WorldWideScience

Sample records for sharsphooter gwss homalodisca

  1. Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis

    Science.gov (United States)

    BACKGROUND: Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. Area-wide applications of neonicotinoid insecticides have suppressed GWSS populati...

  2. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  3. Characterization of cell lines developed from the glassy-winged sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Kamita, Shizuo G; Do, Zung N; Samra, Aman I; Hagler, James R; Hammock, Bruce D

    2005-01-01

    Four continuous cell lines were established from the embryos of the glassy-winged sharpshooter, Homalodisca coagulata (Say), an economically important insect vector of bacterial pathogens of grape, almond, citrus, oleander, and other agricultural and ornamental plantings. The cell lines were designated GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH. The GWSS-Z10, GWSS-Z15, and GWSS-G3 lines were cultured in Ex-Cell 401 medium supplemented with 10% fetal bovine serum (FBS), whereas the GWSS-LH line was cultured in LH medium supplemented with 20% FBS. The cell lines were characterized in terms of their morphology, growth, protein composition, and polymerase chain reaction- amplification patterns of their chromosomal deoxyribonucleic acid. The population doubling times of GWSS-Z10, GWSS-Z15, GWSS-G3, and GWSS-LH were 46.2, 90.9, 100.3, and 60.2 h, respectively. These lines should be useful for the study of insect-pathogenic viruses of leafhoppers, aphids, treehoppers, and other related insects as well as plant-pathogenic viruses that are transmitted by these insects.

  4. Seasonal Population Dynamics of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) in Sweet Orange Trees Maintained under Continuous Deficit Irrigation

    Science.gov (United States)

    A two-year study was conducted in a citrus orchard [Citrus sinensis (L.) Osbeck cv. ‘Valencia’] to determine influence of plant water stress on population dynamics of glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop...

  5. Effects of kaolin particle film and imidacloprid on glassy-winged sharpshooter (Homalodisca vitripennis) (Hemiptera: Cicadellidae)populations and the prevention of spread of Xylella fastidiosa in grape

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), was introduced into California and soon became a major pest of important agronomic, horticultural, landscape, ornamental crops and native trees in California. This pest feeds readily on grape and, in doing so, transmits X. fastidio...

  6. Glassy-winged sharpshooters (GWSS) are not GWSS: Differential Reproductive Maturity between Allopatric Californian Populations

    Science.gov (United States)

    Homalodisca vitripennis (Germar) is native to southeastern U.S. and northeastern Mexico. It was detected in southern California in the late 1980s and in the San Joaquin Valley in 1999, where it transmits the bacterium Xylella fastidiosa Wells et al. to grapevines and other crops. The reproductive ...

  7. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available The glassy-winged sharpshooter (GWSS Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs.

  8. Playback interference of glassy-winged sharp shooter communication

    Science.gov (United States)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  9. Propagation of Homalodisca Coagulata Virus-01 via Homalodisca Vitripennis cell culture

    Science.gov (United States)

    The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa, a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevin...

  10. Detection and typing of Xylella fastidiosa from glassy-winged sharpshooter for Pierce’s disease epidemiology

    Science.gov (United States)

    Epidemiology of Pierce’s disease of grape, caused by the bacterial pathogen Xylella fastidiosa (Xf), is largely dependent on populations of insect vectors such as the invasive glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis). In the grape-growing regions of the southern San Joaquin Valley...

  11. EXPERIMENTAL ANALYSIS OF BIOLOGICAL PARAMETERS AND VECTOR ABILITY OF GLASSY-WINGED SHARPSHOOTERS FROM ALLOPATRIC POPULATIONS IN CALIFORNIA

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), is native to the southeastern United States and northeastern Mexico. It was detected in southern California in the late 1980s and in the San Joaquin Valley in 1999, where it transmits the bacterium Xylella fastidiosa to grapev...

  12. Phytoreovirus-like sequences isolated from salivary glands of the glassy-winged sharpshooter Homolodisca vitripennis (Hemiptera: Cicadellidae)

    International Nuclear Information System (INIS)

    Katsar, C.S.; Hunter, W.B.; Sinisterra, X.H.

    2007-01-01

    The salivary glands of the Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis Germar 1821, (syn. H. coagulata, Hemiptera: Cicadellidae) were collected and used to produce a cDNA library. Examination by BLASTX analyses identified 2 viral sequences, one a 610-base pair fragment and a second 839-base pair fragment, both of which had significant homology to viruses within the genus Phytoreovirus. Resequencing of the fragments confirmed sequence validities. These sequences were used for in silico protein translation and BLASTP analysis confirming the established homology. While the GWSS is the primary vector of Pierce's disease of grapes, this is the first report that GWSS may be a vector of a phytoreoviruses. Phylogenetic and homology comparisons with BLASTX, BLASTP, and PAUP analyses indicated that the viral sequences isolated from GWSS were closely related to the viruses in the Family Reoviridae, Genus Phytoreovirus, specifically Rice Dwarf Phytoreovirus (RDV). RDV is the only plant reovirus that is not limited to the phloem. Phytoreoviruses are transmitted in a propagative manner by cicadellid leafhoppers (Hemiptera: Cicadellidae), which acquire and transmit them during feeding. Phytoreoviruses have been reported from Agallian, Agalliopsis, Nephotettix, and Recilia, genera of leafhoppers, with evidence for transovarial transmission. The GWSS, although considered to feed primarily from the xylem, ingests from other plant tissues, such as the phloem and mesophyll during probing similar to other leafhoppers. The feeding behavior and wide host range of the GWSS provides an overlapping condition for these two organisms, leafhopper and virus. GWSS will feed from grasses as a transitory host, and on herbaceous and woody plants as primary hosts, which may favor the acquisition and transmission of Phytoreovirus by this leafhopper. Monitoring for an increase of Phytoreovirus spread in graminaceous crops that are in proximity to vineyards or tree crop orchards, where

  13. Differential reproductive maturity between allopatric populations of Homalodisca vitripennis (Hemiptera: Cicadellidae) in California

    Science.gov (United States)

    Homalodisca vitripennis (Germar) is native to southeastern U.S. and northeastern Mexico. It was detected in southern California in the late 1980s and in the San Joaquin Valley in 1999, where it transmits the bacterium Xylella fastidiosa Wells et al. to grapevines and other crops. The reproductive ...

  14. First record of the genus Homalodisca (Hemiptera: Cicadellidae from Argentina and redescription of the female of H. ignorata Primer registro del género Homalodisca (Hemiptera: Cicadellidae en Argentina y redescripción de la hembra de H. ignorata

    Directory of Open Access Journals (Sweden)

    Gimena Dellapé

    2011-12-01

    Full Text Available The genus Homalodisca Stål and the species H. ignorata are recorded for the first time in Argentina, from specimens collected in Misiones province. This contribution adds diagnostic characters of the female of H. ignorata and compiles information about the geographical distribution and association with diseases of all known species of the genus.El género Homalodisca Stål y la especie H. ignorata Melichar son citados por primera vez en Argentina, a partir de ejemplares colectados en la provincia de Misiones. En esta contribución, se adicionan caracteres diagnósticos de la hembra de H. ignorata y se reúne información acerca de la distribución geográfica y la asociación con enfermedades de todas las especies conocidas del género.

  15. Temporal patterns in Homalodisca spp. (Hemiptera: Cicadellidae) oviposition on southern California citrus and jojoba.

    Science.gov (United States)

    Al-Wahaibi, Ali K; Morse, Joseph G

    2010-02-01

    A detailed study of the distribution of egg masses of Homalodisca vitripennis (Germar) and H. liturata Ball was done across a 2-yr period (2001-2003) on six host plants in southern California (Marsh grapefruit, Lisbon lemon, Washington navel, Dancy tangerine, rough lemon, and jojoba in Riverside; jojoba in Desert Center). The majority of egg masses in Riverside belonged to H. vitripennis (84-100%), whereas in Desert Center, all Homalodisca egg masses were H. liturata. Oviposition in Riverside occurred in two discrete periods, a late winter and spring period (mid-February to late May), followed by a short interval of very low oviposition during most of June, and then a summer period (late June to late September) followed by a relatively long period of very low oviposition in fall and early winter (October to mid-February). Levels of oviposition during the late winter-spring period were similar to those during the summer despite an observed larger population of adults during the latter period. Moreover, egg clutch size for H. vitripennis was generally greater in spring than during summer and was generally higher than that for H. liturata, especially on Riverside jojoba. Larger egg clutch size was seen on grapefruit than on lemon, navel, and tangerine during summer. There appeared to be temporal host shifts in oviposition; most evident was the shift from relatively high rates of oviposition on lemon and tangerine in late winter-early spring to relatively higher rates of oviposition on grapefruit and navel during summer.

  16. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa

    Science.gov (United States)

    The glassy-winged sharpshooter, Homalodisca vitripennis, is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa, the causal agent of several plant diseases in the Americas. While the role of plant water stress on the population density and dispersal of H. vitripennis has been studie...

  17. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae)

    Science.gov (United States)

    Homalodisca vitripennis, one of the main vectors of Xylella fastidiosa, is associated with citrus plantings in California, USA. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce’s disease (PD). An analysis of the pattern and rate of movement ...

  18. DETECTING SELECTION IN NATURAL POPULATIONS: MAKING SENSE OF GENOME SCANS AND TOWARDS ALTERNATIVE SOLUTIONS

    Science.gov (United States)

    Haasl, Ryan J.; Payseur, Bret A.

    2016-01-01

    Genomewide scans for natural selection (GWSS) have become increasingly common over the last 15 years due to increased availability of genome-scale genetic data. Here, we report a representative survey of GWSS from 1999 to present and find that (i) between 1999 and 2009, 35 of 49 (71%) GWSS focused on human, while from 2010 to present, only 38 of 83 (46%) of GWSS focused on human, indicating increased focus on nonmodel organisms; (ii) the large majority of GWSS incorporate interpopulation or interspecific comparisons using, for example FST, cross-population extended haplotype homozygosity or the ratio of nonsynonymous to synonymous substitutions; (iii) most GWSS focus on detection of directional selection rather than other modes such as balancing selection; and (iv) in human GWSS, there is a clear shift after 2004 from microsatellite markers to dense SNP data. A survey of GWSS meant to identify loci positively selected in response to severe hypoxic conditions support an approach to GWSS in which a list of a priori candidate genes based on potential selective pressures are used to filter the list of significant hits a posteriori. We also discuss four frequently ignored determinants of genomic heterogeneity that complicate GWSS: mutation, recombination, selection and the genetic architecture of adaptive traits. We recommend that GWSS methodology should better incorporate aspects of genomewide heterogeneity using empirical estimates of relevant parameters and/or realistic, whole-chromosome simulations to improve interpretation of GWSS results. Finally, we argue that knowledge of potential selective agents improves interpretation of GWSS results and that new methods focused on correlations between environmental variables and genetic variation can help automate this approach. PMID:26224644

  19. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available BACKGROUND: The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS: Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5 with known proteins. We assigned Gene Ontology (GO terms, Kyoto Encyclopedia of Genes and Genomes (KEGG annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS: Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that

  20. Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation.

    Science.gov (United States)

    Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G

    2009-06-01

    A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.

  1. Effects of citrus and avocado irrigation and nitrogen-form soil amendment on host selection by adult Homalodisca vitripennis (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Nadel, H; Seligmann, R; Johnson, M W; Hagler, J R; Stenger, D C; Groves, R L

    2008-06-01

    Host plant water status is thought to influence dispersal of the xylophagous leafhopper Homalodisca vitripennis Germar, especially where plants are grown under high evaporative demand. Preference by adult H. vitripennis for plants grown under different water deficit and nitrogen form fertilization regimens was studied under laboratory conditions. Leafhopper abundance and ovipositional preference were studied on potted 'Washington navel' orange and 'Haas' avocado in cage choice tests, and feeding rate was estimated using excreta produced by insects confined on plants. A similar study compared responses to citrus treated with 1:1 and 26:1 ratios of fertigated nitrate-N to ammonium-N. The insects were more abundant, oviposited, and fed significantly more on surplus-irrigated plants than on plants under moderate continuous deficit irrigation except avocado feeding, which was nearly significant. Plants exposed to drought became less preferred after 3 and 7 d in avocado and citrus, respectively. Citrus xylem fluid tension at this point was estimated at 0.93 MPa. A corresponding pattern of decline in feeding rate was observed on citrus, but on avocado, feeding rate was low overall and not statistically different between treatments. No statistical differences in abundance, oviposition, or feeding were detected on citrus fertigated with 26:1 or 1:1 ratios of nitrate-N to ammonium-N. Feeding occurred diurnally on both plant species. Discussion is provided on the potential deployment of regulated deficit irrigation to manage H. vitripennis movement as part of a multitactic effort to minimize the risk of disease outbreaks from Xylella fastidiosa Wells et al. in southern California agriculture.

  2. Proximity to citrus influences Pierce's disease in Temecula Valley vineyards

    OpenAIRE

    Perring, Thomas M.; Farrar, Charles A.; Blua, Matthew

    2001-01-01

    Pierce's disease has caused extensive losses to grapes in the Temecula Valley. The primary vector of Pierce's disease in the region is the glassy-winged sharpshooter (GWSS), which has been found in large numbers in citrus trees. We examined the role of citrus in the Temecula Valley Pierce's disease epidemic and found that citrus groves have influenced the incidence and severity of Pierce's disease in grapes. Because GWSS inhabit citrus in large numbers, California grape growers should take ad...

  3. Anterior foregut microbiota of the glassy-winged sharpshooter explored using deep 16S rRNA gene sequencing from individual insects.

    Directory of Open Access Journals (Sweden)

    Elizabeth E Rogers

    Full Text Available The glassy-winged sharpshooter (GWSS is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium of sharpshooters, where it may interact with other naturally-occurring bacterial species. To evaluate such interactions, a comprehensive list of bacterial species associated with the sharpshooter cibarium and precibarium is needed. Here, a survey of microbiota associated with the GWSS anterior foregut was conducted. Ninety-six individual GWSS, 24 from each of 4 locations (Bakersfield, CA; Ojai, CA; Quincy, FL; and a laboratory colony, were characterized for bacteria in dissected sharpshooter cibaria and precibaria by amplification and sequencing of a portion of the 16S rRNA gene using Illumina MiSeq technology. An average of approximately 150,000 sequence reads were obtained per insect. The most common genus detected was Wolbachia; sequencing of the Wolbachia ftsZ gene placed this strain in supergroup B, one of two Wolbachia supergroups most commonly associated with arthropods. X. fastidiosa was detected in all 96 individuals examined. By multilocus sequence typing, both X. fastidiosa subspecies fastidiosa and subspecies sandyi were present in GWSS from California and the colony; only subspecies fastidiosa was detected in GWSS from Florida. In addition to Wolbachia and X. fastidiosa, 23 other bacterial genera were detected at or above an average incidence of 0.1%; these included plant-associated microbes (Methylobacterium, Sphingomonas, Agrobacterium, and Ralstonia and soil- or water-associated microbes (Anoxybacillus, Novosphingobium, Caulobacter, and Luteimonas. Sequences belonging to species of the family Enterobacteriaceae also were detected but it was not possible to assign these to individual genera. Many of these species likely interact with X. fastidiosa in the

  4. Feeding and development of the glassy-winged sharpshooter, Homalodisca vitripennis, on Australian native plant species and implications for Australian biosecurity.

    Directory of Open Access Journals (Sweden)

    Anna A Rathé

    Full Text Available In any insect invasion the presence or absence of suitable food and oviposition hosts in the invaded range is a key factor determining establishment success. The glassy-winged sharpshooter, Homalodisca vitripennis, is an important insect vector of the xylem-limited bacterial plant pathogen, Xylella fastidiosa, which causes disease in numerous host plants including food and feedstock crops, ornamentals and weeds. Both the pathogen and the vector are native to the Americas and are considered to be highly invasive. Neither has been detected in Australia. Twelve Australian native plant species present in the USA were observed over two years for suitability as H. vitripennis feeding, oviposition and nymph development hosts. Hosts providing evidence of adult or nymph presence were Leptospermum laevigatum, Acacia cowleana, Eremophila divaricata, Eucalyptus wandoo, Hakea laurina, Melaleuca laterita and Swainsona galegifolia. An oviposition-suitability field study was conducted with citrus, a favoured oviposition host, as a positive control. Citrus and L. laevigatum, A. cowleana, B. ericifolia×B. spinulosa, C. pulchella, E. divaricata, E. wandoo, H. laurina, and S. galegifolia were found to be oviposition hosts. Egg parasitism by the mymarid parasitoid Gonatocerus ashmeadi was observed on all Australian plants. A number of Australian plants that may facilitate H. vitripennis invasion have been identified and categorised as 'high risk' due to their ability to support all three life stages (egg, nymph and adult of the insect in the field (L. laevigatum, A. cowleana, E. divaricata, H. laurina, and S. galegifolia. The implications of these host status and natural enemy research findings are discussed and placed in an Australian invasion context.

  5. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa.

    Science.gov (United States)

    Krugner, Rodrigo; Backus, Elaine A

    2014-02-01

    ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa Wells et al., a plant-infecting bacterium that causes several plant diseases in the Americas. Although the role of plant water stress on the population density and dispersal ofH. vitripennis has been studied, nothing is known about the effects of plant water stress on the transmission of X. fastidiosa by H. vitripennis. A laboratory study was conducted to determine the influence of plant water stress on the sharpshooter stylet probing behaviors associated with the acquisition and inoculation of X. fastidiosa. Electrical penetration graph was used to monitor H. vitripennis feeding behaviors for 20-h periods on citrus [Citrus sinensis (L.) Osbeck] and almond [Prunus dulcis (Miller) D.A. Webb] plants subjected to levels of water stress. Adult H. vitripennis successfully located xylem vessels, then performed behaviors related to the evaluation of the xylem cell and fluid, and finally ingested xylem fluid from citrus and almond plants under the tested fluid tensions ranging from -5.5 to -33.0 bars and -6.0 to -24.5 bars, respectively. In general, long and frequent feeding events associated with the acquisition and inoculation of X. fastidiosa were observed only in fully irrigated plants (i.e., >-10 bars), which suggests that even low levels of plant water stress may reduce the spread of X. fastidiosa. Results provided insights to disease epidemiology and support the hypothesis that application of regulated deficit irrigation has the potential to reduce the incidence of diseases caused by X.fastidiosa by reducing the number of vectors and by decreasing pathogen transmission efficiency.

  6. Egg Parasitoids of Proconiini (Hemiptera: Cicadellidae) in Northwestern Mexico, with Description of a New Species of Gonatocerus (Hymenoptera: Mymaridae)

    Science.gov (United States)

    Triapitsyn, Serguei V.; Bernal, Julio S.

    2009-01-01

    Nine species of Mymaridae and Trichogrammatidae parasitic on eggs of Proconiini sharpshooters (Cicadellidae: Cicadellinae) were collected in northwestern Mexico in relation to neoclassical biological control efforts against glassy-winged sharpshooter, Homalodisca vitripennis (Germar), in California. Gonatocerus chula Triapitsyn and Bernal sp. n., which belongs to the ater species group of Gonatocerus Nees (Mymaridae), is described. Specimens of G. chula sp. n. were reared from eggs of the smoke-tree sharpshooter, Homalodisca liturata Ball, on jojoba [Simmondsia chinensis (Link) C. K. Schneider] leaves collected in central Sonora state, Mexico. Also given are new data on other egg parasitoids of Homalodisca spp. and Oncometopia spp. in Sinaloa and Sonora states, Mexico, including Gonatocerus atriclavus Girault, G. morrilli (Howard), and G. novifasciatus Girault, and the Trichogrammatidae Burksiella sp(p)., Ittys sp., Pseudoligosita sp., Ufens ceratus Owen, and U. principalis Owen. For the first time, a species of Ittys is recorded from eggs of Proconiini, and U. principalis from Mexico. Colonies of G. atriclavus, G. novifasciatus and Pseudoligosita sp. were successfully established in a quarantine laboratory at University of California, Riverside, on eggs of the glassy-winged sharpshooter. These three parasitoid species had never been reared under laboratory conditions. In addition, seven species of Proconiini were collected in central and northwestern Mexico: Cyrtodisca major (Signoret), Homalodisca insolita (Walker), H. liturata Ball, Oncometopia sp. cf. clarior (Walker), O. sp. cf. trilobata Melichar, O. (Similitopia) sp., and Phera centrolineata (Signoret). Oncometopia sp. cf. clarior, O. sp. cf. trilobata, and O. (Similitopia) sp. appeared to be undescribed species. PMID:19611244

  7. Progress on resolving the Gonatocerus tuberculifemur complex: neither COI nor ITS2 sequence data alone can discriminate all the species within the complex, whereas, ISSR-PCR DNA fingerprinting can

    Science.gov (United States)

    We utilized two molecular methods to aid in resolving the Gonatocerus tuberculifemur complex, potential glassy-winged sharpshooter (GWSS) biological control candidate agents from South America. The two methods used were DNA sequencing of both the mitochondrial cytochrome oxidase subunit 1 gene (COI...

  8. Playback of natural vibrational signals in vineyard trellis for mating disruption of glassy-winged sharpshooter

    Science.gov (United States)

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a vector of Xylella fastidiosa, an important bacterial pathogen of several crops in the Americas and Europe. Mating communication of this and many other cicadellid pests involves the exchange of substrate-...

  9. Egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae); a vector of Xylella fastidiosa

    Science.gov (United States)

    Rates of spread of insect-transmitted plant pathogens are a function of vector abundance. Despite this, factors affecting population growth rates of insects that transmit plant pathogens have received limited attention. The glassy-winged sharpshooter (Homalodisca vitripennis) feeds on xylem-sap and ...

  10. Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Rudiney Ringenberg

    2014-06-01

    Full Text Available Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil. Pierce's disease of grapevines, caused by Xylella fastidiosa, is a serious problem in some regions of North America, not yet reported in Brazil. In this study, a survey of potential sharpshooter (Hemiptera, Cicadellidae, Cicadellinae and spittlebug (Hemiptera, Cercopidae vectors of X. fastidiosa was conducted in vineyards at the São Francisco River Valley, a major grape growing region in Brazil. Four vineyards of Vitis vinifera L. were sampled fortnightly from June/2005 to June/2007, using yellow sticky cards, each placed at two different heights (45 cm aboveground and 45 cm above the crop canopy in 10 sampling localities. A total of 4,095 specimens of sharpshooters were collected, nearly all from 3 Proconiini species, Homalodisca spottii Takiya, Cavichioli & McKamey, 2006 (96.8% of the specimens, Tapajosa fulvopunctata (Signoret, 1854 (3.1%, and Tretogonia cribrata Melichar, 1926 (1 specimen. Hortensia similis (Walker, 1851 (2 specimens was the only Cicadellini species. Only 1 cercopid specimen, belonging to Aeneolamia colon (Germar, 1821, was trapped. Even though they are not considered potential Xylella vectors, 2 Gyponini leafhoppers were collected: Curtara samera DeLong & Freytag, 1972 (11 specimens and Curtara inflata DeLong & Freytag, 1976 (1 specimen. Homalodisca spottii was observed feeding and mating on green branches of grapevines, in addition to egg masses. Because of its prevalence on the crop canopy, occurrence throughout the year (with peaks from February to August, and ability to colonize grapevines, H. spottii could be an important vector if a X. fastidiosa strain pathogenic to grapevines becomes introduced at the São Francisco River Valley.

  11. Novel methods of monitoring the feeding behavior of Homalodisca coagulata (Say) (Hemiptera; Cicadellidae)

    Czech Academy of Sciences Publication Activity Database

    Doležal, Petr; Bextine, B. R.; Doležalová, R.; Miller, T. A.

    2004-01-01

    Roč. 97, č. 5 (2004), s. 1055-1062 ISSN 0013-8746 Grant - others:USDA-APHIS Cooperative Agreement(US) 8500-0510-GR Institutional research plan: CEZ:AV0Z5007907 Keywords : Susceptible rice varieties * xylella -fastidosa * pierces--disease Subject RIV: ED - Physiology Impact factor: 1.083, year: 2004

  12. Identification of a non-host plant of Xylella fastidiosa to rear healthy sharpshooter vectors Identificação de uma planta não-hospedeira de Xylella fastidiosa para criação de insetos vetores sadios

    Directory of Open Access Journals (Sweden)

    Rosangela Cristina Marucci

    2003-12-01

    Full Text Available Rearing leafhopper (Hemiptera: Cicadellidae vectors free of Xylella fastidiosa is a requirement for studies of various aspects of vector-pathogen interactions. The selection of a plant that allows vector development but not bacterial multiplication is desirable to produce healthy vectors. In this study, two leafhopper hosts, Vernonia condensata ('boldo' and Aloysia virgata ('lixeira' were needle inoculated with citrus and coffee strains of X. fastidiosa to evaluate if these plants support pathogen colonization. The inoculated plants did not present symptoms and the pathogen was not detected by culture and PCR tests, neither soon after inoculation (7-14 days nor later, at 1, 4, 6 and 12 months after inoculation. To obtain healthy adults of the leafhopper vectors Acrogonia citrina, Bucephalogonia xanthophis, Dilobopterus costalimai, Homalodisca ignorata and Oncometopia facialis, early-instar nymphs were reared on V. condensata. X. fastidiosa was not detected in any of 175 adults obtained. V. condensata and A. virgata are nonpropagative hosts of X. fastidiosa and enable the production of healthy leafhoppers for vector studies.A obtenção de cigarrinhas (Hemiptera: Cicadellidae livres de Xylella fastidiosa é importante para estudos de interação entre essa bactéria e seus vetores, sendo desejável a seleção de uma planta que permita a criação desses insetos, mas não a multiplicação da bactéria. Neste estudo, duas plantas hospedeiras de cigarrinhas, Vernonia condensata (boldo e Aloysia virgata (lixeira, foram inoculadas por agulha com as estirpes de citros e de cafeeiro de X. fastidiosa, para avaliar a possibilidade deste patógeno colonizá-las. Não foram observados sintomas, nem se detectou a bactéria por isolamento em meio de cultura e/ou PCR em períodos curtos (7 e 14 dias ou longos (1, 4, 6 e 12 meses após a inoculação. Para obtenção de adultos sadios das cigarrinhas vetoras, Acrogonia citrina, Bucephalogonia xanthophis

  13. Brochosome influence on parasitisation efficiency of Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) egg masses by Gonatocerus ashmeadi Girault (Hymenoptera : Mymaridae)

    NARCIS (Netherlands)

    Velema, H.P.; Hemerik, L.; Hoddle, M.S.; Luck, R.F.

    2005-01-01

    1. Many cicadellid females in the tribe Proconiini (Hemiptera: Cicadellidae) cover their egg masses with specialised, usually rod-shaped, brochosomes as the eggs are being laid. The brochosomes are produced in Golgi complexes in the Malpighian tubules of Cicadellidae. In contrast to the gravid

  14. Environmental monitoring of carbaryl applied in urban areas to control the glassy-winged sharpshooter in California.

    Science.gov (United States)

    Walters, Johanna; Goh, Kean S; Li, Linying; Feng, Hsiao; Hernandez, Jorge; White, Jane

    2003-03-01

    Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced in California. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables. Results from the five urban areas - Porterville, Fresno, Rancho Cordova, Brentwood and Chico - showed there were no significant human exposures or impacts on the environment. Spray tank concentrations ranged from 0.1-0.32%. Carbaryl concentrations in air ranged from none detected to 1.12 microg m(-3), well below the interim health screening level in air of 51.7 microg m(-3). There were three detections of carbaryl in surface water near application sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppb in a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54-7.12 microg cm(-2), comparable to levels reported for safe reentry of 2.4 to 5.6 microg cm(-2) for citrus. Carbaryl concentrations in fruits and vegetables ranged from no detectable amounts to 7.56 ppm, which were below the U.S. EPA tolerance, allowable residue of 10 ppm.

  15. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    Energy Technology Data Exchange (ETDEWEB)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.gov [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Krugner, Rodrigo [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Nouri, Shahideh; Ferriol, Inmaculada; Falk, Bryce W. [Department of Plant Pathology, University of California, Davis, CA 95616 (United States); Sisterson, Mark S. [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States)

    2016-11-15

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.

  16. Direct Evidence of Egestion and Salivation of Xylella fastidiosa Suggests Sharpshooters Can Be "Flying Syringes".

    Science.gov (United States)

    Backus, Elaine A; Shugart, Holly J; Rogers, Elizabeth E; Morgan, J Kent; Shatters, Robert

    2015-05-01

    Xylella fastidiosa is unique among insect-transmitted plant pathogens because it is propagative but noncirculative, adhering to and multiplying on the cuticular lining of the anterior foregut. Any inoculation mechanism for X. fastidiosa must explain how bacterial cells exit the vector's stylets via the food canal and directly enter the plant. A combined egestion-salivation mechanism has been proposed to explain these unique features. Egestion is the putative outward flow of fluid from the foregut via hypothesized bidirectional pumping of the cibarium. The present study traced green fluorescent protein-expressing X. fastidiosa or fluorescent nanoparticles acquired from artificial diets by glassy-winged sharpshooters, Homalodisca vitripennis, as they were egested into simultaneously secreted saliva. X. fastidiosa or nanoparticles were shown to mix with gelling saliva to form fluorescent deposits and salivary sheaths on artificial diets, providing the first direct, conclusive evidence of egestion by any hemipteran insect. Therefore, the present results strongly support an egestion-salivation mechanism of X. fastidiosa inoculation. Results also support that a column of fluid is transiently held in the foregut without being swallowed. Evidence also supports (but does not definitively prove) that bacteria were suspended in the column of fluid during the vector's transit from diet to diet, and were egested with the held fluid. Thus, we hypothesize that sharpshooters could be true "flying syringes," especially when inoculation occurs very soon after uptake of bacteria, suggesting the new paradigm of a nonpersistent X. fastidiosa transmission mechanism.

  17. Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.

    Science.gov (United States)

    Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C

    2007-08-01

    Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.

  18. Formation of Stylet Sheaths in āere (in air from eight species of phytophagous hemipterans from six families (Suborders: Auchenorrhyncha and Sternorrhyncha.

    Directory of Open Access Journals (Sweden)

    J Kent Morgan

    Full Text Available Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event. Stylet sheath compositions are largely unknown and their mode of solidification remains to be elucidated. This report demonstrates the formation and solidification of in āere (in air produced stylet sheaths by six hemipteran families: Diaphorina citri (Psyllidae, Asian citrus psyllid, Aphis nerii (Aphididae, oleander/milkweed aphid, Toxoptera citricida (Aphididae, brown citrus aphid, Aphis gossypii (Aphididae, cotton melon aphid, Bemisia tabaci biotype B (Aleyrodidae, whitefly, Homalodisca vitripennis (Cicadellidae, glassy-winged sharpshooter, Ferrisia virgata (Pseudococcidae, striped mealybug, and Protopulvinaria pyriformis (Coccidae, pyriform scale. Examination of in āere produced stylet sheaths by confocal and scanning electron microscopy shows a common morphology of an initial flange laid down on the surface of the membrane followed by continuous hollow core structures with sequentially stacked hardened bulbous droplets. Single and multi-branched sheaths were common, whereas mealybug and scale insects typically produced multi-branched sheaths. Micrographs of the in āere formed flanges indicate flange sealing upon stylet bundle extraction in D. citri and the aphids, while the B. tabaci whitefly and H. vitripennis glassy-winged sharpshooter flanges remain unsealed. Structural similarity of in āere sheaths are apparent in stylet sheaths formed in planta, in artificial diets, or in water. The use of 'Solvy', a dissolvable membrane, for intact stylet sheath isolation is reported. These observations illustrate for the first time this mode of stylet sheath synthesis adding to the understanding of stylet sheath formation in phytophagous hemipterans and providing tools for future use in structural and compositional analysis.

  19. Is Vector Control Sufficient to Limit Pathogen Spread in Vineyards?

    Science.gov (United States)

    Daugherty, M P; O'Neill, S; Byrne, F; Zeilinger, A

    2015-06-01

    Vector control is widely viewed as an integral part of disease management. Yet epidemiological theory suggests that the effectiveness of control programs at limiting pathogen spread depends on a variety of intrinsic and extrinsic aspects of a pathosystem. Moreover, control programs rarely evaluate whether reductions in vector density or activity translate into reduced disease prevalence. In areas of California invaded by the glassy-winged sharpshooter (Homalodisca vitripennis Germar), Pierce's disease management relies heavily on chemical control of this vector, primarily via systemic conventional insecticides (i.e., imidacloprid). But, data are lacking that attribute reduced vector pressure and pathogen spread to sharpshooter control. We surveyed 34 vineyards over successive years to assess the epidemiological value of within-vineyard chemical control. The results showed that imidacloprid reduced vector pressure without clear nontarget effects or secondary pest outbreaks. Effects on disease prevalence were more nuanced. Treatment history over the preceding 5 yr affected disease prevalence, with significantly more diseased vines in untreated compared with regularly or intermittently treated vineyards. Yet, the change in disease prevalence between years was low, with no significant effects of insecticide treatment or vector abundance. Collectively, the results suggest that within-vineyard applications of imidacloprid can reduce pathogen spread, but with benefits that may take multiple seasons to become apparent. The relatively modest effect of vector control on disease prevalence in this system may be attributable in part to the currently low regional sharpshooter population densities stemming from area-wide control, without which the need for within-vineyard vector control would be more pronounced. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa.

    Science.gov (United States)

    Backus, Elaine A; Andrews, Kim B; Shugart, Holly J; Carl Greve, L; Labavitch, John M; Alhaddad, Hasan

    2012-07-01

    A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away

  1. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    2006-06-01

    Full Text Available Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata, which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential

  2. From the sample preparation to the volume rendering images of small animals: A step by step example of a procedure to carry out the micro-CT study of the leafhopper insect Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Science.gov (United States)

    Advances in micro-CT, digital computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the body. Combining micro-CT with Digital Video Library systems, and linking this to Big Data, will change the way researchers, entomologist, and the public search and use anato...