gangnam-gu, Seoul 135-280 (Korea, Republic of)

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  8. Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts

    Directory of Open Access Journals (Sweden)

    Adelinet M.

    2016-05-01

    Full Text Available The recent tomography results obtained within the scope of the Enhanced Geothermal System (EGS European Soultz project led us to revisit the meso-fracturing properties of Soultz test site. In this paper, we develop a novel approach coupling effective medium modeling and shear-wave splitting to characterize the evolution of crack properties throughout the hydraulic stimulation process. The stimulation experiment performed in 2000 consisted of 3 successive injection steps spanning over 6 days. An accurate 4-D tomographic image was first carried out based upon the travel-times measured for the induced seismicity [Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011 Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295-1314]. The current study shows how to take advantage of the resulting compressional wave (Calò et al., 2011 and shear-wave velocity models. These are given as input data to an anisotropic effective medium model and converted into crack properties. In short, the effective medium model aims to estimate the impact of cracks on velocities. It refers to a crack-free matrix and 2 families of penny-shaped cracks with orientations in agreement with the main observed geological features: North-South strike and dip of 65°East and 65°West [Genter A., Traineau H. (1996 Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121-141], respectively. The resulting output data are the spatial distributions of crack features (lengths and apertures within the 3-D geological formation. We point out that a flow rate increase results in a crack shortening in the area imaged by both compressional and shear waves, especially in the upper part of the reservoir. Conversely, the crack length, estimated during continuous injection rate phases, is higher than during the increasing injection rate phases. A possible explanation for this is that

  9. Effect of temperature on the plastic zone in near-threshold fatigue crack propagation in Nb-H alloys

    International Nuclear Information System (INIS)

    Lin, C.C.; Polvanich, N.; Salama, K.

    1987-01-01

    The effect of temperature on the formation of plastic zone in near-threshold fatigue crack propagation is investigated in niobium-hydrogen alloys. The study was made with the ultimate goal of determining the role of hydrogen related to test temperatures on the embrittlement and fracture processes of niobium. Fatigue tests were performed at the two temperatures 220 and 350 K on a hydrogen-free specimen as well as specimens containing hydrogen in solid solution and in the form of hydride. Microhardness was measured on the fatigued specimens in order to determine the plastic zone size at positions where the crack propagation was in the near-threshold region. The results show that at both temperatures, the plastic zone size in hydrogen-free niobium decreases as the amount of hydrogen is increased until it reaches a minimum value and then increases as the amount of hydrogen is further increased. The hydrogen concentrations at the minimum plastic zone are found to be approximately equal to those where the maximum embrittlement occurs for each temperature

  10. On the role of weak interface in crack blunting process in nanoscale layered composites

    Science.gov (United States)

    Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian

    2018-03-01

    Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.

  11. A FEM based methodology to simulate multiple crack propagation in friction stir welds

    DEFF Research Database (Denmark)

    Lepore, Marcello; Carlone, Pierpaolo; Berto, Filippo

    2017-01-01

    . The residual stress field was inferred by a thermo-mechanical FEM simulation of the process, considering temperature dependent elastic-plastic material properties, material softening and isotropic hardening. Afterwards, cracks introduced in the selected location of FEM computational domain allow stress...

  12. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    Science.gov (United States)

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  13. Crack propagation in the vicinity of the interface in layered materials

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Lucie; Náhlík, Luboš; Hutař, Pavel; Knésl, Zdeněk

    2009-01-01

    Roč. 3, č. 1 (2009), s. 195-204 ISSN 1802-680X R&D Projects: GA AV ČR(CZ) KJB200410803; GA ČR GA106/09/0279 Institutional research plan: CEZ:AV0Z20410507 Keywords : crack * bi-material interface * stability criteria * layered materials Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  15. Analytical Model for Fictitious Crack Propagation in Reinforced Concrete Beams without Debonding

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Brincker, Rune

    1994-01-01

    , the crack growth is further simplified by introducing a continuous layer of springs at the midsection mainly representing a simplified material response around the fracture zone. In the reinforcement the strain condition is assumed to be equal to the strain condition in the concrete. the important question...

  16. A Constitutive Relationship between Crack Propagation and Specific Damping Capacity in Steel

    Science.gov (United States)

    1990-10-01

    diagnostic tool for detecting crack growth in structures. The model must be simple to act as a tool, but it must be comprehensive to provide accuracy...strain for static fracture u ECritical strain above which plastic strain occursP EAverage value of the cyclic plastic-strain rangeP E t ln(Ao/AI), true

  17. On-line monitoring of crack propagation by the acoustic emission method

    International Nuclear Information System (INIS)

    Chung, M.K.; Park, D.Y.; Choi, S.P.; Kim, H.J.; Moon, Y.S.; Shon, G.H.; Kim, T.S.

    1983-01-01

    Stress corrosion cracking experiment was carried out to find out the acoustic emission (AE) characteristics of Al 5052 and SCM-4 steel in 3.5% NaCl-H 2 O solution. In advance of the above test, some mechanical properties of these materials were investigated through the tensile test with standard round tensile specimens and WOL specimens which were originaly designed for the stress corrosion cracking experiment. About 5mm fatigue crack was given to WOL specimen by MTS system. We measure the relationship between stress intensity factor and AE count rate under various temperature of the solution such as 15degC, 33 degC, 45 degC and compared their AE characteristics of two materials. While AE count rate of Al 5052 is even higher than that of SCM-4 steel by one order or two, velocity of corrosion crack is much slow. The AE generation rate of SCM-4 steel is discrete and about 0.25 mm corrosion growth corresponds to 10 3 counts. Also location of defects in linear specimen was studied. (Author)

  18. Influence of Normal and Shear Stress on the Hydraulic Transmissivity of Thin Cracks in a Tight Quartz Sandstone, a Granite, and a Shale

    Science.gov (United States)

    Rutter, Ernest H.; Mecklenburgh, Julian

    2018-02-01

    Transmissivity of fluids along fractures in rocks is reduced by increasing normal stress acting across them, demonstrated here through gas flow experiments on Bowland shale, and oil flow experiments on Pennant sandstone and Westerly granite. Additionally, the effect of imposing shear stress at constant normal stress was determined, until frictional sliding started. In all cases, increasing shear stress causes an accelerating reduction of transmissivity by 1 to 3 orders of magnitude as slip initiated, as a result of the formation of wear products that block fluid pathways. Only in the case of granite, and to a lesser extent in the sandstone, was there a minor amount of initial increase of transmissivity prior to the onset of slip. These results cast into doubt the commonly applied presumption that cracks with high resolved shear stresses are the most conductive. In the shale, crack transmissivity is commensurate with matrix permeability, such that shales are expected always to be good seals. For the sandstone and granite, unsheared crack transmissivity was respectively 2 and 2.5 orders of magnitude greater than matrix permeability. For these rocks crack transmissivity can dominate fluid flow in the upper crust, potentially enough to permit maintenance of a hydrostatic fluid pressure gradient in a normal (extensional) faulting regime.

  19. Effect of oxidation on the fatigue crack propagation behavior of Z3CN20.09M dyplex stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan Chun; Yang, Bin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Chen, Yue Feng; Chen, Xu Dong [Collaborative Innovation Center of Steel Technology, Beijing (China)

    2017-06-15

    The fatigue crack propagation behaviors of Z3CN20.09M duplex stainless steel (DSS) were investigated by studying oxide films of specimens tested in 290°C water and air. The results indicate that a full oxide film that consisted of oxides and hydroxides was formed in 290°C water. By contrast, only a half-baked oxide film consisting of oxides was formed in 290°C air. Both environments are able to deteriorate the elastic modulus and hardness of the oxide films, especially the 290°C water. The fatigue lives of the specimens tested in 290°C air were about twice of those tested in 290°C water at all strain amplitudes. Moreover, the crack propagation rates of the specimen tested in 290°C water were confirmed to be faster than those tested in 290°C air, which was thought to be due to the deteriorative strength of the oxide films induced by the mutual promotion of oxidation and crack propagation at the crack tip. It is noteworthy that the crack propagation can be postponed by the ferrite phase in the DSS, especially when the specimens were tested in 290°C water.

  20. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  1. The Influence of Loading Ratio on Fatigue Crack Propagation Through a Bi-material Interface

    Czech Academy of Sciences Publication Activity Database

    Náhlík, Luboš; Hutař, Pavel; Knésl, Zdeněk

    2007-01-01

    Roč. 348-349, - (2007), s. 317-320 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /6./. Funchal, Madeira, 17.07.2007-19.07.2007] R&D Projects: GA ČR(CZ) GA101/05/0320 Institutional research plan: CEZ:AV0Z20410507 Keywords : bi-material interface * loading ratio * plasticity-induced crack closure * critical stress Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  2. On crack propagation in the welded polyolefin pipes with and without the presence of weld beads

    Czech Academy of Sciences Publication Activity Database

    Mikula, Jakub; Hutař, Pavel; Nezbedová, E.; Lach, R.; Arbeiter, F.; Ševčík, Martin; Pinter, G.; Grellmann, W.; Náhlík, Luboš

    2015-01-01

    Roč. 87, DEC (2015), s. 95-104 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Slow crack growth * Butt weld * Lifetime estimation * Polyolefin pipes * Weld bead Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.997, year: 2015

  3. Initiation and propagation of fatigue cracks in cast IN713LC superalloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.

    2010-01-01

    Roč. 77, č. 11 (2010), s. 2008-2015 ISSN 0013-7944 R&D Projects: GA MPO FT-TA4/023; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : IN 713LC * high temperature fatigue * crystallographic fatigue crack initiation * mean stress effect Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.571, year: 2010

  4. Analytical description of fatigue crack propagation regularities taking into account residual welding stresses

    International Nuclear Information System (INIS)

    Trufyakov, V.I.; Knysh, V.V.; Mikheev, P.P.; Kuz'menko, A.Z.

    1983-01-01

    The procedure, accounting the effect of residual stresses on crack resistance of welded constructions under cyclic loads, is described. The procedure is based on the Paris equation modified by the introduction of the coefficient of residual stress intensity through the functional dependence. The dependence is determined for cases of residual stresses of tension and compression. The experimental data for the 15KhSND steel are presented

  5. Effect of pressurized water reactor environment on fatigue crack propagation, including hole times

    International Nuclear Information System (INIS)

    Bamford, W.H.

    1976-01-01

    Results are presented from an experimental program being conducted to investigate the effects of pressurized water reactor environment on the fatigue crack growth rate of pressure vessel steels. Tests were conducted on precracked WOL type specimens under load controlled conditions. The effects of R ratio, loading rates, and loading wave form are evaluated, and the results are compared for both forging and plate material, as well as weldments

  6. Basic modes of crack propagation through the interface in polymer layered structure

    Czech Academy of Sciences Publication Activity Database

    Zouhar, Michal; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    488-489, č. 1 (2012), s. 162-165 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GD106/09/H035; GA ČR GA106/09/0279 Institutional support: RVO:68081723 Keywords : fracture mechanics * slow crack growth * multilayer polymer pipe Subject RIV: JL - Materials Fatigue, Friction Mechanics

  7. Effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    James, L A

    1986-01-01

    Fatigue-crack propagation tests were conducted in air at 538/sup 0/C on several specimens of Alloy 718 representing several different producers, melt practices and product forms. This variety resulted in a range of grain sizes from ASTM Size 5 to 11.5. Tests at low cyclic frequency employing a tensile hold-time revealed a relationship between crack growth rates and grain size: higher growth rates were associated with fine-grain material and lower rates with larger-grain material. The lowest crack growth rates were associated with a necklace microstructure, whereby large grains are associated with necklaces of very small grains.

  8. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model; Caracterisation quantitative de l`amorcage et de la propagation en corrosion sous contrainte. Approche d`une modelisation phenomenologique

    Energy Technology Data Exchange (ETDEWEB)

    Raquet, O

    1994-11-25

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl{sub 2} aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a `riddle` for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author).

  9. Mechanistic dissimilarities between environmentally-influenced fatigue-crack propagation at near-threshold and higher growth rates in lower-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, S.; Ritchie, R. O.

    1981-11-01

    The role of hydrogen gas in influencing fatigue crack propagation is examined for several classes of lower strength pressure vessel and piping steels. Based on measurements over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, crack propagation rates are found to be significantly higher in dehumidified gaseous hydrogen compared to moist air in two distinct regimes of crack growth, namely (i) at the intermediate range of growth typically above approx. 10/sup -5/ mm/cycle, and (ii) at the near-threshold region below approx. 10/sup -6/ mm/cycle approaching lattice dimensions per cycle. Both effects are seen at maximum stress intensities (K/sub max/) far below the sustained-load threshold stress intensity for hydrogen-assisted cracking (K/sub Iscc/). Characteristics of environmentally influenced fatigue crack growth in each regime are shown to be markedly different with regard to fractography and the effect of such variables as load ratio and frequency. It is concluded that the primary mechanisms responsible for the influence of the environment in each regime are distinctly different. Whereas corrosion fatigue behavior at intermediate growth rates can be attributed to hydrogen embrittlement processes, the primary role of moist environments at near-threshold levels is shown to involve a contribution from enhanced crack closure due to the formation of crack surface corrosion deposits at low load ratios.

  10. High temperature cracking of steels: effect of geometry on creep crack growth laws; Fissuration des aciers a haute temperature: effet de la geometrie sur la transferabilite des lois de propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, M.R

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C{sup *} and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C{sup *} parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C{sup *} parameter, a second non singular term, denoted here as Q{sup *}, is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C{sup *} parameter (da/dt - C{sup *}), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C{sup *} type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C{sup *}), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical

  11. Small fatigue crack propagation in Y2O3 strengthened steels

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Kuběna, Ivo; Ševčík, Martin; Šmíd, Miroslav; Kruml, Tomáš; Náhlík, Luboš

    2014-01-01

    Roč. 452, 1-3 (2014), s. 370-377 ISSN 0022-3115 R&D Projects: GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GP13-28685P Institutional support: RVO:68081723 Keywords : oxide dispersion strengthened steel * small fatigue crack * J-integral * fatigue life prediction Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.865, year: 2014

  12. Fundamental study of crack initiation and propagation. Annual progress report, March 1976--March 1977

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    Ductile fracture in nuclear pressure vessel steel was characterized using a computer model of material damage. The model predicts crack initiation and growth and contains constants that are set by computer simulation of the following fracture tests: the simple tension test, the circumferentially notched round tension test, the blunt-notched compact tension test, and the Charpy V-notch test. The simulations provide the stress and strain states of these tests at fracture. The major goal of our characterization program is to determine the correlation between Charpy toughness and fracture toughness

  13. The use of Electronic Speckle Pattern Interferometry (ESPI) in the crack propagation analysis of epoxy resins

    Science.gov (United States)

    Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.

    The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.

  14. Shear-tensile crack as a tool for reliable estimates of the non-double-couple mechanism: West Bohemia-Vogtland earthquake 1997 swarm

    Czech Academy of Sciences Publication Activity Database

    Šílený, Jan; Horálek, Josef

    2016-01-01

    Roč. 95, October (2016), s. 113-124 ISSN 1474-7065 R&D Projects: GA ČR GAP210/12/2235; GA ČR(CZ) GA16-03950S Institutional support: RVO:67985530 Keywords : earthquake mechanism * moment tensor * shear-tensile crack * confidence regions Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.426, year: 2016

  15. Simulation of crack propagation in steel plate with strain softening model

    Energy Technology Data Exchange (ETDEWEB)

    Chan, O.B.; Elwi, A.E.; Grondin, G.Y.

    2006-05-15

    A new material model for simulating the fracture behaviour of structural steel was presented. Recent research on crack initiation and continuum damage mechanics was presented. A modified continuum damage model was also evaluated. Strain softening elements were then used to simulate material cracks in a steel structure. The analysis then compared load versus displacement and load versus clip-gauge displacement curves from various different experimental and numerical studies. A finite element analysis technique was used to simulate the fracture behaviour of 3-points bending specimens. Results of the analysis showed that the model predicted 90 per cent of the load and stress intensity factor at fracture initiation. A BE 365 electric shovel boom was used in the study to simulate fracture behaviour. Coupon test specimens were used to validate analysis predictions. It was concluded that the model was able to reduce the stiffness of the boom when the softening element reached yield strength limits during fracture initiation. 29 refs., 12 tabs., 58 figs.

  16. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  17. Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack

    Directory of Open Access Journals (Sweden)

    Jung-Ryul Lee

    2014-01-01

    Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.

  18. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  19. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  20. In situ observation of rolling contact fatigue cracks by laminography using ultrabright synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Y. Nakai

    2015-10-01

    Full Text Available In rolling contact fatigue (RCF, cracks usually initiate from inclusions beneath the surface and propagate to the contact surface. In the present study, synchrotron radiation computed laminography (SRCL imaging was performed to observe flaking defects during the RCF of a high-strength steel. Specially fabricated inclusion-rich steel plate specimens were employed in the experiments. For the in situ observation of crack propagation, a compact RCF testing machine was developed, and a 4D analysis scheme was applied to the data obtained by SRCL. RCF tests were carried out near the measurement hatch of the beam line used SRCL to enable the successive observation of crack initiation and growth behaviors. Specimens before and after the occurrence of flaking were observed by SRCL, and flaking defects and cracks under the surface were successfully detected. As a result, details of the crack initiation and flaking process in RCF could be discussed. Shear-type horizontal cracks were found to initiate after the initiation and propagation of tensile-type vertical cracks along inclusions, where the face of the vertical cracks was perpendicular to the rolling direction and rolling surface. Therefore, the formation of vertical cracks is considered to affect shear-type crack formation and flaking, where the shape and length of inclusions also affect the initiation and propagation of vertical cracks.

  1. Account of residual stress effect in estimation of the period of fatigue crack initiation and propagation in joints with poor penetration

    International Nuclear Information System (INIS)

    Babaev, A.V.; Knysh, V.V.; Labunskaya, N.F.

    1985-01-01

    Dependences permitting to determine by calculation method the duration of the stage of fatigue crack propagation in joints with poor penetration and residual stresses are obtained on the basis of criteria of fracture mechanics. It gives a possibility to estimate the resource of these joints using the calculation-experimental method

  2. Crack propagation model taking into consideration the local effect of the deviatoric stress and the non-local effect of the isotropic stress

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav

    2011-01-01

    Roč. 56, č. 4 (2011), s. 343-358 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional research plan: CEZ:AV0Z20710524 Keywords : crack propagation * nonlocal effect * deviatoric local effect * isotropic nonlocal Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(..delta..K)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel.

  4. Fatigue crack initiation and propagation in steels exposed to inert and corrosive environments. Final report, May 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Youseffi, K.; Finnie, I.

    1978-02-01

    The fatigue crack initiation life of AISI 1018 steel was investigated using compact tension specimens having sharp notch root radii. The data were analyzed using two methods for predicting initiation in strain cycling experiments. Also, another approach in which initiation is related to the stress intensity factor was developed. The next phase, that of propagation, was studied using AISI 1018 steel and a new high strength steel HY-180. The crack propagation data obtained for both steels tested in air can be described accurately by the power law first suggested by Paris, da/dN = C(ΔK)/sup n/, where a is the crack length, N the number of cycles, and C and n are material constants. However, the exponent n was found to be two times larger for AISI 1018 steel than HY-180 steel

  5. Elastic-plastic analysis of part-through crack propagation in piping and pressure vessels

    International Nuclear Information System (INIS)

    Souza, L.A. de; Ebecken, N.F.F.

    1986-01-01

    The shell structures, often used in the construction of reservoirs, pipings, pressure vessels, nuclear power plants, etc, with part-through crack along its thickness, are analysed, using a computer system developed by the finite element method. The surface is discretized with three-dimensional quadratic elements, degenerated in its mid-surface, such the fracture is simulated by scalar elements (non linear springs). The results are analysed by the stress intensity factor K Sub(I) and the strain energy release rate, which is known as J-integral. The analysis is performed in the elastic and elastic-plastic regime. The basic hipothesis and the formulation adopted in the derivation of the scalar elements are also shown. (Author) [pt

  6. Crack growth behaviour of aluminium wrought alloys in the Very High Cycle Fatigue regime

    Directory of Open Access Journals (Sweden)

    Bülbül Fatih

    2018-01-01

    Full Text Available Investigations have shown that in the regime of Very High Cycle Fatigue (VHCF “natural” crack initiation often takes place underneath the material surface leading to crack propagation without contact to atmospheric components. In order to elucidate the environmental damage contribution and its effect on the VHCF long crack propagation, fatigue experiments with alternating environment (vacuum and laboratory air were performed. An ultrasonic fatigue testing system (USFT equipped with a small vacuum chamber was applied that enables the in-situ examination of the long fatigue crack propagation at a resonance frequency of about 20 kHz by using a long distance microscope. By means of the Focused-Ion-Beam technique, micro-notches were prepared in the USFT specimens. The tests were carried out on the aluminium alloys EN-AW 6082 and 5083 in different conditions. It has been found that the atmosphere has a significant influence on the VHCF long crack propagation which manifests itself in the crack path as well as in the crack growth rates. Because of pronounced single sliding in vacuum, shear-stress-controlled crack propagation was detected whereas in laboratory air normal-stress-controlled crack propagation occurred. Furthermore, it has been proven that the secondary precipitation state of the aluminium alloy significantly influences the VHCF long crack propagation in vacuum.

  7. Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Cho, S.S.; Park, K.C.

    2016-01-01

    Roč. 107, č. 7 (2016), s. 543-579 ISSN 0029-5981 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : stress wave propagation * finite element method * explicit time integrator * dispersion * minimal spurious oscillations * partitioned analysis Subject RIV: BI - Acoustics Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0207

  8. Evaluation of Detrimental Effects on Mechanical Properties of Zry-4 Due to Hydrogen Absorption by means of Scanning Electron Microscopy (SEM) In-Situ Observation of Crack Propagation

    International Nuclear Information System (INIS)

    Fernandez, L; Fernandez, G.E; Bertolino, G; Meyer, G

    2001-01-01

    The study of mechanical properties degradation of zirconium alloys due to hydrides assumes fundamental importance in the nuclear industry.During normal nuclear reactors operation, structural parts absorbed hydrogen generated from radiolysis of water, causing detrimental effects on mechanical properties.As a consequence, these materials are easily cracked in the presence of mechanical solicitation due to loss of ductility of the hydride-phase.The presence of cracks indicates fracture mechanic as the most suitable methodology in the study of mechanical properties degradation.In this work we used the crack tip opening displacement (CTOD) criteria to evaluate the detrimental effects on mechanical properties with the observation in SEM of crack propagation.The samples used were SEN (B) of Zry-4 and cathodic homogenous charged with hydrogen concentrations lower than 400 ppm

  9. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature

    International Nuclear Information System (INIS)

    Calonne, V.

    2001-07-01

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  10. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  11. The mechanics and physics of fracturing: application to thermal aspects of crack propagation and to fracking.

    Science.gov (United States)

    Cherepanov, Genady P

    2015-03-28

    By way of introduction, the general invariant integral (GI) based on the energy conservation law is presented, with mention of cosmic, gravitational, mass, elastic, thermal and electromagnetic energy of matter application to demonstrate the approach, including Coulomb's Law generalized for moving electric charges, Newton's Law generalized for coupled gravitational/cosmic field, the new Archimedes' Law accounting for gravitational and surface energy, and others. Then using this approach the temperature track behind a moving crack is found, and the coupling of elastic and thermal energies is set up in fracturing. For porous materials saturated with a fluid or gas, the notion of binary continuum is used to introduce the corresponding GIs. As applied to the horizontal drilling and fracturing of boreholes, the field of pressure and flow rate as well as the fluid output from both a horizontal borehole and a fracture are derived in the fluid extraction regime. The theory of fracking in shale gas reservoirs is suggested for three basic regimes of the drill mud permeation, with calculating the shape and volume of the local region of the multiply fractured rock in terms of the pressures of rock, drill mud and shale gas. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Wave propagation to lower hybrid resonance in a magnetic field with shear

    International Nuclear Information System (INIS)

    Ohkubo, Kunizo; Ohasa, Kazumi; Matsuura, Kiyokata

    1977-01-01

    The ray trajectories of electrostatic wave to the lower hybrid (LH) resonance on the meridian plane of torus is significantly modified as compared with that without shear. The ray starting from the vicinity of the plasma surface rotates spirally around the magnetic axis. The ray reaching the layer S=0, where the perpendicular dielectric constant vanishes, is not terminated but reflected along the second characteristic curve towards another point on the layer S=0. After being reflected successively, rays finally converge on the node point of the layer S=0 on the equatorial plane. In the absence of the layer S=0 the rays infinitely reflect between the cutoff layers near the center and surface of plasma and cover all the region between the layers. (auth.)

  13. Crack growth in an austenitic stainless steel at high temperature; Propagation de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P

    1998-12-31

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*{sub s}. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors) 104 refs.

  14. Harmonic oscillations of a longitudinal shear infinite hollow cylinder arbitrary cross-section with a tunnel crack

    Science.gov (United States)

    Kyrylova, O. I.; Popov, V. G.

    2018-04-01

    An effective analytical-numerical method for determining the dynamic stresses in a hollow cylindrical body of arbitrary cross-section with a tunnel crack under antiplane strain conditions is proposed. The method allows separately solving the integral equations on the crack faces and satisfying the boundary conditions on the body boundaries. It provides a convenient numerical scheme. Approximate formulas for calculating the dynamic stress intensity factors in a neighborhood of the crack are obtained and the influence of the crack geometry and wave number on these quantities is investigated, especially from the point of view of the resonance existence.

  15. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  16. An experimental assessment of hysteresis in near-threshold fatigue crack propagation regime of a low alloy ferritic steel under closure-free testing conditions

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1991-01-01

    Near-threshold fatigue crack propagation behavior of a high strength steel was investigated in laboratory air under closure-free testing conditions at R = 0.7 (= R eff ), and at two different K-gradients. Depending on the criterion assumed, the threshold value differed; the criterion of non-propagation gave a lower threshold value than that assumed by the propagation criterion. Nevertheless, the subsequent propagation following a load increase was discontinuous in both the cases, and da/dN vs ΔK curves obtained on the same specimen during the K-decreasing and the K-increasing test were not necessarily identical in the threshold regime. This behavior, hysteresis, is analyzed mainly from the experimental viewpoint, and it is shown that hysteresis is not an artifact. (orig.) With 13 figs., 3 appendices [de

  17. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    Science.gov (United States)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  18. Crack Tip Flipping Under Mode I/III Tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Specht Jensen, Lasse; Nielsen, Kim Lau

    Crack tip flipping, where the fracture surface alternates from side to side in 45° shear bands, seems to be an overlooked propagation mode in Mode I sheet tearing often disregarded as  “transitional” or tied to randomness in the material. In fact, such observations rarely make it to the literature...

  19. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method; Dynamique explicite pour la simulation numerique de propagation de fissure par la methode des elements finis etendus

    Energy Technology Data Exchange (ETDEWEB)

    Menouillard, T

    2007-09-15

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  20. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Tsuchida, Y. [Nippon Steel Corp., Tokyo (Japan); Machida, S.; Yoshinari, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  1. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Tsuchida, Y [Nippon Steel Corp., Tokyo (Japan); Machida, S; Yoshinari, H [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  2. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  3. Method of measurement of near tip field of fast propagating cracks by means of interferometry; Hikari kansho ni yoru kosoku shinten kiretsu sentanbu no oryokuba keisokuho

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, s.; Miyazaki, F. [Toyohashi University of Technology, Aichi (Japan); Nakane, K. [Nitto Denko Corp., Osaka (Japan)

    1994-12-15

    The measurement by an interference method at the tip of fast propagating cracks was investigated. To clarify the direction-dependent problem of dynamic cracks in a higher-order term, a high-precision stress field must be measured in every direction. In this method, the propagated interference fringes near the crack tip are shot at a speed of some hundreds of m/sec, and the coefficient of dynamic stress extension is obtained from the expression given when the number of fringes (`m`) in the interferences fringes is differentiated partially. The information below was obtained. The stress field in every direction can be analyzed by the interference method. However, the interference fringes in an area of absolute {theta} < 120{degree} are radially spread from the crack tip, so the precision of the interference fringes in the {gamma} direction deteriorates. In this area, the above partial differential is higher in precision when {alpha}m/{alpha}{theta} is used instead of {alpha}m/{alpha}{gamma}. The stress extension coefficient obtained by a caustic method can be verified if a stress field of {theta} = {plus_minus}72{degree} is analyzed by the interference method. By shooting in this optical system, the COD measurement, the K-value measurement of caustic light, and the stress field measurement by an interference method can be done simultaneously. 17 refs., 11 figs.

  4. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  5. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films

    International Nuclear Information System (INIS)

    Kim, Seong-Woong; Li Xiaoyan; Gao Huajian; Kumar, Sharvan

    2012-01-01

    In situ tensile experiments in a transmission electron microscope revealed that micro-cracks in ultrafine grained, free-standing, thin copper foils containing nanoscale twins initiated in matrix domains separated by the twins and then arrested at twin boundaries as twin boundary sliding proceeded. The adjacent microcracks eventually coalesced through shear failure of the bridging twins. To investigate the atomic mechanism of this rarely seen nanoscale crack bridging behavior, molecular dynamics simulations were performed to show that during crack propagation twin boundaries are impinged upon by numerous dislocations from the plastically deforming matrix. These dislocations react at the interface and evolve into substantially impenetrable dislocation walls that strongly confine crack nucleation and resist crack propagation, leading to the experimentally observed crack bridging behavior. The present results raise an approach to significantly toughening polycrystalline thin films by incorporating nanoscale twin structures into individual grains that serve as crack bridging ligaments.

  6. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  7. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull

    Science.gov (United States)

    Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo

    2017-09-01

    A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of

  8. Crack Tip Flipping under Mode I Tearing: Investigated by X-Ray Tomography

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Gundlach, Carsten

    2017-01-01

    The fracture surface morphology that results from mode I tearing of ductile plate metals depends heavily on both the elastic-plastic material properties and the microstructure. Severe tunneling of the advancing crack tip (resulting in cup-cup, or bath-tub like fracture surfaces) can take place...... in a range of materials, often of low strength, while tearing of high strength metals typically progress by the shear band failure mechanism (slanting). In reality, however, most fracture surfaces display a mixture of morphologies. For example, slant crack propagation can be accompanied by large shear lips...... near the outer free plate surface or a complete shear band switch - seemingly distributed randomly on the fracture surface. The occasionally observed shear band switch of mode I slant cracks, related to ductile plate tearing, is far from random as the crack can flip systematically from one side...

  9. Investigations On Crack Propagation Under Cyclical Isothermal And Thermo-mechanical Loadings For A Type 304-L Stainless Steel Used For Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Gourdin Cédric

    2018-01-01

    Full Text Available The integrity of structures exhibiting flaws in Pressurized Water Reactor (PWR has to be assessed to meet safety criteria. This paper deals with crack-propagation under cyclic thermo-mechanical loadings, as encountered in class I austenitic pipes of PWR’s. To have a conservative and reliable assessment of the crack propagation due to the in-service loading, various codes and standards use simplified method. For example, the RSE-M Code introduces a plastic correction depending on the proportion of the mechanical loading. An improvement of the current method requires additional investigations. Moreover, components loaded with transient or thermal fluctuations are not really in loadcontrolled conditions. To this end, a device called PROFATH was designed. The specimen is a pre-cracked thick-walled tube undergoing a set of thermal cycles and loaded with a static mechanical force. During the first part of the thermal cycle, a high frequency induction coil heats the external wall of the tube. Then, the heating system stops and the specimen is cooled down by running water inside the tube. Finite element calculations show that only a region half-way along the tube should be heated to ensure adequate structural effect. In the heated zone, the machining of a sharp circumferential groove ensures the propagation of a unique crack. An electro-mechanical jack controls the level of the mechanical static load. Tests have been carried out, and these tests allow having an evaluation of the pertinence of the correction proposed by the RSE-M Code for a significant plasticity.

  10. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  11. Prediction of crack propagation and arrest in X100 natural gas transmission pipelines with a strain rate dependent damage model (SRDD). Part 2: Large scale pipe models with gas depressurisation

    International Nuclear Information System (INIS)

    Oikonomidis, F.; Shterenlikht, A.; Truman, C.E.

    2014-01-01

    Part 1 of this paper described a specimen for the measurement of high strain rate flow and fracture properties of pipe material and for tuning a strain rate dependent damage model (SRDD). In part 2 the tuned SRDD model is used for the simulation of axial crack propagation and arrest in X100 natural gas pipelines. Linear pressure drop model was adopted behind the crack tip, and an exponential gas depressurisation model was used ahead of the crack tip. The model correctly predicted the crack initiation (burst) pressure, the crack speed and the crack arrest length. Strain rates between 1000 s −1 and 3000 s −1 immediately ahead of the crack tip are predicted, giving a strong indication that a strain rate material model is required for the structural integrity assessment of the natural gas pipelines. The models predict the stress triaxiality of about 0.65 for at least 1 m ahead of the crack tip, gradually dropping to 0.5 at distances of about 5–7 m ahead of the crack tip. Finally, the models predicted a linear drop in crack tip opening angle (CTOA) from about 11−12° at the onset of crack propagation down to 7−8° at crack arrest. Only the lower of these values agree with those reported in the literature for quasi-static measurements. This discrepancy might indicate substantial strain rate dependence in CTOA. - Highlights: • Finite element simulations of 3 burst tests of X100 pipes are detailed. • Strain rate dependent damage model, tuned on small scale X100 samples, was used. • The models correctly predict burst pressure, crack speed and crack arrest length. • The model predicts a crack length dependent critical CTOA. • The strain rate dependent damage model is verified as mesh independent

  12. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  13. Modeling a Propagating Sawtooth Flare Ribbon Structure as a Tearing Mode in the Presence of Velocity Shear

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Jacob; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2017-09-20

    On 2014 April 18 (SOL2014-04-18T13:03), an M-class flare was observed by IRIS. The associated flare ribbon contained a quasi-periodic sawtooth pattern that was observed to propagate along the ribbon, perpendicular to the IRIS spectral slit, with a phase velocity of ∼15 km s{sup −1}. This motion resulted in periodicities in both intensity and Doppler velocity along the slit. These periodicities were reported by Brannon et al. to be approximately ±0.″5 in position and ±20 km s{sup −1} in velocity and were measured to be ∼180° out of phase with one another. This quasi-periodic behavior has been attributed by others to bursty or patchy reconnection and slipping occurring during three-dimensional magnetic reconnection. Though able to account for periodicities in both intensity and Doppler velocity, these suggestions do not explicitly account for the phase velocity of the entire sawtooth structure or the relative phasing of the oscillations. Here we propose that the observations can be explained by a tearing mode (TM) instability occurring at a current sheet across which there is also a velocity shear. Using a linear model of this instability, we reproduce the relative phase of the oscillations, as well as the phase velocity of the sawtooth structure. We suggest a geometry and local plasma parameters for the April 18 flare that would support our hypothesis. Under this proposal, the combined spectral and spatial IRIS observations of this flare may provide the most compelling evidence to date of a TM occurring in the solar magnetic field.

  14. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  15. Mechanism of crack healing at room temperature revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H.

    2015-01-01

    Three dimensional molecular dynamics (MD) simulations are systematically carried out to reveal the mechanism of the crack healing at room temperature, in terms of the dislocation shielding and the atomic diffusion to control the crack closure, in a copper (Cu) plate suffering from a shear loading. The results show that the process of the crack healing is actualized through the dislocation emission at a crack tip accompanied with intrinsic stacking faults ribbon forming in the crack tip wake, the dislocation slipping in the matrix and the dislocation annihilation in the free surface. Dislocation included stress compressing the crack tip is examined from the MD simulations and the analytical models, and then the crack closes rapidly due to the assistance of the atomic diffusion induced by the thermal activation when the crack opening displacement is less than a threshold value. This phenomenon is very different from the previous results for the crack propagation under the external load applied because of the crack healing (advancing) largely dependent on the crystallographic orientations of crack and the directions of external loading. Furthermore, based on the energy characteristic and considering the crack size effect, a theoretical model is established to predict the relationships between the crack size and the shear stress which qualitatively agree well with that obtained in the MD simulations

  16. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  17. Brittleness, microcracking and crack propagation in stress-relief annealing of welded low-alloyed NiMoCr steels

    International Nuclear Information System (INIS)

    Chen, H.Y.

    1976-01-01

    It in possible to produce the essentially corresponding microstructural states as well as micro or macro crack formation by simulation welding of the coarse grain zone of welded seams and to analyze the conditions for brittleness and crack formation. The metallurgical procedures in the heat affected zone of a welded joint are described. It could be seen from metallographic polished specimens that the crack formation can persue the triple point theory as well as the carity theory. The heating and relaxing process was analyzed on a model and the latter described by the pure relaxation test, relaxation test according to Murray and time-fracture test. The time-fracture test was mainly applied to investigate a possible decrease in toughness and crack formation because it normally does not work in relaxation tests - contrary to the component - to produce crack formation. In order to determine how long it takes for the first micro cracks to occur at a defined stress in short time-fracture testing, metallographic specimens were prepared as well as notched bar impact beneting tests performed. There is a distinct dependence between lasting expansion in the short time-fracture test, notched bar impact strength and the number of cracks; the notched bar impact strength decreases with increasing microcracking (increasing permanent expansion). One must note here that the microstructure can still carry full load although its toughness value has decreased. The maximum brittleness state of the materials depends on time and temperature. (orig.) [de

  18. The effect of initiation feature and environment on fatigue crack formation and early propagation in aluminum zinc magnesium copper

    Science.gov (United States)

    Burns, James T.

    The current research provides insight into fatigue crack formation and progression in the poorly understood size regime that bridges safe-life and damage tolerance approaches; particular attention is given to the influences of corrosion-induced degradation and time-cycle dependent loading environment effects. Quantitative analysis of crack formation life (Ni), microstructurally small crack (database. Results show that fatigue crack formation involves a complex interaction of elastic stress concentration, due to a 3-dimensional macro-pit, coupled with local micro-feature (and constituent) induced plastic strain concentration. Such interactions cause high Ni variability, but, from an engineering perspective, a broadly corroded surface should contain an extreme group of features driving Ni to ˜0. At low-applied stresses, Ni consumes a significant portion of total life, which is well predicted by coupling elastic-plastic FEA with empirical low-cycle fatigue life models. All pristine and corroded da/dN were uniquely correlated using complex continuum stress intensity (K) and crack opening solutions which account for the stress concentrating formation feature. Multiple crack growth regimes were observed, typical of environment enhanced fatigue in Al alloys. Such behavior is not captured by prominent mechanics-based small crack models. Furthermore, neither local closure nor slip-based models captured the order of magnitude variability in da/dN attributed to microstructure. Low temperature loading produces an order of magnitude increase in Ni, and even larger reduction in da/dN, due to elimination of H-enhanced cracking by reduced external water vapor pressure, lower crack tip reaction rate (to produce atomic-H), and slower H diffusion. Engineering level modeling approaches are validated using these high fidelity experimental results, informing next generation prognosis methods for realistic airframe environments.

  19. Propagation of semi-elliptical surface cracks in ferritic and austenitic steel plates under thermal cyclic loading

    International Nuclear Information System (INIS)

    Bethge, K.

    1989-05-01

    Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de

  20. Crack identification by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Hwu, C.B.; Liang, Y.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Aeronaut. and Astronaut.

    1998-04-01

    In this paper, a most popular artificial neural network called the back propagation neural network (BPN) is employed to achieve an ideal on-line identification of the crack embedded in a composite plate. Different from the usual dynamic estimate, the parameters used for the present crack identification are the strains of static deformation. It is known that the crack effects are localized which may not be clearly reflected from the boundary information especially when the data is from static deformation only. To remedy this, we use data from multiple-loading modes in which the loading modes may include the opening, shearing and tearing modes. The results show that our method for crack identification is always stable and accurate no matter how far-away of the test data from its training set. (orig.) 8 refs.

  1. Effect of the size of the apical enlargement with rotary instruments, single-cone filling, post space preparation with drills, fiber post removal, and root canal filling removal on apical crack initiation and propagation.

    Science.gov (United States)

    Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan

    2015-02-01

    The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Incidence of apical crack initiation and propagation during the removal of root canal filling material with ProTaper and Mtwo rotary nickel-titanium retreatment instruments and hand files.

    Science.gov (United States)

    Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Kesim, Bertan; Tuncay, Oznur

    2014-07-01

    The aim of this study was to determine the incidence of crack initiation and propagation in apical root dentin after retreatment procedures performed by using 2 rotary retreatment systems and hand files with additional instrumentation. Eighty extracted mandibular premolars with single canals were selected. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the control group, and no preparation was performed. The remaining 60 teeth were prepared to size 35 with rotary files and filled with gutta-percha and AH Plus sealer. Specimens were then divided into 3 groups (n = 20), and retreatment procedures were performed with the following devices and techniques: ProTaper Universal retreatment files, Mtwo retreatment files, and hand files. After retreatment, the additional instrumentation was performed by using size 40 ProTaper, Mtwo, and hand files. Digital images of the apical root surface were recorded before preparation, after instrumentation, after filling, after retreatment, and after additional instrumentation. The images were then inspected for the presence of any new apical cracks and propagation. Data were analyzed with the logistic regression and Fisher exact tests. All experimental groups caused crack initiation and propagation after use of retreatment instruments. The ProTaper and Mtwo retreatment groups caused greater crack initiation and propagation than the hand instrument group (P ProTaper and Mtwo instruments after the use of retreatment instruments caused crack initiation and propagation, whereas hand files caused neither crack initiation nor propagation (P < .05). This study showed that retreatment procedures and additional instrumentation after the use of retreatment files may cause crack initiation and propagation in apical dentin. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. A concern about the crack propagation rate of PWSCC which obtained from the investigation on primary coolant leakage portion of the reactor vessel head in Ohi 3

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Fukumura, Takuya

    2010-01-01

    There will be some concern about the content presented in the paper entitled 'Primary Coolant Leakage Path Research of Reactor Vessel Head Penetration' published in INSS JOURNAL of 2008, which may lead to misunderstanding about the PWSCC crack propagation rate, that is, the rate written in the paper seems to be faster than those reported by the previous studies. It is considered that such misunderstanding will be due to a sentence in the abstract of the paper. Therefore, we will revise a part of the abstract and explain about the outline of the paper again. (author)

  4. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  5. Fracture-mechanical investigations on the propagation of heat-tension-cracks, in boittle multi-component media

    International Nuclear Information System (INIS)

    Grebner, H.

    1983-01-01

    The quasistatic dissipation of thermically induced cracks in brittle multi-components material with plane boundary areas is studied. The distribution of Eigentension, which is causing the dissipation of cracks, is produced by cooling the composite material from the production temperature to room temperature. Tension distributions, respectively of the fracture-mechanical coefficients were determined by solving of the boundary value problems of the theory of plane thermoelasticity, a based on existence of a plane distortion state, respectively of a plane state of tension. Because of the complicated shape of the free surface one adopted a numerical solution, the finite-element method, to solve the corresponding mixed boundary value problems. (orig.) [de

  6. Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This research presents a novel method to asses a crack growing/damage event in composite material, in polymer, or in structural adhesive using Fibre Bragg Grating (FBG) sensors embedded in the host material, and its application in to a composite material structure: Wind Turbine Trailing Edge....... A Structure-Material-Sensor Finite Element Method (FEM) model was developed to simulate the Fibre Bragg Grating sensor output response, when embedded in a host material (Composite material, polymer or adhesive), during a crack growing/damage event. This Structure-Material-Sensor model provides a tool...

  7. 3D experimental and numerical study of fatigue of a slanted crack path in a thin sheet

    International Nuclear Information System (INIS)

    Esnault, Jean-Baptiste

    2014-01-01

    Propagation of fatigue cracks in 7075-T6 aluminum and S355 steel were experimentally characterized in air and in a corrosive solution in a CCP specimen. A technique of crack front marking, coupled with a 3D topographic reconstruction of the crack, allowed to characterize the three-dimensional crack path and the crack growth rate at any point of the crack front. Transverse and longitudinal profiles at different propagation stages were used to calculate the twist and tilt angle. In an elastic XFEM framework, stress intensity factors I, II and III, were calculated. While the correlation of experimental crack growth rate with ΔKI is unsatisfactory, the correlation is correct with ΔKeq emphasizing the major contribution of shear modes to the crack driving force. A finite element analysis in elasto plasticity coupled with the application of a local fatigue criterion, which depend on the equivalent plastic strain ahead of the crack front, was qualitatively able to predict the shear lips growth. A modification of the XFEM method is proposed to improve computations with cyclic plasticity. This part is based on an analytical study which suggests to replace the discontinuous 'Heaviside' enrichment by a new continuous enrichment in the elements cut by the crack. The sub-division of the elements cut by the crack, inducing a field projection of the internal variables which introduces an error in the numerical computations, is thus avoided. Convergence test cases show the potentiality of this method. (author)

  8. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  9. SNPDL work in support of collaborative programmes to study fatigue crack propagation in light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    McMinn, A.

    1981-07-01

    Work performed at Springfields Nuclear Power Development Laboratories (SNL) in support of United Kingdom and international cooperative groups is described. For the UK collaborative group crack growth tests have been performed on A533-B pressure vessel steel in air at 1 Hz, and in a simulated PWR environment at 1 Hz and 0.0167 Hz, all tests being at a stress ratio (R) of 0.7. Tests were performed at SNL at ambient temperature and pressure. The results showed that enhancements in crack growth rates were obtained because of the aqueous environment and the lower cyclic frequency. Good inter-laboratory agreement was obtained for the air test, indicating that there was little variation in the mechanical control between laboratories. There was also good agreement between the results from laboratories where tests were performed under high temperature wet conditions at 1 Hz. SNL room temperature data demonstrated an effect of temperature, as the crack growth rates found were up to a factor of four lower than the high temperature data. Although crack growth could be maintained at 0.0167 Hz and low cyclic stress intensity levels at ambient temperature, this was not found to be possible by the laboratories performing the test at 288 0 C. The first international 'round robin' test at R = 0.2 and 0.0167 Hz (1 cycle/min) in an aqueous environment gave a significant amount of scatter in the results. (author)

  10. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  11. Magnetic flux gradient observation during fatigue crack propagation: A case study of SAE 1045 carbon steel used for automotive transmission parts

    Directory of Open Access Journals (Sweden)

    Ahmad S.R.

    2017-01-01

    Full Text Available The objective of this study is to evaluate the application of the metal magnetic memory (MMM technique for investigations on fatigue crack propagation in a ferromagnetic material. Fatigue failure caused by stress concentration is serious in practical engineering. However, early fatigue damages cannot be detected by using traditional nondestructive testing (NDT methods. Therefore this paper study about NDT method called metal magnetic memory (MMM that has potentials for evaluating the fatigue damage at the early damage and critical fracture stages. While its capacity to evaluate the distribution of self-magnetic leakage field signals on the component’s surface is well-established, there remains a need to scrutinize the physical mechanism and quantitative analysis aspects of this method. To begin with, a fatigue test involving a loading of 7kN was conducted on a SAE 1045 carbon steel specimen. This material is frequently used in the manufacturing of automotive transmission components that include the axle and spline shaft. MMM signals were measured along a scanning distance of 100 mm and analysed during the propagation stage. Other than revealing that the value of the magnetic flux gradient signals dH(y/dx increased in tandem with the crack length, the results also led to the detection of the crack growth location. It was anticipated that the dH(y/dx value will also exhibit an upward trend with a rise in the fatigue growth rate of da/dN. A modified Paris equation was utilized to correlate dH(y/dx with da/dn through the replacement of the stress intensity factor range ΔK. This resulted in the log-log plot of da/dN versus dH(y/dx portraying an inclination similar to the log-log plot of da/dN versus ΔK. A linear relationship was established between dH(y/dx and ΔK with the R2 value as 0.96. Players in the automotive industry can benefit from the disclosure that dH(y/dx can effectively replace ΔK for the monitoring of fatigue crack growth

  12. A proposal of predictive methods of crack propagation life and remaining life of structural metal under creep-fatigue interacted conditions by use of X-ray profile analysis

    International Nuclear Information System (INIS)

    Ohnami, M.; Sakane, M.; Nishino, S.

    1987-01-01

    The following two series of studies are described: One is crack propagation life prediction in high-temperature low-cycle fatigue tests under triangular and trapezoidal strain or stress waves for austenitic stainless steel by X-ray fractography. Another is remaining life prediction of the steel under creep-fatigue interacted conditions by applying the concept of the remaining life diagram and X-ray profile analysis. Particle size and microstrain obtained by X-ray profile analysis were effective nondestructive parameters for estimating crack propagation life and remaining life in creep-fatigue interaction

  13. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    International Nuclear Information System (INIS)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-01-01

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths

  14. Fatigue crack propagation of acrylic bone cements. Influence of the radio-opaque agents; Propagacion de grietas por fatiga de cementos oseos acrilicos. Influencia de los agentes radiopacos

    Energy Technology Data Exchange (ETDEWEB)

    Ginebra, M. P.; Albuixech, L.; Fernandez-Barragan, E.; Gil, F. J.; Planell, J. A.; San Roman, J.; Vazquez, B.

    2001-07-01

    In this work the 2,5-diiodo-8-quinolyl methacrylate (IHQM), is proposed as a new radiopaque agent. The addition of the iodine containing methacrylate provided a statistically significant increase in the tensile strength, fracture toughness and ductility, with respect to the barium sulphate containing cement. This effect was attributed to the fact that the use of a radiopaque monomer eliminated the porosity associated to the barium sulphate particles. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent pros these, as is the case of acrylic bone cements, it is important to compare the fatigue properties of this new bone cement formulation with the radiolucent and the BaSO{sub 4} containing bone cements. The results show that the absence of inorganic particles with no matrix adhesion plays a negative role when the fatigue crack propagation is considered. (Author) 26 refs.

  15. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue

    International Nuclear Information System (INIS)

    Haddar, N.

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  16. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  17. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    Liu, J.

    2012-01-01

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  18. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consist