Correlations of plasticity in sheared glasses.
Varnik, Fathollah; Mandal, Suvendu; Chikkadi, Vijaykumar; Denisov, Dmitry; Olsson, Peter; Vågberg, Daniel; Raabe, Dierk; Schall, Peter
2014-04-01
In a recent paper [Mandal et al., Phys. Rev. E 88, 022129 (2013)], the nature of spatial correlations of plasticity in hard-sphere glasses was addressed both via computer simulations and in experiments. It was found that the experimentally obtained correlations obey a power law, whereas the correlations from simulations are better fitted by an exponential decay. We here provide direct evidence-via simulations of a hard-sphere glass in two dimensions (2D)-that this discrepancy is a consequence of the finite system size in the 3D simulations. By extending the study to a 2D soft disk model at zero temperature [Durian, Phys. Rev. Lett. 75, 4780 (1995)], the robustness of the power-law decay in sheared amorphous solids is underlined. Deviations from a power law occur when either reducing the packing fraction towards the supercooled regime in the case of hard spheres or changing the dissipation mechanism from contact dissipation to a mean-field-type drag in the case of soft disks.
Aya, Rino; Yamawaki, Satoko; Yoshikawa, Katsuhiro; Katayama, Yasuhiro; Enoshiri, Tatsuki; Naitoh, Motoko; Suzuki, Shigehiko
2015-01-01
Background: Keloids present as red, painful lesions causing serious functional and cosmetic problems; however, there is no consensus regarding tools for objectively evaluating keloids. To demonstrate the utility of shear wave elastography in keloids, we investigated the correlations between clinical symptoms, ultrasound shear wave velocity, and histopathological findings. Methods: Three patients with keloids containing both red hypertrophic and mature areas were evaluated using the shear wave...
Correlations of plasticity in sheared glasses
Varnik, F.; Mandal, S.; Chikkadi, V.; Denisov, D.; Olsson, P.; Vågberg, D.; Raabe, D.; Schall, P.
2014-01-01
n a recent paper [Mandal et al., Phys. Rev. E 88, 022129 (2013)], the nature of spatial correlations of plasticity in hard-sphere glasses was addressed both via computer simulations and in experiments. It was found that the experimentally obtained correlations obey a power law, whereas the
Shear wave arrival time estimates correlate with local speckle pattern.
Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan
2015-12-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen; Hamila, R.; Gabbouj, M.
1998-01-01
A new correlation function called the Teager correlation function is introduced in this paper. The connection between this function, the Teager energy operator and the conventional correlation function is established. Two applications are presented. The first is the minimization of the Teager error...... norm and the second one is the use of the instantaneous Teager correlation function for simultaneous estimation of TDOA and FDOA (Time and Frequency Difference of Arrivals)....
Interferometric Constraints on Quantum Geometrical Shear Noise Correlations
Energy Technology Data Exchange (ETDEWEB)
Chou, Aaron; Glass, Henry; Gustafson, H. Richard; Hogan, Craig J.; Kamai, Brittany L.; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan W.; Stoughton, Chris; Tomlin, Ray; Weiss, Rainer
2017-03-24
Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches for faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.
Pair Correlation Function Integrals
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.
2011-01-01
We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O’Connell, G. H. Peters......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...
Enhancing the CPT correlation with the small strain shear stiffness of sands
Directory of Open Access Journals (Sweden)
Sayed M. Ahmed
2017-12-01
Full Text Available The cone penetration test (CPT is a valuable geotechnical insitu test. Yet, the CPT correlations with the small strain shear modulus and seismic shear wave velocity still need more research to enhance their accuracy. In this study, the stress normalizations for the net cone tip resistance and the small strain shear modulus are scrutinized. Subsequently, enhanced CPT correlations with the small strain shear modulus and the seismic shear wave velocity for sands are presented. The proposed approach utilizes published databases of CPT in sands and recent researches that quantify the small strain shear modulus using sand gradation parameters. Four case histories are analyzed using the suggested correlation and the results confirm that the presented approach is a promising enhancement to the CPT correlations with the small strain shear modulus and seismic shear wave velocity in sands.
On the infrared behavior of the shear spectral function in hot Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O.Box 64, FI-00014 University of Helsinki (Finland); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain)
2015-03-25
We revisit the determination of the two-loop spectral function in the shear channel of hot Yang-Mills theory. Correcting a technical error in an earlier computation is seen to improve the infrared behavior of the quantity significantly, while a partial Hard Thermal Loop resummation is seen to have only a very minor numerical effect on the result. These facts make it possible to straightforwardly apply the spectral function to the corresponding imaginary time correlator and the shear sum rule.
Velocity-pressure correlation measurements in complex free shear flows
Energy Technology Data Exchange (ETDEWEB)
Naka, Yoshitsugu [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: y09774@educ.cc.keio.ac.jp; Obi, Shinnosuke [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: obsn@mech.keio.ac.jp
2009-06-15
Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.
Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane
2017-08-01
The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.
Hexagonalization of correlation functions
Energy Technology Data Exchange (ETDEWEB)
Fleury, Thiago [Instituto de Física Teórica, UNESP - University Estadual Paulista,ICTP South American Institute for Fundamental Research,Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP (Brazil); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline St N Waterloo, Ontario N2L 2Y5 (Canada)
2017-01-30
We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.
Production of functional proteins: balance of shear stress and gravity
Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)
2011-01-01
A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
correlation of the undrained shear strength and plasticity index
African Journals Online (AJOL)
Dr Obe
NOTATION. Cu = Undrained Cohesion. Cc = volumetric compression index. CL = clay of low plasticity. CI = clay of intermediate plasticity. CH = clay of high plasticity e = void ratio. Gmax = initial tangent shear modulus. Gs = specific Gravity of soil particles. Ko, = coefficient of lateral earth pressure at rest. LI = Liquidity Index.
The shear behaviour of pine wood in the Arcan test with the digital image correlation
Directory of Open Access Journals (Sweden)
Malyszko Leszek
2017-01-01
Full Text Available The Arcan shear test is used together with the digital image correlation to study the shear stress-strain relationship for pine wood in the symmetry plane LR. The relationship of shearing perpendicular to the grain direction is shown by the straight line below the proportional limit and the nonlinear curve beyond it describing hardening up to the ultimate limit. Subsequent failure modes are shown during the load increase. Additionally, some results of the off-axis tension tests, as well as the uniaxial tension tests, with the mechanical and electric resistance strain gauges are presented to determine and compare the shear modulus from both methods of testing.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad
2014-06-01
Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Directory of Open Access Journals (Sweden)
Shahoo Maleki
2014-06-01
Full Text Available Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR and Back-Propagation Neural Network (BPNN. Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
Impact of shear rate modulation on vascular function in humans.
Tinken, Toni M; Thijssen, Dick H J; Hopkins, Nicola; Black, Mark A; Dawson, Ellen A; Minson, Christopher T; Newcomer, Sean C; Laughlin, M Harold; Cable, N Timothy; Green, Daniel J
2009-08-01
Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling, and bilateral handgrip exercise. During each intervention, a cuff inflated to 60 mm Hg was placed on 1 arm to unilaterally manipulate the shear rate stimulus. In the noncuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline flow-mediated dilation (4.6%, 6.9%, and 6.7%) increased similarly in response to heating, handgrip, and cycling (8.1%, 10.4%, and 8.9%, ANOVA; P<0.001, no interaction; P=0.89). In contrast, cuffed arm antegrade shear rate was lower than in the noncuffed arm for all of the conditions (P<0.05), and the increase in flow-mediated dilation was abolished in this arm (4.7%, 6.7%, and 6.1%; 2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding that may have relevance for the impact of different exercise interventions on vascular adaptation in humans.
2009-01-01
The objective of this project was to develop an improved correlation between Texas Cone Penetrometer (TCP) : blow count and undrained shear strength for soft, clay soils in the upper approximately 30 feet of the ground. Subsurface : explorations were...
Correlation Functions and Power Spectra
DEFF Research Database (Denmark)
Larsen, Jan
2006-01-01
The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...
Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G
2017-12-01
Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k^{-4} for wave vectors along the flow direction and as k^{-2} for the off-flow directions. For small wave vectors, a crossover to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse velocity components, which vanishes at equilibrium, also exhibits a k^{-2} dependence on the wave vector. In addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.
correlation of the undrained shear strength and plasticity index
African Journals Online (AJOL)
Dr Obe
Unified System of Soil Classification. The derived regression equations are shown to have high correlation coefficients thereby proving their viability. These equations can be used to estimate the undrained strength of clays encountered in Eastern Nigeria in lieu of the very expensive triaxial compression tests. NOTATION.
Correlation functions in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena (Germany)
2016-07-01
We present some aspects of non-perturbative correlation functions of quantum gravity. In particular, the influence of curvature on gravitational correlations is investigated. Possible future applications of this include, e.g., genuine quantum gravity effects in black hole physics and gravitational waves.
Correlation functions on conical defects
Smolkin, Michael
2015-01-01
We explore the new technique developed recently in \\cite{Rosenhaus:2014woa} and suggest a correspondence between the $N$-point correlation functions on spacetime with conical defects and the $(N+1)$-point correlation functions in regular Minkowski spacetime. This correspondence suggests a new systematic way to evaluate the correlation functions on spacetimes with conical defects. We check the correspondence for the expectation value of a scalar operator and of the energy momentum tensor in a conformal field theory and obtain the exact agreement with the earlier derivations for cosmic string spacetime. We then use this correspondence and do the computations for a generic scalar operator and a conserved vector current. For generic unitary field theory we compute the expectation value of the energy momentum tensor using the known spectral representation of the $2$-point correlators of stress-energy tensor in Minkowski spacetime.
Cox, Christopher; Plesniak, Michael W.
2017-11-01
One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.
Shear-band capturing using a multiscale extended digital image correlation technique
Réthoré, Julien; Hild, François; Roux, Stéphane
2007-01-01
International audience; Finite elements have been used recently to solve the optical flow conservation principle invoked to determine displacement fields by digital image correlation. Inspired by these recent advances, and by the computational effort that has been accomplished during the past 10 years for the simulation of discontinuities by the eXtended Finite Element Method (XFEM), an extended correlation technique is introduced for capturing shear-band like discontinuities from images of r...
Retrograde flow and shear rate acutely impair endothelial function in humans.
Thijssen, D.H.J.; Dawson, E.A.; Tinken, T.M.; Cable, N.T.; Green, D.J.
2009-01-01
Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to
Baur, Jeffery W.; Slinker, Keith; Kondash, Corey
2017-04-01
Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.
Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos
Liu, L. L.
2016-05-01
Using cosmological hydrodynamic simulations, we investigate the alignments between velocity shear, vorticity, and the spin of dark matter halos, and study the correlation between baryonic and dark matter. We find that (1) mis-alignment between vorticity of baryonic and dark matter would develop on scales filaments are sensitive to the identification of cosmic web, simulation box size, and resolution. These factors might complicate the connection between the spins of dark matter halos and galaxies, and affect the correlation signal of the alignments of galaxy spin with nearby large-scale structures.
Del Sarto, Daniele; Pegoraro, Francesco
2018-03-01
The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.
Directory of Open Access Journals (Sweden)
Fan Wenyuan
2017-01-01
Full Text Available A laser image system has been established to quantify the characteristics of growing bubbles in quiescent shear-thinning fluids. Bubble formation mechanism was investigated by comparing the evolutions of bubble instantaneous shape, volume and surface area in two shear-thinning liquids with those in Newtonian liquid. The effects of solution mass concentration, gas chamber volume and orifice diameter on bubble detachment volume are discussed. By dimensional analysis, a single bubble volume detached within a moderate gas flowrate range was developed as a function of Reynolds number ,Re, Weber number, We, and gas chamber number, Vc, based on the orifice diameter. The results reveal that the generated bubble presents a slim shape due to the shear-thinning effect of the fluid. Bubble detachment volume increases with the solution mass concentration, gas chamber volume and orifice diameter. The results predicted by the present correlation agree better with the experimental data than the previous ones within the range of this paper.
KiDS-450: tomographic cross-correlation of galaxy shear with Planck lensing
Harnois-Déraps, Joachim; Tröster, Tilman; Chisari, Nora Elisa; Heymans, Catherine; van Waerbeke, Ludovic; Asgari, Marika; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Hildebrandt, Hendrik; Hoekstra, Henk; Joudaki, Shahab; Kuijken, Konrad; Merten, Julian; Miller, Lance; Robertson, Naomi; Schneider, Peter; Viola, Massimo
2017-10-01
We present the tomographic cross-correlation between galaxy lensing measured in the Kilo Degree Survey (KiDS-450) with overlapping lensing measurements of the cosmic microwave background (CMB), as detected by Planck 2015. We compare our joint probe measurement to the theoretical expectation for a flat Λ cold dark matter cosmology, assuming the best-fitting cosmological parameters from the KiDS-450 cosmic shear and Planck CMB analyses. We find that our results are consistent within 1σ with the KiDS-450 cosmology, with an amplitude re-scaling parameter AKiDS = 0.86 ± 0.19. Adopting a Planck cosmology, we find our results are consistent within 2σ, with APlanck = 0.68 ± 0.15. We show that the agreement is improved in both cases when the contamination to the signal by intrinsic galaxy alignments is accounted for, increasing A by ∼0.1. This is the first tomographic analysis of the galaxy lensing - CMB lensing cross-correlation signal, and is based on five photometric redshift bins. We use this measurement as an independent validation of the multiplicative shear calibration and of the calibrated source redshift distribution at high redshifts. We find that constraints on these two quantities are strongly correlated when obtained from this technique, which should therefore not be considered as a stand-alone competitive calibration tool.
Retrograde flow and shear rate acutely impair endothelial function in humans.
Thijssen, Dick H J; Dawson, Ellen A; Tinken, Toni M; Cable, N Timothy; Green, Daniel J
2009-06-01
Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo.
Production of Functional Proteins: Balance of Shear Stress and Gravity
Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)
2005-01-01
The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jung Hyun, E-mail: lvjenny0417@gmail.com [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Department of Radiology, Research Institute of Radiological Science, Yonsei University, College of Medicine (Korea, Republic of); Ko, Kyung Hee, E-mail: yourheeya@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Jung, Hae Kyoung, E-mail: AA40501@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Lee, Jong Tae, E-mail: jtlee@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of)
2013-12-01
Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A{sub z}) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US.
Shear properties of potassium chloride films on iron obtained using density functional theory
Energy Technology Data Exchange (ETDEWEB)
Garvey, Michael; Furlong, Octavio J; Tysoe, W T [Department of Chemistry and Biochemistry, and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Weinert, M, E-mail: wtt@uwm.edu [Department of Physics, and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States)
2011-07-06
Density functional theory is used to calculate the shear strength of a thin KCl film grown epitaxially on an Fe(100) substrate. It is first demonstrated that the calculations accurately reproduce the experimental values of the shear moduli of bulk KCl. The method is then extended to calculating the shear properties of a three-layer slab of KCl on an Fe(100) substrate, where shear is found to take place at the KCl-Fe(100) interface and the KCl essentially moves as a rigid body. The resulting calculated values of the shear strength at zero pressure along the (10) (79.8 MPa) and (11) (70.3 MPa) directions are in excellent agreement with the experimentally measured value of 65 {+-} 5 MPa.
de Oliveira, G. N.; Nunes, L. C. S.; dos Santos, P. A. M.
2011-01-01
In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber
Zhou, Changtao; Xu, Xiao Min; Cheng, Yi Pik
2017-06-01
Shear wave method has been increasingly popular in assessing the liquefaction potential of granular soils. Two particle-scale parameters, the inter-particle friction and the shear modulus of grains, play vital roles in correlation between Cyclic Resistance Ratio (CRR) and shear wave velocity corrected by overburden stress (Vs1). Series of drained one-dimensional compression tests were simulated on samples of different inter-particle friction angles assigned during preparation stage. Uniformity coefficients of these Particle Size Distribution (PSD) curves are 2 and 4 whose average particle size d50 are identical. The shearing results, as well as their assigned inter-particle friction angles form calibration curves for real sands. Dissimilar PSD curves result in different calibration outcomes. For Silica sand no.8, these curves give divergent inter-particle friction angles. This study calibrates particle shear modulus for Silica sand no.8 as well. Different PSD curves give divergent values of particle shear modulus. PSDs show impacts on calibrations of both vital parameters, which have converse effects on CRR-Vs1 curves. This study suggests that the CRR-Vs1 correlation should be independent of PSDs.
Lymphangiogenesis in Breast Cancer Correlates with Matrix Stiffness on Shear-Wave Elastography.
Cha, Yoon Jin; Youk, Ji Hyun; Kim, Baek Gil; Jung, Woo Hee; Cho, Nam Hoon
2016-05-01
To correlate tumor stiffness and lymphangiogenesis in breast cancer and to find its clinical implications. A total of 140 breast cancer patients were evaluated. Tumor stiffness was quantitatively measured by shear-wave elastography in preoperative ultrasound examination, calculated as mean elasticity value (kPa). Slides of resected breast cancer specimens were reviewed for most fibrotic area associated with tumor. D2-40 immunohistochemical staining was applied for fibrotic areas to detect the lymphatic spaces. Microlymphatic density, tumor stiffness, and clinicopathologic data were analyzed. Higher elasticity value was associated with invasive size of tumor, microlymphatic density, histologic grade 3, absence of extensive intraductal component, presence of axillary lymph node metastasis, and Ki-67 labeling index (LI) in univariate regression analysis, and associated with Ki-67 LI and axillary lymph node metastasis in multivariate regression analysis. Microlymphatic density was associated histologic grade 3, mean elasticity value, and Ki-67 LI in univariate regression analysis. In multivariate regression analysis, microlymphatic density was correlated with mean elasticity value. In breast cancer, tumor stiffness correlates with lymphangiogenesis and poor prognostic factors.
Directory of Open Access Journals (Sweden)
Benny Suryanto
2017-09-01
Full Text Available Three reinforced concrete beams, one with no shear reinforcement and two others with shear reinforcement ratios of 0.4% and 1.1%, were tested to investigate the influence of stirrup spacing on the mode of failure, overall strength and ductility. The results show that the beam reinforced with closely-spaced shear reinforcement failed in a ductile manner, whereas the other two beams with large stirrup spacing and no stirrup exhibited only a small measure of ductility and failed in a brittle manner. The importance of the provisions of maximum spacing is highlighted to ensure adequate anchorage for the stirrups and prevent a premature shear failure to occur. The application of a non-contact monitoring system employing the open source digital image correlation software Ncorr, an ordinary digital camera and a smartphone is demonstrated to provide a visualization of the cracking process throughout the load history.
Lee, Hoyoon; Kim, Gyehyu; Choi, Seawhan; Shin, Sehyun; Korea University Department of Mechanical Engineering Team
2015-11-01
Platelet is a crucial blood cell on hemostasis. As platelet exposed to high shear stress, it can be activated showing morphological and functional changes to stop bleeding. When platelet is abnormal, there is high risk of cardiovascular diseases. Thus, quick and precise assay for platelet function is important in clinical treatment. In this study, we design a microfluidic system, which can test platelet function exposed with the stimulation of shear and agonists. The microfluidic system consists of three parts: 1) a shear mechanism with rotating stirrer; 2) multiple microchannels to flow samples and to stop; 3) camera-interfaced migration distance(MD) analyzing system. When sheared blood is driven by pressure through the microchannel, shear-activated platelets adhere to a collagen-coated surface, causing blood flow to significantly slow and eventually stop. As the micro-stirrer speed increases, MD decreases exponentially at first, but it increases beyond a critical rpm after all. These results are coincident with data measured by FACS flowcytometry. These results imply that the present system could quantitatively measure the degree of activation, aggregation and adhesion of platelets and that blood MD is potent index for measuring the shear-dependence of platelet function.
Energy Technology Data Exchange (ETDEWEB)
Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.
2011-02-20
potential for erosion, it is important to compare the measured shear strength to penetrometer measurements and to develop a correlation (or correlations) between UCS measured by a pocket penetrometer and direct shear strength measurements for various homogeneous and heterogeneous simulants. This study developed 11 homogeneous simulants, whose shear strengths vary from 4 to 170 kPa. With these simulants, we developed correlations between UCS measured by a Geotest E-280 pocket penetrometer and shear strength values measured by a Geonor H-60 hand-held vane tester and a more sophisticated bench-top unit, the Haake M5 rheometer. This was achieved with side-by-side measurements of the shear strength and UCS of the homogeneous simulants. The homogeneous simulants developed under this study consist of kaolin clay, plaster of Paris, and amorphous alumina CP-5 with water. The simulants also include modeling clay. The shear strength of most of these simulants is sensitive to various factors, including the simulant size, the intensity of mixing, and the curing time, even with given concentrations of simulant components. Table S.1 summarizes these 11 simulants and their shear strengths.
A multilayered plate theory with transverse shear and normal warping functions
Loredo, A
2014-01-01
A multilayered plate theory which takes into account transverse shear and normal stretching is presented. The theory is based on a seven-unknowns kinematic field with five warping functions. Four warping functions are related to the transverse shear behaviour, the fifth is related to the normal stretching. The warping functions are issued from exact three-dimensional solutions. They are related to the variations of transverse shear and normal stresses computed at specific points for a simply supported bending problem. Reddy, Cho-Parmerter and (a modified version of) Beakou-Touratier theories have been retained for comparisons. Extended versions of these theories, able to manage the normal stretching, are also considered. All these theories can be emulated by the kinematic field of the present model thanks to the adaptation of the five warping functions. Results of all these theories are confronted and compared to analytical solutions, for the bending of simply supported plates. Various plates are considered, ...
Wang, Ji; Yang, Jiashi; Li, Jiangyu
2007-03-01
Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.
Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow
Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard
2015-12-01
The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.
Energy Technology Data Exchange (ETDEWEB)
Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)
2014-07-01
Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.
From correlation functions to event shapes
Belitsky, A V; Korchemsky, G P; Sokatchev, E; Zhiboedov, A
2014-01-01
We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a non-trivial analytic continuation which, in the framework of CFT, can elegantly be performed in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results...
Bootstrapping correlation functions in N=4 SYM
Chicherin, Dmitry; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P; Sokatchev, Emery
2016-01-01
We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in N=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functions are given by a linear combination of chiral N=4 superconformal invariants accompanied by coefficient functions depending on the space-time coordinates only. We present the explicit construction of these invariants and show that the six-point correlation function is fixed in the Born approximation up to four constant coefficients by its symmetries. In addition, the known asymptotic structure of the correlation function in the light-like limit fixes unambiguously these coefficients up to an overall normalization. We demonstrate that the same approach can be applied to obtain a representation for the six-point NMHV amplitude that is free from any auxiliary gauge fixing parameters, does not involve spurious poles and manifests half of the dual superconformal symmet...
Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.
Chaharlang, Mahmood; Samavati, Vahid
2015-08-01
The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F.; Collins, J. A.
2013-12-01
We have developed a joint Monte Carlo inversion of teleseismic receiver functions, seafloor compliance, and Rayleigh wave dispersion and apply it here to ocean bottom seismic (OBS) data from offshore New Zealand. With this method we estimate sediment and crustal thickness and shear velocity structure beneath the Bounty Trough and the Tasman Sea flanking the South Island of New Zealand. Teleseismic receiver functions and surface wave dispersion measurements provide complementary constraints on shear velocity structure and interface depths beneath seismic stations. At ocean bottom seismic (OBS) stations the interpretation of these measurements is complicated by strong sediment reverberations that obscure deeper impedance contrasts such as the Moho. In principle, the seafloor's response to ocean loading from infragravity waves (seafloor compliance) can be used to determine shallow shear velocity information. This velocity information can subsequently be used to better model the receiver function reverberations, allowing deeper interfaces of tectonic interest to be resolved. Data for this study were acquired in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, which deployed 30 broadband OBS and differential pressure gauges (DPGs) off the South Island of New Zealand. High-frequency (5Hz) receiver functions were estimated using multitaper cross-correlation for events in a 30-90 degree epicentral distance range. Coherence-weighted stacks binned by epicentral distance were produced in the frequency domain to suppress noise. Seafloor compliance was measured using multitaper pressure and acceleration spectra averaged from 120 days of continuous data without large transient events. Seafloor compliance measurements on the order of 10-9 Pa-1 are sensitive to shear velocity structure in the uppermost 5km of the crust and sediments. Rayleigh dispersion measurements were obtained at periods of 6-27s from ambient noise cross correlation. Sediment
On the measurability of quantum correlation functions
Energy Technology Data Exchange (ETDEWEB)
Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com; Azevedo, Sérgio; Rosas, Alexandre
2015-05-15
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
Energy Technology Data Exchange (ETDEWEB)
Calvo, I; Pedrosa, M A; Hidalgo, C [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, 28040 Madrid (Spain); Carreras, B A; Garcia, L [Universidad Carlos III, 28911 Leganes, Madrid (Spain)], E-mail: ivan.calvo@ciemat.es
2009-06-15
A theoretical interpretation is given for the observed long-distance correlations in potential fluctuations in TJ-II. The value of the correlation increases above the critical point of the transition for the emergence of the plasma edge shear flow layer. Mean (i.e. surface averaged, zero-frequency) sheared flows cannot account for the experimental results. A model consisting of four envelope equations for the fluctuation level, the mean flow shear, the zonal flow amplitude shear and the averaged pressure gradient is proposed. It is shown that the presence of zonal flows is essential to reproduce the main features of the experimental observations.
Calvo, I.; Carreras, B. A.; Garcia, L.; Pedrosa, M. A.; Hidalgo, C.
2009-06-01
A theoretical interpretation is given for the observed long-distance correlations in potential fluctuations in TJ-II. The value of the correlation increases above the critical point of the transition for the emergence of the plasma edge shear flow layer. Mean (i.e. surface averaged, zero-frequency) sheared flows cannot account for the experimental results. A model consisting of four envelope equations for the fluctuation level, the mean flow shear, the zonal flow amplitude shear and the averaged pressure gradient is proposed. It is shown that the presence of zonal flows is essential to reproduce the main features of the experimental observations.
Correlation functions of Coulomb branch operators
Energy Technology Data Exchange (ETDEWEB)
Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)
2017-01-24
We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....
Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
B. Sidda Reddy
2013-01-01
Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.
Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.
2016-01-01
Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986
Group entropies, correlation laws, and zeta functions
Tempesta, Piergiulio
2011-08-01
The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.
Green's function formalism for highly correlated systems
Directory of Open Access Journals (Sweden)
F.Mancini
2006-01-01
Full Text Available We present the Composite Operator Method (COM as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green's function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green's functions in order to maintain the algebraic and symmetry properties.
Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks
Directory of Open Access Journals (Sweden)
J. Kováčik
2013-01-01
Full Text Available The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity, but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3 for all solids. This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.
Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard
2016-07-01
Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Correlated Strength in the Nuclear Spectral Function
Energy Technology Data Exchange (ETDEWEB)
D. Rohe; C. S. Armstrong; R. Asaturyan; O. K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H. C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C. E. Keppel; G. Kubon; R. Lindgren; A. Lung; D. J. Mack; J. H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W. F. Vulcan; G. Warren; S. A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann
2004-10-01
We have carried out an (e,ep) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment locates by direct measurement the correlated strength predicted by theory.
Noninvasive measurement of dynamic correlation functions
CSIR Research Space (South Africa)
Uhrich, P
2017-08-01
Full Text Available of ancilla-free protocols. DOI: 10.1103/PhysRevA.96.022127 I. INTRODUCTION Dynamic correlation functions such as 〈O1(t1)O2(t2)〉 relate the values of some observableO1 at an early time t1 to the value of another observable O2 at a later time t2. They play...—at least in principle—protocol for determin- ing dynamic correlations consists of measuring the observable O1 at time t1 and correlating the outcome with the measured value of O2 at time t2. In a quantum mechanical system, however, such a naive approach...
PyTransport: Calculate inflationary correlation functions
Mulryne, David J.; Ronayne, John W.
2017-10-01
PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.
Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.
1999-01-01
Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.
Stochastic piecewise linear function fitting with application to ultrasound shear wave imaging.
Ingle, Atul; Varghese, Tomy; Sethares, William; Bucklew, James
2014-01-01
Piecewise linear function fitting is ubiquitous in many signal processing applications. Inspired by an application to shear wave velocity imaging in ultrasound elastography, this paper presents a discrete state-space Markov model for noisy piecewise linear data and also proposes a tractable algorithm for maximum a posteriori estimation of the slope of each segment in the piecewise linear function. The number and locations of breaks is handled indirectly by the stochastics of the Markov model. In the ultrasound shear wave imaging application, these slope values have concrete physical interpretation as being the reciprocal of the shear wave velocities in the imaged medium. Data acquired on an ellipsoidal inclusion phantom shows that this algorithm can provide good contrast of around 6 dB and contrast to noise ratio of 25 dB between the stiff inclusion and surrounding soft background. The phantom validation study also shows that this algorithm can be used to preserve sharp boundary details, which would otherwise be blurred out if a sliding window least squares filter is applied.
Piecewise Function Hysteretic Model for Cold-Formed Steel Shear Walls with Reinforced End Studs
Directory of Open Access Journals (Sweden)
Jihong Ye
2017-01-01
Full Text Available Cold-formed steel (CFS shear walls with concrete-filled rectangular steel tube (CFRST columns as end studs can upgrade the performance of mid-rise CFS structures, such as the vertical bearing capacity, anti-overturning ability, shear strength, and fire resistance properties, thereby enhancing the safety of structures. A theoretical hysteretic model is established according to a previous experimental study. This model is described in a simple mathematical form and takes nonlinearity, pinching, strength, and stiffness deterioration into consideration. It was established in two steps: (1 a discrete coordinate method was proposed to determine the load-displacement skeleton curve of the wall, by which governing deformations and their corresponding loads of the hysteretic loops under different loading cases can be obtained; afterwards; (2 a piecewise function was adopted to capture the hysteretic loop relative to each governing deformation, the hysteretic model of the wall was further established, and additional criteria for the dominant parameters of the model were stated. Finally, the hysteretic model was validated by experimental results from other studies. The results show that elastic lateral stiffness Ke and shear capacity Fp are key factors determining the load-displacement skeleton curve of the wall; hysteretic characteristics of the wall with reinforced end studs can be fully reflected by piecewise function hysteretic model, moreover, the model has intuitional expressions with clear physical interpretations for each parameter, paving the way for predicting the nonlinear dynamic responses of mid-rise CFS structures.
A study of shear sprays using probability density function techniques and laser-based diagnostics
Energy Technology Data Exchange (ETDEWEB)
Gitahi, A.; Kioni, P.N. [Jomo Kenyatta University of Agriculture and Technology (Kenya). Department of Mechanical Engineering
2009-07-01
Presented in this paper are preliminary experimental results from investigations carried out on a two-dimensional shear spray. These results are part of ongoing research of combustion in shear flows. Among the objectives is to include the effects of droplet-droplet interactions and turbulent dispersion. In the numerical work, use is made of Probability Density Function (pdf) techniques owing to the large dimensionality of the spray problem. For the experimental work, a burner has been developed and laser-based experiments carried out on it to characterize the spray. The results capture velocity evolution and droplet size distributions. At this stage a water spray is used, to bring out the quality of the burner as a precursor to spray combustion investigations in the ongoing research. (orig.)
Rzymski, Pawel; Wysocki, Piotr J.; Kycler, Witold; Opala, Tomasz
2011-01-01
Introduction Recent studies have demonstrated a strong correlation between obesity, insulin resistance, increased insulin and insulin-like growth factor levels and the risk of breast cancer. Our study was aimed at exploring correlations between glucose, insulin, insulin resistance, obesity and quantitatively estimated breast elasticity in healthy women. Material and methods The pilot study included 37 premenopausal women aged 22-45 years who underwent B-mode sonography and real-time shear wave elastography. Blood was collected for fasting insulin and glucose, and HOMA insulin resistance index was calculated. Results The mean elasticity of glandular and fatty tissue measured in both breasts was 12.5 ±3.5 kPa and 10.9 ±3.7 kPa respectively. Insulin levels did not correlate with glandular tissue elasticity (Rs=–0.23, p=0.15), but nearly correlated with fat tissue elasticity (Rs=–0.30, p=0.06), in outer quadrants significantly (Rs=–0.38, p=0.02). Interestingly, a strong correlation of insulin and insulin resistance with elasticity heterogeneity was found in fatty tissue (Rs=–0.59, pelasticity also correlated with body mass index. Conclusions Insulin levels and insulin resistance correlate with breast fat tissue heterogeneity, but their role in breast pathology remains unclear. PMID:22328885
Rzymski, Pawel; Wysocki, Piotr J; Kycler, Witold; Opala, Tomasz
2011-12-31
Recent studies have demonstrated a strong correlation between obesity, insulin resistance, increased insulin and insulin-like growth factor levels and the risk of breast cancer. Our study was aimed at exploring correlations between glucose, insulin, insulin resistance, obesity and quantitatively estimated breast elasticity in healthy women. The pilot study included 37 premenopausal women aged 22-45 years who underwent B-mode sonography and real-time shear wave elastography. Blood was collected for fasting insulin and glucose, and HOMA insulin resistance index was calculated. The mean elasticity of glandular and fatty tissue measured in both breasts was 12.5 ±3.5 kPa and 10.9 ±3.7 kPa respectively. Insulin levels did not correlate with glandular tissue elasticity (Rs=-0.23, p=0.15), but nearly correlated with fat tissue elasticity (Rs=-0.30, p=0.06), in outer quadrants significantly (Rs=-0.38, p=0.02). Interestingly, a strong correlation of insulin and insulin resistance with elasticity heterogeneity was found in fatty tissue (Rs=-0.59, pelasticity also correlated with body mass index. Insulin levels and insulin resistance correlate with breast fat tissue heterogeneity, but their role in breast pathology remains unclear.
Anisotropic shear zones revealed by backazimuthal harmonics of teleseismic receiver functions
Park, J.; Levin, V.
2016-11-01
Backazimuth-dependent Ps conversion, observed in seismic receiver functions (RFs) is generated by acute{SV} and acute{SH} waves that help match the shear-polarized displacement of hybrid Ṕ at the interfaces of an anisotropic layer. The effect of elliptical anisotropy with a tilted or horizontal symmetry axis hat{w} on body-wave propagation in horizontal layers can be expressed in terms of the first-order hybridization of upgoing and downgoing P, SV and SH plane waves with a common horizontal slowness p. The first-order perturbations to the upgoing P wave involve hybridization of its polarization eigenvector with the addition of the shear wave polarizations acute{SV},grave{SV},acute{SH},grave{SH}. Although the hybridization of plane waves in an anisotropic layer is only one factor in the complicated reflection and transmission problem, these perturbations suggest that the influence of P anisotropy on RFs is much larger than the influence of S anisotropy. Perturbation terms for hybrid Ṕ can be grouped into functional dependencies on the tilt angle ψ of the symmetry axis hat{w} from the vertical. Terms proportional to sin2 ψ include four-lobed variation (cos 2θ, sin 2θ) with backazimuth θ, encompassing the effect of a horizontal axis of symmetry. Terms proportional to sin 2ψ have two-lobed variation (cos θ, sin θ) with backazimuth θ, encompassing the effects of a tilted symmetry axis. In the perturbation formula (33) for the hybrid Ṕ polarization, the four-lobed terms have pre-factor αp, and the two-lobed terms have pre-factor ανP, leading potentially to larger amplitude in the two-lobed pattern in Ps for the same amount of P anisotropy. For a dipping interface between two isotropic media, the out-of-plane deflections of the P-SV converted wave lead to a two-lobed pattern of P-SV and P-SH amplitudes that resembles the effects of anisotropy with a tilted axis of symmetry. The birefringence of the Moho-converted Ps phase influences the backazimuth
Significance of Input Correlations in Striatal Function
Yim, Man Yi; Aertsen, Ad; Kumar, Arvind
2011-01-01
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia. PMID:22125480
Correlation Functions in Holographic Minimal Models
Papadodimas, Kyriakos
2012-01-01
We compute exact three and four point functions in the W_N minimal models that were recently conjectured to be dual to a higher spin theory in AdS_3. The boundary theory has a large number of light operators that are not only invisible in the bulk but grow exponentially with N even at small conformal dimensions. Nevertheless, we provide evidence that this theory can be understood in a 1/N expansion since our correlators look like free-field correlators corrected by a power series in 1/N . However, on examining these corrections we find that the four point function of the two bulk scalar fields is corrected at leading order in 1/N through the contribution of one of the additional light operators in an OPE channel. This suggests that, to correctly reproduce even tree-level correlators on the boundary, the bulk theory needs to be modified by the inclusion of additional fields. As a technical by-product of our analysis, we describe two separate methods -- including a Coulomb gas type free-field formalism -- that ...
Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin
2017-12-01
The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.
Integral equation for calculation of distribution function of activation energy of shear viscosity.
Gun'ko, V M; Goncharuk, E V; Nechypor, O V; Pakhovchishin, S V; Turov, V V
2006-12-01
A new technique of calculation of a distribution function of activation energy (f(E)) of shear viscosity based on a regularization procedure applied to the Fredholm integral equation of the first kind has been developed using the Baxter-Drayton and Brady model for concentrated and flocculated suspensions. This technique has been applied to the rheological data obtained at different shear rates for aqueous suspensions with fumed silica A-300 and low-molecular (3,4,5-trihydroxybenzoic acid and 1,5-dioxynaphthalene) or high-molecular (poly(vinyl pyrrolidone) of 12.7 kDa and ossein of 20-29 kDa) compounds over a wide concentration range (up to 25 wt% of both components) and at different temperatures. Monomodal f(E) distributions are observed for the suspensions with individual A-300 or A-300 with a low amount of adsorbed organics. In the case of larger amounts of nanosilica and organics the f(E) distributions are multimodal because of stronger structurization and coagulation of the systems that require a high energy to break the coagulation structures resisting to the shear flow.
Matrix elements from moments of correlation functions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Detecting correlations among functional-sequence motifs
Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca
2012-06-01
Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.
Dynamic functional network connectivity using distance correlation
Rudas, Jorge; Guaje, Javier; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco
2015-01-01
Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness.
Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel
Siu-Lun Cheung, Luthur; Zheng, Xiangjun; Wang, Lian; Baygents, James C.; Guzman, Roberto; Schroeder, Joyce A.; Heimark, Ronald L.; Zohar, Yitshak
2011-05-01
The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor-ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell-surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell-surface system.
Paul, Jonathan D.; Eakin, Caroline M.
2017-07-01
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.
Le, Tuong H; Mukherjee, Pratik; Henry, Roland G; Berman, Jeffrey I; Ware, Marcus; Manley, Geoffrey T
2005-01-01
To demonstrate that magnetic resonance diffusion tensor imaging (DTI) with three-dimensional (3-D) fiber tractography can visualize traumatic axonal shearing injury that results in posterior callosal disconnection syndrome. A 22-year-old man underwent serial magnetic resonance imaging 3 days and 12 weeks after blunt head injury. The magnetic resonance images included whole-brain DTI acquired with a single-shot spin echo echoplanar sequence. 3-D DTI fiber tractography of the splenium of the corpus callosum was performed. Quantitative DTI parameters, including apparent diffusion coefficient and fractional anisotropy, from the site of splenial injury were compared with those of a normal adult male volunteer. Conventional magnetic resonance images revealed findings of diffuse axonal injury, including a lesion at the midline of the splenium of the corpus callosum. DTI performed 3 days posttrauma revealed that the splenial lesion had reduced apparent diffusion coefficient and fractional anisotropy, reflecting a large decrease in the magnitude of diffusion parallel to the white matter fibers, which had partially recovered as revealed by follow-up DTI 12 weeks postinjury. 3-D tractography revealed an interruption of the white matter fibers in the posteroinferior aspect of the splenium that correlated with the patient's left hemialexia, a functional deficit caused by disconnection of the right visual cortex from the language centers of the dominant left hemisphere. DTI with 3-D fiber tractography can visualize acute axonal shearing injury, which may have prognostic value for the cognitive and neurological sequelae of traumatic brain injury.
Measurements of texture properties related to tenderness at different locations within deboned broiler breast fillets have been used to validate techniques for texture analysis and establish correlations between different texture evaluation methods. However, it has been demonstrated that meat text...
Meson's correlation functions in a nuclear medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2016-09-01
Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Argani, L P; Bigoni, D; Capuani, D; Movchan, N V
2014-09-08
The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney-Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup-cone rupture of ductile metal bars.
FUNCTIONAL CORRELATION OF FP AND DC METHODS
Directory of Open Access Journals (Sweden)
Marin Kaluža
2013-02-01
Full Text Available Most of organizations today use information-communication technologies (ICT for building an information system (IS. IS is assembled of hardware, software, network resources, organizational and human resources. In IS development process, complexity is crucial for evaluating quantities of resources needed (time, people, money, equipment. Complexity of an IS can be evaluated and/or measured in different phases of development. There are many methods for measuring complexity, but mostly used and thoroughly described method is Function Point Analysis (FP. The opposite method, Database Complexity (DC, does not measure all the aspects of IS, but it could evaluate system complexity depending on the database complexity. DC method is intended to be used for measuring semantic complexity of the IS database, and can be shown by counting attributes A and foreign keys F. This paper describes a very high correlation between FP and DC methods, and defines a function which can in 95% of accuracy express FP values from measured DC values.
Dai, Xiangjun; Shao, Xinxing; Li, Lijun; Liu, Cong; Dai, Meiling; Yun, Hai; Yang, Fujun
2017-07-20
Three-dimensional shapes of objects were evaluated with modified phase-shift lateral shearing interferometry illumination and radial basis function. A simple optical system was developed to create the fringe pattern based on the Murty interferometer. The phase shift was generated only by moving a plane-parallel plate along an in-plane parallel direction. A novel moving radial basis function method was presented to improve the quality of fringe patterns. And the proper calculation window size was given based on numerical simulation. Three-dimensional shapes of two kinds of objects were determined to verify the feasibility and effectiveness of the proposed method, and the reconstructed height distributions were in good accordance with the referenced data.
DEFF Research Database (Denmark)
Elyas, Eli; Papaevangelou, Efthymia; Alles, Erwin J
2017-01-01
as control. Ten tumours were imaged 48 hours post-treatment and five tumours were imaged for up to five times after treatment. All tumours were harvested for histological analysis and comparison with elasticity measurements. Elastic (Young's) modulus prior to treatment was correlated with tumour volume (r...
Prediction of protein functions based on function-function correlation relations.
Ng, Ka-Lok; Ciou, Jin-Shuei; Huang, Chien-Hung
2010-03-01
A protein function pair approach, based on protein-protein interaction (PPI) data, is proposed to predict protein functions. Randomization tests are performed on the PPI dataset, which resulted in a protein function correlation scoring value which is used to rank the relative importance of a function pair. It has been found that certain classes of protein functions tend to be correlated together. Scoring values of these correlation pairs allow us to predict the functionality of a protein given that it interacts with proteins having well-defined function annotations. The jackknife test is used to validate the function pair method. The protein function pair approach achieves a prediction sensitivity comparable to an approach using more sophisticated method. The main advantages of this approach are as follows: (i) a set of function-function correlation relations are derived and intuitive biological interpretation can be achieved, and (ii) its simplicity, only two parameters are needed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Cho, Eun Yoon; Ko, Eun Sook; Han, Boo-Kyung; Kim, Rock Bum; Cho, Sooyoun; Choi, Ji Soo; Hahn, Soo Yeon
2016-05-01
Further information is needed regarding whether histopathological characteristics affect breast tumor elasticity. To determine whether maximum elasticity values vary according to tumor-stroma ratio, dominant stroma type, or presence of fibrosis in invasive breast cancer. This study included 71 patients with invasive ductal carcinoma not otherwise specified (IDC NOS) who underwent breast shear-wave elastography (SWE). Maximum elasticity (Emax) values were retrospectively correlated with pathological findings that included tumor-stroma ratio, dominant stroma type (collagen, fibroblast, lymphocyte), and fibrosis. Multiple linear regression analysis was performed to determine variables independently associated with Emax. High histologic grade was significantly correlated with higher Emax (P = 0.042). Estrogen receptor and progesterone receptor expression negatively correlated with high elasticity values (P = 0.013 and P = 0.03, respectively). Breast cancers that exhibited higher cellularity demonstrated a greater level of stiffness that was not statistically significant (ρ = 0.153; P = 0.193). While dominant stroma type and fibrosis did not affect Emax (P = 0.197 and P = 0.598, respectively), lesion size was significantly associated with Emax (ρ = 0.474, P < 0.001). On multivariate analysis, only lesion size was significantly associated with Emax (P < 0.001). The composition of tumors did not affect their Emax. © The Foundation Acta Radiologica 2015.
Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Kim, Jeong-Ah; Jeong, Joon
2013-02-01
To compare the mean elasticity value, as measured by shear-wave elastography (SWE), with immunohistochemical profile of invasive breast cancer. This was an institutional review board-approved retrospective study, with a waiver of informed consent. A total of 166 invasive breast cancers in 152 women undergoing preoperative SWE and surgery were included. Quantitative mean elasticity values in kPa were measured for each lesion by using SWE. Medical records were reviewed to determine palpability, invasive size, lymphovascular invasion, histologic grade, and axillary lymph node status. Based on the immunohistochemical profiles, tumor subtypes were categorized as triple-negative (TN), luminal A and B, or human epidermal growth factor receptor 2-enriched cancer. The mean elasticity value was correlated with clinicopathological features using univariate regression models and multivariate linear regression analysis. Palpability (P elasticity value. For the immunohistochemical profiles and tumor subtypes, the estrogen receptor (P = 0.015), progesterone receptor (P = 0.002), Ki-67 (P = 0.009), and the TN (P = 0.009) tumor subtype were correlated with the mean elasticity value. Multivariate logistic regression analysis showed that the following variables were significantly associated with the mean elasticity value: palpable abnormality, histologic grade, and lymphovascular invasion. No immunohistochemical profile of the cancers was independently correlated with the mean elasticity value. For invasive breast cancers, clinicopathological features of poor prognosis showed higher mean elasticity values than those of good prognosis. However, the immunohistochemical profile showed no independent association with the mean elasticity value.
Directory of Open Access Journals (Sweden)
Omary Chillo
2016-08-01
Full Text Available The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.
Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.
2013-01-01
Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.
Modeling the two-point correlation of the vector stream function
Oberlack, M.; Rogers, M. M.; Reynolds, W. C.
1994-01-01
A new model for the two-point vector stream function correlation has been developed using tensor invariant arguments and evaluated by the comparison of model predictions with DNS data for incompressible homogeneous turbulent shear flow. This two-point vector stream function model correlation can then be used to calculate the two-point velocity correlation function and other quantities useful in turbulence modeling. The model assumes that the two-point vector stream function correlation can be written in terms of the separation vector and a new tensor function that depends only on the magnitude of the separation vector. The model has a single free model coefficient, which has been chosen by comparison with the DNS data. The relative error of the model predictions of the two-point vector stream function correlation is only a few percent for a broad range of the model coefficient. Predictions of the derivatives of this correlation, which are of interest in turbulence modeling, may not be this accurate.
Leung, S L; Dimasi, A; Heiser, S; Dunn, A; Bluestein, D; Slepian, M
2015-01-01
Shear-induced platelet activation may cause life-threatening thrombosis, particularly in patients with mechanical support devices or coronary atherosclerosis. The majority of present anti-platelet agents target or interfere with biochemical, rather than physical mechanisms of platelet activation. Less data and understanding exists with regard to pharmacologic modulation of shear-mediated platelet activation. In this work, we hypothesized that modulating cell membrane properties, via alteration of membrane composition through addition of exogenous lipid moieties, would alter platelet responsiveness to shear. Here we tested fatty acids, lecithin and cholesterol as additive lipid compounds. We demonstrated that incorporation of fatty acids (DHA/EPA) or lecithin into the platelet membrane triggered enhanced sensitivity of platelets to shear-mediated activation. On the other hand, cholesterol incorporation provides significant protection, limiting the effect of shear on platelet activation. These findings provide valuable insight for the development of therapeutic strategies that can modulate shear-mediated platelet activation.
Aswani, Karan
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
Sil, Arjun; Sitharam, T. G.
2014-08-01
the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V s and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as ` V s' is a function of SPT- N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V s profiles of the study area for site response studies.
Directory of Open Access Journals (Sweden)
Chih Chiang Hong
2017-03-01
Full Text Available A model is presented for functionally-graded material (FGM, thick, circular cylindrical shells under an unsteady supersonic flow, following first-order shear deformation theory (FSDT with varied shear correction coefficients. Some interesting vibration results of the dynamics are calculated by using the generalized differential quadrature (GDQ method. The varied shear correction coefficients are usually functions of FGM total thickness, power law index, and environment temperature. Two parametric effects of the environmental temperature and FGM power law index on the thermal stress and center deflection are also presented. The novelty of the paper is that the maximum flutter value of the center deflection amplitude can be predicted and occurs at a high frequency of applied heat flux for a supersonic air flow.
Function-function correlated multi-label protein function prediction over interaction networks.
Wang, Hua; Huang, Heng; Ding, Chris
2013-04-01
Many previous works in protein function prediction make predictions one function at a time, fundamentally, which assumes the functional categories to be isolated. However, biological processes are highly correlated and usually intertwined together to happen at the same time; therefore, it would be beneficial to consider protein function prediction as one indivisible task and treat all the functional categories as an integral and correlated prediction target. By leveraging the function-function correlations, it is expected to achieve improved overall predictive accuracy. To this end, we develop a network-based protein function prediction approach, under the framework of multi-label classification in machine learning, to utilize the function-function correlations. Besides formulating the function-function correlations in the optimization objective explicitly, we also exploit them as part of the pairwise protein-protein similarities implicitly. The algorithm is built upon the Green's function over a graph, which not only employs the global topology of a network but also captures its local structures. In addition, we propose an adaptive decision boundary method to deal with the unbalanced distribution of protein annotation data. Finally, we quantify the statistical confidence of predicted functions to facilitate post-processing of proteomic analysis. We evaluate the proposed approach on Saccharomyces cerevisiae data, and the experimental results demonstrate very encouraging results.
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard
1991-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... - in some cases up to 100 times faster than the FFT technique. Another important advantage is that if the RDD technique is implemented correctly, the correlation function estimates are unbiased. Comparison with exact solutions for the correlation functions shows that the RDD auto-correlation estimates...... suffer from smaller RDD auto-correlation estimation errors than the corresponding FFT estimates. However, in the case of estimating cross-correlation functions for the stochastic processes with low mutual correlation, the FFT tehcnique might be more accurate....
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, S.; Jensen, Jakob Laigaard
1993-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... - in some case up to 100 times faster that the FFT technique. Another important advantage is that if the RDD technique is implemented correctly, the correlation function estimates are unbiased. Comparison with exact solutions for the correlation functions show that the RDD auto-correlation estimates suffer...
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... - in some case up to 100 times faster that the FFT technique. Another important advantage is that if the RDD technique is implemented correctly, the correlation function estimates are unbiased. Comparison with exact solutions for the correlation functions show that the RDD auto-correlation estimates suffer...
Sheared Ising models in three dimensions
Hucht, Alfred; Angst, Sebastian
2013-03-01
The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''
Rubino, V.; Lapusta, N.; Rosakis, A.
2012-12-01
Mapping full-field displacements and strains on the Earth's surface during an earthquake is of paramount importance to enhance our understanding of earthquake mechanics. In this study, the feasibility of such measurements using image correlation methods is investigated in a laboratory earthquake setup. Earthquakes are mimicked in the laboratory by dynamic rupture propagating along an inclined frictional interface formed by two Homalite plates under compression, using the configuration developed by Rosakis and coworkers (e.g., Rosakis et al., 2007). In our study, the interface is partially glued, in order to confine the rupture before it reaches the ends of the specimen. The specimens are painted with a speckle pattern to provide the surface with characteristic features for image matching. Images of the specimens are taken before and after dynamic rupture with a 4 Megapixels resolution CCD camera. The digital images are analyzed with two software packages: VIC-2D (Correlated Solutions Inc.) and COSI-Corr (Leprince et. al, 2007). Both VIC-2D and COSI-Corr are able to characterize the full-field static displacement of a dynamic crack. For example, in a case with secondary mode I cracks, the correlation analysis performed with either software clearly shows (i) the relative displacement (slip) along the frictional interface, (ii) the rupture arrest on the glued boundaries, and (iii) the presence of two wing cracks. The obtained displacement measurements are converted to strains, using de-noising techniques. The digital image correlation method is then used in combination with high-speed photography. We will report our progress on the study of a spontaneously expanding sub-Rayleigh shear crack advancing along an interface containing a patch of favorable heterogeneity, such as a preexisting subcritical crack or a patch with higher prestress. According to the predictions of Liu and Lapusta (2008), intersonic transition and propagation can be achieved in the presence of a
correlation between cytology and thyroid function test
African Journals Online (AJOL)
Damary
2006-10-01
Oct 1, 2006 ... Results: Forty two patients had their thyroid profiles done and the results were correlated with. FNA diagnosis. Majority of patients had nodular goiter ... diagnosis of non-diagnostic sample had euthyroidism while 2.4% each with papillary carcinoma, ... of a nodule raises suspicion for cancer, only 5% are.
correlation between cytology and thyroid function test
African Journals Online (AJOL)
Damary
2006-10-01
Oct 1, 2006 ... euthyroidism, hyperthyroidism and hypothyroidism. Fine needle aspiration (FNA) is the diagnostic test of choice in determining whether a nodule is benign or malignant. Objective: To correlate hormonal levels to FNA cytologic findings. Design: A cross-sectional study. Setting: Kenyatta National Hospital ...
Energy Technology Data Exchange (ETDEWEB)
Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2013-12-15
Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.
Directory of Open Access Journals (Sweden)
Ferguson Marina
2011-07-01
Full Text Available Abstract Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS. However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months. Thirty-two scan pairs (baseline and follow-up scans were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen. Point-wise plaque progression was defined as the wall thickness increase (WTI at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS. FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4, and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4. Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5 and (2/26/4, respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10 and (9/13/10 for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9, corresponding to maximum and minimum
Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin
2011-07-19
Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress
2017-01-05
This report presents the analytical study of the shear capacity of reinforced concrete columns using both the AASHTO LRFD Bridge Design Specifications and the AASHTO Guide Specifications for the LRFD Seismic Bridge Design. The study investigates vari...
The flux-flux correlation function for anharmonic barriers
Goussev, Arseni; Schubert, Roman; Waalkens, Holger; Wiggins, Stephen
2010-01-01
The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the
On the application of correlation function matrices in OMA
DEFF Research Database (Denmark)
Brincker, Rune
2017-01-01
In this paper the theoretical solution for the correlation function matrix of the random response of a structural system is re-visited. It is shown that using the classical definition of the correlation functions, the row space is defined by the mode shapes of the system, whereas the column space...
Vyboishchikov, Sergei F
2017-09-03
We propose a simple method of calculating the electron correlation energy density ec (r) and the correlation potential Vc (r) from second-order Møller-Plesset amplitudes and its generalization for the case of a configuration interaction wavefunction, based on Nesbet's theorem. The correlation energy density obtained by this method for free and spherically confined Be and He atoms was employed to fit a local analytical density functional based on Wigner's functional. The functional is capable of producing a strong increase in the correlation energy with decreasing confined radius for the Be atom. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic correlation functions in Critical Gravity
Anastasiou, Giorgos; Olea, Rodrigo
2017-11-01
We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.
Self-calibrated correlation imaging with k-space variant correlation functions.
Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J
2017-07-07
Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
42 CFR 476.86 - Correlation of Title XI functions with Title XVIII functions.
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Correlation of Title XI functions with Title XVIII functions. 476.86 Section 476.86 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF...) Qio Review Functions § 476.86 Correlation of Title XI functions with Title XVIII functions. (a...
Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang
2018-01-01
The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.
Current correlation functions of ideal Fermi gas at finite temperature
Indian Academy of Sciences (India)
The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which ...
Bikondoa, Oier
2017-04-01
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.
A Correlation of Symptomatology with Lung Function in Patients with ...
African Journals Online (AJOL)
2017-06-28
Jun 28, 2017 ... and abnormal spirometry (χ2 = 72, P = 0.0001). Conclusion: There is a significant correlation between nasal symptom score and reduced lung volumes in patients with allergic rhinosinusitis even in the absence of asthma. KEYWORDS: Allergic rhinosinusitis, correlation, lung function. Department of.
Low-mode averaging for baryon correlation functions
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2005-01-01
The low-mode averaging technique is a powerful tool for reducing large fluctuations in correlation functions due to low-mode eigenvalues of the Dirac operator. In this work we propose a generalization to baryons and test our method on two-point correlation functions of left-handed nucleons, computed with quenched Neuberger fermions on a lattice with extension L=1.5 fm. We show that the statistical fluctuations can be reduced and the baryon signal significantly improved.
Glen, Katie; Luu, N Thin; Ross, Ewan; Buckley, Chris D; Rainger, G Ed; Egginton, Stuart; Nash, Gerard B
2012-06-01
We investigated the roles of the "mechanotransducer" CD31 in the effects of shear stress on endothelial gene expression and functional responses relevant to angiogenesis and inflammation. Human or murine endothelial cells (hEC or mEC) were exposed to different levels of shear stress, while expression of CD31 was modified using siRNA in the hEC, or mEC from CD31(-/-) mice. Quantitation of expression of genes linked to inflammation or angiogenesis showed several were sensitive to shear. In a "wound" assay, exposure of endothelial cells (EC) to shear stress tended to align migration with the direction of flow and decrease the rate of closure compared to static cultures. When EC were cultured on filters, shear stress promoted migration away from the luminal surface. EC conditioned by shear stress recruited fewer flowing neutrophils, and showed reduced up-regulation of E-selectin after stimulation with tumor necrosis factor-α (TNF). Use of siRNA against CD31 in the hEC, or testing of mEC from mice lacking CD31, indicated that expression of CD31 was not required for the shear-induced modification of wound closure. However, shear modulation of response to TNF was less effective in the absence of CD31, while reduction of CD31 reduced shear-sensitivity in some genes (e.g., eNOS), but not others (e.g., KLF-2). Thus, CD31 played a role in shear-sensitivity of some genes and of neutrophil recruitment, but not in modulation of endothelial migration. Different mechanotransducers may mediate different functional effects of shear stress. Hence, identification of the specific pathways may provide targets for therapeutic manipulation of angiogenesis or inflammation. Copyright © 2011 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Paweł Rzymski
2011-12-01
Full Text Available Introduction: Formation of a capsule is a natural inflammatory response to a foreign body such as a breast implant.Breast capsular contracture is the most severe complication of implant surgery. Aim: To evaluate breast tissues and the periprosthetic reaction with sonoelastography. Material and methods: Nineteen patients aged 20-41 underwent breast augmentation with silicone-filled implants.Their 38 breasts were evaluated before surgery, and 7 and 14 days after surgery. Whole breast stiffness was measuredby applanation tonometry. Patients underwent shear wave elastography and Young’s moduli of breast tissues and theperiprosthetic capsule were estimated. During surgery patients underwent standard anaesthesia and were releasedhome 2 days later after removal of drainage. Each day, patients completed the pain visual analogue scale questionnaireseparately for left and right breasts. Results: Applanation tonometry did not correlate with any parameter. In shear wave elastography we observed statisticallysignificant changes in elasticity of all breast tissues with the highest values on day 7 after surgery and decreasingon day 14. The correlations between pain and capsule elasticity in lower quadrants measured were significantbetween days 4 and 10, whereas correlations of pain with applanation tonometry were insignificant. Glandular tissueelasticity in lower quadrants did not correlate with pain, whereas in upper quadrants there was a significant correlationon days 6-10. Fatty tissue, muscle and thoracic fascia elasticity did not correlate with breast pain. Breast implantvolume correlated with pain only shortly after surgery, but did not correlate with any sonoelastographic parameters. Conclusions: Breast pain correlates strongly with periprosthetic stiffness in elastography 4 to 10 days after breast augmentation,suggesting the possible role of an inflammatory reaction.
Levashov, V A
2017-11-14
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
Levashov, V. A.
2017-11-01
We studied the connection between the structural relaxation and viscosity for a binary model of repulsive particles in the supercooled liquid regime. The used approach is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the correlation functions between the atomic level stresses. Previously we used the approach to study an iron-like single component system of particles. The role of vibrational motion has been addressed through the demonstration of the relationship between viscosity and the shear waves propagating over large distances. In our previous considerations, however, we did not discuss the role of the structural relaxation. Here we suggest that the contribution to viscosity from the structural relaxation can be taken into account through the consideration of the contribution from the atomic stress auto-correlation term only. This conclusion, however, does not mean that only the auto-correlation term represents the contribution to viscosity from the structural relaxation. Previously the role of the structural relaxation for viscosity has been addressed through the considerations of the transitions between inherent structures and within the mode-coupling theory by other authors. In the present work, we study the structural relaxation through the considerations of the parent liquid and the atomic level stress correlations in it. The comparison with the results obtained on the inherent structures also is made. Our current results suggest, as our previous observations, that in the supercooled liquid regime, the vibrational contribution to viscosity extends over the times that are much larger than the Einstein's vibrational period and much larger than the times that it takes for the shear waves to propagate over the model systems. Besides addressing the atomic level shear stress correlations, we also studied correlations between the atomic level pressure elements.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Kim, Junghi; Wozniak, Jeffrey R; Mueller, Bryon A; Pan, Wei
2015-05-01
Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more stable testing
Laminated beams: deflection and stress as a function of epoxy shear modulus
Energy Technology Data Exchange (ETDEWEB)
Bialek, J.
1976-01-01
The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span the entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)
2016-01-30
Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.
Correlation singularities of partially coherent beams with multi-Gaussian correlation function
Zhang, Yongtao; Wang, Haixia; Ding, Chaoliang; Pan, Liuzhan
2017-08-01
Correlation singularities of partially coherent beams with multi-Gaussian correlation function (i.e., multi-Gaussian Schell-model beams) are studied. It is shown that there exist correlation singularities for scalar multi-Gaussian Schell-model (MGSM) beams, both in the source plane and in the output plane. We find the simple relation between the correlation singularities and the beam index M of MGSM beams, i.e., the number of ring dislocations equals M - 1, which may be used to determine the beam index M.
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Directory of Open Access Journals (Sweden)
Marina V Karsanina
Full Text Available Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1 two-point probability functions, 2 linear functions, and 3 two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2 representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks. Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil
Nonreciprocal Green’s function retrieval by cross correlation
Wapenaar, C.P.A.
2006-01-01
The cross correlation of two recordings of a diffuse acoustic wave field at different receivers yields the Green’s function between these receivers. In nearly all cases considered so far the wave equation obeys time-reversal invariance and the Green’s function obeys source-receiver reciprocity. Here
Electron Correlation from the Adiabatic Connection for Multireference Wave Functions
Pernal, Katarzyna
2018-01-01
An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.
Correlation Function and Simplified TBA Equations for XXZ Chain
Directory of Open Access Journals (Sweden)
Minoru Takahashi
2011-01-01
Full Text Available The calculation of the correlation functions of Bethe ansatz solvable models is very difficult problem. Among these solvable models spin 1/2 XXX chain has been investigated for a long time. Even for this model only the nearest neighbor and the second neighbor correlations were known. In 1990's multiple integral formula for the general correlations is derived. But the integration of this formula is also very difficult problem. Recently these integrals are decomposed to products of one dimensional integrals and at zero temperature, zero magnetic field and isotropic case, correlation functions are expressed by log 2 and Riemann's zeta functions with odd integer argument ς(3,ς(5,ς(7,.... We can calculate density sub-matrix of successive seven sites. Entanglement entropy of seven sites is calculated. These methods can be extended to XXZ chain up to n=4. Correlation functions are expressed by the generalized zeta functions. Several years ago I derived new thermodynamic Bethe ansatz equation for XXZ chain. This is quite different with Yang-Yang type TBA equations and contains only one unknown function. This equation is very useful to get the high temperature expansion. In this paper we get the analytic solution of this equation at Δ=0.
Correlation function of one-dimensional s = 1 Ising model
Proshkin, A. I.; Ponomareva, T. Yu.; Menshikh, I. A.; Zarubin, A. V.; Kassan-Ogly, F. A.
2017-10-01
The temperature behavior of the Fourier transform of the spin-correlation function has been studied in terms of the one-dimensional Ising model taking into account the interaction between the nearest neighbors in the cases of different signs of exchange interactions, magnetic field, and spin. It has been shown that, in the antiferromagnetic model, in the frustration field, the correlation function has a broad maximum and does not take on the form of a delta function as the temperature approaches zero, which indicates the absence of ordering in the system.
Path integral based calculations of symmetrized time correlation functions. I.
Bonella, S; Monteferrante, M; Pierleoni, C; Ciccotti, G
2010-10-28
In this paper, we examine how and when quantum evolution can be approximated in terms of (generalized) classical dynamics in calculations of correlation functions, with a focus on the symmetrized time correlation function introduced by Schofield. To that end, this function is expressed as a path integral in complex time and written in terms of sum and difference path variables. Taylor series expansion of the path integral's exponent to first and second order in the difference variables leads to two original developments. The first order expansion is used to obtain a simple, path integral based, derivation of the so-called Schofield's quantum correction factor. The second order result is employed to show how quantum mechanical delocalization manifests itself in the approximation of the correlation function and hinders, even in the semiclassical limit, the interpretation of the propagators in terms of sets of guiding classical trajectories dressed with appropriate weights.
Buck, Amanda K W; Groszek, Joseph J; Colvin, Daniel C; Keller, Sara B; Kensinger, Clark; Forbes, Rachel; Karp, Seth; Williams, Phillip; Roy, Shuvo; Fissell, William H
2017-08-29
A major challenge in developing blood-contacting medical devices is mitigating thrombogenicity of an intravascular device. Thrombi may interfere with device function or embolize from the device to occlude distant vascular beds with catastrophic consequences. Chemical interactions between plasma proteins and bioengineered surface occur at the nanometer scale; however, continuum models of blood predict local shear stresses that lead to platelet activation or aggregation and thrombosis. Here, an iterative approach to blood flow path design incorporating in silico, in vitro, and in vivo experiments predicted the occurrence and location of thrombi in an implantable hemofilter. Low wall shear stress (WSS) regions identified by computational fluid dynamics (CFD) predicted clot formation in vivo. Revised designs based on CFD demonstrated superior performance, illustrating the importance of a multipronged approach for a successful design process.
Directory of Open Access Journals (Sweden)
Katharina Leithner
Full Text Available Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS has a major impact on a woman's psychological and sexual well-being. In most of the studies that addressed treatment techniques, postoperative sexual function was reported to be satisfactory; however, comparatively few studies have additionally provided an accurate analysis of psychosocial functions in MRKHS patients following different kinds of neovaginal treatment. This study is to evaluate sexual and psychosocial functioning after creation of a neovagina according to Wharton-Sheares-George in women with MRKHS.We performed a case-control-study using multiple measures to assess sexual and psychosocial functioning. Ten MRKHS patients and 20 controls of a University hospital and tertiary center for pediatric and adolescent gynecology were assessed. The follow-up assessment comprised 6 standardized questionnaires (Female Sexuality Function Index, FSFI; Patient Health Questionnaire, PHQ; Brief Symptom Inventory, BSI; World Health Organization Quality of Life Assessment, WHOQoL-BREF; Parental Bonding Instrument, PBI; and a German questionnaire on body image. The main outcome measures were sexual function, psychological status, quality of life, body image, and parental bonding styles.Sexual function, psychological status (including depressive and somatic symptoms, quality of life, and own-body experience were at least as good in operated MRKHS patients as in controls. In some measures (FSFI, PHQ-15, psychological domain of the WHOQoL-BREF, and BSI Positive Symptom Total, patients scored significantly better than controls. The results of the PBI indicated a close and sustainable mother-daughter-relationship in MRKHS patients.We found no evidence for an impairment of sexual or psychosocial functioning in patients after neovaginoplasty according to Wharton-Sheares-George. MRKHS may not necessarily compromise sexual and psychological well-being, provided that the syndrome is properly managed by a
Correlations within the non-equilibrium Green's function method
Mahzoon, M. H.; Danielewicz, P.; Rios, A.
2017-12-01
Non-equilibrium Green's Function (NGF) method is a powerful tool for studying the evolution of quantum many-body systems. Different types of correlations can be systematically incorporated within the formalism. The time evolution of the single-particle Green's functions is described in terms of the Kadanoff-Baym equations. The current work initially focuses on introducing the correlations within infinite nuclear matter in one dimension and then in a finite system in the NGF approach. Starting from the harmonic oscillator Hamiltonian, by switching on adiabatically the mean-field and correlations simultaneously, a correlated state with ground-state characteristics is arrived at within the NGF method. Furthermore the use of cooling to for improving the adiabatic switching is explored.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Using the Correlation Function in Ultrasonic Non-destructive Testing
Directory of Open Access Journals (Sweden)
M. Kreidl
2002-01-01
Full Text Available This paper deals with ultrasonic signal de-noising by means of correlation. It is commonly known that the cross-correlation function shows the statistical dependence between two signals. In ultrasonic inspection, the measured signal is taken as the first signal. The most important aspect of this method is the choice of the second signal. Various types of the second signals can be tried.
Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.
Magnetic pair distribution function analysis of local magnetic correlations.
Frandsen, Benjamin A; Yang, Xiaohao; Billinge, Simon J L
2014-01-01
The analytical form of the magnetic pair distribution function (mPDF) is derived for the first time by computing the Fourier transform of the neutron scattering cross section from an arbitrary collection of magnetic moments. Similar to the atomic pair distribution function applied to the study of atomic structure, the mPDF reveals both short-range and long-range magnetic correlations directly in real space. This function is experimentally accessible and yields magnetic correlations even when they are only short-range ordered. The mPDF is evaluated for various example cases to build an intuitive understanding of how different patterns of magnetic correlations will appear in the mPDF.
N=4 superconformal Ward identities for correlation functions
Belitsky, A V; Korchemsky, G P; Sokatchev, E
2016-01-01
In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
Wilsonian renormalisation of CFT correlation functions: field theory
Lizana, J. M.; Pérez-Victoria, M.
2017-06-01
We examine the precise connection between the exact renormalisation group with local couplings and the renormalisation of correlation functions of composite operators in scale-invariant theories. A geometric description of theory space allows us to select convenient non-linear parametrisations that serve different purposes. First, we identify normal parameters in which the renormalisation group flows take their simplest form; normal correlators are defined by functional differentiation with respect to these parameters. The renormalised correlation functions are given by the continuum limit of correlators associated to a cutoff-dependent parametrisation, which can be related to the renormalisation group flows. The necessary linear and non-linear counterterms in any arbitrary parametrisation arise in a natural way from a change of coordinates. We show that, in a class of minimal subtraction schemes, the renormalised correlators are exactly equal to normal correlators evaluated at a finite cutoff. To illustrate the formalism and the main results, we compare standard diagrammatic calculations in a scalar free-field theory with the structure of the perturbative solutions to the Polchinski equation close to the Gaussian fixed point.
Redshift-space correlation functions in large galaxy cluster surveys
Valageas, P.; Clerc, N.
2012-11-01
Context. Large ongoing and upcoming galaxy cluster surveys in the optical, X-ray and millimetric wavelengths will provide rich samples of galaxy clusters at unprecedented depths. One key observable for constraining cosmological models is the correlation function of these objects, measured through their spectroscopic redshift. Aims: We study the redshift-space correlation functions of clusters of galaxies, averaged over finite redshift intervals, and their covariance matrices. Expanding as usual the angular anisotropy of the redshift-space correlation on Legendre polynomials, we consider the redshift-space distortions of the monopole as well as the next two multipoles, 2ℓ = 2 and 4. Methods: Taking into account the Kaiser effect, we developed an analytical formalism to obtain explicit expressions of all contributions to these mean correlations and covariance matrices. We include shot-noise and sample-variance effects as well as Gaussian and non-Gaussian contributions. Results: We obtain a reasonable agreement with numerical simulations for the mean correlations and covariance matrices on large scales (r > 10 h-1 Mpc). Redshift-space distortions amplify the monopole correlation by about 10-20%, depending on the halo mass, but the signal-to-noise ratio remains of the same order as for the real-space correlation. This distortion will be significant for surveys such as DES, Erosita, and Euclid, which should also measure the quadrupole 2ℓ = 2. The third multipole, 2ℓ = 4, may only be marginally detected by Euclid.
Offshore Southern California lithospheric velocity structure from noise cross-correlation functions
Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.
2016-05-01
A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.
Explicitly correlated wave function for a boron atom
Puchalski, Mariusz; Pachucki, Krzysztof
2015-01-01
We present results of high-precision calculations for a boron atom's properties using wave functions expanded in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear properties of boron including the charge radius of the proton halo in the $^8$B nucleus.
Memory function approach to correlated electron transport: A comprehensive review
Das, Nabyendu; Bhalla, Pankaj; Singh, Navinder
2016-09-01
Memory function formalism or projection operator technique is an extremely useful method to study the transport and optical properties of various condensed matter systems. A recent revival of its uses in various correlated electronic systems is being observed. It is being used and discussed in various contexts, ranging from non-equilibrium dynamics to the optical properties of various strongly correlated systems such as high temperature superconductors. However, a detailed discussion on this method, starting from its origin to its present day applications at one place is lacking. In this article we attempt a comprehensive review of the memory function approach focusing on its uses in studying the dynamics and the transport properties of correlated electronic systems.
Correlation of Thyroid Functions with Severity and Outcome of ...
African Journals Online (AJOL)
hypothyroidism that correlates with severity of preeclampsia and influences obstetric outcome in these women. Identification of thyroid hormone in pregnancy might be of help in predicting occurrence of preeclampsia. Keywords: Birth weight, Preeclampsia, Thyroid function. Access this article online. Quick Response Code:.
Current correlation functions of ideal Fermi gas at finite temperature
Indian Academy of Sciences (India)
Ca; 71.45.Gm. 1. Introduction. The transverse and longitudinal current–current correlation functions describing the cur- rent fluctuations induced in the electron system by a weak external probe perpendicular and parallel to the propagation of electron wave, respectively, are two basic quantities in the theory of Fermi liquid.
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Statistics of baryon correlation functions in lattice QCD
Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration
2017-12-01
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.
Solution of integrals necessary to determine rainfall interstation correlation functions
Stol, P.T.
1977-01-01
The analytic salution to the rainfall interstation correlation function depends on the salution of some integrals (STOL, 1977a). Although the salution is a straightforward application of integral calculus the structure of the integrals is rather complicated (STOL, 1977b) and need some·comments to
The pair correlation function of spatial Hawkes processes
DEFF Research Database (Denmark)
Møller, Jesper; Torrisi, Giovanni Luca
2007-01-01
Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....
A two-point correlation function for Galactic halo stars
Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.
2011-01-01
We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination
Anatomical and functional correlates of voice quality in tracheoesophageal speech
van As-Brooks, Corina J.; Hilgers, Frans J. M.; Koopmans-van Beinum, Florien J.; Pols, Louis C. W.
2005-01-01
The purpose of the current study was to assess the anatomic and functional correlates of voice quality in tracheoesophageal speech, with dynamic imaging studies of the neoglottis. Videofluoroscopy (providing a lateral view), digital high-speed endoscopy (providing a "birds-eye" view), and their
On the self-organizing process of large scale shear flows
Energy Technology Data Exchange (ETDEWEB)
Newton, Andrew P. L. [Department of Applied Maths, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Kim, Eun-jin [School of Mathematics and Statistics, University of Sheffield, Sheffield, Yorkshire S3 7RH (United Kingdom); Liu, Han-Li [High Altitude Observatory, National Centre for Atmospheric Research, P. O. BOX 3000, Boulder, Colorado 80303-3000 (United States)
2013-09-15
Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2D hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.
Development and testing of new exchange correlation functionals
DEFF Research Database (Denmark)
Lundgård, Keld Troen
Catalysts are used in 90% of the world’s chemical processes to produce 60% of its chemical products, and they are thus very important to our modern society. We therefore seek to better understand current catalytic materials, so that we can find alternatives that will improve the energy efficiency...... on accurate and efficient approximations to the exchange correlation functional, yet these functional approximations have lacked a systematic way to estimate the underlying uncertainties. A Bayesian error estimation approach provides a mechanism for calculating approximative uncertainties, and so accurate......-empirical functional approximations have been made: BEEF-vdW, mBEEF, and mBEEFvdW. It is shown that these functionals are able balance the accuracy of predicting energetics of covalent and non-covalent chemistry better than any comparative functional that we have tested, and they could therefore become the functional...
Perspectives on wind shear flight
Miele, A.; Wang, T.; Wu, G. D.
1991-01-01
Wind shears originating from downbursts have been the cause of many aircraft accidents in the past two decades. In turn, this has led to considerable research on wind shear avoidance systems and wind shear recovery systems. This paper reviews recent advances in wind shear recovery systems. It summarizes the work done at Rice University on trajectory optimization and trajectory guidance for two basic flight conditions: takeoff and abort landing. It appears that, in the relatively near future, an advanced wind shear control system can be developed, that is, capable of functioning in different wind models and covering the spectrum of flight conditions having interest in a wind shear encounter.
Correlation function of weakly interacting bosons in a disordered lattice
Energy Technology Data Exchange (ETDEWEB)
Deissler, B; Lucioni, E; Modugno, M; Roati, G; Tanzi, L; Zaccanti, M; Inguscio, M; Modugno, G, E-mail: deissler@lens.unifi.it, E-mail: modugno@lens.unifi.it [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, 50019 Sesto Fiorentino (Italy)
2011-02-15
One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization and the realization of the disordered Bose-Hubbard model. There are, however, still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far very little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in the shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.
Large N correlation functions in superconformal field theories
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Gomez, Diego [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Russo, Jorge G. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg.Lluis Compayns, 23, 08010 Barcelona (Spain); Departament de Física Cuántica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí Franquès, 1, 08028 Barcelona (Spain)
2016-06-20
We compute correlation functions of chiral primary operators in N=2 superconformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on N=4 SYM as well as on superconformal QCD. In the case of N=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small N results in the literature.
Functional correlates of detailed body composition in healthy elderly subjects.
Geisler, Corinna; Schweitzer, Lisa; Müller, Manfred James
2018-01-01
Methods of body composition analysis are now widely used to characterize health status, i.e., nutritional status, metabolic rates, and cardiometabolic risk factors. However, the functional correlates of individual body components have not been systematically analyzed. In this study, we have used a two-compartment model, which was assessed by air displacement plethysmography. Detailed body composition was measured by whole body magnetic resonance imaging in a healthy population of 40 Caucasians, aged 65-81 yr (20 men; body mass index range: 18.6-37.2 kg/m 2 ). Physical, metabolic, as well as endocrine functions included pulmonary function, handgrip strength, gait speed, sit-to-stand test, physical activity, blood pressure, body temperature, resting energy expenditure (REE), liver and kidney functions (glomerular filtration rate), insulin sensitivity [homeostasis model assessment (HOMA)], plasma lipids, plasma leptin, testosterone, dehydroepiandrosterone, insulin-like growth factor I levels, thyroid status, vitamins, and inflammation. Individual body compartments were intercorrelated, e.g., skeletal muscle mass (SM) correlated with visceral adipose tissue ( r = 0.53) and kidneys ( r = 0.62). For the functional correlates, SM ( r = 0.58) and liver volume ( r = 0.63) were associated with REE, SM correlated with handgrip strength ( r = 0.57), and kidneys with glomerular filtration rate ( r = 0.57). While visceral adipose tissue correlated with HOMA ( r = 0.59), subcutaneous adipose tissue was related to plasma leptin levels ( r = 0.84). The subcutaneous adipose tissue-to-leptin relationship was moderated by inflammation increasing the explained variance of leptin levels by 4.0%. In linear regression analysis, detailed body composition explained variances in REE (75.0%), HOMA (41.0%), and leptin (78.0%) compared with a body mass index-based model (REE 16.0%, HOMA 31.0%, leptin 45.0%). In addition, detailed body composition explained 39
Gutt, C.; Ghaderi, T.; Tolan, M.; Sinha, S. K.; Grübel, G.
2008-03-01
We present a rigorous description of the effects of partial coherence and detector resolution on intensity autocorrelation functions as they can be measured by x-ray photon correlation spectroscopy (XPCS). Based on the Huygens-Fresnel propagation law and on the first Born approximation, we derive a general expression for the normalized intensity autocorrelation function. We calculate how the mutual coherence function of the x-ray beam propagates from an aperture to the sample and how it propagates after the scattering process to the detector area and consequently influences the intensity autocorrelation function. We illustrate our calculation with examples of XPCS intensity autocorrelation functions of liquid surfaces calculated for grazing incidence geometry.
Path integral based calculations of symmetrized time correlation functions. II.
Bonella, S; Monteferrante, M; Pierleoni, C; Ciccotti, G
2010-10-28
Schofield's form of quantum time correlation functions is used as the starting point to derive a computable expression for these quantities. The time composition property of the propagators in complex time is exploited to approximate Schofield's function in terms of a sequence of short time classical propagations interspersed with path integrals that, combined, represent the thermal density of the system. The approximation amounts to linearization of the real time propagators and it becomes exact with increasing number of propagation legs. Within this scheme, the correlation function is interpreted as an expectation value over a probability density defined on the thermal and real path space and calculated by a Monte Carlo algorithm. The performance of the algorithm is tested on a set of benchmark problems. Although the numerical effort required is considerable, we show that the algorithm converges systematically to the exact answer with increasing number of iterations and that it is stable for times longer than those accessible via a brute force, path integral based, calculation of the correlation function. Scaling of the algorithm with dimensionality is also examined and, when the method is combined with commonly used filtering schemes, found to be comparable to that of alternative semiclassical methods.
Investigating efficient methods for computing four-quark correlation functions
Abdel-Rehim, Abdou; Alexandrou, Constantia; Berlin, Joshua; Dalla Brida, Mattia; Finkenrath, Jacob; Wagner, Marc
2017-11-01
We discuss and compare the efficiency of various methods, combinations of point-to-all propagators, stochastic timeslice-to-all propagators, the one-end trick and sequential propagators, to compute two-point correlation functions of two-quark and four-quark interpolating operators of different structure including quark-antiquark type, mesonic molecule type, diquark-antidiquark type and two-meson type. Although we illustrate our methods in the context of the a0(980) , they can be applied for other multi-quark systems, where similar diagrams appear. Thus our results could provide helpful guidelines on the choice of methods for correlation function computation for future lattice QCD studies of meson-meson scattering and possibly existing tetraquark states.
The derivative discontinuity of the exchange-correlation functional
Mori-Sánchez, Paula
2014-01-01
The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons ($N$), but it can also manifest at constant $N$. Examples are shown in models including several Hydrogen systems with varying numbers of electrons or nuclear charge ($Z$), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals miss the derivative ...
CCFpams: Atmospheric stellar parameters from cross-correlation functions
Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane
2017-07-01
CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.
Correlation functions in the factorization approach of nonextensive quantum statistics
Ubriaco
2000-07-01
We study the long-range behavior of a gas whose partition function depends on a parameter q and it has been claimed to be a good approximation to the partition function proposed in the formulation of nonextensive statistical mechanics. We compare our results, at large temperatures and at the critical point, with the case of Boltzmann-Gibbs thermodynamics for the case of a Bose-Einstein gas. In particular, we find that for all temperatures the long-range correlations in a Bose gas decrease when the value of q departs from the standard value q=1.
Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations
DEFF Research Database (Denmark)
Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens
2008-01-01
Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...
mTransport: Two-point-correlation function calculator
Dias, Mafalda; Frazer, Jonathan; Seery, David
2017-10-01
mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.
Charmonium correlators and spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.
2008-09-01
We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.
An improved method for estimating the frequency correlation function
Chelli, Ali
2012-04-01
For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.
Correlation of cognitive and masticatory function in Alzheimer's disease.
Campos, Camila Heitor; Ribeiro, Giselle Rodrigues; Costa, José Luiz Riani; Rodrigues Garcia, Renata Cunha Matheus
2017-03-01
This study investigated chewing function in elderly individuals with Alzheimer's disease (AD) and correlated chewing function with cognitive status. Sixteen elderly individuals with mild AD (mean age 76.7 ± 6.3 years; 8 men, 8 women) and 16 age and gender-matched healthy controls (mean age 75.23 ± 4.4 years; 8 men, 8 women) were included in this study. All volunteers wore removable prostheses: 11 were totally edentulous and five were partially edentulous in each group. Chewing function was evaluated via masticatory performance (MP) using Optocal chewable test material and a sieve fractionation method. Cognitive functioning was assessed by the Mini Mental State Exam (MMSE), administered by a trained examiner. Data were analyzed by non-paired t test and Pearson's correlation with α = 0.05. Compared to controls, mild AD patients had decreased MP (P function. Knowledge that mild AD has an impact on chewing is important for dental professionals in decision-making related to prosthetics and general dental treatment.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
Trunk Function Correlates Positively with Wheelchair Basketball Player Classification.
Santos, Sileno da Silva; Krishnan, Chandramouli; Alonso, Angelica Castilho; Greve, Júlia Maria D'Andréa
2017-02-01
The aims of this study were (1) to identify differences in trunk muscle strength and balance among various classes of wheelchair basketball (WCB) players and (2) to determine if trunk muscle strength and balance correlate with the current observation-based classification of WCB players. Isometric trunk strength and balance (limits of stability) were objectively quantified in 42 male WCB players. Principal component analysis was used to synthesize a battery of strength and balance measures into a single, composite score of trunk function. The K-means clustering algorithm was then used to generate an objective classification system by stratifying players into 4 classes based on their trunk function. Results indicated that there were significant differences in trunk muscle strength and balance between various classes of WCB players (P < 0.05), such that the mean peak trunk extensor and flexor torque and limits of stability indices increased progressively according to the players' classes. There was also a significant correlation between observation-based WCB classification and principal component analysis cluster analysis-based WCB classification (ρ = 0.785, P < 0.05). This study provides novel evidence indicating that trunk strength and balance differ among various classes of WCB players, and objective measures of trunk function correlate positively with the current observation-based WCB classification system.
Trait correlates and functional significance of heteranthery in flowering plants.
Vallejo-Marín, Mario; Da Silva, Elizabeth M; Sargent, Risa D; Barrett, Spencer C H
2010-10-01
• Flowering plants display extraordinary diversity in the morphology of male sexual organs, yet the functional significance of this variation is not well understood. Here, we conducted a comparative analysis of floral correlates of heteranthery - the morphological and functional differentiation of anthers within flowers - among angiosperm families to identify traits associated with this condition. • We performed a phylogenetic analysis of correlated evolution between heteranthery and several floral traits commonly reported from heterantherous taxa. In addition, we quantified the effect of phylogenetic uncertainty in the observed patterns of correlated evolution by comparing trees in which polytomous branches were randomly resolved. • Heteranthery is reported from 12 angiosperm orders and is phylogenetically associated with the absence of floral nectaries, buzz-pollination and enantiostyly (mirror-image flowers). These associations are robust to particularities of the underlying phylogenetic hypothesis. • Heteranthery has probably evolved as a result of pollinator-mediated selection and appears to function to reduce the conflict of relying on pollen both as food to attract pollinators and as the agent of male gamete transfer. The relative scarcity of heteranthery among angiosperm families suggests that the conditions permitting its evolution are not easily met despite the abundance of pollen-collecting bees and nectarless flowers. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Functional correlates of military sexual assault in male veterans.
Schry, Amie R; Hibberd, Rachel; Wagner, H Ryan; Turchik, Jessica A; Kimbrel, Nathan A; Wong, Madrianne; Elbogen, Eric E; Strauss, Jennifer L; Brancu, Mira
2015-11-01
Despite research findings that similar numbers of male and female veterans are affected by military sexual trauma (MST), there has been considerably less research on the effects of MST specific to male veterans. The aim of the present study was to provide preliminary data describing functional correlates of military sexual assault (MSA) among male Iraq/Afghanistan-era veterans to identify potential health care needs for this population. We evaluated the following functional correlates: posttraumatic stress disorder (PTSD) symptoms, depression symptoms, alcohol use, drug use, suicidality, social support, violent behavior in the past 30 days, incarceration, disability eligibility status, and use of outpatient mental health treatment. We compared 3 groups: (a) male veterans who endorsed a history of MSA (n = 39), (b) a general non-MSA sample (n = 2,003), and (c) a matched non-MSA sample (n = 39) identified by matching algorithms on the basis of factors (e.g., age, education, adult premilitary sexual trauma history, childhood sexual and physical trauma history, and race) that could increase veterans' vulnerability to the functional correlates examined. MSA in men was associated with greater PTSD symptom severity, greater depression symptom severity, higher suicidality, and higher outpatient mental health treatment, above and beyond the effects of vulnerability factors. These findings suggest that, for male veterans, MSA may result in a severe and enduring overall symptom profile requiring ongoing clinical management. (c) 2015 APA, all rights reserved).
Aging of vestibular function evaluated using correlational vestibular autorotation test
Directory of Open Access Journals (Sweden)
Hsieh LC
2014-09-01
Full Text Available Li-Chun Hsieh,1,2 Hung-Ching Lin,2,3 Guo-She Lee4,5 1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan; 3Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taipei, Taiwan; 4Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5Department of Otolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Background: Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT. In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT system that included a small, light sensor (less than 20 g with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods: We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results: Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05. The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old.Conclusion: Vestibular function evaluated using mean CCC revealed a decline with
Structural and functional neural correlates of music perception.
Limb, Charles J
2006-04-01
This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.
Fast methods for spatially correlated multilevel functional data
Staicu, A.-M.
2010-01-19
We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.
Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji
2017-11-06
In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Functional connectivity correlates of response inhibition impairment in anorexia nervosa.
Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela
2016-01-30
Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Statistical Analysis of Upper Ocean Time Series of Vertical Shear.
1982-05-01
SHEAR ............. 5-1 5.1 Preliminary Statistical Tests ............ 5-1 5.1.1 Autocorrelation and Run Test for Randomness .................... 5-1...parameters are based on the statistical model for S7(NTz) from Section 4. 5.1 PRELIMINARY STATISTICAL TESTS 5.1.1 Autocorrelation and Run Test for Randomness...estimating this interval directly from shear auto- correlation functions, and the second involves the use of the run test . * 5-1 In qeneral, shear in the
Analytical correlation functions for motion through diffusivity landscapes
Roosen-Runge, Felix; Bicout, Dominique J.; Barrat, Jean-Louis
2016-05-01
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.
Porous Organic Materials: Strategic Design and Structure-Function Correlation.
Das, Saikat; Heasman, Patrick; Ben, Teng; Qiu, Shilun
2017-02-08
Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.
Atkinson, G.; Batterham, A.M.; Black, M.A.; Cable, N.T.; Hopkins, N.D.; Dawson, E.A.; Thijssen, D.H.J.; Jones, H.; Tinken, T.M.; Green, D.J.
2009-01-01
It has been deemed important to normalize flow-mediated dilation (FMD), a marker of endothelial function, for between-subject differences in the eliciting shear rate (SR) stimulus. Conventionally, FMD is divided by the area under the curve of the SR stimulus. In the context of a cross-sectional
Pair correlation functions of strongly coupled two-temperature plasma
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-09-01
Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.
Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.
Directory of Open Access Journals (Sweden)
Ken Sakaie
Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.
A functional correlate of severity in alternating hemiplegia of childhood.
Li, Melody; Jazayeri, Dana; Corry, Ben; McSweeney, K Melodi; Heinzen, Erin L; Goldstein, David B; Petrou, Steven
2015-05-01
Mutations in ATP1A3, the gene that encodes the α3 subunit of the Na(+)/K(+) ATPase, are the primary cause of alternating hemiplegia of childhood (AHC). Correlations between different mutations and AHC severity were recently reported, with E815K identified in severe and D801N and G947R in milder cases. This study aims to explore the molecular pathological mechanisms in AHC and to identify functional correlates for mutations associated with different levels of disease severity. Human wild type ATP1A3, and E815K, D801N and G947R mutants were expressed in Xenopus laevis oocytes and Na(+)/K(+) ATPase function measured. Structural homology models of the human α3 subunit containing AHC mutations were created. The AHC mutations examined all showed similar levels of reduction in forward cycling. Wild type forward cycling was reduced by coexpression with any mutant, indicating dominant negative interactions. Proton transport was measured and found to be selectively impaired only in E815K. Homology modeling showed that D801 and G947 lie within or near known cation binding sites while E815 is more distal. Despite its effect on proton transport, E815K was also distant from the proposed proton transport route. Loss of forward cycling and dominant negativity are common and likely necessary pathomechanisms for AHC. In addition, loss of proton transport correlated with severity of AHC. D801N and G947R are likely to directly disrupt normal Na(+)/K(+) binding while E815K may disrupt forward cycling and proton transport via allosteric mechanisms yet to be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.
Shear viscosity of an ordering latex suspension
van der Vorst, A.M.; van der Vorst, B.; van den Ende, Henricus T.M.; Aelmans, N.J.J.; Mellema, J.
1997-01-01
The shear viscosity of a latex which is ordered at rest is studied as a function of the shear rate and volume fraction. At low shear rates and for moderate to high volume fractions, the flow curves show dynamic yield behavior which disappears below a volume fraction of 8%. At high shear rates, the
Correlation functions from a unified variational principle: Trial Lie groups
Energy Technology Data Exchange (ETDEWEB)
Balian, R., E-mail: roger.balian@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Vénéroni, M. [Institut de Physique Nucléaire, Université Paris-Sud and IN2P3-CNRS, F-91406 Orsay cedex (France)
2015-11-15
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill
Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.
Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang
2017-09-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.
Correlation functions in ω-deformed N=6 supergravity
Energy Technology Data Exchange (ETDEWEB)
Borghese, A.; Pang, Y. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University,Wilberforce Road, Cambridge CB3 OWA (United Kingdom); Sezgin, E. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States)
2015-02-17
Gauged N=8 supergravity in four dimensions is now known to admit a deformation characterized by a real parameter ω lying in the interval 0≤ω≤π/8. We analyse the fluctuations about its anti-de Sitter vacuum, and show that the full N=8 supersymmetry can be maintained by the boundary conditions only for ω=0. For non-vanishing ω, and requiring that there be no propagating spin s>1 fields on the boundary, we show that N=3 is the maximum degree of supersymmetry that can be preserved by the boundary conditions. We then construct in detail the consistent truncation of the N=8 theory to give ω-deformed SO(6) gauged N=6 supergravity, again with ω in the range 0≤ω≤π/8. We show that this theory admits fully N=6 supersymmetry-preserving boundary conditions not only for ω=0, but also for ω=π/8. These two theories are related by a U(1) electric-magnetic duality. We observe that the only three-point functions that depend on ω involve the coupling of an SO(6) gauge field with the U(1) gauge field and a scalar or pseudo-scalar field. We compute these correlation functions and compare them with those of the undeformed N=6 theory. We find that the correlation functions in the ω=π/8 theory holographically correspond to amplitudes in the U(N){sub k}×U(N){sub −k} ABJM model in which the U(1) Noether current is replaced by a dynamical U(1) gauge field. We also show that the ω-deformed N=6 gauged supergravities can be obtained via consistent reductions from the eleven-dimensional or ten-dimensional type IIA supergravities.
Peng, H L; Schober, H R; Voigtmann, Th
2016-12-01
Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.
Approximations for the direct correlation function in multicomponent molecular fluids
Chamoux, A.; Perera, A.
1996-01-01
Analytical approximations for the pair direct correlation function (DCF) of molecular fluids and their mixtures are derived within the frame of a new formalism based on weighted density functional methods which represents a generalization of Rosenfeld theory for hard spheres mixtures [J. Chem. Phys. 89, 4271 (1988)]. These approximations rest upon the geometrical properties of individual molecules such as the volume, the surface, and the mean radius. They are Percus-Yevick (PY) like in nature and reduce to the analytical PY solution for DCF in the hard sphere case. By construction the approximations incorporate several interesting features: They yield the Mayer function in the low density limit as expected, and they are anisotropic at zero separation as well as at contact. In addition they predict an orientational instability of the isotropic phase with respect to the nematic phase, a feature that is absent from the Percus-Yevick theory. Comparisons are made with the Percus-Yevick numerical results for the DCF for various convex hard bodies such as hard ellipsoids of revolutions (prolate and oblate), prolate spherocylinders, cutspheres, and generally the agreement is very good for a large range of liquid densities. Analytical expressions for the virial and compressibility routes for the pressures are also given. The results obtained for a large varieties of convex bodies are in very good agreement with corresponding numerical Percus-Yevick results. These approximations can be generalized to inhomogeneous systems in a straightforward manner.
Response and correlation functions of nonlinear systems in equilibrium states
Xu, Lubo; Wang, Lei
2017-11-01
In this paper, we study systematically a serial of correlation functions in some one-dimensional nonlinear lattices. Due to the energy conservation law, they are implicitly interdependent. Various transport coefficients are thus also connected. In the studies of the autocorrelations of local energy density and of local heat current, a general relation between diverging heat conduction and super heat diffusion has been proposed recently. We clarify that such a relation is valid only in systems without temperature pressure. In those with temperature pressure, a constant but nontrivial term appears. This term explains a previously observed fact that heat diffusion in such systems is always ballistic but heat conduction can diverge very slowly. Such a result not only disproves the existence of any general relation between diverging heat conduction and super heat diffusion, but it also breaks the long-term presumption that ballistic heat conduction and diffusion always coexist.
Direct correlation functions in two-dimensional anisotropic fluids
Chamoux, Antoine; Perera, Aurelien
1998-08-01
A geometrical approximation for the direct correlation of two-dimensional multicomponent fluids is introduced herein. This approximation is semianalytical and involves the knowledge of elementary geometrical properties of a single particle. The formalism is applied to anisotropic two-dimensional fluids of various particle shapes such as hard ellipses, diskorectangles, and cut disks of various size ratios. The particular case of the hard needles fluid is also investigated. The accuracy of the approximation is tested by comparing the equation of state and the correlation functions to those obtained by integral equation techniques and Monte Carlo simulations. In almost all cases these comparisons are found to be quite satisfactory and even excellent in the case of moderate size ratios. Both the isotropic and orientationally ordered phases are investigated and particular attention is paid to the orientational stability of the isotropic phase. The cut disk fluid has a particularly interesting long-range order for thicknesses around 0.3, which is very much reminiscent of the cubatic order observed in the corresponding three-dimensional case of cut spheres. This feature observable by both the simulations and the hypernetted chain integral equation is also predicted by the present geometrical theory, but at larger thicknesses.
Functional cortical network in alpha band correlates with social bargaining.
Directory of Open Access Journals (Sweden)
Pablo Billeke
Full Text Available Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social and computer (non-social conditions. We found phase synchrony (inter-site-phase-clustering modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.
Directory of Open Access Journals (Sweden)
Max Denis
Full Text Available The purpose of our study is to correlate quantitatively measured tumor stiffness with immunohistochemical (IHC subtypes of breast cancer. Additionally, the influence of prognostic histologic features (cancer grade, size, lymph node status, and histological type and grade to the tumor elasticity and IHC profile relationship will be investigated.Under an institutional review board (IRB approved protocol, B-mode ultrasound (US and comb-push ultrasound shear elastography (CUSE were performed on 157 female patients with suspicious breast lesions. Out of 157 patients 83 breast cancer patients confirmed by pathology were included in this study. The association between CUSE mean stiffness values and the aforementioned prognostic features of the breast cancer tumors were investigated.Our results demonstrate that the most statistically significant difference (p = 0.0074 with mean elasticity is tumor size. When considering large tumors (size ≥ 8mm, thus minimizing the statistical significance of tumor size, a significant difference (p 20% subtypes.Tumor size is an independent factor influencing mean elasticity. The Ki-67 proliferation index and histological grade were dependent factors influencing mean elasticity for the differentiation between luminal subtypes. Future studies on a larger group of patients may broaden the clinical significance of these findings.
Young, Suzanne R L; Hum, Julia M; Rodenberg, Eric; Turner, Charles H; Pavalko, Fredrick M
2011-01-25
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2(+/+) and Pyk2(-/-) primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2(+/+) and Pyk2(-/-) osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK(-/-) osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar
Behavioral correlates of anxiety in well-functioning older adults.
Losada, Andrés; Márquez-González, María; Pachana, Nancy A; Wetherell, Julie L; Fernández-Fernández, Virginia; Nogales-González, Celia; Ruiz-Díaz, Miguel
2015-07-01
Research on the behavioral correlates of anxiety in older adults is sparse. The aim of this study was to explore the association of anxiety with behavioral patterns defined by health, activity, emotional and social variables. A convenience sample of 395 older adults completed measures of health, activity, emotions, social variables and experiential avoidance. Cross-sectional data were analysed using cluster analysis. Five clusters were identified: active healthy, healthy, active vulnerable, lonely inactive and frail lonely. Participants in the active healthy and healthy clusters showed the highest scores on health variables (vitality and physical function), and adaptive scores on the rest of variables. They also reported the lowest scores on anxiety and included the lowest number of cases with clinically significant anxiety levels. Active vulnerable showed high scores on social support, leisure activities and capitalization on them but low scores in vitality and physical functioning. Participants in the lonely inactive cluster reported the highest mean score in experiential avoidance and high scores on boredom and loneliness, and low scores on social support, leisure activities capitalizing on pleasant activities and health variables. Frail lonely represent a particularly vulnerable profile of participants, similar to that of lonely inactive, but with significantly lower scores on health variables and higher scores on boredom and hours watching TV. Anxiety in older adults is not only linked to poor health, but also to dysfunctional social behavior, loneliness, boredom and experiential avoidance. Maladaptive profiles of older adults with regard to these variables have been identified.
De Lucena, S C; Gomes, S G F; Da Silva, W J; Del Bel Cury, A A
2011-06-01
The aim of this study was to evaluate the correlation between patients' and dentist's assessment of dentures and to correlate these variables with objective measures of masticatory function. A sample of 28 edentulous individuals was selected, all wearing both complete dentures for at least 6 months and with no signs or symptoms of temporomandibular joint disorders. They rated their level of satisfaction with their dentures from 0 to 100 by means of a visual analogue scale, and dentures were scored by a dentist from 0 to 9 considering functional aspects. Tooth wear was evaluated on the posterior teeth of dentures considering the lack of occlusal anatomy. Masticatory performance and swallowing threshold tests were performed with an artificial test food (Optocal), and the median particle size was determined by the sieving method. The results showed that the mean satisfaction value of volunteers with their dentures was 49·1 and the median score of dentist's evaluation was 6. The Spearman correlation coefficient revealed no significant correlation between patients' and dentist's assessment of dentures (P>0·05). The median particle size for masticatory performance and swallowing thresholds was 5·5 ± 1·0 and 4·9 ± 1·2 mm, respectively. Data of both masticatory tests showed no significant correlation with patients' satisfaction or with dentist's evaluation of dentures. There was no difference of food comminution between subjects with and without excessive posterior tooth wear. It can be concluded that dentist's and patients' assessment of dentures were not correlated, and no correlation was observed between these variables and masticatory function. © 2010 Blackwell Publishing Ltd.
Directory of Open Access Journals (Sweden)
J. Nastula
Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ_{1} and χ_{2} and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50^{°}N to 60^{°}N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.
Directory of Open Access Journals (Sweden)
J. Nastula
1997-11-01
Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ1 and χ2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.
The Galaxy Count Correlation Function in Redshift Space Revisited
Campagne, J.-E.; Plaszczynski, S.; Neveu, J.
2017-08-01
In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.
Transport through correlated systems with density functional theory
Kurth, S.; Stefanucci, G.
2017-10-01
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Transport through correlated systems with density functional theory.
Kurth, S; Stefanucci, G
2017-10-18
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Sheikh, Sajila; Gale, Zoe; Rainger, G Ed; Nash, Gerard B
2004-05-01
Endothelial cells are conditioned by physicochemical environmental factors, including shear stress applied by flowing blood. However, the effects of shear conditioning on the functional responses of endothelial cells, such as ability to recruit leukocytes, remain uncertain. Here we describe a system for culturing multiple samples of endothelial cells under flow for prolonged periods, either at different shear stresses, or exposed concurrently to different concentrations of cytokines, for instance, tumour necrosis factor-alpha (TNF). The endothelial cells were cultured in glass capillaries (microslides) that could be conveniently transferred to a flow-based adhesion assay, to test the ability of the cultures to support adhesion and migration of flowing leukocytes. Paired control, 'static' samples were exposed to the identical medium and culture geometry. We found that the type of tubing used in the culture flow circuit and its maintenance at 37 degrees C were critical design factors, which could influence the response to TNF of the static controls which were exposed to recirculated medium. Endothelial cells conditioned by culture under flow showed a reduction in response to TNF, as judged by ability to induce the capture and migration of neutrophils. We found that the higher the shear stress, the weaker the ability to recruit neutrophils. This sensitivity to shear stress was greater if the cells were allowed to stabilise under static conditions for 24 h, compared to cells exposed to flow immediately after seeding. The inhibition of neutrophil recruitment was similar for cultures exposed to steady flow or flow with a pulsatile element (flow oscillation approximately 20% about the mean). Thus, we have developed a versatile culture system which allows investigations of functional modifications of endothelial cells and demonstrates the potential sensitivity of inflammatory responses to the local fluid environment. Copyright 2004 Elsevier B.V.
Spurious Shear in Weak Lensing with LSST
Energy Technology Data Exchange (ETDEWEB)
Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.
2012-09-19
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.
Atmospheric stellar parameters from cross-correlation functions
Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.
2017-08-01
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
Fourier band-power E/B-mode estimators for cosmic shear
Energy Technology Data Exchange (ETDEWEB)
Becker, Matthew R.; Rozo, Eduardo
2016-01-20
We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compact and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
Shear viscosity of the quark matter
Iwasaki, Masaharu; Ohnishi, Hiromasa; Fukutome, Takahiko
2007-01-01
We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.
Correlation of Thyroid Functions with Severity and Outcome of ...
African Journals Online (AJOL)
A positive correlation was observed between BW and TT3 levels. Conclusion: These findings indicate that there is a state of biochemical hypothyroidism that correlates with severity of preeclampsia and influences obstetric outcome in these women. Identification of thyroid hormone in pregnancy might be of help in predicting ...
Indian Academy of Sciences (India)
Abstract. We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation ...
Monte Carlo variational study of Be: A survey of correlated wave functions
Moskowitz, Jules W.; Schmidt, K. E.; Lee, M. A.; Kalos, M. H.
1982-01-01
Using the Metropolis Monte Carlo integration technique, we calculate upper bounds to the correlation energy of a Be atom for a variety of wave functions. With this method, it is simple to treat unconventional wave functions, including those which depend on the interelectronic distance rij. We obtain about 40% of the correlation energy by using only a simple two-parameter Jastrow function of rij with a single Slater determinant of Hartree-Fock orbitals. A four configuration wave function with this Jastrow function yields 87% of the correlation energy. Several wave functions derived from nonvariational methods are shown to give no correlation energy when used in a strictly variational computation.
Maximum likelihood estimation of shear wave speed in transient elastography.
Audière, Stéphane; Angelini, Elsa D; Sandrin, Laurent; Charbit, Maurice
2014-06-01
Ultrasonic transient elastography (TE), enables to assess, under active mechanical constraints, the elasticity of the liver, which correlates with hepatic fibrosis stages. This technique is routinely used in clinical practice to assess noninvasively liver stiffness. The Fibroscan system used in this work generates a shear wave via an impulse stress applied on the surface of the skin and records a temporal series of radio-frequency (RF) lines using a single-element ultrasound probe. A shear wave propagation map (SWPM) is generated as a 2-D map of the displacements along depth and time, derived from the correlations of the sequential 1-D RF lines, assuming that the direction of propagation (DOP) of the shear wave coincides with the ultrasound beam axis (UBA). Under the assumption of pure elastic tissue, elasticity is proportional to the shear wave speed. This paper introduces a novel approach to the processing of the SWPM, deriving the maximum likelihood estimate of the shear wave speed when comparing the observed displacements and the estimates provided by the Green's functions. A simple parametric model is used to interface Green's theoretical values of noisy measures provided by the SWPM, taking into account depth-varying attenuation and time-delay. The proposed method was evaluated on numerical simulations using a finite element method simulator and on physical phantoms. Evaluation on this test database reported very high agreements of shear wave speed measures when DOP and UBA coincide.
Pair-correlation function in disordered β-brass as studied by neutron diffraction
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Dietrich, O.W.
1967-01-01
Critical neutron scattering around a superlattice reflection above Tc yields information on the pair correlation function for occupation of lattice sites. The Ornstein-Zernike correlation function e-k 1 r/r is proved to fit the data excellently, and at 8.9deg K above Tc the inverse correlation...
CSIR Research Space (South Africa)
Kok, S
2012-07-01
Full Text Available is considered in this paper, but the main result of Zimmermann [2] is disproved. 2 Kriging fundamentals A response y(x) is considered to consist of a deterministic contribution f(x) and a stochastic component Z(x), i.e. y(x) = f(x) + Z(x). (1...) and is symmetric by definition. In computer experiment applications, the Gaussian correlation function is particularly popular. In this case, R is given by R(xi, xj) = m? k=1 e??k|x i k?x j k|2 , (4) where m is the number of design variables (i.e...
Directory of Open Access Journals (Sweden)
Natalia A Iutaka
2017-01-01
Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma.
Structurofunctional resting-state networks correlate with motor function in chronic stroke
Directory of Open Access Journals (Sweden)
Benjamin T. Kalinosky
2017-01-01
Conclusion: The results demonstrate that changes after a stroke in both intrinsic and network-based structurofunctional correlations at rest are correlated with motor function, underscoring the importance of residual structural connectivity in cortical networks.
Volume Functions of Historical Texts and the Amplitude Correlation Principle.
Fomenko, Anatoliy T.; Rachev, Svetlozar T.
1990-01-01
Proposes an empirico-statistical model to differentiate dependent and independent historical texts. Formulates a regard for information principle and an amplitude correlation principle. Experimentally examines and validates the model and both principles using specific historical texts. Includes tables and graphs. Appends further discussion of the…
Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.
2016-12-01
We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes
Two Point Correlation Functions for a Periodic Box-Ball System
Directory of Open Access Journals (Sweden)
Jun Mada
2011-03-01
Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.
2017-09-01
Communication theory of secrecy systems,” Bell Systems Technical Journal, vol. 28, pp. 656–715, 1949. [40] T. Siegenthaler, “Correlation immunity of nonlinear...Cryptography, coding theory , Boolean functions, generalized Boolean functions, correlation immunity, strict avalanche criterion, bent functions, cyber...information warfare, information security, communications security. 15. NUMBER OF PAGES 161 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT
The course and correlates of everyday functioning in schizophrenia
Directory of Open Access Journals (Sweden)
Abraham Reichenberg
2014-03-01
Worsening in everyday functioning is found in people with schizophrenia and those with a history of greater chronicity and severity of illness seem more affected. These influences seem to be expressed through worsening in the ability to perform everyday functional skills. Potential causes of these changes and implications for reducing these impairments are discussed.
Correlation function of four spins in the percolation model
Directory of Open Access Journals (Sweden)
Vladimir S. Dotsenko
2016-10-01
It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ=596, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ=5/8.
Directory of Open Access Journals (Sweden)
Arsić Slađana
2016-01-01
Full Text Available Introduction. It has been assumed that there is causality of the achieved level of functional independence with the degree of preservation of cognitive function in stroke patients. Demographic characteristics may be important for monitoring the achieved level of functional independence. Objective. The aim of this study was to examine the relationship of demographic characteristics and functional independence in regard to the level of cognitive impairment in stroke patients. Methods. The study included 50 stroke patients after rehabilitation, as well as age- and gender-matched 50 subjects selected randomly, according to the demographic characteristics of the studied sample, who in their medical history had no neurological disorders. For the assessment of functional independence, the Functional Independence Measure (FIM test was used. The general cognition was estimated by the Mini-Mental State Examination (MMSE test. The statistical analyses included the Mann-Whitney test, for two independent samples, measures of canonical correlation, and χ2 test. Results. There was a statistically significant difference between the groups in relation to risk factors, hypertension and diabetes mellitus type II (p<0.001; There was a statistically significant difference within the groups in relation to the cognitive impairment in all the examined demographic characteristics (p<0.001; the differences within the groups in relation to the cognitive impairment are present on all subscales of the FIM test (p<0.05; the differences within the groups in relation to handedness, hemiparesis, show that mild cognitive impairment is more common among left hemiparesis, while a more severe one is more common among right-sided hemiparesis (p<0.05; More severe cognitive impairment is common among women, the elderly and in persons with lower education (p<0.05. Conclusion. By prevention of risk factors, and prevention of possible cognitive impairment, consequences of stroke can be
Energy Technology Data Exchange (ETDEWEB)
Feuerstein, B.; Moshammer, R.; Ullrich, J. [Freiburg Univ. (Germany); Schulz, M
2001-07-01
Recently, a new method of analysing electron correlations based on intensity interferometry has been applied to double ionization of He and Ne by fast ion impact [1]. The data reveal sensitively correlation effects while they appear to be very insensitive to the collision dynamics. In order to analyse the role of the initial state electron correlation a statistically defined correlation function based on intensity interferometry was calculated for the ground state of He. In a comparative study of model wave functions we demonstrate that correlation can be considered from a statistical point of view which offers a new tool to study correlation effects in many-particle systems. (orig.)
Feuerstein, B.; Schulz, M.; Moshammer, R.; Ullrich, J.
Recently, a new method of analysing electron correlations based on intensity interferometry has been applied to double ionization of He and Ne by fast ion impact [1]. The data reveal sensitively correlation effects while they appear to be very insensitive to the collision dynamics. In order to analyse the role of the initial state electron correlation a statistically defined correlation function based on intensity interferometry was calculated for the ground state of He. In a comparative study of model wave functions we demonstrate that correlation can be considered from a statistical point of view which offers a new tool to study correlation effects in many-particle systems.
A canonical correlation neural network for multicollinearity and functional data.
Gou, Zhenkun; Fyfe, Colin
2004-03-01
We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.
Cluster expansions for the correlated basis functions theory
Energy Technology Data Exchange (ETDEWEB)
Guardiola, R. (Granada Univ. (Spain). Dept. de Fisica Nuclear)
1982-08-16
Four kinds of cluster expansions for the calculation of non-diagonal matrix elements of the hamiltonian between correlated states have been derived. The derivation is based on a linearization mechanism for the standard cluster expansions in a configuration mixed state. Particulary simple formulae result for the multiplicative Factor-Aviles-Hartog-Tolhoek expansion and for the exponential form of the Gaudin-Gillespie-Ripka cluster expansion. The resulting expansions are directly usable in finite nuclei.
Killgore, William D S
2013-11-01
Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Outpatient neuroimaging center at a private psychiatric hospital. Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. N/A. Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength.
Prevalence and Correlates of Lung Function Impairment Among ...
African Journals Online (AJOL)
Participants who had morning cough were 3.44 (95% CI 1.10, 10.70) times more likely to have had lung function impairment compared to those who did not have morning cough. Also, participants who had chest tightness in the past year were 2.37 (95% CI 1.22, 4.62) times more likely to have had lung function impairment ...
Statistical functions and relevant correlation coefficients of clearness index
Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott
2015-08-01
This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.
Clinical color vision testing and correlation with visual function.
Zhao, Jiawei; Davé, Sarita B; Wang, Jiangxia; Subramanian, Prem S
2015-09-01
To determine if Hardy-Rand-Rittler (H-R-R) and Ishihara testing are accurate estimates of color vision in subjects with acquired visual dysfunction. Assessment of diagnostic tools. Twenty-two subjects with optic neuropathy (aged 18-65) and 18 control subjects were recruited prospectively from an outpatient clinic. Individuals with visual acuity (VA) color blindness were excluded. All subjects underwent a comprehensive eye examination including VA, color vision, and contrast sensitivity testing. Color vision was assessed using H-R-R and Ishihara plates and Farnsworth D-15 (D-15) discs. D-15 is the accepted standard for detecting and classifying color vision deficits. Contrast sensitivity was measured using Pelli-Robson contrast sensitivity charts. No relationship was found between H-R-R and D-15 scores (P = .477). H-R-R score and contrast sensitivity were positively correlated (P = .003). On multivariate analysis, contrast sensitivity (β = 8.61, P color identification in patients with optic neuropathy. Both H-R-R and Ishihara testing are correlated with contrast sensitivity, and these tests may be useful clinical surrogates for contrast sensitivity testing. Copyright © 2015 Elsevier Inc. All rights reserved.
Probing quantum correlation functions through energy-absorption interferometry
Withington, S.; Thomas, C. N.; Goldie, D. J.
2017-08-01
An interferometric technique is described for determining the spatial forms of the individual degrees of freedom through which a many-body system can absorb energy from its environment. The method separates out the spatial forms of the coherent excitations present at any single frequency; it is not necessary to sweep the frequency and then infer the spatial forms of possible excitations from resonant absorption features. The system under test is excited with two external sources, which create generalized forces, and the fringe in the total power dissipated is measured as the relative phase between the sources is varied. If the complex fringe visibility is measured for different pairs of source locations, the anti-Hermitian part of the complex-valued nonlocal correlation tensor can be determined, which can then be decomposed to give the natural dynamical modes of the system and their relative responsivities. If each source in the interferometer creates a different kind of force, the spatial forms of the individual excitations that are responsible for cross-correlated response can be found. The technique is related to holography, but measures the state of coherence to which the system is maximally sensitive. It can be applied across a wide range of wavelengths, in a variety of ways, to homogeneous media, thin films, patterned structures, and components such as sensors, detectors, and energy-harvesting absorbers.
Schulte, Jeff B; Kreitzberg, Patrick A; Haglund, Chris V; Roundy, David
2012-12-01
We investigate the value of the correlation function of an inhomogeneous hard-sphere fluid at contact. This quantity plays a critical role in statistical associating fluid theory, which is the basis of a number of recently developed classical density functionals. We define two averaged values for the correlation function at contact and derive formulas for each of them from the White Bear version of the fundamental measure theory functional, using an assumption of thermodynamic consistency. We test these formulas, as well as two existing formulas, against Monte Carlo simulations and find excellent agreement between the Monte Carlo data and one of our averaged correlation functions.
Prevalence and correlates of lung function impairment among ...
African Journals Online (AJOL)
Esem
Mining operations contaminate air with dust particles. These can singly or in combination cause lung function. 1, 2. ... smoking, asthma, and also personal protective equipment was obtained. The participants also had their lung ..... Tompkins, K. Air pollution caused by Open Pit mining, could be avoided If appropriate dust.
Social cognition in schizophrenia: factor structure, clinical and functional correlates.
Buck, Benjamin E; Healey, Kristin M; Gagen, Emily C; Roberts, David L; Penn, David L
2016-08-01
Social cognition is consistently impaired in people with schizophrenia, separable from general neurocognition, predictive of real-world functioning and amenable to psychosocial treatment. Few studies have empirically examined its underlying factor structure. This study (1) examines the factor structure of social cognition in both a sample of individuals with schizophrenia-spectrum disorders and non-clinical controls and (2) explores relationships of factors to neurocognition, symptoms and functioning. A factor analysis was conducted on social cognition measures in a sample of 65 individuals with schizophrenia or schizoaffective disorder, and 50 control participants. The resulting factors were examined for their relationships to symptoms and functioning. Results suggested a two-factor structure in the schizophrenia sample (social cognition skill and hostile attributional style) and a three-factor structure in the non-clinical sample (hostile attributional style, higher-level inferential processing and lower-level cue detection). In the schizophrenia sample, the social cognition skill factor was significantly related to negative symptoms and social functioning, whereas hostile attributional style predicted positive and general psychopathology symptoms. The factor structure of social cognition in schizophrenia separates hostile attributional style and social cognition skill, and each show differential relationships to relevant clinical variables in schizophrenia.
Correlation between Cardiorespiratory Fitness and Platelet Function in Healthy Women.
Heber, Stefan; Assinger, Alice; Pokan, Rochus; Volf, Ivo
2016-06-01
Low cardiorespiratory fitness (CRF) represents a major risk factor for atherosclerosis, and platelets play a key role in the development of this chronic inflammatory disease. Therefore, the purpose of this study was to assess the relationship between CRF and platelet function. CRF and different aspects of platelet function were assessed in healthy, young, nonsmoking women. Results were compared between groups of low (LF), medium (MF) and high CRF (HF). Measurements were repeated in group LF after a supervised endurance training program lasting two menstrual cycles and obtained results were compared with groups MF and HF. CRF was quantified by maximal oxygen consumption (V˙O2max) determined by an incremental treadmill exercise test. V˙O2max criteria for groups were (mL·min·kg bodyweight): LF 55. Platelet activation state and platelet reactivity were assessed by basal and agonist-induced surface expression of CD62P and CD40L as well as the intraplatelet amount of reactive oxygen species. In group LF, basal platelet activation as well as agonist-induced platelet reactivity were increased compared with groups MF and HF. Between groups MF and HF parameters of platelet function were roughly equal despite a pronounced difference regarding CRF. Exercise training improved CRF in group LF and aligned platelet function to levels observed in groups MF and HF, although CRF still markedly differed. Low levels of CRF favor a proinflammatory platelet phenotype. A relatively low dose of exercise is sufficient to normalize platelet function, whereas superior levels of physical activity and CRF do not provide any further substantial benefit, but also no appreciable adverse effects.
Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A
2017-03-14
Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.
An approximate exchange-correlation hole density as a functional of the natural orbitals
Buijse, M.A.; Baerends, E.J.
2002-01-01
The Fermi and Coulomb holes that can be used to describe the physics of electron correlation are calculated and analysed for a number of typical cases, ranging from prototype dynamical correlation to purely nondynamical correlation. Their behaviour as a function of the position of the reference
Functional neural correlates of fluid and crystallized analogizing.
Geake, John G; Hansen, Peter C
2010-02-15
The main aim of this study was to characterize neural correlates of analogizing as a cognitive contributor to fluid and crystallized intelligence. In a previous fMRI study which employed fluid analogy letter strings as criteria in a multiple plausibility design (Geake and Hansen, 2005), two frontal ROIs associated with working memory (WM) load (within BA 9 and BA 45/46) were identified as regions in which BOLD increase correlated positively with a crystallized measure of (verbal) IQ. In this fMRI study we used fluid letter, number and polygon strings to further investigate the role of analogizing in fluid (transformation string completion) and non fluid or crystallized (unique symbol counting) cognitive tasks. The multi stimulus type (letter, number, polygon) design of the analogy strings enabled investigation of a secondary research question concerning the generalizability of fluid analogizing at a neural level. A selective psychometric battery, including the Raven's Progressive Matrices (RPM), measured individual cognitive abilities. Neural activations for the effect of task-fluid analogizing (string transformation plausibility) vs. crystallized analogizing (unique symbol counting)-included bilateral frontal and parietal areas associated with WM load and fronto parietal models of general intelligence. Neural activations for stimulus type differences were mainly confined to visually specific posterior regions. ROI covariate analyses of the psychometric measures failed to find consistent co-relationships between fluid analogizing and the RPM and other subtests, except for the WAIS Digit Symbol subtest in a group of bilateral frontal cortical regions associated with the maintenance of WM load. Together, these results support claims for separate developmental trajectories for fluid cognition and general intelligence as assessed by these psychometric subtests. Copyright 2009 Elsevier Inc. All rights reserved.
Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data
Directory of Open Access Journals (Sweden)
Kevin Schwahn
2017-12-01
Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.
Tmd Factorization and Evolution for Tmd Correlation Functions
Mert Aybat, S.; Rogers, Ted C.
We discuss the application of transverse momentum dependent (TMD) factorization theorems to phenomenology. Our treatment relies on recent extensions of the Collins-Soper-Sterman (CSS) formalism. Emphasis is placed on the importance of using well-defined TMD parton distribution functions (PDFs) and fragmentation functions (FFs) in calculating the evolution of these objects. We explain how parametrizations of unpolarized TMDs can be obtained from currently existing fixed-scale Gaussian fits and previous implementations of the CSS formalism in the Drell-Yan process, and provide some examples. We also emphasize the importance of agreed-upon definitions for having an unambiguous prescription for calculating higher orders in the hard part, and provide examples of higher order calculations. We end with a discussion of strategies for extending the phenomenological applications of TMD factorization to situations beyond the unpolarized case.
Galaxy Redshifts from Discrete Optimization of Correlation Functions
Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi
2016-12-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.
Brain structural and functional correlates of resilience to Bipolar Disorder.
Frangou, Sophia
2011-12-06
Resilient adaptation can be construed in different ways, but as used here it refers to adaptive brain responses associated with avoidance of psychopathology despite expressed genetic predisposition to Bipolar Disorder (BD). Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives remain free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive responses that pre-empt disease expression. Data presented here are derived from the Vulnerability to Bipolar Disorders Study (VIBES) which includes BD patients, asymptomatic relatives and controls. Participants underwent extensive investigations including brain structural (sMRI) and functional magnetic resonance imaging (fMRI). We present results from sMRI voxel-based-morphometry and from conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT), a task of cognitive control during conflict resolution. All analyses were implemented using Statistical Parametric Mapping software version 5 (SPM5). Resilience in relatives was operationalized as the lifetime absence of clinical-range symptoms. Resilient relatives of BD patients expressed structural, functional, and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity. Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex during the SCWT. Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a bipolar genotype.
Brain structural and functional correlates of resilience to Bipolar Disorder
Directory of Open Access Journals (Sweden)
Sophia eFrangou
2012-01-01
Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular
Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses
DEFF Research Database (Denmark)
Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel
2006-01-01
started, more or less independent of strain rate. The shear bands can also be characterized using a correlation function defined in terms of D-min(2), which, moreover, can detect incipient shear bands in cases where they do not fully form. By averaging the kinetic energy over small regions, the local...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material.......We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...
Visualizing the anatomical-functional correlation of the human brain
Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.
1995-04-01
Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.
Hormonal regulation of alveolarization: structure-function correlation
Directory of Open Access Journals (Sweden)
Godinez Marye H
2006-03-01
Full Text Available Abstract Background Dexamethasone (Dex limits and all-trans-retinoic acid (RA promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. Methods Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. Results Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. Conclusion We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute
A study of accurate exchange-correlation functionals through adiabatic connection
Singh, Rabeet; Harbola, Manoj K.
2017-10-01
A systematic way of improving exchange-correlation energy functionals of density functional theory has been to make them satisfy more and more exact relations. Starting from the initial generalized gradient approximation (GGA) functionals, this has culminated into the recently proposed SCAN (strongly constrained and appropriately normed) functional that satisfies several known constraints and is appropriately normed. The ultimate test for the functionals developed is the accuracy of energy calculated by employing them. In this paper, we test these exchange-correlation functionals—the GGA hybrid functionals B3LYP and PBE0 and the meta-GGA functional SCAN—from a different perspective. We study how accurately these functionals reproduce the exchange-correlation energy when electron-electron interaction is scaled as αVee with α varying between 0 and 1. Our study reveals interesting comparison between these functionals and the associated difference Tc between the interacting and the non-interacting kinetic energy for the same density.
X-ray speckle measurements of concentrated nanoemulsions under shear
Abidib, Samy; Rogers, Michael; Leheny, Robert; Chen, Kui; Mason, Thomas; Harden, James
We present in situ X-ray Photon Correlation Spectroscopy (XPCS) measurements of a set of concentrated nanoemulsions subjected to oscillatory shear. The nanoemulsion set contained samples with varying packing fractions of oil droplets (r 20nm) above the jamming transition. In order to study their elasticity, yielding, and flow at various shear amplitudes, we employed stroboscopic coherent X-ray scattering measurements triggered at the maximums of the shear cycle. The degree of correlation between speckle in images taken a full period apart is a direct measurement of particle rearrangements during cycling. A comparison of such XPCS ``echo'' measurements with rheological measurements shows an onset of irreversible particle motion at shear strains below the crossover of the storage and loss moduli, which is typically used to indicate the transition to viscoplastic flow. Moreover, the XPCS echo measurements indicate that particle irreversibility increases rapidly with shear amplitude, in contrast to the comparably smooth transition to yielding shown in bulk rheology measurements. However, the macroscopic yield strain observed in rheology and the microscopic yield strain identified from XPCS, which were strong functions of droplet packing fraction, tracked each other closely.
Optimal gene partition into operons correlates with gene functional order
Zaslaver, Alon; Mayo, Avi; Ronen, Michal; Alon, Uri
2006-09-01
Gene arrangement into operons varies between bacterial species. Genes in a given system can be on one operon in some organisms and on several operons in other organisms. Existing theories explain why genes that work together should be on the same operon, since this allows for advantageous lateral gene transfer and accurate stoichiometry. But what causes the frequent separation into multiple operons of co-regulated genes that act together in a pathway? Here we suggest that separation is due to benefits made possible by differential regulation of each operon. We present a simple mathematical model for the optimal distribution of genes into operons based on a balance of the cost of operons and the benefit of regulation that provides 'just-when-needed' temporal order. The analysis predicts that genes are arranged such that genes on the same operon do not skip functional steps in the pathway. This prediction is supported by genomic data from 137 bacterial genomes. Our work suggests that gene arrangement is not only the result of random historical drift, genome re-arrangement and gene transfer, but has elements that are solutions of an evolutionary optimization problem. Thus gene functional order may be inferred by analyzing the operon structure across different genomes.
Autonomic function responses to training: Correlation with body composition changes.
Tian, Ye; Huang, Chuanye; He, Zihong; Hong, Ping; Zhao, Jiexiu
2015-11-01
The causal relation between autonomic function and adiposity is an unresolved issue. Thus, we studied whether resting heart rate variability (HRV) changes could be used to predict changes in body composition after 16 weeks of individualized exercise training. A total of 117 sedentary overweight/obese adults volunteered to join an intervention group (IN, n=82) or a control group (CON, n=35). The intervention group trained for 30-40 min three times a week with an intensity of 85-100% of individual ventilatory threshold (Thvent). At baseline and after a 16-week training period, resting HRV variables, body composition and peak oxygen uptake (VO2peak) were assessed. Compared with CON, exercise training significantly improved HRV and body composition and increased VO2peak (Ptraining were observed for those with greater total and central fat loss. Individual aerobic-based exercise training was for improving autonomic function and resting HRV responses to aerobic training is a potential indicator for adaptations to exercise training. Copyright © 2015. Published by Elsevier Inc.
Correlation between videogame mechanics and executive functions through EEG analysis.
Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel
2016-10-01
This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.
Correlation function and electronic spectral line broadening in relativistic plasmas
Directory of Open Access Journals (Sweden)
Douis S.
2013-01-01
Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.
Conformal Window and Correlation Functions in Lattice Conformal QCD
Iwasaki, Y
2012-01-01
We discuss various aspects of Conformal Field Theories on the Lattice. We investigate the SU(3) gauge theory with Nf fermions in the fundamental representation. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 = 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential damping with power correction. Investigating our numerical data by a new method, the "micro-analysis" of propagators, we observe that our data are consistent with the picture that the Nf=7 case and the Nf=2 at T ~ 2Tc case are close to the meson unparticle model. On the other hand, the Nf=16 case and the Nf=2 at T= 10^2 ~10^5 Tc cases are close to the fermion unparticle model.
Correlation functions of the Aharony-Bergman-Jafferis-Maldacena model
Lee, Bum-Hoon; Gwak, Bogeun; Park, Chanyong
2013-04-01
In the Aharony-Bergman-Jafferis-Maldacena model, we study the three-point function of two heavy operators and an (ir)relevant one. Following the AdS/CFT correspondence, the structure constant in the large ’t Hooft coupling limit can be factorized into two parts. One is the structure constant with a marginal operator, which is fully determined by the physical quantities of heavy operators and gives rise to a result that is consistent with the renormalization-group analysis. The other can be expressed as the universal form depending only on the conformal dimension of an (ir)relevant operator. We also investigate the new size effect of a circular string dual to a certain closed spin chain.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Fractional Brownian motions: memory, diffusion velocity, and correlation functions
Fuliński, A.
2017-02-01
Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.
Lin, Neil Y. C.
2013-12-01
Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.
Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke
Directory of Open Access Journals (Sweden)
Thais Botossi Scalha
2011-08-01
Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.
Measuring cosmic shear and birefringence using resolved radio sources
Whittaker, Lee; Battye, Richard A.; Brown, Michael L.
2018-02-01
We develop a new method of extracting simultaneous measurements of weak lensing shear and a local rotation of the plane of polarization using observations of resolved radio sources. The basis of the method is an assumption that the direction of the polarization is statistically linked with that of the gradient of the total intensity field. Using a number of sources spread over the sky, this method will allow constraints to be placed on cosmic shear and birefringence, and it can be applied to any resolved radio sources for which such a correlation exists. Assuming that the rotation and shear are constant across the source, we use this relationship to construct a quadratic estimator and investigate its properties using simulated observations. We develop a calibration scheme using simulations based on the observed images to mitigate a bias which occurs in the presence of measurement errors and an astrophysical scatter on the polarization. The method is applied directly to archival data of radio galaxies where we measure a mean rotation signal of $\\omega=-2.02^{\\circ}\\pm0.75^{\\circ}$ and an average shear compatible with zero using 30 reliable sources. This level of constraint on an overall rotation is comparable with current leading constraints from CMB experiments and is expected to increase by at least an order of magnitude with future high precision radio surveys, such as those performed by the SKA. We also measure the shear and rotation two-point correlation functions and estimate the number of sources required to detect shear and rotation correlations in future surveys.
On minimizing the influence of the noise tail of correlation functions in operational modal analysis
DEFF Research Database (Denmark)
Tarpø, Marius; Olsen, Peter; Amador, Sandro
2017-01-01
on the identification results (random errors) when the noise tail is included in the identification. On the other hand, if the correlation function is truncated too much, then important information is lost. In other to minimize this error, a suitable truncation based on manual inspection of the correlation function...... is normally used. However, in automated OMA, an automated procedure is needed for the truncation. Based on known theoretical solutions from the literature, a model is proposed in this paper to automatically truncate the correlation function at the point where it starts to get dominated by the noise tail...
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature
DEFF Research Database (Denmark)
Huebner, K.; Karsch, F.; Pica, Claudio
2008-01-01
We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...
Rodriguez Manso, A.
2015-01-01
The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the \\emph{balance functions}, provide insight to the properties of matter created in high-energy collisions. The balance functions are
Correlation between Cognitive Functions and Activity of Daily Living among Post-Stroke Patients
Directory of Open Access Journals (Sweden)
Kurniawan Prakoso
2016-09-01
Full Text Available Background: Cognitive impairment is one of the most common post-stroke complications; however, neither patients nor health professionals are often aware of this complication. The impact of cognitive impairment on quality of life is reflected through basic activity daily living (bADL and instrumental activity daily living (IADL. Prior studies concerning the correlation between cognitive impairment and activity daily living has shown contradictive results. This study was conducted in order to analyze the correlation between the cognitive functions and activity daily living in post stroke patients at Dr. Hasan Sadikin General Hospital. Methods: This cross-sectional study was carried out to 23 post-stroke patients from September–November 2015. Samples were collected through consecutive sampling at Dr. Hasan Sadikin General Hospital. Mini Mental State Examination (MMSE was used to assess the cognitive functions and Lawton and Brody Scale to assess both bADL and IADL. Spearman correlation was selected to analyze the existing correlation between each cognitive domain and activity daily living. Results: Spearman statistical correlation showed an insignificant correlation between the cognitive functions and bADL (r2=0.181, p=0.408 and a significant correlation with IADL was obtained (r2=0.517, p=0.03. The only cognitive domain positively correlated with IADL was orientation to time and verbal recall. Conclusions: There is a correlation between cognitive functions and IADL among post-stroke patients at Dr. Hasan Sadikin General Hospital.
Some consequences of shear on galactic dynamos with helicity fluxes
Zhou, Hongzhe; Blackman, Eric G.
2017-08-01
Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.
DEFF Research Database (Denmark)
Lacevic, N.; Starr, F. W.; Schrøder, Thomas
2003-01-01
correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...
Correlated Protein Function Prediction via Maximization of Data-Knowledge Consistency.
Wang, Hua; Huang, Heng; Ding, Chris
2015-06-01
Conventional computational approaches for protein function prediction usually predict one function at a time, fundamentally. As a result, the protein functions are treated as separate target classes. However, biological processes are highly correlated in reality, which makes multiple functions assigned to a protein not independent. Therefore, it would be beneficial to make use of function category correlations when predicting protein functions. In this article, we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to exploit function category correlations for protein function prediction. Our approach banks on the assumption that two proteins are likely to have large overlap in their annotated functions if they are highly similar according to certain experimental data. We first establish a new pairwise protein similarity using protein annotations from knowledge perspective. Then by maximizing the consistency between the established knowledge similarity upon annotations and the data similarity upon biological experiments, putative functions are assigned to unannotated proteins. Most importantly, function category correlations are gracefully incorporated into our learning objective through the knowledge similarity. Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have demonstrated promising results that validate the performance of our methods.
Henriques, B; Gonçalves, S; Soares, D; Silva, F S
2012-09-01
The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (pshear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (pshear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested
Spin-spin correlation functions of the q-VBS state of an integer spin model
Arita, Chikashi; Motegi, Kohei
2010-01-01
We consider the valence-bond-solid ground state of the q-deformed higher-spin AKLT model (q-VBS state). We investigate the eigenvalues and eigenvectors of a matrix (G matrix), which is constructed from the matrix product representation of the q-VBS state. We compute the longitudinal and transverse spin-spin correlation functions, and determine the correlation amplitudes and correlation lengths for real q.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
Correlation functions of the chiral stress-tensor multiplet in $ \\mathcal{N}=4 $ SYM
Chicherin, Dmitry; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P.; Mason, Lionel; Sokatchev, Emery
2015-01-01
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.
Rainfall interstation correlation functions derived for a class of generalized storm models
Stol, P.T.
1983-01-01
The complete derivation and solution of the rainfall interstation correlation function is described. The report emphasizes the mathematical treatment and the way in which the analytical solution can be obtained by calculus
Stacy A. Ruse; Philip D. Harvey; Vicki G. Davis; Alexandra S. Atkins; Kolleen H. Fox; Richard S.E. Keefe
2014-01-01
Introduction: Assessment of functional capacity is an intrinsic part of determining the functional relevance of response to treatment of cognitive impairment in schizophrenia. Existing methods are highly and consistently correlated with performance on neuropsychological tests, but most current assessments of functional capacity are still paper and pencil simulations. We developed a computerized virtual reality assessment that contains all of the components of a shopping trip. Methods: We a...
DEFF Research Database (Denmark)
Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas
2012-01-01
A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...
Inoue, Makoto
2017-12-01
Some new formulae of the canonical correlation functions for the one dimensional quantum transverse Ising model are found by the ST-transformation method using a Morita's sum rule and its extensions for the two dimensional classical Ising model. As a consequence we obtain a time-independent term of the dynamical correlation functions. Differences of quantum version and classical version of these formulae are also discussed.
Double-time correlation functions of two quantum operations in open systems
Ban, Masashi
2017-10-01
A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
Microstructural description of shear-thickening suspensions
Directory of Open Access Journals (Sweden)
Singh Abhinendra
2017-01-01
Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.
Correlated Monte Carlo wave functions for the atoms He through Ne
Schmidt, K. E.; Moskowitz, J. W.
1990-09-01
We apply the variational Monte Carlo method to the atoms He through Ne. Our trial wave function is of the form introduced by Boys and Handy. We use the Monte Carlo method to calculate the first and second derivatives of an unreweighted variance and apply Newton's method to minimize this variance. We motivate the form of the correlation function using the local current conservation arguments of Feynman and Cohen. Using a self-consistent field wave function multiplied by a Boys and Handy correlation function, we recover a large fraction of the correlation energy of these atoms. We give the value of all variational parameters necessary to reproduce our wave functions. The method can be extended easily to other atoms and to molecules.
Green's function retrieval and passive imaging from correlations of wideband thermal radiations.
Davy, Matthieu; Fink, Mathias; de Rosny, Julien
2013-05-17
We present an experimental demonstration of electromagnetic Green's function retrieval from thermal radiations in anechoic and reverberant cavities. The Green's function between two antennas is estimated by cross correlating milliseconds of decimeter noise. We show that the temperature dependence of the cross-correlation amplitude is well predicted by the blackbody theory in the Rayleigh-Jeans limit. The effect of a nonuniform temperature distribution on the cross-correlation time symmetry is also explored. Finally, we open a new way to image scatterers using ambient thermal radiations.
Shear-induced unfolding and enzymatic cleavage of full-length VWF multimers
Lippok, Svenja; Obser, Tobias; Kleemeier, Lars; Schneppenheim, Reinhard; Budde, Ulrich; Netz, Roland R; Rädler, Joachim O
2015-01-01
Proteolysis of the multimeric blood coagulation protein von Willebrand Factor (VWF) by ADAMTS13 is crucial for prevention of microvascular thrombosis. ADAMTS13 cleaves VWF within the mechanosensitive A2 domain, which is believed to open under shear flow. Here, we combine Fluorescence Correlation Spectroscopy (FCS) and a microfluidic shear cell to monitor real-time kinetics of full-length VWF proteolysis as a function of shear stress. For comparison, we also measure the Michaelis-Menten kinetics of ADAMTS13 cleavage of wild-type VWF in the absence of shear but partially denaturing conditions. Under shear, ADAMTS13 activity on full-length VWF arises without denaturing agent as evidenced by FCS and gel-based multimer analysis. In agreement with Brownian hydrodynamics simulations, we find a sigmoidal increase of the enzymatic rate as a function of shear at a threshold shear rate 5522/s. The same flow-rate dependence of ADAMTS13 activity we also observe in blood plasma, which is relevant to predict hemostatic dysf...
Generalized q-deformed correlation functions as spectral functions of hyperbolic geometry
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Bytsenko, A.A. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil); Guimaraes, M.E.X. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi-RJ CEP (Brazil)
2014-08-15
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with p ≤ 3, is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to p > 3. With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry. (orig.)
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao; Wu, Yili; Pang, Zengchang; Li, Shuxia; Tan, Qihua
2017-02-01
Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), handgrip strength, five-times-sit-to-stand test (FTSST), near visual acuity, and number of teeth lost in 379 complete twin pairs. Bivariate twin models were fitted to estimate the genetic and environmental correlation between physical and cognitive function. Bivariate analysis showed mildly positively genetic correlations between cognition and FEV1, r G = 0.23 [95% CI: 0.03, 0.62], as well as FVC, r G = 0.35 [95% CI: 0.06, 1.00]. We found that FTSST and cognition presented very high common environmental correlation, r C = -1.00 [95% CI: -1.00, -0.57], and low but significant unique environmental correlation, r E = -0.11 [95% CI: -0.22, -0.01], all in the negative direction. Meanwhile, near visual acuity and cognition also showed unique environmental correlation, r E = 0.16 [95% CI: 0.03, 0.27]. We found no significantly genetic correlation for cognition with handgrip strength, FTSST, near visual acuity, and number of teeth lost. Cognitive function was genetically related to pulmonary function. The FTSST and cognition shared almost the same common environmental factors but only part of the unique environmental factors, both with negative correlation. In contrast, near visual acuity and cognition may positively share part of the unique environmental factors.
Trapped Electron Precession Shear Induced Fluctuation Decorrelation
Energy Technology Data Exchange (ETDEWEB)
T.S. Hahm; P.H. Diamond; E.-J. Kim
2002-07-29
We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation.
Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina
2017-01-01
Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…
The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly
Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah
2009-01-01
On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…
DEFF Research Database (Denmark)
Codello, Alessandro; Tonero, Alberto
2016-01-01
We present a simple and consistent way to compute correlation functions in interacting theories with nontrivial phase diagram. As an example we show how to consistently compute the four-point function in three dimensional Z2-scalar theories. The idea is to perform the path integral by weighting...
Al-Masry
1999-02-01
Average shear rates have been estimated experimentally in a 700-dm3 external loop airlift reactor. Aqueous pseudoplastic carboxymethylcellulose and xanthan gum solutions were used to simulate non-Newtonian behavior of biological media. Average shear rates of non-Newtonian solutions were found by analogy with Newtonian glycerol solutions using downcomer liquid velocity as the measurable parameter. Due to the complexity of local shear rate measurement, an average shear rate was assumed to exist and is proportional to superficial gas velocity. The data from this work and those in the literature were used in producing a new correlation for estimating average shear rates as a function of superficial gas velocity, geometry, and dispersion height. Wall shear rates were found to be significant. The ratio of wall shear rates to bulk shear rates were varied from 5% to 40%. Furthermore, it has been found that shear rates generated in airlift loop reactors are lower than those generated in bubble columns. Copyright 1999 John Wiley & Sons, Inc.
Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model.
Parsons, Maxwell F; Mazurenko, Anton; Chiu, Christie S; Ji, Geoffrey; Greif, Daniel; Greiner, Markus
2016-09-16
Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter. Copyright © 2016, American Association for the Advancement of Science.
Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.
2011-01-01
The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-29
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-01
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Parental reflective functioning and the neural correlates of processing infant affective cues.
Rutherford, Helena J V; Maupin, Angela N; Landi, Nicole; Potenza, Marc N; Mayes, Linda C
2017-10-01
Parental reflective functioning refers to the capacity for a parent to understand their own and their infant's mental states, and how these mental states relate to behavior. Higher levels of parental reflective functioning may be associated with greater sensitivity to infant emotional signals in fostering adaptive and responsive caregiving. We investigated this hypothesis by examining associations between parental reflective functioning and neural correlates of infant face and cry perception using event-related potentials (ERPs) in a sample of recent mothers. We found both early and late ERPs were associated with different components of reflective functioning. These findings suggest that parental reflective functioning may be associated with the neural correlates of infant cue perception and further support the value of enhancing reflective functioning as a mechanism in parenting intervention programs.
Functional and nutritional status correlation in elderly patients with hip fracture
Gonzalo Ramón González González; Francisco Javier López Esqueda
2012-01-01
Introduction: Hip fractures in elderly patients are related to several factors, among which nutrition and functionality stand out. The presence of alterations in the nutritional state has been related directly with the functional state. Objective: To determine the previous functional state of the patient with a hip fracture, the nutritional state at the moment of admittance and the correlation between both parameters as risk factors for the fracture. Materials and methods: 78 elderly patients...
Zahariev, F.; Leang, S. S.; Gordon, Mark S.
2013-06-01
Meta-generalized gradient approximation (meta-GGA) exchange-correlation density functionals depend on the Kohn-Sham (KS) orbitals through the kinetic energy density. The KS orbitals in turn depend functionally on the electron density. However, the functional dependence of the KS orbitals is indirect, i.e., not given by an explicit expression, and the computation of analytic functional derivatives of meta-GGA functionals with respect to the density imposes a challenge. The practical solution used in many computer implementations of meta-GGA density functionals for ground-state calculations is abstracted and generalized to a class of density functionals that is broader than meta-GGAs and to any order of functional differentiation. Importantly, the TDDFT working equations for meta-GGA density functionals are presented here for the first time, together with the technical details of their computer implementation. The analysis presented here also uncovers the implicit assumptions in the practical solution to computing functional derivatives of meta-GGA density functionals. The connection between the approximation that is invoked in taking functional derivatives of density functionals, the non-uniqueness with respect to the KS orbitals, and the non-locality of the resultant potential is also discussed.
Volumetric correlates of cognitive functioning in nondemented patients with Parkinson's disease.
Filoteo, J Vincent; Reed, Jason D; Litvan, Irene; Harrington, Deborah L
2014-03-01
A challenge in Parkinson's disease (PD) is to identify biomarkers of early cognitive change because functioning in some domains may be more prognostic of dementia. Few studies have investigated whether structural magnetic resonance imaging (MRI) correlates in a regionally specific manner with functioning in different cognitive domains. The aim of this study was to identify neuroanatomical correlates of executive functioning, memory, and visual cognition in PD without dementia. 3T MRI was conducted in 51 PD patients and 39 control participants. Brain volumes were measured in structures comprising the frontostriatal cognitive-control system, the medial temporal memory system, the ventral object-based system, and the dorsal spatial-based system. Measures of executive functioning (Stroop Test; Letter Fluency), memory (California Verbal Learning Test), visuospatial cognition (Judgment of Line Orientation), and visuoconstruction (Pentagon Copy) were correlated with volumes comprising each system. Poorer executive functioning largely correlated with decreased frontostriatal volumes. Poorer memory correlated with decreased volumes in all medial temporal regions, but also with frontostriatal volumes. Poorer visuospatial cognition correlated with decreased volumes in the object-based system, whereas poorer visuoconstruction correlated with decreased frontal and object-based system volumes. These relationships were nonsignificant in the control group. This is the first study to demonstrate that subtle changes in multiple cognitive domains in PD without dementia correlate with regional volumes in specific systems implicated in the development of cognitive impairment. The findings suggest that structural MRI holds promise as a marker of early changes in different brain systems, some of which may predict future cognitive deterioration. © 2013 International Parkinson and Movement Disorder Society.
Chen, Yoa; Yu, Yong; He, Cheng-qi
2015-11-01
To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (Pproprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, Pproprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.
Calculating the n-point correlation function with general and efficient python code
Genier, Fred; Bellis, Matthew
2018-01-01
There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.
Correlations between Sportsmen’s Morpho-Functional Measurements and Voice Acoustic Variables
Directory of Open Access Journals (Sweden)
Rexhepi Agron M.
2016-12-01
Full Text Available Purpose. Since human voice characteristics are specific to each individual, numerous anthropological studies have been oriented to find significant relationships between voice and morpho-functional features. The goal of this study was to identify the correlation between seven morpho-functional variables and six voice acoustic parameters in sportsmen. Methods. Following the protocols of the International Biological Program, seven morpho-functional variables and six voice acoustic parameters have been measured in 88 male professional athletes from Kosovo, aged 17-35 years, during the period of April-October 2013. The statistical analysis was accomplished through the SPSS program, version 20. The obtained data were analysed through descriptive parameters and with Spearman’s method of correlation analysis. Results. Spearman’s method of correlation showed significant negative correlations (R = -0.215 to -0.613; p = 0.05 between three voice acoustic variables of the fundamental frequency of the voice sample (Mean, Minimum, and Maximum Pitch and six morpho-functional measures (Body Height, Body Weight, Margaria-Kalamen Power Test, Sargent Jump Test, Pull-up Test, and VO2max.abs. Conclusions. The significant correlations imply that the people with higher stature have longer vocal cords and a lower voice. These results encourage investigations on predicting sportsmen’s functional abilities on the basis of their voice acoustic parameters.
Ma, Mengmei; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Yan, Zhibin
2015-07-15
This study evaluated the optimal conditions for extracting dietary fiber (DF) from deoiled cumin by shear emulsifying assisted enzymatic hydrolysis (SEAEH) using the response surface methodology. Fat adsorption capacity (FAC), glucose adsorption capacity (GAC), and bile acid retardation index (BRI) were measured to evaluate the functional properties of the extracted DF. The results revealed that the optimal extraction conditions included an enzyme to substrate ratio of 4.5%, a reaction temperature of 57 °C, a pH value of 7.7, and a reaction time of 155 min. Under these conditions, DF extraction efficiency and total dietary fiber content were 95.12% and 84.18%, respectively. The major components of deoiled cumin DF were hemicellulose (37.25%) and cellulose (33.40%). FAC and GAC increased with decreasing DF particle size (51-100 μm), but decreased with DF particle sizes <26 μm; BRI increased with decreasing DF particle size. The results revealed that SEAEH is an effective method for extracting DF. DF with particle size 26-51 μm had improved functional properties. Copyright © 2015. Published by Elsevier Ltd.
Using correlation functions to describe complex multi-phase porous media structures
Karsanina, Marina; Sizonenko, Timofey; Korost, Dmitry; Gerke, Kirill
2017-04-01
Multi-scale flow and transport modelling relies on multi-scale image/property fusion techniques. Previusly we have rigorously addressed binary porous media description and stochastic reconstruction problems. However, numerous porous media have more than two, usually solids and pores, phases, e.g., clays, organic, heavy minerals and such. In this contribution we develop efficient approaches to utilize correlation functions to describe such muti-phase soil and rock structures using large sets of cluster, linear and probability functions, including cross-correlations. The approach is tested on numerous 3D images, which were segmented into 3 and more relevant phases. It is shown that multi-phase correlation functions are potentially a very powerful tool to describe any type of porous media at hand and this study also provides a basis for multi-phase stochastic reconstruction techniques, necessary for multi-phase image fusion to obtain large 3D images of hierarchical porous media based on, for example, macro and micro X-ray tomography scans and FIB/BIB-SEM and SEM. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock. Sci. Rep. 5, 15880. doi:10.1038/srep15880
Filatov, M; Cremer, D
2005-01-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of
DEFF Research Database (Denmark)
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao
2017-01-01
.00, -0.57], and low but significant unique environmental correlation, r E = -0.11 [95% CI: -0.22, -0.01], all in the negative direction. Meanwhile, near visual acuity and cognition also showed unique environmental correlation, r E = 0.16 [95% CI: 0.03, 0.27]. We found no significantly genetic correlation...... for cognition with handgrip strength, FTSST, near visual acuity, and number of teeth lost. Cognitive function was genetically related to pulmonary function. The FTSST and cognition shared almost the same common environmental factors but only part of the unique environmental factors, both with negative...... correlation. In contrast, near visual acuity and cognition may positively share part of the unique environmental factors....
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
DEFF Research Database (Denmark)
Elyas, Eli; Grimwood, Alex; Erler, Janine Terra
2017-01-01
propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using...... of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves...... a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared...
Colombi, Andrea; Boschi, Lapo; Roux, Philippe; Campillo, Michel
2014-03-01
Cross-correlations of ambient noise averaged at two receivers lead to the reconstruction of the two-point Green's function, provided that the wave-field is uniform azimuthally, and also temporally and spatially uncorrelated. This condition depends on the spatial distribution of the sources and the presence of heterogeneities that act as uncorrelated secondary sources. This study aims to evaluate the relative contributions of source distribution and medium complexity in the two-point cross-correlations by means of numerical simulations and laboratory experiments in a finite-size reverberant two-dimensional (2D) plate. The experiments show that the fit between the cross-correlation and the 2D Green's function depends strongly on the nature of the source used to excite the plate. A turbulent air-jet produces a spatially uncorrelated acoustic field that rapidly builds up the Green's function. On the other hand, extracting the Green's function from cross-correlations of point-like sources requires more realizations and long recordings to balance the effect of the most energetic first arrivals. When the Green's function involves other arrivals than the direct wave, numerical simulations confirm the better Green's function reconstruction with a spatially uniform source distribution than the typical contour-like source distribution surrounding the receivers that systematically gives rise to spurious phases.
Masud, Mohammad Shahed; Borisyuk, Roman; Stuart, Liz
2017-07-15
This study analyses multiple spike trains (MST) data, defines its functional connectivity and subsequently visualises an accurate diagram of connections. This is a challenging problem. For example, it is difficult to distinguish the common input and the direct functional connection of two spike trains. The new method presented in this paper is based on the traditional pairwise cross-correlation function (CCF) and a new combination of statistical techniques. First, the CCF is used to create the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF and the corresponding time delay are used for detailed analysis of connectivity. Second, these two features of functional connectivity are used to classify connections. Finally, the visualization technique is used to represent the topology of functional connections. Examples are presented in the paper to demonstrate the new Advanced Correlation Grid method and to show how it enables discrimination between (i) influence from one spike train to another through an intermediate spike train and (ii) influence from one common spike train to another pair of analysed spike trains. The ACG method enables scientists to automatically distinguish between direct connections from spurious connections such as common source connection and indirect connection whereas existing methods require in-depth analysis to identify such connections. The ACG is a new and effective method for studying functional connectivity of multiple spike trains. This method can identify accurately all the direct connections and can distinguish common source and indirect connections automatically. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Hui GE
2013-07-01
Full Text Available Background and objective To those patients with advanced lung cancer, the ultimate objective is to improve the curative effect and quality of life, lung function indexes are an important factor. We investigate the change of lung function and the relationship between pulmonary function indexs and survival time in patients with advanced lung cancer. Methods Lung function was detected in 59 cases with lung cancer and 63 normal controls. The relationship between pulmonary function indexs and survival time was analyzed. Results There was significant difference in ventilation function and diffusing capacity between in lung cancer group and control group. Vital capacity (VC, forced expiratory volume in one second (FEV1, forced vital capacity (FVC, peak expiratory flow (PEF, peak expiratory flow% (PEF%, maximal ventilatory volume (MVV were positively correlated with survival time in patients with advanced lung cancer (r=0.29, 0.28, 0.28, 0.27, 0.26, 0.28, P<0.05, residual volume/total lung capacity was negatively correlated with survival time (r=-0.31, P<0.05. Conclusion The lung function decreases in the patients with lung cancer. VC, FEV1, FVC, PEF, PEF%, MVV, residual volume/total lung capacity were correlated with survival time in patients with advanced lung cancer. The pulmonary function indexs were important marker of prognosis in patients with lung cancer.
Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.
Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W
2017-01-01
Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r2 = 0.839; p Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Montoya-Castillo, Andrés
2016-01-01
The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. $\\bf{144}$, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function $\\mathcal{C}_{zz}...
The role of three-gluon correlation functions in the single spin asymmetry
Directory of Open Access Journals (Sweden)
Beppu Hiroo
2015-01-01
Full Text Available We study the twist-3 three-gluon contribution to the single spin asymmetry in the light-hadron production in pp collision in the framework of the collinear factorization. We derive the corresponding cross section formula in the leading order with respect to the QCD coupling constant. We also present a numerical calculation of the asymmetry at the RHIC energy, using a model for the three-gluon correlation functions suggested by the asymmetry for the D-meson production at RHIC. We found that the asymmetries for the light-hadron and the jet productions are very useful to constrain the magnitude and form of the correlation functions. Since the three-gluon correlation functions shift the asymmetry for all kinds of hadrons in the same direction, it is unlikely that they become a main source of the asymmetry.
The use of copula functions for predictive analysis of correlations between extreme storm tides
Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy
2014-11-01
In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.
Casanova, David; Krylov, Anna I.
2016-01-01
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.
Fonoff, Fernanda Colucci; Fonoff, Erich Talamoni; Barbosa, Egberto Reis; Quaranta, Thais; Machado, Rachael Brant; de Andrade, Daniel Ciampi; Teixeira, Manoel Jacobsen; Fuentes, Daniel
2015-03-01
Depression and anxiety are comorbidities often associated with Parkinson disease (PD). Recent studies debate on how affective disorders can influence the cognition of patients with PD. This study sought to investigate how depression and anxiety affect specific executive functions and impulsivity traits in these patients. Twenty-eight patients with advanced PD and 28 closely matched healthy volunteers (HV) were assessed for depressive and anxiety symptoms, impulsivity, executive function and control attention and behavioral response. Compared to the HV group, the PD group showed significantly higher perseverative responses and slowness to adapt to changes in environmental stimuli and longer reaction time for inter-stimulus interval change. Depression symptoms were significantly correlated to motor impulsivity score and total Barratt Impulsiveness Scale (BIS -11) score. Moreover, there was also significant correlation between anxiety symptoms and attentional impulsivity score and total BIS-11 score. Correlation analysis between impulsivity and control attention indicated a positive correlation in commission and a negative correlation in reaction time and detectability in the PD group. The present results suggest that depression and anxiety were highly correlated to impulsivity but not to executive functions changes in these PD patients. © The Author(s) 2014.
Progress on Intelligent Guidance and Control for Wind Shear Encounter
Stratton, D. Alexander
1990-01-01
Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.
Impact parameter and source selected correlation functions with a 4{pi} multidetector
Energy Technology Data Exchange (ETDEWEB)
Gourio, D.; Reposeur, T.; Assenard, M.; Germain, M.; Ardouin, D.; Eudes, P.; Lautridou, P.; Laville, J.L.; Lebrun, C.; Metivier, V. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees] [and others
1997-12-31
For the first time in the domain of (light charged) particle interferometry in nuclear physics, a complete study of proton an deuteron correlation functions is presented with both impact parameter and emission source selections. The correlations were determined for the system {sup 129}Xe + {sup nat}Sn at 45 and 50 AMeV using the 4{pi} multidetector INDRA at GANIL as an event selector as well as a particle correlator. Very short emission times are found for all the selections indicating possible contributions from a fast and preequilibrium process. (author) 27 refs.
Energy Technology Data Exchange (ETDEWEB)
Toyoshima, Masami; Kaminou, Toshio; Yamada, Hisashi; Sekine, Hiroshi; Furukawa, Takashi; Matsui, Yasuo; Oritsu, Minoru (Japan Red Cross Medical Center, Tokyo (Japan)); Minaguchi, Kazuo; Onoyama, Yasuto
1991-01-01
For 39 patients with sarcoidosis, we evaluated the correlation of chest CT findings (granular shadows, nodular shadows, irregular enlargement of pulmonary vascular shadows, infiltrative shadows, reticular shadows, linear shadows, incresed density of lung field areas, and lymphadenopathy) with results of clinical and pulmonary function tests (PFTs). CT detected and delineated lung field involvement and lymphadenopathy better than Ga scanning. The severity of parenchymal changes on the CT scan was correlated with PFTs results for VC% and DLco%. The severity of lymphadenopathy on the CT scan was correlated with the serum levels of angiotensin converting enzyme and OKT4/OKT8 in bronchoalveolar lavage fluid. (author).
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.
2005-08-01
Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.
Correlates of sexual function in male and female patients with multiple sclerosis.
Lew-Starowicz, Michal; Rola, Rafal
2014-09-01
Many factors have been suggested to contribute to sexual dysfunction (SD) in multiple sclerosis (MS) patients, but the research on their impact on sexual functioning (SF) and sexual quality of life (SQoL) remains scant. The aim of this study was to investigate correlates of SF and SQoL in MS patients, as well as possible gender differences. 204 MS patients were interviewed, completed the questionnaires, and underwent neurological assessment. Primary outcome measures included the International Index of Erectile Function, the Female Sexual Function Questionnaire, the Sexual Quality of Life Questionnaire, the Beck Depression Inventory, and the Expanded Disability Status Scale. The course and duration of the disease did not predict patients' SF. Negative correlations were found for brainstem symptoms with orgasmic function and overall satisfaction in men and between cognitive functioning and the partner domain in women. Interestingly, brainstem symptoms correlated positively with the arousal domain in women. More than half (52.1%) of patients fulfilled Beck Depression Inventory criteria for depression, and these patients showed more SD than nondepressive individuals. The strongest negative correlations with depressive symptoms were found for desire, erectile function, and overall satisfaction with sexual life in men and for orgasm and sexual enjoyment in women. Deterioration in particular domains of SF was clearly related with diminished SQoL. The main gender difference was a strong influence of decreased desire on SQoL in women and no such correlation in men. Negative assessment of the relationship with partner significantly affected all domains of SF and SQoL in MS women and the desire domain in MS men. Several correlates of SF in MS patients were found. The role of brainstem symptoms needs further investigation. Clinicians should pay close attention to depressive symptoms and relationship factors in MS patients who suffer from SD. © 2014 International Society for
Modeling clinical outcome using multiple correlated functional biomarkers: A Bayesian approach.
Long, Qi; Zhang, Xiaoxi; Zhao, Yize; Johnson, Brent A; Bostick, Roberd M
2016-04-01
In some biomedical studies, biomarkers are measured repeatedly along some spatial structure or over time and are subject to measurement error. In these studies, it is often of interest to evaluate associations between a clinical endpoint and these biomarkers (also known as functional biomarkers). There are potentially two levels of correlation in such data, namely, between repeated measurements of a biomarker from the same subject and between multiple biomarkers from the same subject; none of the existing methods accounts for correlation between multiple functional biomarkers. We propose a Bayesian approach to model a clinical outcome of interest (e.g. risk for colorectal cancer) in the presence of multiple functional biomarkers while accounting for potential correlation. Our simulations show that the proposed approach achieves good performance in finite samples under various settings. In the presence of substantial or moderate correlation, the proposed approach outperforms an existing approach that does not account for correlation. The proposed approach is applied to a study of biomarkers of risk for colorectal neoplasms and our results show that the risk for colorectal cancer is associated with two functional biomarkers, APC and TGF-α, in particular, with their values in the region between the proliferating and differentiating zones of colorectal crypts. © The Author(s) 2012.
Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C
2016-01-01
Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.
A redshift distortion free correlation function at third order in the nonlinear regime
Meng, Kelai; Pan, Jun; Szapudi, Istvan; Feng, Longlong
2010-01-01
The zeroth-order component of the cosine expansion of the projected three-point correlation function is proposed for clustering analysis of cosmic large scale structure. These functions are third order statistics but can be measured similarly to the projected two-point correlations. Numerical experiments with N-body simulations indicate that the advocated statistics are redshift distortion free within 10% in the non-linear regime on scales ~0.2-10Mpc/h. Halo model prediction of the zeroth-ord...
Tao, Kai; Grand, Stephen P.; Niu, Fenglin
2017-09-01
In seismic full-waveform inversion (FWI), the choice of misfit function determines what information in data is used and ultimately affects the resolution of the inverted images of the Earth's structure. Misfit functions based on traveltime have been successfully applied in global and regional tomographic studies. However, wave propagation through the upper mantle results in multiple phases arriving at a given receiver in a narrow time interval resulting in complicated waveforms that evolve with distance. To extract waveform information as well as traveltime, we use a misfit function based on the normalized correlation coefficient (CC). This misfit function is able to capture the waveform complexities in both phase and relative amplitude within the measurement window. It is also insensitive to absolute amplitude differences between modeled and recorded data, which avoids problems due to uncertainties in source magnitude, radiation pattern, receiver site effects or even miscalibrated instruments. These features make the misfit function based on normalized CC a good candidate to achieve high-resolution images of complex geological structures when interfering phases coexist in the measurement window, such as triplication waveforms. From synthetic tests, we show the advantages of this misfit function over the cross-correlation traveltime misfit function. Preliminary inversion of data from an earthquake in Northeast China images a sharper and stronger amplitude slab stagnant in the middle of the transition zone than FWI of cross-correlation traveltime.
Lee, Taehoon; Min, Hyeyoung; Kim, Seung Jean; Yoon, Sungroh
2010-09-17
More and more protein structures are being discovered, but most of these still have little functional information. Based on the assumption that structural resemblance would lead to functional similarity, researchers computationally compare a new structure with functionally annotated structures, for high-throughput function prediction. The effectiveness of this approach depends critically upon the quality of comparison. In particular, robust classification often becomes difficult when a function class is an aggregate of multiple subclasses, as is the case with protein annotations. For such multiple-subclass classification problems, an optimal method termed the maximin correlation analysis (MCA) was proposed. However, MCA has never been applied to automated protein function prediction although MCA can minimize the misclassification risk in the correlation-based nearest neighbor classification, thus increasing classification accuracy. In this article, we apply MCA to classifying three-dimensional protein local environment data derived from a subset of the protein data bank (PDB). In our framework, the MCA-based classifier outperformed the compared alternatives by 7-19% and 6-27% in terms of average sensitivity and specificity, respectively. Given that correlation-based similarity measures have been widely used for mining protein data, we expect that MCA would be employed to enhance other types of automated function prediction methods. Copyright © 2010 Elsevier Inc. All rights reserved.
Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.
Zhao, Runzhen; Liang, Xinrong; Zhao, Meimi; Liu, Shan-Lu; Huang, Yao; Idell, Steven; Li, Xiumin; Ji, Hong-Long
2014-01-01
Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.
Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs.
Directory of Open Access Journals (Sweden)
Runzhen Zhao
Full Text Available Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC, cystic fibrosis transmembrane conductance regulator (CFTR, and aquaporin 5 (AQP5 proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI and II (ATII-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3 was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.
Energy Technology Data Exchange (ETDEWEB)
Tao, Jianmin [Los Alamos National Laboratory; Perdew, John P [TULANE UNIV; Staroverov, Viktor N [UNIV OF WESTERN ONTARIO; Scuseria, Gustavo E [RICE UNIV
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known
Correlation function analysis of the COBE differential microwave radiometer sky maps
Energy Technology Data Exchange (ETDEWEB)
Lineweaver, Charles Howe [Univ. of California, Berkeley, CA (United States). Space Sciences Lab.
1994-08-01
The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.
Kitching, Thomas D.; Alsing, Justin; Heavens, Alan F.; Jimenez, Raul; McEwen, Jason D.; Verde, Licia
2017-08-01
In this paper, we discuss the commonly used limiting cases, or approximations, for two-point cosmic-shear statistics. We discuss the most prominent assumptions in this statistic: the flat-sky (small angle limit), the Limber (Bessel-to-delta function limit) and the Hankel transform (large ℓ-mode limit) approximations; that the vast majority of cosmic-shear results to date have used simultaneously. We find that the combined effect of these approximations can suppress power by ≳ 1 per cent on scales of ℓ ≲ 40. A fully non-approximated cosmic-shear study should use a spherical-sky, non-Limber-approximated power spectrum analysis and a transform involving Wigner small-d matrices in place of the Hankel transform. These effects, unaccounted for, would constitute at least 11 per cent of the total budget for systematic effects for a power spectrum analysis of a Euclid-like experiment; but they are unnecessary.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
Directory of Open Access Journals (Sweden)
Shi-Chao Yi
2017-01-01
Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.
Steele, Amanda N; Cai, Lei; Truong, Vi N; Edwards, Bryan B; Goldstone, Andrew B; Eskandari, Anahita; Mitchell, Aaron C; Marquardt, Laura M; Foster, Abbygail A; Cochran, Jennifer R; Heilshorn, Sarah C; Woo, Y Joseph
2017-10-01
In the last decade, numerous growth factors and biomaterials have been explored for the treatment of myocardial infarction (MI). While pre-clinical studies have demonstrated promising results, clinical trials have been disappointing and inconsistent, likely due to poor translatability. In the present study, we investigate a potential myocardial regenerative therapy consisting of a protein-engineered dimeric fragment of hepatocyte growth factor (HGFdf) encapsulated in a shear-thinning, self-healing, bioengineered hydrogel (SHIELD). We hypothesized that SHIELD would facilitate targeted, sustained intramyocardial delivery of HGFdf thereby attenuating myocardial injury and post-infarction remodeling. Adult male Wistar rats (n = 45) underwent sham surgery or induction of MI followed by injection of phosphate buffered saline (PBS), 10 μg HGFdf alone, SHIELD alone, or SHIELD encapsulating 10 μg HGFdf. Ventricular function, infarct size, and angiogenic response were assessed 4 weeks post-infarction. Treatment with SHIELD + HGFdf significantly reduced infarct size and increased both ejection fraction and borderzone arteriole density compared to the controls. Thus, sustained delivery of HGFdf via SHIELD limits post-infarction adverse ventricular remodeling by increasing angiogenesis and reducing fibrosis. Encapsulation of HGFdf in SHIELD improves clinical translatability by enabling minimally-invasive delivery and subsequent retention and sustained administration of this novel, potent angiogenic protein analog. Biotechnol. Bioeng. 2017;114: 2379-2389. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
A.I.Sokolovsky
2006-01-01
Full Text Available A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid, kinetics of a gas a generalized perturbation theory without divergencies is constructed corresponding to a partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing to study the peculiarities of correlation and Green functions and to solve the convergence problem in the reduced description method.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell–Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
S-matrix, vertex operators and correlation functions of Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Jorjadze, G. [Razmadze Mathematical Institute, M. Aleksidze 1, Tbilisi, Georgia (United States)
2004-06-01
We investigate the S-matrix of Liouville theory on the basis of exact relation between exponentials of the in- and out-fields. The vertex operators for negative integer exponentials are constructed by regularising procedure. Their vacuum matrix elements are calculated using Dotsenko-Fateev integrals. The result is continued analytically to the generic case. The obtained correlation function coincides with the suggested 3-point function of Dorn and Otto for positive exponentials only. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Analytic methods for the Percus-Yevick hard sphere correlation functions
Directory of Open Access Journals (Sweden)
D. Henderson
2009-01-01
Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.
COX-2 gene expression is correlated with cognitive function in recurrent depressive disorder.
Gałecki, Piotr; Talarowska, Monika; Bobińska, Kinga; Szemraj, Janusz
2014-02-28
Cyclooxygenase-2(COX-2) may be a key inflammatory enzyme involved in recurrent depressive disorder(rDD). In rDD group, COX-2 expression were higher and significant correlations occurred between COX-2 expression and cognitive functions. In controls there was no significant association between analysed variables. Thus, the COX-2 enzyme may be important for cognitive functioning in rDD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Getting full control of canonical correlation analysis with the AutoBiplot.CCA function
Alves, M. Rui
2016-06-01
Function AutoBiplot.CCA was built in R language. Given two multivariate data sets, this function carries out a conventional canonical correlation analysis, followed by the automatic production of predictive biplots based on the accuracy of readings as assessed by a mean standard predictive error and a user defined tolerance value. As the user's intervention is mainly restricted to the choice of the magnitude of the t.axis value, common misinterpretations, overestimations and adjustments between outputs and personal beliefs are avoided.
Ruse, Stacy A; Harvey, Philip D; Davis, Vicki G; Atkins, Alexandra S; Fox, Kolleen H; Keefe, Richard S E
2014-03-01
Assessment of functional capacity is an intrinsic part of determining the functional relevance of response to treatment of cognitive impairment in schizophrenia. Existing methods are highly and consistently correlated with performance on neuropsychological tests, but most current assessments of functional capacity are still paper and pencil simulations. We developed a computerized virtual reality assessment that contains all of the components of a shopping trip. We administered the Virtual Reality Functional Capacity Assessment Tool (VRFCAT) to 54 healthy controls and to 51 people with schizophrenia to test its feasibility. Dependent variables for the VRFCAT included time to completion and errors on 12 objectives and the number of times that an individual failed to complete an objective. The MATRICS Consensus Cognitive Battery (MCCB) and a standard functional capacity measure, the UCSD Performance-Based Skills Assessment-Brief (UPSA-B) were administered to the patients with schizophrenia. Patients with schizophrenia performed more poorly than healthy controls on 10/11 of the time variables, as well as 2/12 error scores and 2/12 failed objectives. Pearson correlations for 7 of 15 VRFCAT variables with MCCB composite scores were statistically significant. These results provide support for the possibility of computerized functional capacity assessment, but more substantial studies are required.
Pion correlations as a function of atomic mass in heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Chacon, A.D.
1989-11-26
The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 {center dot} A GeV {sup 56}Fe + Fe, 1.82 {center dot} A GeV {sup 40}Ar + KCl and 1.54 {center dot} A GeV {sup 93}Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at {approximately} 0{degrees} and 45{degrees}) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs.
Spouse selection and environmental effects on spouse correlation in lung function measures.
Knuiman, Matthew W; Divitini, Mark L; Bartholomew, Helen C
2005-01-01
Concordance between spouses may be due to partner selection factors and/or the effects of marriage/environment. The extent to which partner selection factors contribute to spouse concordance has important implications for heritability studies. The aim of this study was to examine the magnitude of spouse correlation in lung function measures and its relationship to duration of marriage. Cross-sectional and longitudinal data collected over the period 1969 to 1995 for 2615 couples from the Busselton Health Study have been analyzed using the program FISHER. Unadjusted correlations were around 0.45 for forced expiratory volume in 1 second (FEV1) and 0.25 for FEV1/FVC (forced vital capacity) and were reduced to 0.05 and 0.10, respectively, after adjustment for age, height, and smoking. No trend with marriage duration was apparent in both cross-sectional and longitudinal analyses but there was a significant downward trend in the correlations with age at marriage. The findings indicate that observed correlations in lung function measures are mostly due to partner selection factors and that partner selection factors have greater influence for couples that marry at younger ages. Family studies that aim to identify and separate genetic from other influences on lung function measures should not regard the mother-father correlation as due to common environment effects.
Wellendorff, Jess; Lundgaard, Keld T.; Møgelhøj, Andreas; Petzold, Vivien; Landis, David D.; Nørskov, Jens K.; Bligaard, Thomas; Jacobsen, Karsten W.
2012-06-01
A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfitting found when standard least-squares methods are applied to high-order polynomial expansions. A general-purpose density functional for surface science and catalysis studies should accurately describe bond breaking and formation in chemistry, solid state physics, and surface chemistry, and should preferably also include van der Waals dispersion interactions. Such a functional necessarily compromises between describing fundamentally different types of interactions, making transferability of the density functional approximation a key issue. We investigate this trade-off between describing the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this.
Hindlimb muscle function in turtles: is novel skeletal design correlated with novel muscle function?
Mayerl, Christopher J; Pruett, Jenna E; Summerlin, Morgan N; Rivera, Angela R V; Blob, Richard W
2017-07-15
Variations in musculoskeletal lever systems have formed an important foundation for predictions about the diversity of muscle function and organismal performance. Changes in the structure of lever systems may be coupled with changes in muscle use and give rise to novel muscle functions. The two extant turtle lineages, cryptodires and pleurodires, exhibit differences in hindlimb structure. Cryptodires possess the ancestral musculoskeletal morphology, with most hip muscles originating on the pelvic girdle, which is not fused to the shell. In contrast, pleurodires exhibit a derived morphology, in which fusion of the pelvic girdle to the shell has resulted in shifts in the origin of most hip muscles onto the interior of the shell. To test how variation in muscle arrangement might influence muscle function during different locomotor behaviors, we combined measurements of muscle leverage in five major hindlimb muscles with data on muscle use and hindlimb kinematics during swimming and walking in representative semiaquatic cryptodire (Trachemys scripta) and pleurodire (Emydura subglobosa) species. We found substantial differences in muscle leverage between the two species. Additionally, we found that there were extensive differences in muscle use in both species, especially while walking, with some pleurodire muscles exhibiting novel functions associated with their derived musculoskeletal lever system. However, the two species shared similar overall kinematic profiles within each environment. Our results suggest that changes in limb lever systems may relate to changes in limb muscle motor patterns and kinematics, but that other factors must also contribute to differences in muscle activity and limb kinematics between these taxa. © 2017. Published by The Company of Biologists Ltd.
Fast Computation of the Two-Point Correlation Function in the Age of Big Data
Pellegrino, Andrew; Timlin, John
2018-01-01
We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.
Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H
2017-08-01
Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Brown, L.S.; Yaffe, L.G. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States))
1992-01-15
A simple and direct approach is used to examine the constraints imposed by asymptotic freedom and analytically on the large-order behavior of perturbaton theory for the current-current correlation function and its imaginary part which gives the {ital R} ratio in high-energy {ital e}{sup +-}{ital e{minus}} annihilation.
A perturbative approach to the redshift space correlation function: beyond the Standard Model
Bose, Benjamin; Koyama, Kazuya
2017-08-01
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.
Directory of Open Access Journals (Sweden)
Dialika Dialika
2015-04-01
Full Text Available Background: Recent animal studies revealed the decreased amount of retinal ganglion cells after treatment with ethambutol. The aim of this study was to evaluate the changes of peripapillary retinal nerve fiber layer (RNFL thickness in patients receiving ethambutol therapy, as well as to know the correlation of RNFL thickness changes with the changes of visual function.Methods: This was a cohort study on 29 subjects at one tuberculosis treatment center, Jakarta. Subjects underwent RNFL thickness measurement using optical coherence tomography (OCT and several visual function parameters (visual acuity, contrast sensitivity, color sensitivity and visual field before and two-months following ethambutol therapy. Statistical comparison between pre- and post- ethambutol measurements were done using either paired T-test or Wilcoxon test. Correlations between anatomical and functional changes were assessed with Spearman correlation test. Results: There were significant changes of peripapillary RNFL thickness in superior (147 and 141 μm, p = 0.001, nasal (92 and 88 μm, p = 0.045 quadrants and average RNFL thickness (116.77 and 112.65 μm, p = 0.001. No significant correlation between RNFL thickness changes and the changes of visual function parameters (p > 0.05.Conclusion: Ethambutol consumption for two months in recommended dose is still considered safe to human retina and visual status.
Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids
Shashi, A.; Glazman, L.I.; Caux, J.S.; Imambekov, A
2011-01-01
We develop a general approach to calculating "nonuniversal" prefactors in static and dynamic correlation functions of 1D quantum liquids at zero temperature, by relating them to the unite size scaling of certain matrix elements (form factors). This represents a new, powerful tool for extracting data
Correlated mutation analyses on super-family alignments reveal functionally important residues.
Kuipers, R.K.P.; Joosten, H.J.; Verwiel, E.; Paans, S.; Akerboom, J.; Oost, J. van der; Leferink, N.G.; Berkel, W.J. van; Vriend, G.; Schaap, P.J.
2009-01-01
Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA-based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These
Correlated mutation analyses on super-family alignments reveal functionally important residues
Kuipers, R.K.; Joosten, H.J.; Verwiel, E.; Paans, J.; Akerboom, J.; Oost, van der J.; Leferink, N.G.H.; Berkel, van W.J.H.; Vriend, G.; Schaap, P.J.
2009-01-01
Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA-based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These
Slob, E.C.; Wapenaar, C.P.A.
2007-01-01
It is shown that the electromagnetic Green's functions of any linear medium with arbitrary heterogeneity can be obtained from the cross?correlation, or the cross?convolution, of two recordings at different receiver locations in an open system. Existing representations are known for
Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.
2011-01-01
We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…
[Accuracy of correlation function method for evaluating pulsed high intensity focused ultrasound].
Zhao, Xin; Zou, Jianzhong; Wu, Feng; Liu, Fang; Jiao, Jiao
2013-01-01
To investigate the accuracy of ultrasound monitoring during pulsed high intensity focused ultrasound (PHIFU) treatment and improve the sensitivity of ultrasound monitoring of tissue necrosis caused by PHIFU treatment. Bovine liver ex vivo was dot-exposed with HIFU at the therapeutic doses of 2000 J (group A) and 1440 J (group B). The two groups were further divided into groups A1 (power 100 W, duty cycle 100%, irradiate 20 s) A2 (power 100 W, duty cycle 50%, irradiate 40 s), A3 (power 100 W, duty cycle 40%, irradiate 50 s), B1 (power 120 W, duty cycle 100%, irradiate 12 s), B2 (power 100 W, duty cycle 50%, irradiate 24 s), and B3 (power 100 W, duty cycle 40%, irradiate 30 s). The gray scale changes in the ultrasonic images after the exposures were observed, and the correlation function of the image was calculated before and after the exposure. The accuracy of evaluations based on the correlation function and gray-scale changes was compared. The correct rate of gray scale-based evaluation of tissue necrosis caused by PHIFU was only 51%, while that by correlation function-based evaluation reached 85%. Monitoring of tissue necrosis caused by PHIFU treatment can not rely solely on evaluation of gray-scale change of the ultrasound images, and the correlation function-based evaluation can be more accurate and sensitive for that purpose.
Efficient implementation of the rank correlation merit function for 2D/3D registration
Energy Technology Data Exchange (ETDEWEB)
Figl, M; Bloch, C; Gendrin, C; Weber, C; Pawiro, S A; Hummel, J; Markelj, P; Pernus, F; Bergmann, H; Birkfellner, W, E-mail: michael.figl@meduniwien.ac.a, E-mail: christoph.bloch@meduniwien.ac.a, E-mail: wolfgang.birkfellner@meduniwien.ac.a [Center for Medical Physics and Biomedical Engineering, Medical University Vienna, AKH 4 L, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana (Slovenia)
2010-10-07
A growing number of clinical applications using 2D/3D registration have been presented recently. Usually, a digitally reconstructed radiograph is compared iteratively to an x-ray image of the known projection geometry until a match is achieved, thus providing six degrees of freedom of rigid motion which can be used for patient setup in image-guided radiation therapy or computer-assisted interventions. Recently, stochastic rank correlation, a merit function based on Spearman's rank correlation coefficient, was presented as a merit function especially suitable for 2D/3D registration. The advantage of this measure is its robustness against variations in image histogram content and its wide convergence range. The considerable computational expense of computing an ordered rank list is avoided here by comparing randomly chosen subsets of the DRR and reference x-ray. In this work, we show that it is possible to omit the sorting step and to compute the rank correlation coefficient of the full image content as fast as conventional merit functions. Our evaluation of a well-calibrated cadaver phantom also confirms that rank correlation-type merit functions give the most accurate results if large differences in the histogram content for the DRR and the x-ray image are present. (note)
Sánchez-Mariscal, Felisa; Gomez-Rice, Alejandro; Izquierdo, Enrique; Pizones, Javier; Zúñiga, Lorenzo; Alvarez-González, Patricia
2012-04-01
Prospective radiographic and clinical analysis. To evaluate whether radiographic spinopelvic parameters correlate with health-related quality of life (HRQOL) measures, in the long run, in patients operated on scoliosis in adult age. There are papers that correlate sagittal radiographic parameters with HRQOL scores for healthy spine as well as for some spinal disorders. However, there are limited studies evaluating correlations between HRQOL measures, radiographic spinopelvic parameters, and age in patients operated on scoliosis in adult age. Fifty-nine patients, older than 21 years at surgery time (median: 50.2 years), were operated upon at a single center. All of them suffered mainly frontal deformity, idiopathic or degenerative curves, and long fusions, with more than a 2-year follow-up (median:8.5 years). Full-length freestanding radiographs, including the spine and pelvis, and SRS22 and SF36 instruments, were available for every patient at final follow-up. Sagittal and frontal radiographic parameters and age were analyzed for correlation with HRQOL. A multivariate analysis was performed. No significant correlation was found between frontal parameters and HRQOL measures. Spearman rank order test showed correlation (P Scoliosis Research Society (SRS) activity and sagittal vertical axis (SVA) (r = -0.44), pelvic tilt (PT) (r = -0.49), and age (r = -0.5). SRS total was correlated (P scoliosis, frontal radiographic parameters did not correlate with HRQOL measures. In univariate analysis, patient age, SVA, and PT correlated with activity scores, although the correlation coefficients did not reach high values. After multivariate analysis, SVA was not a predictor of function.
Energy Technology Data Exchange (ETDEWEB)
Clay, Raymond C. [Univ. of Illinois, Urbana, IL (United States); Mcminis, Jeremy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Jeffrey M. [Univ. of Illinois, Urbana, IL (United States); Pierleoni, Carlo [Istituto Nazionale di Fisica Nucleare (INFN), L' aquila (Italy). Lab. Nazionali del Gran Sasso (INFN-LNGS); Ceperley, David M. [Univ. of Illinois, Urbana, IL (United States); Morales, Miguel A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-05-01
The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.
Tricarico, Domenico; Selvaggi, Maria; Passantino, Giuseppe; De Palo, Pasquale; Dario, Cataldo; Centoducati, Pasquale; Tateo, Alessandra; Curci, Angela; Maqoud, Fatima; Mele, Antonietta; Camerino, Giulia M; Liantonio, Antonella; Imbrici, Paola; Zizzo, Nicola
2016-01-01
The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.
Directory of Open Access Journals (Sweden)
Domenico eTricarico
2016-05-01
Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.
Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik
2017-06-01
In our previous work S. Bubin et al., Chem. Phys. Lett. 647, 122 (2016), 10.1016/j.cplett.2016.01.056, it was established that complex explicitly correlated one-center all-particle Gaussian functions (CECGs) provide effective basis functions for very accurate nonrelativistic molecular non-Born-Oppenheimer calculations. In this work, we advance the molecular CECGs approach further by deriving and implementing algorithms for calculating the leading relativistic corrections within this approach. The algorithms are tested in the calculations of the corrections for all 23 bound pure vibrational states of the HD+ ion.
Profiler measurements of turbulence and wind shear in a snowstorm
Energy Technology Data Exchange (ETDEWEB)
Rogers, R.R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Leblanc, S.G. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Cohn, S.A. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences; Ecklund, W.L. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences; Carter, D.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; Wilson, J.S. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences
1996-02-01
Observations of a large and vigorous snowstorm with a UHF wind profiler were used to investigate the intensity of atmospheric turbulence and its relation to the vertical wind shear. Turbulence was estimated from the spread of the Doppler spectrum in the vertical beam of the profiler, after correcting for the contribution of the horizontal wind speed to the spread. Wind shear was computed directly from the measured wind profiles. Over the 24 h duration of the storm, shear values exceeding 0.02 s{sup -1} existed nearly continuously in the lowest few hundred meters of the atmosphere and in a broad elevated layer that slowly descended from 4 km to 2 km. The pattern of Doppler spread in time-height coordinates closely resembled the pattern of wind shear, though a detailed, point-by-point comparison of these two quantities by linear regression yielded a correlation coefficient of only 0.4. Focusing on just the observations in the lowest few hundred meters gave a higher correlation coefficient. The Richardson number as a function of height and time was computed by combining the measured wind shear values with temperature profiles generated by a mesoscale numerical model. We found evidence of weak turbulence even in regions with Ri>1, but a value close to the theoretical threshold of Ri=1/4 separates the more intense turbulence from the weaker. Estimates of the turbulent energy dissipation rate, {epsilon}, based on the Doppler spread, range as high as 500 cm{sup 2} s{sup -3}, the largest values being near the ground. (orig.)
Shiota, Syouichi; Okamoto, Yasumasa; Okada, Go; Takagaki, Koki; Takamura, Masahiro; Mori, Asako; Yokoyama, Satoshi; Nishiyama, Yoshiko; Jinnin, Ran; Hashimoto, Ryuichiro; Yamawaki, Shigeto
2017-08-02
Perspective taking is defined as the social cognitive function of imagining the world or imagining oneself from another's viewpoint. Previously, we reported that behavioral activation increased the dorsal medial prefrontal cortex (dmPFC) activation during other perspective self-referential processing for positive words in subthreshold depression, but did not report whether metacognitive function was related to the dmPFC activation. Therefore, we sought to test the relationship between the dmPFC activation during other perspective self-referential processing for positive words and an individual's metacognitive evaluation of other perspective. Thirty-four healthy individuals underwent functional MRI scans during a referential task with two viewpoints (self/other) and two emotional valences (positive/negative). Neural activation during other perspective self-referential processing for positive words was correlated with the metacognitive function of participants measured by the Interpersonal Reactivity Index (IRI). We found a positive correlation between the score in perspective taking of the IRI and activation in the dmPFC during other perspective self-referential processing for positive words. The present findings showed that self-report questionnaires assessing participants' metacognitive evaluation of other perspective were correlated with dmPFC activation during positive metacognition of other perspective task. However, we did not conduct a behavioral activation intervention in the present study. The present students were healthy. The IRI is a subjective measure of multidimensional trait empathy. It is necessary to develop an objective measurement for the metacognitive function of other perspective in the near future.
Clay, Olivio J; Thorpe, Roland J; Wilkinson, Larrell L; Plaisance, Eric P; Crowe, Michael; Sawyer, Patricia; Brown, Cynthia J
2015-08-07
Maintaining functional status and reducing/eliminating health disparities in late life are key priorities. Older African Americans have been found to have worse lower extremity functioning than Whites, but little is known about potential differences in correlates between African American and White men. The goal of this investigation was to examine measures that could explain this racial difference and to identify race-specific correlates of lower extremity function. Data were analyzed for a sample of community-dwelling men. Linear regression models examined demographics, medical conditions, health behaviors, and perceived discrimination and mental health as correlates of an objective measure of lower extremity function, the Short Physical Performance Battery (SPPB). Scores on the SPPB have a potential range of 0 to 12 with higher scores corresponding to better functioning. The mean age of all men was 74.9 years (SD=6.5), and the sample was 50% African American and 53% rural. African American men had scores on the SPPB that were significantly lower than White men after adjusting for age, rural residence, marital status, education, and income difficulty (Pplanning targeted interventions to help reduce disparities.
Gao, Wei; Alcauter, Sarael; Elton, Amanda; Hernandez-Castillo, Carlos R.; Smith, J. Keith; Ramirez, Juanita; Lin, Weili
2015-01-01
The first postnatal year is characterized by the most dramatic functional network development of the human lifespan. Yet, the relative sequence of the maturation of different networks and the impact of socioeconomic status (SES) on their development during this critical period remains poorly characterized. Leveraging a large, normally developing infant sample with multiple longitudinal resting-state functional magnetic resonance imaging scans during the first year (N = 65, scanned every 3 months), we aimed to delineate the relative maturation sequence of 9 key brain functional networks and examine their SES correlations. Our results revealed a maturation sequence from primary sensorimotor/auditory to visual to attention/default-mode, and finally to executive control networks. Network-specific critical growth periods were also identified. Finally, marginally significant positive SES–brain correlations were observed at 6 months of age for both the sensorimotor and default-mode networks, indicating interesting SES effects on functional brain maturation. To the best of our knowledge, this is the first study delineating detailed longitudinal growth trajectories of all major functional networks during the first year of life and their SES correlations. Insights from this study not only improve our understanding of early brain development, but may also inform the critical periods for SES expression during infancy. PMID:24812084
Large-order perturbation theory for the electromagnetic current-current correlation function
Energy Technology Data Exchange (ETDEWEB)
Brown, L.S.; Yaffe, L.G.; Zhai, C. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-11-15
The constraints imposed by asymptotic freedom and analyticity on the large-order behavior of perturbation theory for the electromagnetic current-current correlation function are examined. By suitably applying the renormalization group, the coefficients of the asymptotic expansion in the deep Euclidean region may be expressed explicitly in terms of the perturbative coefficients of the Minkowski space discontinuity (the {ital R} ratio in {ital e}{sup +}{ital e{minus}} scattering). This relation yields a generic'' prediction for the large-order behavior of the Euclidean perturbation series and suggests the presence of nonperturbative 1/{ital q}{sup 2} correction in the Euclidean correlation function. No such generic'' prediction can be made for the physically measurable {ital R} ratio. A novel functional method is developed to obtain these results.
Green's function approximation from cross-correlation of active sources in the ocean.
Brooks, Laura A; Gerstoft, Peter
2009-07-01
Green's function approximation via ocean noise cross-correlation, referred to here as ocean acoustic interferometry, has been demonstrated experimentally for passive noise sources. Active sources offer the advantages of higher frequencies, controllability, and continuous monitoring. Experimental ocean acoustic interferometry is described here for two active source configurations: a source lowered vertically and one towed horizontally. Results are compared and contrasted with cross-correlations of passive noise. The results, in particular, differences between the empirical Green's function estimates and simulated Green's functions, are explained with reference to theory and simulations. Approximation of direct paths is shown to be consistently good for each source configuration. Secondary (surface reflection) paths are shown to be more accurate for hydrophones with a greater horizontal separation.
Large-N correlation functions in ${\\cal N} = 2$ superconformal QCD
Baggio, Marco; Papadodimas, Kyriakos; Vos, Gideon
2017-01-24
We study extremal correlation functions of chiral primary operators in the large-N SU(N) ${\\cal N} = 2$ superconformal QCD theory and present new results based on supersymmetric localization. We discuss extensively the basis-independent data that can be extracted from these correlators using the leading order large-N matrix model free energy given by the four-sphere partition function. Special emphasis is given to single-trace 2- and 3-point functions as well as a new class of observables that are scalars on the conformal manifold. These new observables are particular quadratic combinations of the structure constants of the chiral ring. At weak 't Hooft coupling we present perturbative results that, in principle, can be extended to arbitrarily high order. We obtain closed-form expressions up to the first subleading order. At strong coupling we provide analogous results based on an approximate Wiener-Hopf method.
The adiabatic strictly-correlated-electrons functional: kernel and exact properties.
Lani, Giovanna; Di Marino, Simone; Gerolin, Augusto; van Leeuwen, Robert; Gori-Giorgi, Paola
2016-08-03
We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known to fail.
Large-N correlation functions in ${\\cal N} = 2$ superconformal QCD
Baggio, Marco; Papadodimas, Kyriakos; Vos, Gideon
2017-01-01
We study extremal correlation functions of chiral primary operators in the large-N SU(N) ${\\cal N} = 2$ superconformal QCD theory and present new results based on supersymmetric localization. We discuss extensively the basis-independent data that can be extracted from these correlators using the leading order large-N matrix model free energy given by the four-sphere partition function. Special emphasis is given to single-trace 2- and 3-point functions as well as a new class of observables that are scalars on the conformal manifold. These new observables are particular quadratic combinations of the structure constants of the chiral ring. At weak 't Hooft coupling we present perturbative results that, in principle, can be extended to arbitrarily high order. We obtain closed-form expressions up to the first subleading order. At strong coupling we provide analogous results based on an approximate Wiener-Hopf method.
Directory of Open Access Journals (Sweden)
Bushljetik Irena Rambabova
2016-06-01
Full Text Available Introduction. Assessment of renal function is a crucial component of donor evaluation. The higher measured donor GFR is independently associated with a better allograft outcomes in living donor kidney transplantation (LDKT. Monitoring graft function and estimation of GFR is a recommended method for patients’ follow-up in posttransplantation period. The aim of our study was to investigate the correlation of directly measured GFR of donated kidney with estimated GFR through creatininebased formulas and to detect impact factors on the graft function at 12 months posttransplantation. Methods. Fifty LDKT patients (related and nonrelated donors with stable renal function in a period of 12 months after transplantation were included in our study. The mean recipient age was 30.7±9.6 years, and donor age 55.45±9.41 years. The mean directly measured donated kidney GFR was 47.61±5.72 ml/min. Graft function was estimated at 3, 6 and 12 months by 3 formulas: Cockcroft- Gault (C-G, MDRD 6 variables and Nankivell. Direct correlation of estimated with measured radiolabeled 99mTc DTPA GFR was performed. Various impact factors such as donor age, dialysis vintage and different calcineurin inhibitors as a part of immunosupression were evaluated. Results. Estimated GFR at 12 months with MDRD, Cockroft Gault, and Nankivell formulas was 72.65±22.6, 94.25±36.42, and 81.78±17.89 ml/min, respectively. The highest estimated GFR was obtained with C-G formula at all three time points. The estimated allograft GFR did not correlate with directly measured GFR of donated kidney. Donor age well correlated with the graft function at 12 months. Allografts from standard criteria donors-SCD (60 years. The highest GFR was estimated with C-G equation (106.08±39.26 ml/min, while GFR estimated with Nankivell was 86.86±15.30 ml/min, and with MDRD 79.67±20.28 ml/min, presenting patients in stage 2 of chronic kidney disease. Duration of hemodialysis treatment under 24 months
Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data
Zhou, Lan
2010-03-01
Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.
Directory of Open Access Journals (Sweden)
Svetlana Pundik
2014-01-01
Full Text Available Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks. Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P=0.001 and greater sensory deficits (P=0.003. Second, rehabilitation produced improvement in upper limb spasticity and motor function (P<0.0001. Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho=0.49, P=0.03. Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r=-0.755, P=0.003, premotor (r=−0.565, P=0.04, primary sensory (r=−0.614, P=0.03, and associative sensory (r=−0.597, P=0.03 regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke.
Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function.
Directory of Open Access Journals (Sweden)
Sebastián Figueroa-Bonaparte
Full Text Available Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD. The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far.We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale, respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure, daily live activities scales (Activlim and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire. We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region.T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients.Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment.Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic.
Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function.
Figueroa-Bonaparte, Sebastián; Segovia, Sonia; Llauger, Jaume; Belmonte, Izaskun; Pedrosa, Irene; Alejaldre, Aída; Mayos, Mercè; Suárez-Cuartín, Guillermo; Gallardo, Eduard; Illa, Isabel; Díaz-Manera, Jordi
2016-01-01
Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD). The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far. We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale), respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure), daily live activities scales (Activlim) and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire). We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region. T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients. Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment. Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic.
Energy Technology Data Exchange (ETDEWEB)
Lopes, Agnaldo Jose; Capone, Domenico; Mogami, Roberto; Jansen, Jose Manoel [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). School of Medical Sciences].E mail: phel.lop@uol.com.br; Cunha, Daniel Leme da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Pedro Ernesto University Hospital. Dept. of Radiology and Diagnostic Imaging; Melo, Pedro Lopes de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. of Biology
2007-11-15
Objective: To correlate tomographic findings with pulmonary function parameters in patients with idiopathic pulmonary fibrosis (IPF). Methods: A cross-sectional study was carried out, in which 30 nonsmoking patients with IPF were evaluated. Using a semiquantitative scoring system, the following high-resolution computerized tomography findings were quantified: total interstitial disease (TID), reticular abnormality/honeycombing, and ground-glass opacity (GGO). The functional variables were measured by spirometry, forced oscillation technique (FOT), helium dilution method, as well as the single-breath method of measuring diffusion capacity of the lung for carbon monoxide (DLCO). Results: Of the 30 patients studied, 18 were female, and 12 were male, with a mean age of 70.9 years. We found that TID and reticular abnormality and honeycombing correlated significantly (negative correlations) with the measurements of forced vital capacity (FVC), total lung capacity (TLC), DLCO, and dynamic respiratory compliance were found, as well as that GGO correlated significantly (and positively) with residual volume/TLC. The ratio of forced expiratory flow between 25 and 75% of FVC to FVC (FEF25-75%/FVC) correlated positively with TID, reticular abnormality/honeycombing, and GGO. Conclusion: In IPF patients, the measurements of volume, diffusion, and dynamic compliance are the physiological variables which best reflect the extent of the interstitial disease on HRCT scans. (author)
The structural and functional correlates of the efficiency in fearful face detection.
Wang, Yongchao; Guo, Nana; Zhao, Li; Huang, Hui; Yao, Xiaonan; Sang, Na; Hou, Xin; Mao, Yu; Bi, Taiyong; Qiu, Jiang
2017-06-01
Human visual system is found to be much efficient in searching for a fearful face. Some individuals are more sensitive to this threat-related stimulus. However, we still know little about the neural correlates of such variability. In the current study, we exploited a visual search paradigm, and asked the subjects to search for a fearful face or a target gender. Every subject showed a shallower search function for fearful face search than face gender search, indicating a stable fearful face advantage. We then used voxel-based morphometry (VBM) analysis and correlated this advantage to the gray matter volume (GMV) of some presumably face related cortical areas. The result revealed that only the left fusiform gyrus showed a significant positive correlation. Next, we defined the left fusiform gyrus as the seed region and calculated its resting state functional connectivity to the whole brain. Correlations were also calculated between fearful face advantage and these connectivities. In this analysis, we found positive correlations in the inferior parietal lobe and the ventral medial prefrontal cortex. These results suggested that the anatomical structure of the left fusiform gyrus might determine the search efficiency of fearful face, and frontoparietal attention network involved in this process through top-down attentional modulation. Copyright © 2017. Published by Elsevier Ltd.
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.
Directory of Open Access Journals (Sweden)
Andrew F Neuwald
2016-12-01
Full Text Available Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs, which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu.
Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar
2016-12-01
Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.
[Correlation between pulmonary function, posture, and body composition in patients with asthma].
Almeida, V P; Guimarães, F S; Moço, V J R; Menezes, S L S; Mafort, T T; Lopes, A J
2013-01-01
Asthma may result in postural disorders due to increased activity of accessory respiratory muscles and hyperinflation. Our primary objective was to assess the correlation between pulmonary function and posture in adult patients with asthma. Secondarily, we aimed to study the correlation between body composition and body posture in this group of patients. This was a cross-sectional study including 34 patients with asthma who were subjected to postural assessment (photogrammetry), pulmonary function testing (spirometry, whole-body plethysmography, diffusing capacity for carbon monoxide, and respiratory muscle strength), and body composition estimation by means of bioelectrical impedance. Most patients were female (70.6%) with a median age of 32.5 years (range: 23-42 years old). We found a significant correlation between horizontal alignment of head (anterior view) and the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC; ρ=-0,37; P=.03), total lung capacity (TLC; ρ=0,42; P=.01), and residual volume (RV; ρ=0,45; P<.001). Bronchial obstruction and respiratory muscle strength variables also correlated with postural assessment measures on the right and left lateral views. Both body mass index and the percentage of fat mass correlated with horizontal alignment of head, horizontal alignment of the pelvis, and the frontal angle of the lower limbs. Adult patients with asthma exhibit specific postural disorders that correlate with pulmonary function and body composition. The assessment of postural variables may provide a better pulmonary rehabilitation approach for these patients. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
Directory of Open Access Journals (Sweden)
Stefan Koelsch
Full Text Available Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM and structural (voxel-based morphometry, VBM neuroimaging data. Functional magnetic resonance imaging (fMRI data were obtained from 22 individuals (12 females while listening to music (joy, fear, or neutral music. ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens. Individuals with higher E κ values (indexing higher tender emotionality showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ correlates with both function (increased network centrality and structure (grey matter volume of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for
Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian
2013-01-01
Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called Eκ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and Eκ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher Eκ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher Eκ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher Eκ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (Eκ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for emotional
Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian
2013-01-01
Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
Dziekan, Thomas; Weissbach, Carmen; Voigt, Jan; Ebert, Bernd; MacDonald, Rainer; Bahner, Malte L.; Mahler, Marianne; Schirner, Michael; Berliner, Michael; Berliner, Birgitt; Osel, Jens; Osel, Ilka
2011-07-01
Fluorescence imaging using the dye indocyanine green as a contrast agent was investigated in a prospective clinical study for the detection of rheumatoid arthritis. Normalized variances of correlated time series of fluorescence intensities describing the bolus kinetics of the contrast agent in certain regions of interest were analyzed to differentiate healthy from inflamed finger joints. These values are determined using a robust, parameter-free algorithm. We found that the normalized variance of correlation functions improves the differentiation between healthy joints of volunteers and joints with rheumatoid arthritis of patients by about 10% compared to, e.g., ratios of areas under the curves of raw data.
Correlation function of ultra-high energy cosmic rays favors point sources
Tinyakov, Peter G
2001-01-01
We calculate the angular two-point correlation function of ultra-high energy cosmic rays (UHECR) observed by AGASA and Yakutsk experiments. In both data sets, there is a strong signal at highest energies, which is concentrated in the first bin of the size of the angular resolution of the experiment. For the uniform distribution of sources, the probability of a chance clustering is 4 x 10^{-6}. Correlations are absent or not significant at larger angles. This favors the models with compact sources of UHECR.
Communication: Explicitly correlated formalism for second-order single-particle Green's function.
Pavošević, Fabijan; Peng, Chong; Ortiz, J V; Valeev, Edward F
2017-09-28
We present an explicitly correlated formalism for the second-order single-particle Green's function method (GF2-F12) that does not assume the popular diagonal approximation and describes the energy dependence of the explicitly correlated terms. For small and medium organic molecules, the basis set errors of ionization potentials of GF2-F12 are radically improved relative to GF2: the performance of GF2-F12/aug-cc-pVDZ is better than that of GF2/aug-cc-pVQZ, at a significantly lower cost.
Communication: Explicitly correlated formalism for second-order single-particle Green's function
Pavošević, Fabijan; Peng, Chong; Ortiz, J. V.; Valeev, Edward F.
2017-09-01
We present an explicitly correlated formalism for the second-order single-particle Green's function method (GF2-F12) that does not assume the popular diagonal approximation and describes the energy dependence of the explicitly correlated terms. For small and medium organic molecules, the basis set errors of ionization potentials of GF2-F12 are radically improved relative to GF2: the performance of GF2-F12/aug-cc-pVDZ is better than that of GF2/aug-cc-pVQZ, at a significantly lower cost.
Kheirandish-Gozal, Leila; Yoder, Keith; Kulkarni, Richa; Gozal, David; Decety, Jean
2014-03-01
Pediatric obstructive sleep apnea (OSA) is associated with neurocognitive deficits. However, the neural substrates underlying such deficits remain unknown. To examine executive control and emotional processing in OSA, 10 children age 7 to 11 y with polysomnographically diagnosed OSA and 7 age- and sex-matched controls underwent a color-word Stroop task and an empathy task consisting of dynamic visual scenarios depicting interpersonal harm or neutral actions in a magnetic resonance imaging (MRI) scanner. Functional MRI data were processed using MATLAB 7.12 with SPM8 for region of interest (ROI) analyses, and a general linear model was used with regressors for each trial type in each task. For the Stroop task, accuracy was similar in the two groups, with no differences in the effect of incongruency on success rates. OSA showed greater neural activity than controls in eight ROI clusters for incongruent versus congruent trials (P sleep apnea (OSA) in children. Children with OSA show greater neural recruitment of regions implicated in cognitive control, conflict monitoring, and attentional allocation in order to perform at the same level as children without OSA. When viewing empathy-eliciting scenarios, the severity of OSA predicted less sensitivity to harm in the left amygdala.
Directory of Open Access Journals (Sweden)
Lucas Bleicher
Full Text Available Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/α-lactalbumin family, we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation.
Modeling Fractal Structure of Systems of Cities Using Spatial Correlation Function
Chen, Yanguang
2016-01-01
This paper proposes a new method to analyze the spatial structure of urban systems using ideas from fractals. Regarding a system of cities as a set of "particles" distributed randomly on a triangular lattice, we construct a spatial correlation function of cities. Suppose that the spatial correlation follows the power law. It can be proved that the correlation exponent is the second order generalized dimension. The spatial correlation model is applied to the system of cities in China. The results show that the Chinese urban system can be described by the correlation dimension ranging from 1.3 to 1.6. The fractality of self-organized network of cities in both the conventional geographic space and the "time" space is revealed with the empirical evidence. The spatial correlation analysis is significant in that it is applicable to both large and small sizes of samples and can be used to link different fractal dimensions in urban study, including box dimension and radial dimension.
Relaxation of jammed colloidal suspensions after shear cessation.
Ianni, Francesca; Lasne, David; Sarcia, Régis; Hébraud, Pascal
2006-07-01
The dynamics of heterogeneities in a shear thickening, concentrated colloidal suspension is investigated through speckle visibility spectroscopy, a dynamic light scattering technique recently introduced [P. K. Dixon and D. J. Durian, Phys. Rev. Lett. 90, 184302 (2003)]. Formation of shear-induced heterogeneities is observed in the jamming regime, and their relaxation after shear cessation is monitored as a function of the applied shear stress. The relaxation time of these heterogeneities increases when a higher stress is applied.
Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos
2016-02-01
The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.
Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate
Kim, Byung Jun; Lee, Seung Yeob; Jee, Solkeun; Atajanov, Arslan; Yang, Sung
2017-01-01
In this study, a micro-viscometer is developed for measuring shear-varying blood viscosity over a wide-ranging shear rate. The micro-viscometer consists of 10 microfluidic channel arrays, each of which has a different micro-channel width. The proposed design enables the retrieval of 10 different shear rates from a single flow rate, thereby enabling the measurement of shear-varying blood viscosity with a fixed flow rate condition. For this purpose, an optimal design that guarantees accurate viscosity measurement is selected from a parametric study. The functionality of the micro-viscometer is verified by both numerical and experimental studies. The proposed micro-viscometer shows 6.8% (numerical) and 5.3% (experimental) in relative error when compared to the result from a standard rotational viscometer. Moreover, a reliability test is performed by repeated measurement (N = 7), and the result shows 2.69 ± 2.19% for the mean relative error. Accurate viscosity measurements are performed on blood samples with variations in the hematocrit (35%, 45%, and 55%), which significantly influences blood viscosity. Since the blood viscosity correlated with various physical parameters of the blood, the micro-viscometer is anticipated to be a significant advancement for realization of blood on a chip. PMID:28632151
Hidden symmetry of four-point correlation functions and amplitudes in N=4 SYM
Eden, Burkhard; Korchemsky, Gregory P; Sokatchev, Emery
2012-01-01
We study the four-point correlation function of stress-tensor supermultiplets in N=4 SYM using the method of Lagrangian insertions. We argue that, as a corollary of N=4 superconformal symmetry, the resulting all-loop integrand possesses an unexpected complete symmetry under the exchange of the four external and all the internal (integration) points. This alone allows us to predict the integrand of the three-loop correlation function up to four undetermined constants. Further, exploiting the conjectured amplitude/correlation function duality, we are able to fully determine the three-loop integrand in the planar limit. We perform an independent check of this result by verifying that it is consistent with the operator product expansion, in particular that it correctly reproduces the three-loop anomalous dimension of the Konishi operator. As a byproduct of our study, we also obtain the three-point function of two half-BPS operators and one Konishi operator at three-loop level. We use the same technique to work ou...
Correlation between upper limb function and oral health impact in stroke survivors.
da Silva, Fernanda C; da Silva, Daniela F T; Mesquita-Ferrari, Raquel A; Fernandes, Kristianne P S; Bussadori, Sandra K
2015-07-01
[Purpose] The aim of the present study was to evaluate the relationship between upper limb impairment and oral health impact in individuals with hemiparesis stemming from a stroke. [Subjects and Methods] The study subjects were conducted with a sample of 27 stroke survivors with complete or partial hemiparesis with brachial or crural predominance. The 14-item short version of the Oral Health Impact Profile was used to evaluate perceptions of oral health. The Brazilian version of the Stroke Specific Quality of Life Scale was used to evaluate perceptions regarding quality of life. [Results] A statistically significant association was found between the upper extremity function subscale of the SSQOL-Brazil and the impact of oral health evaluated using the OHIP-14, with a strong correlation found for the physical pain subscale, moderate correlations with the functional limitation, psychological discomfort, physical disability, social disability and social handicap subscales as well as a weak correlation with the psychological disability subscale. Analyzing the OHIP-14 scores with regard to the impact of oral health on quality of life, the most frequent classification was weak impact, with small rates of moderate and strong impact. [Conclusion] Compromised upper limb function and self-perceived poor oral health, whether due to cultural resignation or functional disability, exert a negative impact on the quality of life of individuals with hemiparesis stemming from a stroke.
White-matter changes correlate with cognitive functioning in Parkinson's disease
Directory of Open Access Journals (Sweden)
Rebecca J Theilmann
2013-04-01
Full Text Available Diffusion tensor imaging (DTI findings from emerging studies of cortical white-matter integrity in Parkinson’s disease (PD without dementia are inconclusive. When white-matter changes have been found, their relationship to cognitive functioning in PD has not been carefully investigated. To better characterize changes in tissue diffusivity and to understand their functional significance, the present study conducted DTI in 25 PD patients without dementia and 26 controls of similar ages. An automated tract-based DTI method was used. Fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, and radial diffusivity (RD were analyzed. Neuropsychological measures of executive functioning (working memory, verbal fluency, cognitive flexibility, inhibitory control and visuospatial ability were then correlated with regions of interest that showed abnormal diffusivity in the PD group. We found widespread reductions in FA and increases in MD in the PD group relative to controls. These changes were predominantly related to an increase in RD. Increased AD in the PD group was limited to specific frontal tracks of the right hemisphere, possibly signifying more significant tissue changes. Motor-symptom severity did not correlate with FA. However, different measures of executive functioning and visuospatial ability correlated with FA in different segments of tracts, which contain fiber pathways to cortical regions that are thought to support specific cognitive processes. The findings suggest that abnormal tissue diffusivity may be sensitive to subtle cognitive changes in PD, some of which may be prognostic of future cognitive decline.
Directory of Open Access Journals (Sweden)
Di Luca Monica
2007-05-01
Full Text Available Abstract Background Frontotemporal Lobar Degeneration (FTLD thus recently renamed, refers to a spectrum of heterogeneous conditions. This same heterogeneity of presentation represents the major methodological limit for the correct evaluation of clinical designation and brain functional correlates. At present, no study has investigated clinical clusters due to specific cognitive and behavioural disturbances beyond current clinical criteria. The aim of this study was to identify clinical FTLD presentation, based on cognitive and behavioural profile, and to define their SPECT functional correlations. Methods Ninety-seven FTLD patients entered the study. A clinical evaluation and standardised assessment were preformed, as well as a brain SPECT perfusion imaging study. Latent Profile Analysis on clinical, neuropsychological, and behavioural data was performed. Voxel-basis analysis of SPECT data was computed. Results Three specific clusters were identified and named "pseudomanic behaviour" (LC1, "cognitive" (LC2, and "pseudodepressed behaviour" (LC3 endophenotypes. These endophenotypes showed a comparable hypoperfusion in left temporal lobe, but a specific pattern involving: medial and orbitobasal frontal cortex in LC1, subcortical brain region in LC2, and right dorsolateral frontal cortex and insula in LC3. Conclusion These findings provide evidence that specific functional-cluster symptom relationship can be delineated in FTLD patients by a standardised assessment. The understanding of the different functional correlates of clinical presentations will hopefully lead to the possibility of individuating diagnostic and treatment algorithms.
Directory of Open Access Journals (Sweden)
Charles M. Giattino
2017-05-01
Full Text Available Each year over 16 million older Americans undergo general anesthesia for surgery, and up to 40% develop postoperative delirium and/or cognitive dysfunction (POCD. Delirium and POCD are each associated with decreased quality of life, early retirement, increased 1-year mortality, and long-term cognitive decline. Multiple investigators have thus suggested that anesthesia and surgery place severe stress on the aging brain, and that patients with less ability to withstand this stress will be at increased risk for developing postoperative delirium and POCD. Delirium and POCD risk are increased in patients with lower preoperative cognitive function, yet preoperative cognitive function is not routinely assessed, and no intraoperative physiological predictors have been found that correlate with lower preoperative cognitive function. Since general anesthesia causes alpha-band (8–12 Hz electroencephalogram (EEG power to decrease occipitally and increase frontally (known as “anteriorization”, and anesthetic-induced frontal alpha power is reduced in older adults, we hypothesized that lower intraoperative frontal alpha power might correlate with lower preoperative cognitive function. Here, we provide evidence that such a correlation exists, suggesting that lower intraoperative frontal alpha power could be used as a physiological marker to identify older adults with lower preoperative cognitive function. Lower intraoperative frontal alpha power could thus be used to target these at-risk patients for possible therapeutic interventions to help prevent postoperative delirium and POCD, or for increased postoperative monitoring and follow-up. More generally, these results suggest that understanding interindividual differences in how the brain responds to anesthetic drugs can be used as a probe of neurocognitive function (and dysfunction, and might be a useful measure of neurocognitive function in older adults.
Muehsam, David; Lutgendorf, Susan; Mills, Paul J; Rickhi, Badri; Chevalier, Gaétan; Bat, Namuun; Chopra, Deepak; Gurfein, Blake
2017-02-01
A broad range of mind-body therapies (MBTs) are used by the public today, and a growing body of clinical and basic sciences research has resulted in evidence-based integration of many MBTs into clinical practice. Basic sciences research has identified some of the physiological correlates of MBT practices, leading to a better understanding of the processes by which emotional, cognitive and psychosocial factors can influence health outcomes and well-being. In particular, results from functional genomics and neuroimaging describe some of the processes involved in the mind-body connection and how these can influence health outcomes. Functional genomic and neurophysiological correlates of MBTs are reviewed, detailing studies showing changes in sympathetic nervous system activation of gene transcription factors involved in immune function and inflammation, electroencephalographic and neuroimaging studies on MBT practices, and persistent changes in neural function and morphology associated with these practices. While the broad diversity of study designs and MBTs studied presents a patchwork of results requiring further validation through replication and longitudinal studies, clear themes emerge for MBTs as immunomodulatory, with effects on leukocyte transcription and function related to inflammatory and innate immune responses, and neuromodulatory, with effects on brain function and morphology relevant for attention, learning, and emotion regulation. By detailing the potential mechanisms of action by which MBTs may influence health outcomes, the data generated by these studies have contributed significantly towards a better understanding of the biological mechanisms underlying MBTs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unified Green's function retrieval by cross-correlation; connection with energy principles.
Snieder, Roel; Wapenaar, Kees; Wegler, Ulrich
2007-03-01
It has been shown theoretically and observationally that the Green's function for acoustic and elastic waves can be retrieved by cross-correlating fluctuations recorded at two locations. We extend the concept of the extraction of the Green's function to a wide class of scalar linear systems. For systems that are not invariant under time reversal, the fluctuations must be excited by volume sources in order to satisfy the energy balance (equipartitioning) that is needed to extract the Green's function. The general theory for retrieving the Green's function is illustrated with examples that include the diffusion equation, Schrödinger's equation, a vibrating string, the acoustic wave equation, a vibrating beam, and the advection equation. Examples are also shown of situations where the Green's function cannot be extracted from ambient fluctuations. The general theory opens up new applications for the extraction of the Green's function from field correlations that include flow in porous media, quantum mechanics, and the extraction of the response of mechanical structures such as bridges.
Directory of Open Access Journals (Sweden)
Nathalia Priscilla Oliveira Silva
2014-12-01
Full Text Available Functional independence and quality of life are impacted by amyotrophic lateral sclerosis (ALS, a degenerative and progressive disease. The aim of this study was to investigate the functional independence and quality of life of patients with ALS in the municipality of Natal, Rio Grande do Norte state, Brazil. This is a cross-sectional observational study conducted with 24 patients. The Amyotrophic Lateral Sclerosis Assessment Questionnaire (ALSAQ-40/BR and the Functional Independence Measure (FIM were used as evaluation instruments. The data were analyzed through the Spearman’s correlation and Mann-Whitney tests. The individuals investigated presented modified functional dependence in the FIM, with mean of 64.9±20.5, and alteration in all areas of the ALSAQ-40/ BR. There was significant inverse correlation between FIM and the ALSAQ-40/BR areas of “Mobility” (p<0.01, “Activities of Daily Living (DLAs” (p<0.01, “Eating ability” (p=0.02, and “Communication” (p<0.01, but not in the domain of “Emotional Aspect”. Despite the reduced sample, all patients presented reduction in functional independence and quality of life. The use of these instruments may be a tool to assist the elaboration of intervention plans and interdisciplinary treatment, contributing to retard functional dependence and improve the quality of life of these patients.
Metabolic correlates of general cognitive function in nondemented elderly subjects: an FDG PET study
Energy Technology Data Exchange (ETDEWEB)
Cho, Sang Soo; Kwak, Young Bin; Lee, Eun Ju; Ryu, Chang Hyung; Chey, Jean Yung; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)
2004-07-01
While many studies examined the neural correlates of individual cognitive functions, few made efforts to identify the neural networks associated with general cognitive function. General cognitive function decline in the elderly population is not infrequent. This study examined the brain areas associated with general cognitive function in the elderly subjects. Community-dwelling 116 elderly subjects without dementing illnesses (age, 71{+-}5 y; 13 males and 103 females) participated. General cognitive ability was assessed with the Dementia Rating Scale (K-DRS), which is composed of five subtests of attention, initiation and perseveration, construction, conceptualization, and memory. The EVLT (Elderly Verbal Learning Test), a nine-word list learning test, was used for general memory assessment. Brain FDG PET scans were acquired in all subjects. Brain regions where metabolic levels are correlated with the total scores of K-DRS and EVLT were examined using SPM99. There was a significant positive correlation (P < 0.01 uncorrected, k=100) between the total score of K-DRS and glucose metabolism in the bilateral posterior cingulate gyri, bilateral inferior frontal gyri, left caudate, left inferior parietal lobule, right precuneus, bilateral unci, right parahippocampal gyrus, and right anterior cingulate gyrus. A significant positive correlation between the total score of EVLT and glucose metabolism was shown in the right precuneus, right posterior cingulate gyrus, left insula, bilateral inferior parietal lobules, left anterior cingulate gyrus, left caudate, right inferior frontal gyrus (P < 0.01 uncorrected, k=100). Our data showed the brain regions that are associated with general cognitive function in the elderly. Those regions may serve as the neural substrated of cognitive dysfunction associated with neurodegenerative and cerebrovascular diseases in elderly subjects.
Genetic variation in caveolin-1 correlates with long-term pancreas transplant function.
Hamilton, A; Mittal, S; Barnardo, M C N M; Fuggle, S V; Friend, P; Gough, S C L; Simmonds, M J
2015-05-01
Pancreas transplantation is a successful treatment for a selected group of people with type 1 diabetes. Continued insulin production can decrease over time and identifying predictors of long-term graft function is key to improving survival. The aim of this study was to screen subjects for variation in the Caveolin-1 gene (Cav1), previously shown to correlate with long-term kidney transplant function. We genotyped 435 pancreas transplant donors and 431 recipients who had undergone pancreas transplantation at the Oxford Transplant Centre, UK, for all known common variation in Cav1. Death-censored cumulative events were analyzed using Kaplan-Meier and Cox regression. Unlike kidney transplantation, the rs4730751 variant in our pancreas donors or transplant recipients did not correlate with long-term graft function (p = 0.331-0.905). Presence of rs3801995 TT genotype (p = 0.009) and rs9920 CC/CT genotype (p = 0.010) in our donors did however correlate with reduced long-term graft survival. Multivariate Cox regression (adjusted for donor and recipient transplant factors) confirmed the association of rs3801995 (p = 0.009, HR = 1.83;[95% CI = 1.16-2.89]) and rs9920 (p = 0.037, HR = 1.63; [95% CI = 1.03-2.73]) with long-term graft function. This is the first study to provide evidence that donor Cav1 genotype correlates with long-term pancreas graft function. Screening Cav1 in other datasets is required to confirm these pilot results. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Structural Origin of Shear Viscosity of Liquid Water.
Yamaguchi, Tsuyoshi
2018-01-25
The relation between the microscopic structure and shear viscosity of liquid water was analyzed by calculating the cross-correlation between the shear stress and the two-body density using the molecular dynamics simulation. The slow viscoelastic relaxation that dominates the steady-state shear viscosity was ascribed to the destruction of the hydrogen-bonding network structure along the compression axis of the shear distortion, which resembles the structural change under isotropic hydrostatic compression. It means that the shear viscosity of liquid water reflects the anisotropic destruction-formation dynamics of the hydrogen-bonding network.
Karsanina, M.; Gerke, K.; Vasilyev, R.; Skvortsova, E. B.; Korost, D. V.; Mallants, D.
2013-12-01
It is now well-established that structure of porous or composite media (i.e., distribution of different materials or phases) defines all physical properties, including multi-phase flow and solute transport. To characterize soil structure conventional soil science uses such metrics as grain size distribution, morphology or numerous classifications. However, all these descriptors provide only limited and often qualitative information about structural properties, cannot be used to reconstruct real structure or predict physical properties. With the progress of modern non-destructive analysis tools we can obtain detailed 3D structure information and use it for calculation of any physical property. Such 3D data is a valuable verification dataset to check the usefulness of soil structure description using stochastic measures such as correlation functions. Any potential soil structure descriptor should possess two main features: 1) represent structure in some mathematical way, 2) reconstruction based on this mathematical function alone should be statistically equal to the original structure (e.g., have similar pore size distributions, physical properties, etc.). To check the applicability to soil science, we choose different 2D and 3D segmented soil images and calculated their correlation function. The modified Yeong-Torquato procedure was then used to reconstruct images based on calculated correlation functions. This method was applied to three different soil datasets: 1) a set of 2D thin-sections, 2) 3D images of soils with known hydraulic properties (Ksat and WRC), 3) 3D images of soils and aggregates from the same soil profile, but different genetic horizons. In the first case, we use conventional morphological descriptors in 2D original and reconstructed images (pore size, shapes and orientations) to quantify reconstructions quality. In the second case, we use pore-network models extracted from original and reconstructed 3D images to calculate Ksat, WRC and relative
Furcinitti, P.; Kuppenheimer, J. D.; Narducci, L. M.; Tuft , R. A.
1972-01-01
When an amplitude-stabilized He-Ne laser beam is scattered by a rotating ground glass with small surface inhomogeneities, the probability density of the instantaneous scattered-wave amplitude is Gaussian. In this paper, we suggest the use of the joint photon-count probability distribution to measure the absolute value of the electric-field amplitude-correlation function for random Gaussian light fields, and report the results of an experiment in which the Gaussian field is produced by scattering a light beam through a rotating ground glass. This procedure offers an alternative to other conventional methods, such as self-beating spectroscopy and irradiance-correlation techniques. The correlation time of the scattered-field amplitude in the present experiment has been measured with an accuracy of approximately 0.8%.
Sumner, Jennifer A; Pietrzak, Robert H; Danielson, Carla Kmett; Adams, Zachary W; Ruggiero, Kenneth J
2014-12-01
The aim of this study was to elucidate the dimensional structure of posttraumatic stress disorder (PTSD) and potential moderators and functional correlates of this structure in disaster-affected adolescents. A population-based sample of 2000 adolescents aged 12-17 years (M = 14.5 years; 51% female) completed interviews on post-tornado PTSD symptoms, substance use, and parent-adolescent conflict between 4 and 13 months (M = 8.8, SD = 2.6) after tornado exposure. Confirmatory factor analyses revealed that all models fit well but a 5-factor dysphoric arousal model provided a statistically significantly better representation of adolescent PTSD symptoms compared to 4-factor dysphoria and emotional numbing models. There was evidence of measurement invariance of the dysphoric arousal model across gender and age, although girls and older adolescents aged 15-17 years had higher mean scores than boys and younger adolescents aged 12-14 years, respectively, on some PTSD dimensions. Differential magnitudes of association between PTSD symptom dimensions and functional correlates were observed, with emotional numbing symptoms most strongly positively associated with problematic substance use since the tornado, and dysphoric arousal symptoms most strongly positively associated with parent-adolescent conflict; both correlations were significantly larger than the corresponding correlations with anxious arousal. Taken together, these results suggest that the dimensional structure of tornado-related PTSD symptomatology in adolescents is optimally characterized by five separate clusters of re-experiencing, avoidance, numbing, dysphoric arousal, and anxious arousal symptoms, which showed unique associations with functional correlates. Findings emphasize that PTSD in disaster-exposed adolescents is not best conceptualized as a homogenous construct and highlight potential differential targets for post-disaster assessment and intervention. Copyright © 2014 Elsevier Ltd. All rights
Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease
Energy Technology Data Exchange (ETDEWEB)
Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Rodriguez, Guido [University of Genoa, Clinical Neurophysiology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); De Carli, Fabrizio [National Research Council, Institute of Molecular Bioimaging and Physiology, Genoa (Italy); Morbelli, Silvia; Sambuceti, Gianmario [University of Genoa, Nuclear Medicine, Department of Internal Medicine, Genoa (Italy); Abruzzese, Giovanni [University Hospital San. Martino, Clinical Neurology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy)
2011-12-15
Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naive, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD. (orig.)
Modeling fractal structure of city-size distributions using correlation functions.
Chen, Yanguang
2011-01-01
Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.
Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.
2009-01-01
We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.
Lower Extremity Strength Is Correlated with Walking Function After Incomplete SCI.
DiPiro, Nicole D; Holthaus, Katy D; Morgan, Patrick J; Embry, Aaron E; Perry, Lindsay A; Bowden, Mark G; Gregory, Chris M
2015-01-01
Lower extremity strength has been reported to relate to walking ability, however, the relationship between voluntary lower extremity muscle function as measured by isokinetic dynamometry and walking have not been thoroughly examined in individuals with incomplete spinal cord injury (iSCI). To determine the extent to which measures of maximal voluntary isometric contraction (MVIC) and rate of torque development (RTD) in the knee extensor (KE) and plantar flexor (PF) muscle groups correlate with self-selected overground walking speed and spatiotemporal characteristics of walking. Twenty-two subjects with chronic (>6 months) iSCI participated in a cross-sectional study. Values for MVIC and RTD in the KE and PF muscle groups were determined by isokinetic dynamometry. Walking speed and spatiotemporal characteristics of walking were measured during overground walking. MVIC in the KE and PF muscle groups correlated significantly with walking speed. RTD was significantly correlated with walking speed in both muscle groups, the more-involved PF muscle group showing the strongest correlation with walking speed (r = 0.728). RTD in the KE and PF muscle groups of the more-involved limb was significantly correlated with single support time of the more-involved limb. These data demonstrate that lower extremity strength is associated with walking ability after iSCI. Correlations for the muscle groups of the move-involved side were stronger compared to the less-involved limb. In addition, PF function is highlighted as a potential limiting factor to walking speed along with the importance of RTD.
Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups
Prats Ferrer, A.; Eynard, B.; di Francesco, P.; Zuber, J.-B.
2007-12-01
The Harish-Chandra correlation functions, i.e. integrals over compact groups of invariant monomials prod operatorname{tr}(X^{p1}\\varOmega Y^{q1}\\varOmega^{dagger}X^{p2}\\cdots) with the weight exp tr ( X Ω Y Ω † ) are computed for the orthogonal and symplectic groups. We proceed in two steps. First, the integral over the compact group is recast into a Gaussian integral over strictly upper triangular complex matrices (with some additional symmetries), supplemented by a summation over the Weyl group. This result follows from the study of loop equations in an associated two-matrix integral and may be viewed as the adequate version of Duistermaat-Heckman's theorem for our correlation function integrals. Secondly, the Gaussian integration over triangular matrices is carried out and leads to compact determinantal expressions.
Exact out-of-time-ordered correlation functions for an interacting lattice fermion model
Tsuji, Naoto; Ueda, Masahito
2016-01-01
An exact solution for local equilibrium and nonequilibrium out-of-time-ordered correlation (OTOC) functions is obtained for a lattice fermion model with on-site interactions, namely the Falicov-Kimball (FK) model, in the large dimensional and thermodynamic limit. Our approach is based on the nonequilibrium dynamical mean-field theory generalized to an extended Kadanoff-Baym contour. We find that the OTOC is enhanced at intermediate coupling around the metal-insulator phase transition, implying that the system is most scrambled in that regime. In the high-temperature limit, the OTOC remains nontrivially finite, even though dynamical charge correlations probed by an ordinary response function are suppressed. We propose an experiment to measure OTOCs of fermionic lattice systems including the FK and Hubbard models in ultracold atomic systems.
Correlated basis functions theory of light nuclei. Pt. 1. General description and ground states
Energy Technology Data Exchange (ETDEWEB)
Bosca, M.C.; Guardiola, R.
1988-01-18
The correlated basis functions theory is applied to the description of light (p-shell) nuclei. The interaction used is the Reid potential, in the V8 (central, spin, tensor and spin-orbit) and V6 (no spin-orbit term) forms. Our work includes state-dependent correlation functions, and their radial components are determined by solving the corresponding Euler-Lagrange equations with a healing condition at distance d and with a null derivative; in addition, we impose the sequential condition or the Pauli condition so as to insure convergence. We present results corresponding to the ground state of all nuclei in the p-shell. Our results present a good qualitative behaviour, but are in clear disagreement with experimental values.
Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun
2015-11-01
To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.
de Castro, Marcos César Santos; Ferreira, Angela Santos; Irion, Klaus Loureiro; Hochhegger, Bruno; Lopes, Agnaldo José; Velarde, Guilhermo Coca; Zanetti, Gláucia; Marchiori, Edson
2014-08-01
The assessment of the extent of silicosis on chest radiographs is subjective and could be more standardized by using computed tomography (CT) quantification methods. We propose a semiautomatic method of quantifying the anatomical lung damage (LD) (the sum of the emphysema and large opacities volumes) measured by CT densitovolumetry in complicated silicosis. Twenty-three nonsmokers with complicated silicosis were included. Large opacities were recorded as size A, B, or C according to the size of the opacities on chest radiographs. Pulmonary function tests (PFT) were assessed by spirometry and the carbon monoxide diffusion capacity. Total lung capacity (TLC) was measured by helium dilution, and total lung volume (TLV) was measured by CT quantification (TLVct). CT images were postprocessed using CT densitovolumetry to measure the TLVct, large opacities volume, emphysema volume (EV), and emphysema index (EI). Significant correlations were observed between the EV and the forced vital capacity (r = 0.41, p = 0.04), TLC (r = 0.44, p = 0.03), and residual volume (RV) (r = 0.49, p = 0.01). A correlation also was observed between the LD% and RV (r = 0.43, p = 0.03) and between the LD and RV (r = 0.47, p = 0.02). The PFT findings were correlated with the EV, EI, LD, and LD%, but they were not correlated with the large opacities volume. These results suggest that the emphysema volume, more than the large opacities volume, is responsible for functional impairment in patients with complicated silicosis.
Directory of Open Access Journals (Sweden)
Sonia Regina Ferreira
Full Text Available ABSTRACT Objective To establish the correlation between clinical evaluation of motor function recovery and daily living activities in 30 patients with upper traumatic brachial plexus injury submitted to surgery. Methods The score of the Disabilities of the Arm, Shoulder and Hand (DASH questionnaire and the Louisiana State University Health Sciences Center (LSUHSC scale were determined in 30 patients. Epidemiologic factors were also examined and correlations were determined. Results There was a significant correlation between the clinical evaluation and the daily living activities after a 12-month period (r = 0.479 and p = 0.007. A direct correlation was observed between the functional recovery of the upper limb and the time between injury and surgery (r = 0.554 and p = 0.001. The LSUHSC scores (p = 0.049 and scores from the DASH questionnaire (p = 0.013 were better among patients who returned to work. Conclusions Clinical evaluation and daily living activities in adult patients who underwent nerve transfer after brachial plexus injury showed significant and measurable improvements.
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo [Research Inst. for Brain and Blood Vessels, Akita (Japan)
1997-04-01
To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4{+-}107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)
Pasol, Joshua; Feuer, William; Yang, Cui; Shaw, Gerry; Kardon, Randy; Guy, John
2010-01-01
Objective. To correlate visual and neurologic clinical scores and treatment of optic neuritis and multiple sclerosis (MS) patients with assays of serum phosphorylated neurofilament heavy chain (pNF-H) and optical coherence tomography (OCT) measurements of axonal loss. Design/Methods. The Optic Neuritis Treatment Trial (ONTT) randomized 457 patients with acute optic neuritis to intravenous methylprednisolone (IVMP) followed by oral prednisone, oral prednisone or placebo treatment arms. We quantified serum pNF-H levels in 175 ONTT patients 5 years after study entry. We performed OCT measurements of macular volume and the retinal nerve fiber layer (RNFL) in a subset of 51 patients at year 15. Results. Elevated pNF-H levels at year 5 correlated to poorer visual function at study entry. Lower 15 year macular volumes and RNFL thickness correlated better with follow-up than with baseline visual function measures. With IVMP treatment, 15 year RNFL differences of the fellow eye (FE) minus the affected eye (SE) RNFLFEmSE correlated with five-year pNF-H levels. PNF-H was reduced by half with IVMP relative to placebo or by 40% relative to prednisone. Conclusions/Relevance. Acute optic neuritis patients who have more severe visual loss during initial presentation have a higher incidence of axonal loss that was slightly suppressed with IVMP treatment. PMID:22096624
Haule, Kristjan; Pascut, Gheorghe L.
2016-11-01
We implemented the derivative of the free energy functional with respect to the atom displacements, so called force, within the combination of density functional theory and the embedded dynamical mean-field theory. We show that in combination with the numerically exact quantum Monte Carlo (MC) impurity solver, the MC noise cancels to a great extend, so that the method can be used very efficiently for structural optimization of correlated electron materials. As an application of the method, we show how strengthening of the fluctuating moment in FeSe superconductor leads to a substantial increase of the anion height, and consequently to a very large effective mass, and also strong orbital differentiation.
Lattice dynamics and correlated atomic motion from the atomic pair distribution function
Jeong, I. -K.; Heffner, R. H.; Graf, M. J.; Billinge, S. J. L.
2002-01-01
The mean-square relative displacements (MSRD) of atomic pair motions in crystals are studied as a function of pair distance and temperature using the atomic pair distribution function (PDF). The effects of the lattice vibrations on the PDF peak widths are modelled using both a multi-parameter Born von-Karman (BvK) force model and a single-parameter Debye model. These results are compared to experimentally determined PDFs. We find that the near-neighbor atomic motions are strongly correlated, ...
Novaes, Marcel
2015-06-01
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = - iħS†dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Directory of Open Access Journals (Sweden)
Edvaldo Soares
2013-06-01
Full Text Available This research was aimed to survey depressive episodes, functional and cognitive decline of an elderly population residing nursing homes (NH located at Marília, São Paulo, Brazil, and, from statistical analysis, verify the potential correlations between depressive episodes, functional and cognitive decline, amongst themselves and with the variables: age, gender and education. There were subject to the research 57 elders living in the NH, aged between 59 and 98 and both sexes. The following tools were used to collect data: Mini Mental State Exam (MMSE to evaluate cognitive faculty, Barthel Index (BI to evaluate cognitive faculty and Beck Depression Inventory (BDI.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than
Correlation of spine deformity, lung function, and seat pressure in spina bifida.
Patel, Jayesh; Walker, Janet L; Talwalkar, Vishwas R; Iwinski, Henry J; Milbrandt, Todd A
2011-05-01
Spinal deformity, a common problem in children with myelodysplasia, is associated with alterations in pulmonary function and sitting balance. Sitting imbalance causes areas of high pressure in patients already at high risk for developing pressure ulcers due to insensate skin. We asked: Does spinal deformity affect pulmonary function tests in children with myelodysplasia? Does the magnitude of spinal curvatures and pelvic obliquity affect seating pressures? Does spinal deformity and seated pressures correlate with a history of pressure ulcers? We retrospectively reviewed 32 patients with myelodysplasia and scoliosis (mean age, 14 years). The mean thoracic scoliosis was 64° with a mean pelvic obliquity of 15°. The mean forced vital capacity was 59% of predicted. The mean of the average and peak seated pressures were 24 and 137 mm Hg, respectively. We examined spinal radiographs, pulmonary function tests, and seated pressure maps and evaluated correlations of spinal deformity measures, pulmonary function, and seated pressures. The thoracic scoliosis inversely correlated with lung volume and weakly related with only the forced midexpiratory volume parameter (R(2) = 31%). The curve magnitude was associated with % seated area with pressures of 38 to 70 mm Hg while lesser degrees of pelvic obliquity were associated with % seating area with pressures of less than 38 mm Hg (R(2) = 25% and 24%, respectively). A history of pressure ulcers did not correlate with any spinal deformity or seated pressure measures. All patients displayed a reduced forced vital capacity, but this reduction was not related to increasing scoliosis. The smaller scoliosis curves and lesser degrees of pelvic obliquity were associated with larger areas of low seated pressures.
Energy Technology Data Exchange (ETDEWEB)
Dai, Hui; Zhang, Yu; Hu, Su; Wang, Ximing; Li, Yonggang; Hu, Chunhong [The First Affiliated Hospital of Soochow University, Department of Radiology, Suzhou, Jiangsu (China); Lai, Lillian [LAC+USC Medical Center, Department of Neuroradiology, Los Angeles, CA (United States); Shen, Hailin [Suzhou Kowloon Hospital, Shanghai Jiao Tong University Medical School, Department of Radiology, Suzhou, Jiangsu (China)
2017-11-15
The relationship between parameters of brain functional networks and clinical indexes is unclear so far in patients with diabetic retinopathy (DR). This paper is to investigate this. Twenty-one patients with different grades of DR and 21 age- and sex-matched healthy controls were enrolled from August 2012 to September 2014. The clinical indexes recorded included DR grade, duration of diabetes, HbA1c, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, insulin sensitive index (ISI), Mini-Mental State Examination (MMSE), and patient sex and age. Subjects were scanned using 3-T MR with blood-oxygen-level-dependent and 3D-FSPGR sequences. MR data was analyzed via preprocessing and functional network construction, and quantified indexes of network (clustering coefficient, characteristic path length, global efficiency, degree distribution, and small worldness) were evaluated. Statistics consisted of ANOVA and correlation. There were significant differences between patients and controls among clustering coefficient, characteristic path length, degree distribution, and small worldness parameters (P < 0.05). MMSE scores negatively correlated with characteristic path length, and Hb1Ac negatively correlated with small worldness. MMSE, duration of diabetes, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, ISI, DR grade, and patient age, except from Hb1Ac, correlated with degree distribution in certain brain areas. Brain functional networks are altered, specifically in the areas of visual function and cognition, and these alterations may reflect the severity of visual weakness and cognitive decline in DR patients. Moreover, the brain networks may be affected both by long-standing and instant clinical factors. (orig.)
Directory of Open Access Journals (Sweden)
Zirui Huang
2017-01-01
Full Text Available Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n=30. Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1–35. Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers’ motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.
Computer/gaming station use in youth: Correlations among use, addiction and functional impairment.
Baer, Susan; Saran, Kelly; Green, David A
2012-10-01
Computer/gaming station use is ubiquitous in the lives of youth today. Overuse is a concern, but it remains unclear whether problems arise from addictive patterns of use or simply excessive time spent on use. The goal of the present study was to evaluate computer/gaming station use in youth and to examine the relationship between amounts of use, addictive features of use and functional impairment. A total of 110 subjects (11 to 17 years of age) from local schools participated. Time spent on television, video gaming and non-gaming recreational computer activities was measured. Addictive features of computer/gaming station use were ascertained, along with emotional/behavioural functioning. Multiple linear regressions were used to understand how youth functioning varied with time of use and addictive features of use. Mean (± SD) total screen time was 4.5±2.4 h/day. Addictive features of use were consistently correlated with functional impairment across multiple measures and informants, whereas time of use, after controlling for addiction, was not. Youth are spending many hours each day in front of screens. In the absence of addictive features of computer/gaming station use, time spent is not correlated with problems; however, youth with addictive features of use show evidence of poor emotional/ behavioural functioning.
Correlation functions for three-dimensional quantum dots from Diffusion Monte Carlo simulations
Vincent, Jordan; Wilkens, Tim; Martin, Richard
2002-03-01
We report diffusion Monte Carlo (DMC) simulations of interacting electrons in spherical and cylindrical quasi-2D quantum dots [1] to determine the low energy spin states and to search for transitions to "Wigner molecule" or "spin wave" type states that are the analogue of the Wigner crystal that occurs in the low density homogeneous gas [2] or an anitferromagnet. All calculations are performed at zero magnetic field. Our fixed-node DMC uses trial wavefunction of the Slater-Jastrow type, with orbitals obtained from density functional theory calculations using the LDA or the KLI approximation to exact exchange (which is very close to Hartree-Fock). Since such mean-field calculations lead to broken symmetry solutions, we use multiple determinant trial functions that properly restore the symmetry. Simulations of the density profile and correlation functions in the correlated system show that formation of Wigner molecule or spin wave type correlations are significantly reduced from those inferred from the mean field solutions. The effect of including the thrid dimension in the simulations of the quasi-2D systems is elucidated by comparing with analogous DMC calculations of Pederiva, Umrigar and Lipparini [3] for the same area density and 2D confining potential. [1] See, for example R. C. Ashoori, Nature 379, 413 (1996). [2] B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989). [3] F. Pederiva, C. J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000).
Directory of Open Access Journals (Sweden)
Yiming Hu
2017-06-01
Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.
Directory of Open Access Journals (Sweden)
Kyrylo Bessonov
Full Text Available Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples.
Motor coordination correlates with academic achievement and cognitive function in children
Directory of Open Access Journals (Sweden)
Valter Rocha Fernandes
2016-03-01
Full Text Available The relationship between exercise and cognition is an important topic of research that only recently began to unravel. Here we set out to investigate the relation between motor skills, cognitive function and school performance in 45 students from 8 to 14 years of age. We used a cross-sectional design to evaluate motor coordination (Touch Test Disc, agility (Shuttle Run Speed - running back and forth, school performance (Academic Achievement Test, the Stroop test and 6 sub-tests of the Wechsler Intelligence Scale for Children-IV (WISC-IV. We found that the Touch Test Disc was the best predictor of school performance (R²=0.20. Significant correlations were also observed between motor coordination and several indices of cognitive function, such as the total score of the Academic Achievement Test (Spearman’s rho=0.536; p<=0.001, as well as two WISC-IV sub-tests: block design (R= -0.438;p=0.003 and cancellation (rho= -0.471; p=0.001. All the other cognitive variables pointed in the same direction, and even correlated with agility, but did not reach statistical significance. Altogether, the data indicate that visual motor coordination and visual selective attention, but not agility, may influence academic achievement and cognitive function. The results highlight the importance of investigating the correlation between physical skills and different aspects of cognition.
Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Iritani, T. [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York, 11794-3800 (United States); Doi, T. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Aoki, S. [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Gongyo, S. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Universitéde Tours,Tours, 37200 (France); Hatsuda, T. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); iTHES Research Group, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ikeda, Y. [Theoretical Research Division, Nishina Center, RIKEN,2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Research Center for Nuclear Physics (RCNP), Osaka University,10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Inoue, T. [Nihon University, College of Bioresource Sciences,1866 Kameino, Fujisawa, Kanagawa, 252-0880 (Japan); Ishii, N.; Murano, K. [Research Center for Nuclear Physics (RCNP), Osaka University,10-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Nemura, H. [Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Sasaki, K. [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Center for Computational Sciences, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Collaboration: The HAL QCD collaboration
2016-10-19
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ({sup 3}He and {sup 4}He) as well, employing (2+1)-flavor lattice QCD at m{sub π}=0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.
Schiavella, Mauro; Pelagatti, Matteo; Westin, Jerker; Lepore, Gabriele; Cherubini, Paolo
2018-01-12
Poker playing and responsible gambling both entail the use of the executive functions (EF), which are higher-level cognitive abilities. This study investigated if online poker players of different ability showed different performances in their EF and if so, which functions were the most discriminating for their playing ability. Furthermore, it assessed if the EF performance was correlated to the quality of gambling, according to self-reported questionnaires (PGSI, SOGS, GRCS). Three poker experts evaluated anonymized poker hand history files and, then, a trained professional administered an extensive neuropsychological test battery. Data analysis determined which variables of the tests correlated with poker ability and gambling quality scores. The highest correlations between EF test results and poker ability and between EF test results and gambling quality assessment showed that mostly different clusters of executive functions characterize the profile of the strong(er) poker player and those ones of the problem gamblers (PGSI and SOGS) and the one of the cognitions related to gambling (GRCS). Taking into consideration only the variables overlapping between PGSI and SOGS, we found some key predictive factors for a more risky and harmful online poker playing: a lower performance in the emotional intelligence competences (Emotional Quotient inventory Short) and, in particular, those grouped in the Intrapersonal scale (emotional self-awareness, assertiveness, self-regard, independence and self-actualization).
Montoya-Castillo, Andrés; Reichman, David R.
2017-02-01
The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Cz z(t ) =Re ⟨σz(0 ) σz(t ) ⟩ , we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.
Signals of dynamical and statistical process from IMF-IMF correlation function
Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.
2017-11-01
In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.
Fetuin-A serum levels are not correlated to kidney function in long-lived subjects.
Bellia, Chiara; Tomaiuolo, Rossella; Caruso, Antonietta; Sasso, Bruna Lo; Zarrilli, Federica; Carru, Ciriaco; Deiana, Maria; Zinellu, Angelo; Pinna, Sara; Castaldo, Giuseppe; Deiana, Luca; Ciaccio, Marcello
2012-06-01
Serum Fetuin A has been identified as an inhibitor of ectopic calcification. It is reduced in subjects with chronic kidney disease (CKD) and it has been proposed as a potential link between CKD and the higher prevalence of arterial calcification observed in these patients. During aging both the stiffening of arterial wall due to calcification and a decline in kidney function are frequent. The aim of the study is to investigate if Fetuin A serum levels are associated with aging and with AHSG T256S polymorphism. Moreover, we aim at investigate whether serum Fetuin A is correlated to kidney function in this setting of senescence. 256 health long-lived subjects (age 92 [81-100]) were recruited for the study. Serum Fetuin A was evaluated by ELISA, Cystatin C by immune-nephelometry. AHSG T256S was determinated by PCR-RFLP. Serum Fetuin A shows a significant correlation with age (r=0.20; P=0.0048). AHSG TS and SS genotypes are associated to lower levels of serum protein (0.27 [0.19-0.29] g/L vs 0.42 [0.32-0.49] g/L; PAHSG polymorphism have lower levels of the circulating protein. No correlation with kidney function decline was observed. Other mechanisms should be investigated to explain the increase of Fetuin A with age. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Bessonov, Kyrylo; Walkey, Christopher J; Shelp, Barry J; van Vuuren, Hennie J J; Chiu, David; van der Merwe, George
2013-01-01
Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples.
Energy Technology Data Exchange (ETDEWEB)
Sandev, Trifce, E-mail: trifce.sandev@drs.gov.mk [Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje (Macedonia, The Former Yugoslav Republic of); Metzler, Ralf, E-mail: rmetzler@uni-potsdam.de [Institute for Physics and Astronomy, University of Potsdam, D-14776 Potsdam-Golm (Germany); Department of Physics, Tampere University of Technology, FI-33101 Tampere (Finland); Tomovski, Živorad, E-mail: tomovski@pmf.ukim.mk [Faculty of Natural Sciences and Mathematics, Institute of Mathematics, Saints Cyril and Methodius University, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)
2014-02-15
We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion.
[Study of shear rate in modified airlift nitrifying bioreactor].
Jin, Ren-cun; Zheng, Ping
2006-06-01
The characteristics of shear rate in an airlift nitrifying bioreactor and its influencing factors were studied. The results showed that the shear rate was different in different sections of the bioreactor. With inlet gas flowrate at 430 approximately 2700 L x h(-1), the overall shear rate was (0.702 approximately 3.13) x 10(5) s(-1), shear rate in riser was (1.07 approximately 31.3) x 10(5) s(-1) and in gas-liquid separator was (1.12 approximately 25.0) x 10(5) s(-1), respectively. It indicates that the highest shear rates prevailed in the riser part of bioreactor. The operational variables and the bioreactor configurations exerted a significant influence on the shear level of the bioreactor. When inlet gas flowrate was raised from 1300 to 2700 L x h(-1), shear rate in riser and separator ascended first and then descended subsequently. The diameter of draft tube (d) was negatively correlated with shear rate. When the draft tube with diameter of 5.5 cm was installed, the shear rates in riser, separator and overall shear rate were 85.5%, 82.3% and 80.6%, respectively less as compared with that with diameter of 4.0 cm. The number of static mixers (N) was positively correlated with the shear rate. When d was set at 4.0 cm, with N of 10 and 39, the shear rates in riser were 6.14 and 7.97 times higher respectively, than that of conventional bioreactor. The ratio of maximum local shear rate to overall shear rate was 3.68 approximately 7.66, and the homogeneity of the shear field in airlift bioreactors could be improved if d and N were set at 5.5 cm and 10 approximately 13, respectively.
Robust Kalman filter design for predictive wind shear detection
Stratton, Alexander D.; Stengel, Robert F.
1991-01-01
Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.
Serum Indicators Reflecting Gastric Function May Also Correlate with Other Extragastric Diseases
Directory of Open Access Journals (Sweden)
Yuehua Gong
2015-01-01
Full Text Available Aim. Serological indicators of organ function can reveal intrinsic links between different organs. The present study aimed to determine the correlations of serum indicators for gastric and extragastric function. Methods. A total of 823 individuals were enrolled. Data on indicators reflecting blood lipids, blood glucose, indexes of stomach, kidney, liver, and thyroid function, and H. pylori IgG antibody level were collected. Results. As creatine (Cr levels increased, PGI (pepsinogen I, PGII concentrations, and PGI/II ratio increased monotonically from 79.7 to 105.15 µg/L, 6.5 to 8.4 µg/L, and 11.97 to 12.27, respectively (P<0.05. As thyroid peroxidase antibody (TPOAb levels increased, PGI level decreased from 100.85 to 84 µg/L (P<0.05 and as thyroid stimulating hormone (TSH increased, PGI/II ratio increased monotonically from 11.54 to 12.68 (P<0.05. As triglyceride (TG levels increased, gastrin 17 (G17 concentrations increased monotonically from 1.73 to 2.7 pmol/L (P<0.05. As serum glucose and glycated hemoglobin (HbA1C increased, PGI/II concentrations increased monotonically from 11.98 to 12.67 and 9.7 to 13.54 (P<0.05, respectively. Conclusions. Serum PG and G17 levels were associated with blood glucose and lipids, kidney function, and thyroid function but not with liver function. Serum indicators reflecting gastric function may correlate not only with primary diseases, but also with other extragastric diseases.
Analytic continuation-free Green's function approach to correlated electronic structure calculations
Östlin, A.; Vitos, L.; Chioncel, L.
2017-09-01
We present a charge self-consistent scheme combining density functional and dynamical mean field theory, which uses Green's functions of multiple-scattering type. In this implementation, the many-body effects are incorporated into the Kohn-Sham iterative scheme without the need for the numerically ill-posed analytic continuation of the Green's function and of the self-energy, which was previously a bottleneck in multiple-scattering-type Green's function approaches. This is achieved by producing the Kohn-Sham Hamiltonian in the subspace of correlated partial waves and allows to formulate the Green's function directly on the Matsubara axis. The spectral moments of the Matsubara Green's function enable us to put together the real-space charge density, therefore, the charge self-consistency can be achieved. Our results for the spectral functions (density of states) and equation-of-state curves for transition-metal elements Fe, Ni, and FeAl compound agree very well with those of Hamiltonian-based LDA+DMFT implementations. The current implementation improves on numerical accuracy, compared to previous implementations where analytic continuation was required at each Kohn-Sham self-consistent step. A minimal effort aside from the multiple-scattering formulation is required, and the method can be generalized in several ways that are interesting for applications to real materials.
AUTHOR|(CDS)2078856; Snellings, Raimond; Christakoglou, Panos
The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the balance functions, provide insight to the properties of matter created in high-energy collisions. The balance functions are argued to probe the creation time of the particles and are also sensitive to the collective motion of the system. In this thesis, I present the results of the measured balance functions in p--Pb collisions at √sNN = 5.02~TeV obtained with the ALICE detector at the LHC. The results are compared with balance functions measured in pp and Pb--Pb collisions at √s=7~TeV and √sNN = 2.76~TeV$, respectively. The width of the balance functions in both pseudorapidity and azimuthal angle for non-identified charged particles decreases with increasing multiplicity in all three systems, for particles with low transverse momentum value pT < 2~GeV/c. For higher values of transverse momentum the balance functions become narrower and...
Directory of Open Access Journals (Sweden)
Antonio Carlos Tenor Junior
2016-06-01
Full Text Available ABSTRACT OBJECTIVE: To correlate the functional outcomes and radiographic indices of proximal humerus fractures treated using an anatomical locking plate for the proximal humerus. METHODS: Thirty-nine patients with fractures of the proximal humerus who had been treated using an anatomical locking plate were assessed after a mean follow-up of 27 months. These patients were assessed using the University of California Los Angeles (UCLA score and their range of motion was evaluated using the method of the American Academy of Orthopedic Surgeons on the operated shoulder and comparative radiographs on both shoulders. The correlation between radiographic measurements and functional outcomes was established. RESULTS: We found that 64% of the results were good or excellent, according to the UCLA score, with the following means: elevation of 124°; lateral rotation of 44°; and medial rotation of thumb to T9. The type of fracture according to Neer's classification and the patient's age had significant correlations with the range of motion, such that the greater the number of parts in the fracture and the greater the patient's age were, the worse the results also were. Elevation and UCLA score were found to present associations with the anatomical neck-shaft angle in anteroposterior view; fractures fixed with varus deviations greater than 15° showed the worst results (p < 0.001. CONCLUSION: The variation in the neck-shaft angle measurements in anteroposterior view showed a significant correlation with the range of motion; varus deviations greater than 15° were not well tolerated. This parameter may be one of the predictors of functional results from proximal humerus fractures treated using a locking plate.
Dimitrijevic, I M; Kocic, M N; Lazovic, M P; Mancic, D D; Marinkovic, O K; Zlatanovic, D S
2016-08-01
Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy. This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined. A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS - rest=0.887, rVAS - activity=0.890; Plumbar spine (Pradiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
Imaging of sarcoidosis of the airways and lung parenchyma and correlation with lung function.
Nunes, Hilario; Uzunhan, Yurdagul; Gille, Thomas; Lamberto, Christine; Valeyre, Dominique; Brillet, Pierre-Yves
2012-09-01
Imaging has a prominent role in the assessment of sarcoidosis diagnosis and outcome, which are extremely variable. Chest radiography staging helps predict the probability of spontaneous remission, and stage IV is associated with higher mortality. However, the reproducibility of reading is poor and changes in radiography and lung function are inconsistently correlated, which may be problematic for the monitoring of disease and treatment response. Chest computed tomography (CT) makes a great diagnostic contribution in difficult cases. Bilateral hilar lymphadenopathy with peri-lymphatic micronodular pattern is highly specific for sarcoidosis. CT is important for the investigation of pulmonary complications, including aspergilloma and pulmonary hypertension. CT improves the yield of bronchoscopy for obtaining a positive endobronchial or transbronchial biopsy. CT findings may also discriminate between active inflammation and irreversible fibrosis, with occasional influence on therapeutic decisions. Three CT patterns of fibrotic sarcoidosis are identified, with different functional profiles: predominant bronchial distortion is associated with obstruction; honeycombing is associated with restriction and lower diffusing capacity of the lung for carbon monoxide; whereas functional impairment is relatively minor with linear pattern. The clinical impact of correlations between CT severity scores and functional impairment is uncertain, except for its utility elucidating the mechanisms of airflow limitation, which include bronchial distortion, peribronchovascular thickening, air-trapping and bronchial compression by lymphadenopathy.
Structural and functional correlates for language efficiency in auditory word processing.
Jung, JeYoung; Kim, Sunmi; Cho, Hyesuk; Nam, Kichun
2017-01-01
This study aims to provide convergent understanding of the neural basis of auditory word processing efficiency using a multimodal imaging. We investigated the structural and functional correlates of word processing efficiency in healthy individuals. We acquired two structural imaging (T1-weighted imaging and diffusion tensor imaging) and functional magnetic resonance imaging (fMRI) during auditory word processing (phonological and semantic tasks). Our results showed that better phonological performance was predicted by the greater thalamus activity. In contrary, better semantic performance was associated with the less activation in the left posterior middle temporal gyrus (pMTG), supporting the neural efficiency hypothesis that better task performance requires less brain activation. Furthermore, our network analysis revealed the semantic network including the left anterior temporal lobe (ATL), dorsolateral prefrontal cortex (DLPFC) and pMTG was correlated with the semantic efficiency. Especially, this network acted as a neural efficient manner during auditory word processing. Structurally, DLPFC and cingulum contributed to the word processing efficiency. Also, the parietal cortex showed a significate association with the word processing efficiency. Our results demonstrated that two features of word processing efficiency, phonology and semantics, can be supported in different brain regions and, importantly, the way serving it in each region was different according to the feature of word processing. Our findings suggest that word processing efficiency can be achieved by in collaboration of multiple brain regions involved in language and general cognitive function structurally and functionally.
Allaert, F A; Hugue, C; Cazaubon, M; Renaudin, J M; Clavel, T; Escourrou, P
2011-06-01
The aim of this study was to compare the change in functional signs of venous insufficiency and venous refilling time measured by mercury strain-gauge plethysmography under the effects of the combination of Ruscus aculeatus, hesperidin methylchalcone and ascorbic acid (Cyclo 3 Fort). An open-label clinical trial conducted in 65 women presenting with CEAP class C2s and C3s assessment criteria. At D0 and D28, functional signs were measured on a visual analog scale (VAS), venous refilling time by mercury strain-gauge plethysmography and venous reflux by echo-Doppler method. Under treatment, venous refilling time increased from 11.7±4 s to 13.8±4.4 s with Δ of 26% (P<0.0001) and the percentage of patients showing improvement of functional symptoms ≥30% was significantly correlated (P=0.04) with the percentage of patients presenting an improvement in venous refilling time ≥10%. Improvement in subjective functional signs under treatment with Cyclo 3 Fort was correlated with objective plethysmographic parameter improvement. There-fore, this study contributes to objectively document the benefit of prescribing this venoactive drug to active women with CEAP class C2s to C3s.
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia.
Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K
2017-04-25
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.
Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory
Energy Technology Data Exchange (ETDEWEB)
Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)
2016-06-22
Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.
Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †
Directory of Open Access Journals (Sweden)
M. W. C. Dharma-wardana
2016-03-01
Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm
DEFF Research Database (Denmark)
Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard
2013-01-01
An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...... on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate....
Zang, Xiaoqin; Brown, Michael G; Godin, Oleg A
2015-09-01
Theoretical studies have shown that cross-correlation functions (CFs) of time series of ambient noise measured at two locations yield approximations to the Green's functions (GFs) that describe propagation between those locations. Specifically, CFs are estimates of weighted GFs. In this paper, it is demonstrated that measured CFs in the 20-70 Hz band can be accurately modeled as weighted GFs using ambient noise data collected in the Florida Straits at ∼100 m depth with horizontal separations of 5 and 10 km. Two weighting functions are employed. These account for (1) the dipole radiation pattern produced by a near-surface source, and (2) coherence loss of surface-reflecting energy in time-averaged CFs resulting from tidal fluctuations. After describing the relationship between CFs and GFs, the inverse problem is considered and is shown to result in an environmental model for which agreement between computed and simulated CFs is good.
Disc Degeneration Assessed by Quantitative T2* (T2 star) Correlated with Functional Lumbar Mechanics
Ellingson, Arin M.; Mehta, Hitesh; Polly, David W.; Ellermann, Jutta; Nuckley, David J.
2013-01-01
Study Design Experimental correlation study design to quantify features of disc health, including signal intensity and distinction between the annulus fibrosus (AF) and nucleus pulposus (NP), with T2* magnetic resonance imaging (MRI) and correlate with the functional mechanics in corresponding motion segments. Objective Establish the relationship between disc health assessed by quantitative T2* MRI and functional lumbar mechanics. Summary of Background Data Degeneration leads to altered biochemistry in the disc, affecting the mechanical competence. Clinical routine MRI sequences are not adequate in detecting early changes in degeneration and fails to correlate with pain or improve patient stratification. Quantitative T2* relaxation time mapping probes biochemical features and may offer more sensitivity in assessing disc degeneration. Methods Cadaveric lumbar spines were imaged using quantitative T2* mapping, as well as conventional T2-weighted MRI sequences. Discs were graded by the Pfirrmann scale and features of disc health, including signal intensity (T2* Intensity Area) and distinction between the AF and NP (Transition Zone Slope), were quantified by T2*. Each motion segment was subjected to pure moment bending to determine range of motion (ROM), neutral zone (NZ), and bending stiffness. Results T2* Intensity Area and Transition Zone Slope were significantly correlated with flexion ROM (p=0.015; p=0.002), ratio of NZ/ROM (p=0.010; p=0.028), and stiffness (p=0.044; p=0.026), as well as lateral bending NZ/ROM (p=0.005; p=0.010) and stiffness (p=0.022; p=0.029). T2* Intensity Area was also correlated with LB ROM (p=0.023). Pfirrmann grade was only correlated with lateral bending NZ/ROM (p=0.001) and stiffness (p=0.007). Conclusions T2* mapping is a sensitive quantitative method capable of detecting changes associated with disc degeneration. Features of disc health quantified with T2* predicted altered functional mechanics of the lumbar spine better than
TiO{sub 2} nanoparticle-induced ROS correlates with modulated immune cell function
Energy Technology Data Exchange (ETDEWEB)
Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L., E-mail: chaynes@umn.edu [University of Minnesota, Department of Chemistry (United States)
2012-12-15
Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO{sub 2}) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO{sub 2} exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO{sub 2} nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO{sub 2} nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.
Directory of Open Access Journals (Sweden)
Joost Smolders
Full Text Available BACKGROUND: In several autoimmune diseases, including multiple sclerosis (MS, a compromised regulatory T cell (Treg function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS patients. METHODOLOGY/PRINCIPAL FINDINGS: Serum levels of 25-hydroxyvitamin D (25(OHD were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OHD correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002. No correlation between 25(OHD levels and the number of Tregs was found. The IFN-gamma/IL-4 ratio (Th1/Th2-balance was more directed towards IL-4 in patients with favourable 25(OHD levels (R = -0.435, P = 0.023. CONCLUSIONS/SIGNIFICANCE: These results show an association of high 25(OHD levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity.
TiO2 nanoparticle-induced ROS correlates with modulated immune cell function
Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.
2012-12-01
Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.
Goyal, Saumitra; Naik, Monappa A; Tripathy, Sujit Kumar; Rao, Sharath K
2017-01-01
AIM To measure single baseline deep posterior compartment pressure in tibial fracture complicated by acute compartment syndrome (ACS) and to correlate it with functional outcome. METHODS Thirty-two tibial fractures with ACS were evaluated clinically and the deep posterior compartment pressure was measured. Urgent fasciotomy was needed in 30 patients. Definite surgical fixation was performed either primarily or once fasciotomy wound was healthy. The patients were followed up at 3 mo, 6 mo and one year. At one year, the functional outcome [lower extremity functional scale (LEFS)] and complications were assessed. RESULTS Three limbs were amputated. In remaining 29 patients, the average times for clinical and radiological union were 25.2 ± 10.9 wk (10 to 54 wk) and 23.8 ± 9.2 wk (12 to 52 wk) respectively. Nine patients had delayed union and 2 had nonunion who needed bone grafting to augment healing. Most common complaint at follow up was ankle stiffness (76%) that caused difficulty in walking, running and squatting. Of 21 patients who had paralysis at diagnosis, 13 (62%) did not recover and additional five patients developed paralysis at follow-up. On LEFS evaluation, there were 14 patients (48.3%) with severe disability, 10 patients (34.5%) with moderate disability and 5 patients (17.2%) with minimal disability. The mean pressures in patients with minimal disability, moderate disability and severe disability were 37.8, 48.4 and 58.79 mmHg respectively (P < 0.001). CONCLUSION ACS in tibial fractures causes severe functional disability in majority of patients. These patients are prone for delayed union and nonunion; however, long term disability is mainly because of severe soft tissue contracture. Intra-compartmental pressure (ICP) correlates with functional disability; patients with relatively high ICP are prone for poor functional outcome. PMID:28567342
Weissenbacher, Andreas; Kasess, Christian; Gerstl, Florian; Lanzenberger, Rupert; Moser, Ewald; Windischberger, Christian
2009-10-01
Resting-state data sets contain coherent fluctuations unrelated to neural processes originating from residual motion artefacts, respiration and cardiac action. Such confounding effects may introduce correlations and cause an overestimation of functional connectivity strengths. In this study we applied several multidimensional linear regression approaches to remove artificial coherencies and examined the impact of preprocessing on sensitivity and specificity of functional connectivity results in simulated data and resting-state data sets from 40 subjects. Furthermore, we aimed at clarifying possible causes of anticorrelations and test the hypothesis that anticorrelations are introduced via certain preprocessing approaches, with particular focus on the effects of regression against the global signal. Our results show that preprocessing in general greatly increased connection specificity, in particular correction for global signal fluctuations almost doubled connection specificity. However, widespread anticorrelated networks were only found when regression against the global signal was applied. Results in simulated data sets compared with result of human data strongly suggest that anticorrelations are indeed introduced by global signal regression and should therefore be interpreted very carefully. In addition, global signal regression may also reduce the sensitivity for detecting true correlations, i.e. increase the number of false negatives. Concluding from our results we suggest that is highly recommended to apply correction against realignment parameters, white matter and ventricular time courses, as well as the global signal to maximize the specificity of positive resting-state correlations.
Energy Technology Data Exchange (ETDEWEB)
Lopes, Agnaldo Jose [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Pedro Ernesto Univ. Hospital. Dept. of Respiratory Function]. E-mail: phel.lop@uol.com.br; Mogami, Roberto; Capone, Domenico; Jansen, Jose Manoel [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). School of Medical Sciences; Tessarollo, Bernardo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. of Radiology and Diagnostic Image; Melo, Pedro Lopes de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. of Biology
2008-05-15
Objective: To correlate tomographic findings with pulmonary function findings, as well as to compare chest X-ray findings with high-resolution computed tomography (HRCT) findings, in patients with silicosis. Methods: A cross-sectional study was conducted in 44 non-smoking patients without a history of tuberculosis. Chest X-ray findings were classified according to the International Labour Organization recommendations. Using a semiquantitative system, the following HRCT findings were measured: the full extent of pulmonary involvement; parenchymal opacities; and emphysema. Spirometry and forced oscillation were performed. Pulmonary volumes were evaluated using the helium dilution method, and diffusing capacity of the lung for carbon monoxide was assessed. Results: Of the 44 patients studied, 41 were male. The mean age was 48.4 years. There were 4 patients who were classified as category 0 based on X-ray findings and as category 1 based on HRCT findings. Using HRCT scans, we identified progressive massive fibrosis in 33 patients, compared with only 23 patients when X-rays were used. Opacity score was found to correlate most closely with airflow, DLCO and compliance. Emphysema score correlated inversely with volume, DLCO and airflow. In this sample of patients presenting a predominance of large opacities (75% of the individuals), the deterioration of pulmonary function was associated with the extent of structural changes. Conclusions: In the early detection of silicosis and the identification of progressive massive fibrosis, HRCT scans are superior to X-rays. (author)
Lee, Byung-Chul; Kim, Dongsup
2009-10-01
Diverse studies have shown that correlated mutation (CM) is an important molecular evolutionary process alongside conservation. However, attempts to find the residue pairs that co-evolve under the structural and/or functional constraints are complicated by the fact that a large portion of covariance signals found in multiple sequence alignments arise from correlations due to common ancestry and stochastic noise. Assuming that the background noise can be estimated from the coevolutionary relationships among residues, we propose a new measure for background noise called the normalized coevolutionary pattern similarity (NCPS) score. By subtracting NCPS scores from raw CM scores and combining the results with an entropy factor, we show that these new scores effectively reduce the background noise. To test the effectiveness of this method in detecting residue pairs coevolving under the structural constraints, two independent test sets were performed, showing that this new method performs better than the most accurate method currently available. In addition, we also applied our method to double mutant cycle experiments and protein-protein interactions. Although more rigorous tests are required, we obtained promising results that our method tended to explain those data better than other methods. These results suggest that the new noise-reduced CM scores developed in this study can be a valuable tool for the study of correlated mutations under the structural and/or functional constraints in proteins. http://pbil.kaist.ac.kr
Directory of Open Access Journals (Sweden)
Andrea MBV Franco
2014-01-01
Full Text Available Purpose: the pressure-to-cornea index (PCI was proposed in order to integrate intraocular pressure and central cornea thickness as a single-risk factor for glaucoma. The purpose of this study was to correlate the PCI with a structural and two functional measures of glaucoma. Setting: University Hospital in South America. Materials and Methods: Pressure-to-cornea index was calculated for 70 eyes of 36 subjects (glaucoma and suspects. Cup-to-disc (C/D ratio, mean deviation (MD and pattern standard deviation (PSD as recorded by Humphrey automated perimetry (SITA 24-2 were correlated with PCI (Pearson′s correlation coefficient. Results: Pearson′s correlation coefficient between PCI and C/D was 0.329 (95% confidence interval [95% CI], 0.09-0.526; P = 0.006; between PCI and MD was − 0.356 MD (95% CI, −0.549 to − 0.126; P = 0.003; and between PCI and PSD was − 0.215 (95% CI, −0.433 to 0.025; P = 0.07. Conclusion: In addition to serve as a single-risk factor, PCI can be used to stage glaucoma severity as well.
Directory of Open Access Journals (Sweden)
Yan Li
2017-11-01
Full Text Available Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF, this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.
Correlation of structure and function of the macula in patients with retinitis pigmentosa.
Battu, R; Khanna, A; Hegde, B; Berendschot, T T J M; Grover, S; Schouten, J S A G
2015-07-01
To correlate the structure of the macula, as measured by spectral-domain optical coherence tomography (SD-OCT) and function, as measured by microperimetry (MAIA) in patients with retinitis pigmentosa (RP) and relatively good visual acuity. Prospective, cross-sectional, non-intervention study. Patients with RP. Thirty patients with RP and good central visual acuity were identified. Each patient underwent SD-OCT of the macula and microperimetry. The images were overlaid using the custom-designed software. The retinal sensitivity by microperimetry was correlated with corresponding retinal thickness, as measured by the SD-OCT. ELM, COST, and IS/OS junction were scored as intact, disrupted, or absent. Comparing the retinal sensitivity on the MAIA with various measurements on the SD-OCT. The retinal sensitivity on the MAIA showed a significant correlation with total retinal thickness and outer retinal thickness on the SD-OCT. There was no association with either the inner retinal thickness or the choroidal thickness. ORT showed a statistically significant correlation with the anatomical classification of ELM (r=-0.76, Pmacula in patients with RP. These studies are important to establish surrogate markers that can be used as end points for various tests in future therapeutic clinical trials.
Avanzi, Osmar; Meves, Robert; Silber Caffaro, Maria Fernanda; Buarque de Hollanda, João Paris; Queiroz, Marcelo
2009-01-01
To assess the correlation between kyphosis and post-traumatic symptoms in patients undergoing conservative treatment for thoracolumbar burst fractures. A retrospective study was carried out with 36 patients meeting the inclusion criteria for this kind of fracture classified as Denis and Magerl's subtype A3 and treated with anti-gravitational casting or TLSO. The mean age of patients was 50.83 years, ranging from 13 to 83 years, being 20 male and 16 female subjects. The treatment outcome was evaluated based on the SF-36 questionnaire, on Denis scores for pain and work and Frankel clinical and neurological scale. The quantification of pain was based on the visual analogue scale for pain. The measurement of the residual kyphosis was obtained by the Cobb method at admission and at the end of the follow-up. A weak positive correlation (r = 0.563; p > 0.001) was found between residual kyphosis and pain score (EVA). No correlation was found between final kyphosis and SF-36 and Denis scores (p > 0.05). There is no evident correlation between residual kyphosis, functional outcome and patients' symptoms.
Directory of Open Access Journals (Sweden)
T. M. Hardig
2006-06-01
Full Text Available Ceanothus is a widely speciated genus with two sections that differ markedly in size, patterns of biomass allocation and reproductive strategies. On greenhouse-grown seedlings we tested whether divergence occurred in single traits or in suites of traits, and whether taxonomic affinity or the ability to fix nitrogen (N influenced the relationships among functional traits. Species of the subgenus Cerastes differed from species in the subgenus Ceanothus in the following characteristics: reproduction by seed rather than primarily resprouting, high rates of photosynthesis and high stomatal conductance, thick leaves, low root allocation, and high leaf allocation. Correlations of traits across the entire genus showed positive correlations among traits that maximize photosynthesis and tradeoffs between root allocation and carbon gain patterns frequently observed in other broad taxonomic comparisons. Trait correlations differed between the two subgenera (divergence in allocation-photosynthesis tradeoffs in Ceanothus and divergence of growth-related traits in Cerastes. Similarly, N-fixers, which were distributed broadly between the two subgenera, differed in trait correlations (primarily among traits related to photosynthesis from non-fixers (primarily among traits related to growth and allocation. These results indicate that 1 divergence in genus Ceanothus was associated with changes in entire suite of traits, rather than independent changes in individual traits and 2 evolution occurring under different environmental or nutritional circumstances alters the suites of traits exhibited by plants.
Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.
2017-04-01
Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.
Functional and nutritional status correlation in elderly patients with hip fracture
Directory of Open Access Journals (Sweden)
Gonzalo Ramón González González
2012-06-01
Full Text Available Introduction: Hip fractures in elderly patients are related to several factors, among which nutrition and functionality stand out. The presence of alterations in the nutritional state has been related directly with the functional state. Objective: To determine the previous functional state of the patient with a hip fracture, the nutritional state at the moment of admittance and the correlation between both parameters as risk factors for the fracture. Materials and methods: 78 elderly patients with a hip fractured were studied from February 1st, 2009 to December 31st of 2009. The functional and nutritional stated were analyzed. Descriptive statistics and inferential analysis were used with contingency tables to test association with c2. Results: 46.1% were functionally independent and 53.9% had functional impairment. 14.1% presented malnourishment, 48.7% were at risk of malnutrition and 37.2% had normal nutrition. Only the 36.7% with the “nutritional problem” (MNA24 who were independent.
Reinares, María; Bonnín, C Mar; Hidalgo-Mazzei, Diego; Colom, Francesc; Solé, Brisa; Jiménez, Esther; Torrent, Carla; Comes, Mercè; Martínez-Arán, Anabel; Sánchez-Moreno, José; Vieta, Eduard
2016-11-30
Functional improvement has become one of the aims of the treatment of bipolar disorder. However, scant attention has been given to family functioning, even though it has a role in the illness outcome and is affected by the disorder. The aims of this study were to compare family functioning reported by euthymic patients with bipolar disorder and healthy controls; explore the level of congruence in the perception of family environment between patients with bipolar disorder and their relatives; and analyse the relationship between clinical variables and family functioning. The sample comprised 82 adult euthymic subjects with bipolar disorder, 82 family caregivers of these patients and 47 healthy controls. Participants completed the Family Environment Scale. Results showed moderate correlations and a mean pattern almost identical between relatives' and patients' reported scores in family functioning subscales. There were significant differences between patients and controls, favourable for the latter, in the subscales cohesion (pfamily environment and clinical variables of severity. These findings contribute to increasing the understanding of family functioning in bipolar disorder and highlight the importance of family work. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Turki, Ahmed; Hayot, Maurice; Carnac, Gilles; Pillard, Fabien; Passerieux, Emilie; Bommart, Sébastien; Raynaud de Mauverger, Eric; Hugon, Gérald; Pincemail, Joel; Pietri, Sylvia; Lambert, Karen; Belayew, Alexandra; Vassetzky, Yegor; Juntas Morales, Raul; Mercier, Jacques; Laoudj-Chenivesse, Dalila
2012-09-01
Facioscapulohumeral muscular dystrophy (FSHD), the most frequent muscular dystrophy, is an autosomal dominant disease. In most individuals with FSHD, symptoms are restricted to muscles of the face, arms, legs, and trunk. FSHD is genetically linked to contractions of the D4Z4 repeat array causing activation of several genes. One of these maps in the repeat itself and expresses the DUX4 (the double homeobox 4) transcription factor causing a gene deregulation cascade. In addition, analyses of the RNA or protein expression profiles in muscle have indicated deregulations in the oxidative stress response. Since oxidative stress affects peripheral muscle function, we investigated mitochondrial function and oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD and age-matched healthy controls, and evaluated their association with physical performances. We show that specifically, oxidative stress (lipid peroxidation and protein carbonylation), oxidative damage (lipofuscin accumulation), and antioxidant enzymes (catalase, copper-zinc-dependent superoxide dismutase, and glutathione reductase) were higher in FSHD than in control muscles. FSHD muscles also presented abnormal mitochondrial function (decreased cytochrome c oxidase activity and reduced ATP synthesis). In addition, the ratio between reduced (GSH) and oxidized glutathione (GSSG) was strongly decreased in all FSHD blood samples as a consequence of GSSG accumulation. Patients with FSHD also had reduced systemic antioxidative response molecules, such as low levels of zinc (a SOD cofactor), selenium (a GPx cofactor involved in the elimination of lipid peroxides), and vitamin C. Half of them had a low ratio of gamma/alpha tocopherol and higher ferritin concentrations. Both systemic oxidative stress and mitochondrial dysfunction were correlated with functional muscle impairment. Mitochondrial ATP production was significantly correlated with both quadriceps endurance (T(LimQ)) and maximal
Ohnishi, Yu-Ya; Ten-No, Seiichiro
2016-10-15
Explicitly correlated second-order Green's function (GF2-F12) is presented and applied to polycyclic aromatic hydrocarbons (PAHs), oligothiophene, and porphyrins. GF2 suffers from slow convergence of orbital expansions as in the ordinary post Hartree-Fock methods in ab initio theory, albeit the method is capable of providing quantitatively accurate ionization energies (IE) near the complete basis set limit. This feature is significantly mitigated by introducing F12 terms of explicitly correlated electronic structure theory. It is demonstrated that GF2-F12 presents accurate IE with augmented triple-zeta quality of basis sets. The errors from experimental results are typically less than 0.15 eV for PAHs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A DMRG study of correlation functions in the Holstein-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Tezuka, Masaki [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan)]. E-mail: tezuka@cms.phys.s.u-tokyo.ac.jp; Arita, Ryotaro [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Aoki, Hideo [Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan)
2005-04-30
To explore superconductivity when both electron-electron and electron-phonon interactions coexist with the electron energy{approx}phonon energy, we have numerically studied the Holstein-Hubbard model, where electrons interacting with an on-site repulsion are coupled to Einstein phonons. We have adopted the density-matrix renormalization group (DMRG), and applied the pseudo-site method of Jeckelmann et al. We have implemented this with an improved algorithm to retain important states in the finite-system DMRG to obtain various correlation functions including the pairing correlation. We have compared the result with phase diagrams proposed in existing literature in the region where electron energy {approx}phonon energy.
Directory of Open Access Journals (Sweden)
Meyer Karin
2001-11-01
Full Text Available Abstract A random regression model for the analysis of "repeated" records in animal breeding is described which combines a random regression approach for additive genetic and other random effects with the assumption of a parametric correlation structure for within animal covariances. Both stationary and non-stationary correlation models involving a small number of parameters are considered. Heterogeneity in within animal variances is modelled through polynomial variance functions. Estimation of parameters describing the dispersion structure of such model by restricted maximum likelihood via an "average information" algorithm is outlined. An application to mature weight records of beef cow is given, and results are contrasted to those from analyses fitting sets of random regression coefficients for permanent environmental effects.
Correlation functions of Sp(2n) invariant higher-spin systems
Energy Technology Data Exchange (ETDEWEB)
Skvortsov, Evgeny [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich,Theresienstr. 37, D-80333 Munich (Germany); ebedev Institute of Physics,Leninsky ave 53, 119991, Moscow (Russian Federation); Sorokin, Dmitri [INFN - Sezione di Padova,via F. Marzolo 8, 35131 Padova (Italy); Tsulaia, Mirian [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley, Perth, WA 6009 (Australia)
2016-07-26
We study the general structure of correlation functions in an Sp(2n)-invariant formulation of systems of an infinite number of higher-spin fields. For n=4,8 and 16 these systems comprise the conformal higher-spin fields in space-time dimensions D=4,6 and 10, respectively, while when n=2, one deals with conventional D=3 conformal field theories of scalars and spinors. We show that for n>2 the Sp(2n) symmetry and current conservation makes the 3-point correlators of two (rank-one or rank-two) conserved currents with a scalar operator be that of free theory. This situation is analogous to the one in conventional conformal field theories, where conservation of higher-spin currents implies that the theories are free.
Early Executive Function and Mathematics Relations: Correlation Does Not Ensure Concordance.
Mazzocco, Michèle M M; Chan, Jenny Yun-Chen; Bock, Allison M
2017-01-01
In this chapter, we address one potentially overlooked component of the relation between executive function (EF) skills and early mathematics, a relation for which there is widespread empirical support. Evidence for this relation has, thus far, been largely correlational. Here we emphasize that because positive correlations do not guarantee concordance among all members of a sample or population, a small but meaningful number of children may either fare well in mathematics despite poor EF skills, or may have strong EF skills despite weak mathematics skills. We propose that attention to different profiles of discordance for EF and mathematics may help identify individualized learning needs for students at risk for mathematics difficulties and disabilities. © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Werner Mark
2008-08-01
Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.
A measurement of the faint source correlation function in the GOODS and UDF surveys
Morganson, Eric; Blandford, Roger
2009-09-01
We present a stable procedure for defining and measuring the two point angular autocorrelation function, w(θ) = [θ/θ0(V)]-Γ, of faint (25 < V < 29), barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index Γ ~ 2.5 and a θ0 = 10-0.1(V-25.8) arcsec. This is very different from the values of Γ ~ 0.7 and θ0(r) = 10-0.4(r-21.5) arcsec associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.
Bukowska, Danuta M; Wan, Sue Ling; Chew, Avenell L; Chelva, Enid; Tang, Ivy; Mackey, David A; Chen, Fred K
2017-01-01
To illustrate altered fundus autofluorescence in rubella retinopathy and to investigate their relationships with photoreceptor structure and function using multimodal imaging. The authors report four cases of rubella retinopathy aged 8, 33, 42, and 50 years. All patients had dilated clinical fundus examination; wide-field color photography; blue, green, and near-infrared autofluorescence imaging and spectral domain optical coherence tomography. Two patients also underwent microperimetry and adaptive optics imaging. En face optical coherence tomography, cone mosaic, and microperimetry were coregistered with autofluorescence images. The authors explored the structure-function correlation. All four patients had a "salt-and-pepper" appearance on dilated fundus examination and wide-field color photography. There were variable-sized patches of hypoautofluorescence on both blue and near-infrared excitation in all four patients. Wave-guiding cones were visible and retinal sensitivity was intact over these regions. There was no correlation between hypoautofluorescence and regions of attenuated ellipsoid and interdigitation zones. Hyperautofluorescent lesions were also noted and some of these were pseudo-vitelliform lesions. Patchy hypoautofluorescence on near-infrared excitation can be a feature of rubella retinopathy. This may be due to abnormal melanin production or loss of melanin within retinal pigment epithelium cells harboring persistent rubella virus infection. Preservation of the ellipsoid zone, wave-guiding cones, and retinal sensitivity within hypoautofluorescent lesions suggest that these retinal pigment epithelium changes have only mild impact on photoreceptor cell function.
Gupta, Samriti; Garg, Kapil; Singh, Jagdish
2015-12-01
To evaluate the functional independence of children with hemophilia A and its correlation to radiological joint score. The present cross sectional study was conducted at SPMCHI, SMS Medical College, Jaipur, India. Children in the age group of 4-18 y affected with severe, moderate and mild hemophilia A and with a history of hemarthrosis who attended the OPD, emergency or got admitted in wards of SPMCHI, SMS Medical College were examined. Musculoskeletal function was measured in 98 patients using Functional Independence Score in Hemophilia (FISH) and index joints (joints most commonly affected with repeated bleeding) were assessed radiologically with plain X rays using Pettersson score. The mean FISH score was 28.07 ± 3.90 (range 17-32) with squatting, running and step climbing as most affected tasks. The mean Pettersson score was 3.8 ± 3.2. A significant correlation was found between mean Pettersson score and FISH (r = -0.875, P hemophilia A.
Dong, Lixin; He, Lian; Lin, Yu; Shang, Yu; Yu, Guoqiang
2013-02-01
Near-infrared diffuse correlation spectroscopy (DCS) has recently been employed for noninvasive acquisition of blood flow information in deep tissues. Based on the established correlation diffusion equation, the light intensity autocorrelation function detected by DCS is determined by a blood flow index αD(B), tissue absorption coefficient μ(a), reduced scattering coefficient μ'(s), and a coherence factor β. This study is designed to investigate the possibility of extracting multiple parameters such as μ(a), μ'(s), β, and αD(B) through fitting one single autocorrelation function curve and evaluate the performance of different fitting methods. For this purpose, computer simulations, tissue-like phantom experiments, and in vivo tissue measurements were utilized. The results suggest that it is impractical to simultaneously fit αD(B) and μ(a) or αD(B) and μ'(s) from one single autocorrelation function curve due to the large crosstalk between these paired parameters. However, simultaneously fitting β and αD(B) is feasible and generates more accurate estimation with smaller standard deviation compared to the conventional two-step fitting method (i.e., first calculating β and then fitting αD(B)). The outcomes from this study provide a crucial guidance for DCS data analysis.
Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study.
Rocca, Maria A; Valsasina, Paola; Hulst, Hanneke E; Abdel-Aziz, Khaled; Enzinger, Christian; Gallo, Antonio; Pareto, Debora; Riccitelli, Gianna; Muhlert, Nils; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz; Tedeschi, Gioacchino; Arévalo, Maria J; Filippi, Massimo
2014-12-01
In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto-parieto-temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies. © 2014 Wiley Periodicals, Inc.
A cross-correlation objective function for least-squares migration and visco-acoustic imaging
Dutta, Gaurav
2014-08-05
Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ˜2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
Reiter, Ursula; Reiter, Gert; Kovacs, Gabor; Adelsmayr, Gabriel; Greiser, Andreas; Olschewski, Horst; Fuchsjäger, Michael
2017-01-01
To analyze alterations in left ventricular (LV) myocardial T1 times in patients with pulmonary hypertension (PH) and to investigate their associations with ventricular function, mass, geometry and hemodynamics. Fifty-eight patients with suspected PH underwent right heart catheterization (RHC) and 3T cardiac magnetic resonance imaging. Ventricular function, geometry and mass were derived from cine real-time short-axis images. Myocardial T1 maps were acquired by a prototype modified Look-Locker inversion-recovery sequence in short-axis orientations. LV global, segmental and ventricular insertion point (VIP) T1 times were evaluated manually and corrected for blood T1. Septal, lateral, global and VIP T1 times were significantly higher in PH than in non-PH subjects (septal, 1249 ± 58 ms vs. 1186 ± 33 ms, p T1 (r = 0.72). Septal, lateral and global T1 showed strong correlations with VIP T1 (r = 0.81, r = 0.59 and r = 0.75, respectively). In patients with PH, T1 times in VIPs and in the entire LV myocardium are elevated. LV eccentricity strongly correlates with VIP T1 time, which in turn is strongly associated with T1 time changes in the entire LV myocardium. • Native T1 mapping detects left ventricular myocardial alterations in pulmonary hypertension • In pulmonary hypertension, native T1 times at ventricular insertion points are increased • These T1 times correlate strongly with left ventricular eccentricity • In pulmonary hypertension, global and segmental myocardial T1 times are increased • Global, segmental and ventricular insertion point T1 times are strongly correlated.
Bronchial asthma: correlation of quantitative CT and the pulmonary function test
Energy Technology Data Exchange (ETDEWEB)
Park, Gun; Jin, Gong Yong; Jeon, Su Bin; Han, Young Min [Chonbuk National University Hospital, Research Institute of Clinical Medicine, Jeonju (Korea, Republic of)
2007-02-15
The purpose of this study was to assess the availability of quantitative computed tomography (QCT) in the evaluation asthma patients and to correlate its use with the pulmonary function test (PFT). Thirty asthmatic patients and thirty normal volunteers were prospectively evaluated by the use of HRCT and the PFT. By using 16 slice MDCT, HRCT was performed from the apex to the base of both lungs at the end inspiration and end expiration periods in all patients and images were reconstructed to a thickness of 1 mm (window level: -750 HU, window width: 1,500 HU). We analyzed each image for the whole lung using the Pulmo CT program. PFTs including FVC and FEV1 were performed one week prior and one week after the completion of a HRCT. The Difference of QCT (the mean lung density and subrange ratio) between volunteers and asthmatic patients was analyzed by using the Student's t-test. Spearman's correlation test was used to determine the association between PFT and QCT. The mean lung density (MLD) and subrange ratio were lower in asthmatic patients than in volunteers for and expiration and no difference was seen between asthmatic patients and volunteers for end inspiration. FVC and FEV1 were lower in asthmatic patients than in volunteers. A decrease in FVC and FEV1 correlated with changes in the MLD and subrange ratio for end expiration. QCT such as MLD and the subrange ratio using HRCT can be used to indirectly assess the pulmonary function of the asthma patient. The PFT seems to correlate better with the MLD and subrange ratio for expiratory QCT of the asthma patient than with inspiratory QCT.
Energy Technology Data Exchange (ETDEWEB)
Liu, Jian; Miller, William H.
2007-07-10
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the 2nd order WD based on 'Winger trajectories', and the full Donoso-Martens dynamics (full DMD) and the 2nd order DMD based on 'Donoso-Martens trajectories'--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of these four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (non-linear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
Neural correlates of childhood trauma with executive function in young healthy adults.
Lu, Shaojia; Pan, Fen; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang
2017-10-03
The aim of this study was to investigate the relationship among childhood trauma, executive impairments, and altered resting-state brain function in young healthy adults. Twenty four subjects with childhood trauma and 24 age- and gender-matched subjects without childhood trauma were recruited. Executive function was assessed by a series of validated test procedures. Localized brain activity was evaluated by fractional amplitude of low frequency fluctuation (fALFF) method and compared between two groups. Areas with altered fALFF were further selected as seeds in subsequent functional connectivity analysis. Correlations of fALFF and connectivity values with severity of childhood trauma and executive dysfunction were analyzed as well. Subjects with childhood trauma exhibited impaired executive function as assessed by Wisconsin Card Sorting Test and Stroop Color Word Test. Traumatic individuals also showed increased fALFF in the right precuneus and decreased fALFF in the right superior temporal gyrus. Significant correlations of specific childhood trauma severity with executive dysfunction and fALFF value in the right precuneus were found in the whole sample. In addition, individuals with childhood trauma also exhibited diminished precuneus-based connectivity in default mode network with left ventromedial prefrontal cortex, left orbitofrontal cortex, and right cerebellum. Decreased default mode network connectivity was also associated with childhood trauma severity and executive dysfunction. The present findings suggest that childhood trauma is associated with executive deficits and aberrant default mode network functions even in healthy adults. Moreover, this study demonstrates that executive dysfunction is related to disrupted default mode network connectivity.
Leet, Arabella I; Wientroub, Shlomo; Kushner, Harvey; Brillante, Beth; Kelly, Marilyn H; Robey, Pamela Gehron; Collins, Michael T
2006-04-01
Polyostotic fibrous dysplasia has a wide clinical spectrum, with substantial variation between patients in terms of orthopaedic manifestations, including the number of fractures, the degree of deformity of the limbs, and the presence of scoliosis. Data from bone scans, skeletal surveys, and records were correlated with the Pediatric Outcomes Data Collection Instrument scales to examine whether any specific facet of orthopaedic involvement could be related to functional abilities. All patients who were sixteen years of age or younger and who were part of an ongoing natural history study of polyostotic fibrous dysplasia (including McCune-Albright syndrome) were sent an age-appropriate Pediatric Outcomes Data Collection Instrument outcomes tool. The medical records and radiographs of the patients who returned forms were reviewed. Radiographic measurements of scoliosis, the femoral neck-shaft angle, and limb deformities were then performed. The extent of skeletal involvement with polyostotic fibrous dysplasia (disease burden) was assessed on bone scans with use of a validated tool. A chart review was performed to determine the fracture rate, the use of bisphosphonates, and the endocrine status. These measurements were correlated with the Pediatric Outcomes Data Collection Instrument scores. The outcomes tool was sent to twenty-seven patients and the completed instrument was returned by twenty patients, for a response rate of 74%. The parent-child form was filled out for twelve patients and the parent-adolescent form was filled out for eight patients. The mean standardized Pediatric Outcomes Data Collection Instrument scores for all twenty patients were lowest for sports (62; range, 14 to 100) and happiness (72; range, 25 to 100). Adolescents and parents disagreed with regard to sports (with adolescent scores being higher than parental scores) and pain (with parental scores being higher than adolescent scores). However, the overall global scores correlated well between
Davey, C G; Whittle, S; Harrison, B J; Simmons, J G; Byrne, M L; Schwartz, O S; Allen, N B
2015-04-01
The amygdala and subgenual anterior cingulate cortex (sACC) are key brain regions for the generation of negative affect. In this longitudinal fMRI study of adolescents we investigated how amygdala-sACC connectivity was correlated with negative affectivity (NA) both cross-sectionally and longitudinally, and examined its relationship to the onset of first-episode depression. Fifty-six adolescents who were part of a larger longitudinal study of adolescent development were included. They had no history of mental illness at the time of their baseline scan (mean age 16.5 years) and had a follow-up scan 2 years later (mean age 18.8 years). We used resting-state functional-connectivity MRI to investigate whether cross-sectional and change measures of amygdala-sACC connectivity were (i) correlated with NA and its change over time, and (ii) related to the onset of first-episode depression. The magnitude of amygdala connectivity with sACC showed significant positive correlation with NA at both time-points. Further analysis confirmed that change in amygdala-sACC connectivity between assessments was correlated with change in NA. Eight participants developed a first episode of depression between the baseline and follow-up assessments: they showed increased amygdala-sACC connectivity at follow-up. Amygdala-sACC connectivity is associated with NA in adolescence, with change in connectivity between these regions showing positive correlation with change in NA. Our observation that the onset of depression was associated with an increase in connectivity between the regions provides support for the neurobiological 'scar' hypothesis of depression.
Energy Technology Data Exchange (ETDEWEB)
Cramer, B.; Pushpanathan, C. [Janeway Child Health Centre, St. Johns`s (Canada). Radiology Dept.; Husa, L. [Memorial Univ. of Newfoundland, St. Johns`s (Canada)
1998-01-01
Objective. The purpose of this study was to induce nephrocalcinosis (NC) in rabbits with phosphate, vitamin D, oxalate and furosemide, to determine the effect of renal function and to correlate detection of ultrasound (US) and computed tomography (CT) with pathology. Materials and methods. Seventy-five immature New Zealand white rabbits were divided into five groups of 15. In each group, 5 animals were controls and 10 were given oral phosphate, furosemide, vitamin D or oxalate, furosemide, vitamin D or oxalate. Unilateral nephrectomy was performed at 3-6 weeks, and 5 rabbits of each test group were withdrawn from the substance. Weekly US was performed as well as US, CT and measurement of serum creatinine at the time of nephrectomy and prior to planned demise. Results. A todal of 140 kidneys in 75 rabbits had both pathological and US correlation, with CT correlation in 126. Forty rabbits developed nephrocalcinosis with early (post nephrectomy at 3-6 weeks) or late (post demise at 10-20 weeks) phatological correlation obtained in 53 kidneys. Forty-one of these kidneys were from test animals: 23 developed NC early, 18 late. Twelve controls developed NC; 4 early, 8 late. Comparing US and CT to phatology, the sensitivity was 96% for US, 64% for CT. Specificity was 85% for US and 96% for CT. In 109 kidneys, information on serum creatinine level was available to correlate with phatology. The mean creatinine level was 138 mmol/l for those with NC and 118 mmol/l for those without NC (P<0.001).
Soluble transferrin receptor in sickle cell diseases: correlation with spleen function
Directory of Open Access Journals (Sweden)
Helena Zerlotti Wolf Grotto
Full Text Available OBJECTIVE: To correlate spleen function with soluble transferrin receptor (sTfR levels and red cell ferritin (RCF values in patients with sickle cell diseases. DESIGN: Prospective study. LOCATION: University Hospital, School of Medical Sciences, State