Optimization on the end-shaping of a quadrupole magnet
International Nuclear Information System (INIS)
Kumada, M.; Sasaki, H.; Someya, H.; Sakai, I.
1983-01-01
In order to achieve the widest possible aperture of accelerator magnets, end-shaping is a well known method. To do this one has to deal with the three-dimensional fringe field inherent to each geometry. This may be done experimentally by a cut-and-try method or theoretically by a three-dimensional computer code. In any case, considerable time has to be consumed if one wants to get a conclusion which is as general as possible and which is useful in designing magnets. Fringe field optimization on the end-shaping of the conventional quadrupole magnet was done by a cut-and-try method, where a very simple geometry of the end pole was chosen to get a general conclusion. The 'cut-out ratio diagram' given as a conclusion is useful to designers of the conventional quadrupole magnet. (orig.)
Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field
International Nuclear Information System (INIS)
Vagin, Dmitry V.; Polyakov, Oleg P.
2008-01-01
Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems
Beam-based alignment of C-shaped quadrupole magnets
International Nuclear Information System (INIS)
Portmann, G.; Robin, D.
1998-06-01
Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm
Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy
International Nuclear Information System (INIS)
Corona, R.M.; Altbir, D.; Escrig, J.
2012-01-01
Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: ► Coercivity and remanence are strongly affected by the shape anisotropy of the particles. ► Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. ►Elliptical particles with δ≤0.6, the hystereses resemble the square loops of wires. ► An anhisteretic behavior appears for θ=90° for elliptical particles, which do not appear in stadium-shaped particles. ► Stadium-shaped particles have unique properties that allow us to suggest them for applications.
Secondary magnetic field harmonics dependence on vacuum beam chamber geometry
Directory of Open Access Journals (Sweden)
S. Y. Shim
2013-08-01
Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.
Magnetic properties of elliptical and stadium-shaped nanoparticles: Effect of the shape anisotropy
Energy Technology Data Exchange (ETDEWEB)
Corona, R.M. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2012-11-15
Elliptical and stadium-shaped nanoparticles as a function of their geometry have been investigated using numerical simulations. The effect of the shape anisotropy of the particles on coercivity and remanence together with the angular dependence of the remanence and coercivity are addressed. Our results demonstrate that the stadium-shaped particles have many of the outstanding properties of elliptical particles, but also have unique properties, such that the coercivity and remanence remain stable for a wide range of geometry parameters, and exhibit a peculiar angular dependence in the coercivity. These properties suggest that they can be useful for applications in the area of magnetic recording systems. - Highlights: Black-Right-Pointing-Pointer Coercivity and remanence are strongly affected by the shape anisotropy of the particles. Black-Right-Pointing-Pointer Coercivities for ellipses are nearly three times the obtained for stadium-shaped particles. Black-Right-Pointing-Pointer Elliptical particles with {delta}{<=}0.6, the hystereses resemble the square loops of wires. Black-Right-Pointing-Pointer An anhisteretic behavior appears for {theta}=90 Degree-Sign for elliptical particles, which do not appear in stadium-shaped particles. Black-Right-Pointing-Pointer Stadium-shaped particles have unique properties that allow us to suggest them for applications.
Magnetic properties of crystalline nanoparticles with different sizes and shapes
Energy Technology Data Exchange (ETDEWEB)
Lima, Ana T.A. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará (Brazil); Universidade Federal Rural do Semi-Árido, Campus de Caraubas, RN 333, Rio Grande do Norte (Brazil); Dantas, Ana L.; Almeida, N.S. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, Rio Grande do Norte (Brazil)
2017-03-01
The effects of shape and finite size on the physical behavior of nanostructured antiferromagnetic particles are investigated. They were modeled as ellipsoidal systems which preserve the crystalline structure of the correspondent bulk material. In our analysis we consider nanoparticles composed by magnetic ions which are themselves insensitive to the presence of surfaces and/or interfaces. Results are shown for structures similar to MnF{sub 2} and NiO crystals. Special attention is given to these last once their singular magnetic arrangement, as well as, their use at different technological and/or biomedical applications, has motivated intense experimental studies at different laboratories. We use the parameters that describe the correspondent bulk material to discuss the magnetic behavior of these particles for different volumes and shapes. - Highlights: • The number of magnetic phases of tetragonal AFM nanoparticles depends on their shape. • Hysteresis loops of NiO particles depends on the direction of the dc magnetic field. • The high frequencies normal modes of NiO particles are insensitive to their geometry.
The influence of magnetic field geometry on magnetars X-ray spectra
International Nuclear Information System (INIS)
Viganò, D; Pons, J A; Miralles, J A; Parkins, N; Zane, S; Turolla, R
2012-01-01
Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.
Effects of the divertor tile geometries and magnetic field angles on the heat fluxes to the surface
Energy Technology Data Exchange (ETDEWEB)
Hu, Wanpeng; Sang, Chaofeng; Sun, Zhenyue; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn
2017-03-15
Highlights: • Simulation of the plasma behaviors in the divertor gap region is done by using a 2d3 v Particle-In-Cell code. • Heat fluxes on the wall surface in different gap geometries are studied. • The effect of the magnetic field angle on the heat flux is investigated. - Abstract: A two dimension-in-space and three dimension-in-velocity (2d3v) Particle-In-Cell (PIC) code is applied to investigate the plasma behaviors at the divertor gaps region in this work. Electron and D{sup +} ion fluxes to the tile surface in the poloidal and toroidal gaps for different shaped edges are compared to demonstrate the optimized tile geometry. For poloidal gap, shaped edge in the shadowing side makes more ions penetrate into the gap, while shaped edge in the wetted side can mitigate the peak flux value. For toroidal gap, most ions entering the gap impinge on the side tile mainly due to the E × B drift, and shaped wetted edges also can mitigate the peak heat fluxes. In addition, effects of magnetic field inclination angle from toroidal direction on the plasma behaviors are simulated for poloidal and toroidal gaps, respectively. It is found that the magnetic field angles don’t influence the plasma behaviors in poloidal gap; while significant changes have been observed in the toroidal gap.
Comparison of Microinstability Properties for Stellarator Magnetic Geometries
International Nuclear Information System (INIS)
Rewoldt, G.; Ku, L.-P.; Tang, W.M.
2005-01-01
The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presence of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries
Directory of Open Access Journals (Sweden)
Mei Guo
2018-01-01
Full Text Available The syntheses, structural characterization, and magnetic properties of three lanthanide complexes with formulas [Ln(L13] (Ln = Dy (1Dy; Er (1Er; and [Dy(L22] (2Dy were reported. Complexes 1Dy and 1Er are isostructural with the metal ion in distorted trigonal-prismatic coordination geometry, but exhibit distinct magnetic properties due to the different shapes of electron density for DyIII (oblate and ErIII (prolate ions. Complex 1Dy shows obvious SMM behavior under a zero direct current (dc field with an effective energy barrier of 31.4 K, while complex 1Er only features SMM behavior under a 400 Oe external field with an effective energy barrier of 23.96 K. In stark contrast, complex 2Dy with the octahedral geometry only exhibits the frequency dependence of alternating current (ac susceptibility signals without χ″ peaks under a zero dc field.
Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect
Directory of Open Access Journals (Sweden)
X. G. Li
2016-01-01
Full Text Available As the lateral dimension of spin Hall effect based magnetic random-access memory (SHE-RAM devices is scaled down, shape anisotropy has varied influence on both the magnetic field and the current-driven switching characteristics. In this paper, we study such influences on elliptic film nanomagnets and theoretically investigate the switching characteristics for SHE-RAM element with in-plane magnetization. The analytical expressions for critical current density are presented and the results are compared with those obtained from macrospin and micromagnetic simulation. It is found that the key performance indicators for in-plane SHE-RAM, including thermal stability and spin torque efficiency, are highly geometry dependent and can be effectively improved by geometric design.
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J
Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.
Purcell filter of unusual shape in fair superferric sextupole magnet for improving the field quality
International Nuclear Information System (INIS)
Sarma, P.R.; Dutta Gupta, A.; Nandi, C.; Saha, S.; Chattopadhyay, S.; Pal, G.
2013-01-01
In the Energy Buncher Section of the Super-FRS of the FAIR project, magnets of very high quality and wide aperture are needed. Wide aperture of these magnets generates large end-effects which can be reduced by end shaping and using Purcell filters which are voids in the pole for modifying the field. In the present work we have investigated various shapes of Purcell filters in magnets, especially in superferric sextupole magnets. Conventional Purcell filters are through and through rectangular voids in the pole region, a little away from the pole face. We have seen that the length of the Purcell filter is an important parameter which can be optimized. Thus one can use partially penetrating filters. We have further shown that Purcell filters of unusual geometry which start right from the pole face can be effectively used in reducing the weight of the iron, while keeping the field quality intact or improve the field quality, keeping the weight constant. (author)
Mitigation of Power frequency Magnetic Fields. Using Scale Invariant and Shape Optimization Methods
Energy Technology Data Exchange (ETDEWEB)
Salinas, Ener; Yueqiang Liu; Daalder, Jaap; Cruz, Pedro; Antunez de Souza, Paulo Roberto Jr; Atalaya, Juan Carlos; Paula Marciano, Fabianna de; Eskinasy, Alexandre
2006-10-15
The present report describes the development and application of two novel methods for implementing mitigation techniques of magnetic fields at power frequencies. The first method makes use of scaling rules for electromagnetic quantities, while the second one applies a 2D shape optimization algorithm based on gradient methods. Before this project, the first method had already been successfully applied (by some of the authors of this report) to electromagnetic designs involving pure conductive Material (e.g. copper, aluminium) which implied a linear formulation. Here we went beyond this approach and tried to develop a formulation involving ferromagnetic (i.e. non-linear) Materials. Surprisingly, we obtained good equivalent replacement for test-transformers by varying the input current. In spite of the validity of this equivalence constrained to regions not too close to the source, the results can still be considered useful, as most field mitigation techniques are precisely developed for reducing the magnetic field in regions relatively far from the sources. The shape optimization method was applied in this project to calculate the optimal geometry of a pure conductive plate to mitigate the magnetic field originated from underground cables. The objective function was a weighted combination of magnetic energy at the region of interest and dissipated heat at the shielding Material. To our surprise, shapes of complex structure, difficult to interpret (and probably even harder to anticipate) were the results of the applied process. However, the practical implementation (using some approximation of these shapes) gave excellent experimental mitigation factors.
DEFF Research Database (Denmark)
Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein
2017-01-01
Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical and effect......Room temperature magnetic refrigeration has attracted substantial attention during the past decades and continuing to increase the performance of active magnetic regenerators (AMR) is of great interest. Optimizing the regenerator geometry and related operating parameters is a practical...... and effective way to obtain the desired cooling performance. To investigate how to choose and optimize the AMR geometry, a quantitative study is presented by simulations based on a one-dimensional (1D) numerical model. Correlations for calculating the friction factor and heat transfer coefficient are reviewed...... and chosen for modeling different geometries. Moreover, the simulated impacts of various parameters on the regenerator efficiency with a constant specific cooling capacity are presented. An analysis based on entropy production minimization reveals how those parameters affect the main losses occurring inside...
Energy Technology Data Exchange (ETDEWEB)
Khatri, Manvendra Singh
2010-07-09
Thin films and nanowires of Co-Pt have been prepared by means of electrodeposition. Composition, structure, microstructure and magnetic properties have been intensively studied using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry and correlated to the deposition parameters such as electrolyte composition, deposition current and/or potential. Co rich Co-Pt films have been deposited at various current densities. A nearly constant composition of Co{sub 70}Pt{sub 30} was achieved for current densities between 18 and 32 mA/cm{sup 2}. Detailed texture measurements confirmed an increasing fraction of the hexagonal phase with its c-axis aligned perpendicular to the film plane with increasing current density. Accordingly, magnetic properties are strongly affected by the magnetocrystalline anisotropy of the hexagonal phase that competes with the shape anisotropy of the thin film geometry. Co-Pt nanowires have been prepared within alumina templates at different deposition potentials between -0.6 and -0.9 V{sub SCE} changing the composition from nearly pure Pt to Co. The composition Co{sub 80}Pt{sub 20} was observed at a deposition potential of -0.7 V{sub SCE}. Co-Pt nanowires are nanocrystalline in the as-deposited state. Magnetic measurements reveal changing fcc and hcp phase fractions within the wires as the effective anisotropy significantly differs from the expected shape anisotropy for nanowires with high aspect ratio. This change in effective anisotropy is attributed to the preferential alignment of the c-axis of hcp Co-Pt phase perpendicular to the nanowires axis. A promising alternative with much smaller feature sizes is the diblock copolymer template. Electrodeposition of Co and Co-Pt into these templates has been carried out. Inhomogeneities in the template thickness as well as a certain substrate roughness have been identified to be the reasons for inhomogeneous template filling. Thus magnetic properties are dominated by large
Nanoscale magnetic ratchets based on shape anisotropy
Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.
2017-02-01
Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
Energy Technology Data Exchange (ETDEWEB)
Broderick, Avery E [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada); Blandford, Roger D., E-mail: aeb@cita.utoronto.c [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Rd., Menlo Park, CA 94309 (United States)
2010-08-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
International Nuclear Information System (INIS)
Broderick, Avery E.; Blandford, Roger D.
2010-01-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m -2 ) 1/4 (B/1 G) 1/2 MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, ν SA , depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of ν SA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, ν SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence
International Nuclear Information System (INIS)
Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.
2014-01-01
Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.
Energy Technology Data Exchange (ETDEWEB)
Konstantinova, Elena, E-mail: elena.konst@ifsudestemg.edu.br; Sales, José Antonio de
2014-10-01
Creation of magnetic nanodevices leads, in particular, to a growing interest in theoretical investigation of different types of magnetic nanostructures. The purpose of our work is to consider how the properties of such nanomaterials depend on their geometry and on the crystal structure. We report on the Monte Carlo simulation of magnetic nanostructures of different geometric forms, which are based on simple cubic and body-centered cubic cells. The magnetization of spin, magnetic susceptibility and specific heat are investigated for nano-disks, nano-bars and nano-balls of different magnitudes. The combination of dipole and Heisenberg-model interaction are considered for the ferromagnetic case. It is shown that magnetic and thermodynamic properties of nanostructures strongly depend on their geometry. The structures with a body-centered cubic unit cell manifest stronger dependence on size and geometric form. In this case one can interpret the results as an effective reduction of dimension from 3D to 2D for decreasing size of the compound. - Highlights: • Thermodynamic properties of nano-balls are dependent on their size. • Magnetic properties of nano-bars depend on their thickness. • The hysteresis loop is dependent on the geometry of the nanostructure.
Magnetic response of certain curved graphitic geometries
International Nuclear Information System (INIS)
Wang, L.; Davids, P.S.; Saxena, A.; Bishop, A.R.
1992-01-01
The quasi-particle energy spectra associated with some members of buckyfamily (curved graphitic geometries), in particular C 50 , C 60 , C 70 and related fullerenes as well as coaxial helical microtubules of graphite, are obtained analytically within the mean-field approximation. These energy spectra are then used to calculate various response functions. Specifically, we calculate the specific heat, magnetization and magnetic susceptibility in the presence of an external magnetic field at low temperatures. For a single microtubule an extra peak superimposed on the first de Haas van Alphen (dHvA) oscillation in magnetic susceptibility is found in the 50--170 Tesla range depending on the radius which is possibly accessible in special (explosive flux compression) experiments. Finally, we point to important potential applications of these novel mesoscopic structures in nanotechnology
Geometry and magnetism of L10 nanostructures
International Nuclear Information System (INIS)
Sorge, K.D.; Skomski, R.; Daniil, M.; Michalski, S.; Gao, L.; Zhou, J.; Yan, M.; Sui, Y.; Kirby, R.D.; Liou, S.H.; Sellmyer, D.J.
2005-01-01
The fabrication and magnetism of L1 0 nanostructures with different shapes (such as nanoparticles and nanotubes) is investigated. These nanostructures are produced by hydrogen processing and focused ion beam milling. The structures exhibit interesting reversal modes and are of present or potential interest for sensors and imaging, as well as magnetic recording
Peters, James F
2017-01-01
This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classiﬁcation of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classiﬁcation of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of C...
Magnetic shape memory behaviour
International Nuclear Information System (INIS)
Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Matsumoto, M.; Morito, H.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K.R.A.
2007-01-01
Materials that can be transformed at one temperature T F , then cooled to a lower temperature T M and plastically deformed and on heating to T F regain their original shape are currently receiving considerable attention. In recovering their shape the alloys can produce a displacement or a force, or a combination of the two. Such behaviour is known as the shape memory effect and usually takes place by change of temperature or applied stress. For many applications the transformation is not sufficiently rapid or a change in temperature/pressure not appropriate. As a result, considerable effort is being made to find a ferromagnetic system in which the effect can be controlled by an applied magnetic field. The results of recent experiments on ferromagnetic shape memory compounds aimed at understanding the underlying mechanism will be reviewed
The blind student’s interpretation of two-dimensional shapes in geometry
Andriyani; Budayasa, I. K.; Juniati, D.
2018-01-01
The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.
Directory of Open Access Journals (Sweden)
Kyung-Hun Shin
2017-05-01
Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.
Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma
International Nuclear Information System (INIS)
Gagne, R.R.J.; Shoucri, M.M.
1976-01-01
The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
Shaped superconductor cylinder retains intense magnetic field
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
Iso-geometric shape optimization of magnetic density separators
DEFF Research Database (Denmark)
Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens
2014-01-01
Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly...... reduces the required amount of permanent magnet material. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the individual poles. Design/methodology/approach The paper represents the shape of the ferromagnetic pole...
Geometry effects on magnetization dynamics in circular cross-section wires
Energy Technology Data Exchange (ETDEWEB)
Sturma, M. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Toussaint, J.-C., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Gusakova, D., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France)
2015-06-28
Three-dimensional magnetic memory design based on circular-cross section nanowires with modulated diameter is the emerging field of spintronics. The consequences of the mutual interaction between electron spins and local magnetic moments in such non-trivial geometries are still open to debate. This paper describes the theoretical study of domain wall dynamics within such wires subjected to spin polarized current. We used our home-made finite element software to characterize the variety of domain wall dynamical regimes observed for different constriction to wire diameter ratios d/D. Also, we studied how sizeable geometry irregularities modify the internal micromagnetic configuration and the electron spin spatial distribution in the system, the geometrical reasons underlying the additional contribution to the system's nonadiabaticity, and the specific domain wall width oscillations inherent to fully three-dimensional systems.
M(H) shape reconstruction using magnetic spectroscopy
International Nuclear Information System (INIS)
Teliban, Iulian; Chemnitz, Steffen; Thede, Claas; Bechtold, Christoph; Mozooni, Babak; Krause, Hans-Joachim; Quandt, Eckhard
2012-01-01
Knowledge about the magnetization behavior M(H) is crucial for the use of magnetic materials in engineering applications. To date many systems exist that are able to measure the magnetization behavior, e.g. VSM, VCM, MOKE. In addition to their huge costs, complex and space-consuming measurement setup, large amount of preparatory work and restricted surface measurements are handicaps which restrict their field of application. Furthermore, the influence of additional physical quantities such as temperature, strain or pressure can only be investigated with great efforts. These influences are, however, of major importance in the development of magnetic sensor systems that are based on the change in magnetic properties. In this paper, a new measurement principle based on a frequency mixing technique is introduced for investigation of the shape of the magnetization curve of soft non-hysteretic magnetic materials. Based on the Taylor expansion of the magnetization curve and the spectral investigation of the inductively detected signal, a mathematical model for the reconstruction of M(H) is proposed. The model is both numerically and experimentally verified. It is shown that the magnetization curve of a nanocrystalline soft magnetic material used in this study can be reconstructed very accurately and the influence of an additional parameter, i.e. strain, can be investigated in detail as well. - Highlights: ► Non-contact determination of magnetization curve shape of soft magnetic materials. ► Alternative measurement technique to VSM/VCM or MOKE. ► Mathematical groundwork about the relation between magnetic spectroscopy and magnetic permeability. ► Strain monitoring using magnetic spectroscopy.
Surface geometry of a rotating black hole in a magnetic field
International Nuclear Information System (INIS)
Kulkarni, R.; Dadhich, N.
1986-01-01
We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum
Planar Hall effect sensor bridge geometries optimized for magnetic bead detection
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl
2014-01-01
Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...... by the sensor self-field or a combination thereof. The sensors can be made nominally insensitive to small external magnetic fields, while being maximally sensitive to magnetic beads, magnetized by the sensor self-field. Thus, the sensor designs can be tailored towards specific applications with minimal...... of the dynamic magnetic response of suspensions of magnetic beads with a nominal diameter of 80 nm are performed. Furthermore, a method to amplify the signal by appropriate combinations of multiple sensor segments is demonstrated....
International Nuclear Information System (INIS)
Yamada, Masaaki; Ji, H.; Hsu, S.; Carter, T.; Kulsrud, R.; Ono, Yasushi; Perkins, F.
1997-01-01
Two strikingly different shapes of diffusion regions are identified during magnetic reconnection in a magnetohydrodynamic laboratory plasma. The shapes depend on the third vector component of the reconnecting magnetic fields. Without the third component (anti-parallel or null-helicity reconnection), a thin double-Y shaped diffusion region is identified. In this case, the neutral sheet current profile is accurately measured to be as narrow as the order of the ion gyro-radius. In the presence of an appreciable third component (co-helicity reconnection), an O-shaped diffusion region appears and grows into a spheromak configuration
Three-dimensional analytical field calculation of pyramidal-frustum shaped permanent magnets
Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.
2009-01-01
This paper presents a novel method to obtain fully analytical expressions of the magnetic field created by a pyramidal-frustum shaped permanent magnet. Conventional analytical tools only provide expressions for cuboidal permanent magnets and this paper extends these tools to more complex shapes. A
International Nuclear Information System (INIS)
Zhu, Yuping; Yu, Kai
2013-01-01
Highlights: ► The model analyzes mechanical anisotropy of magnetic shape memory alloy. ► The numerical evaluation of Eshelby tensor of shape memory alloy is obtained. ► Interaction energy of magnetic shape memory alloy is analyzed. - Abstract: Under applied mechanical load and magnetic field, a micromechanics-based thermodynamic model taking account of mechanical anisotropy of magnetic shape memory alloys (MSMAs) is developed in this work. Considering the crystallographic and magnetic microstructure, the internal state variables are chosen and the model can capture the magnetic shape memory effect caused by the martensitic variant reorientation process. It is assumed that the Gibbs free energy is consisted of the mechanical potential energy of anisotropic matrix, the Zeeman energy and the magnetocrystalline anisotropy energy in the model. In terms of the balance between the thermodynamic driving force derived from the reduction of Gibbs free energy and the resistive force for the variant reorientation, the kinetic equation is established and the Eshelby tensor of anisotropic MSMAs is then obtained by using numerical evaluation. At last, the effects of the anisotropy on interaction energy and macroscopic strain are discussed. The assumption of isotropy tends to underestimate interaction energy and macroscopic strain. The results considering mechanical anisotropy are in good agreement with the experimental data.
Plasma shaping effects on tokamak scrape-off layer turbulence
Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo
2017-03-01
The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\
International Nuclear Information System (INIS)
Marks, N.
1994-01-01
The design and construction of conventional, steel-cored, direct-current magnets are discussed. Laplace's equation and the associated cylindrical harmonic solutions in two dimensions are established. The equations are used to define the ideal pole shapes and required excitation for dipole, quadrupole and sextupole magnets. Standard magnet geometries are then considered and criteria determining the coil design are presented. The use of codes for predicting flux density distributions and the iterative techniques used for pole face design are then discussed. This includes a description of the use of two-dimensional codes to generate suitable magnet end geometries. Finally, standard constructional techniques for cores and coils are described. (orig.)
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Bradshaw, V.
2017-01-01
Roč. 131, č. 4 (2017), s. 1063-1065 ISSN 0587-4246 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * magnetic domain structure * 3D visualization * domain mirroring Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Frydrychowicz, Alex [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Berger, Alexander; Russe, Maximilian F.; Bock, Jelena [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Munoz del Rio, Alejandro [University of Wisconsin - Madison, Departments of Radiology and Medical Physics, Madison, WI (United States); Harloff, Andreas [University Hospital Freiburg, Department of Neurology and Clinical Neurophysiology, Freiburg (Germany); Markl, Michael [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States)
2012-05-15
It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 {+-} 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P {>=} 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)
International Nuclear Information System (INIS)
Frydrychowicz, Alex; Berger, Alexander; Russe, Maximilian F.; Bock, Jelena; Munoz del Rio, Alejandro; Harloff, Andreas; Markl, Michael
2012-01-01
It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 ± 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P ≥ 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)
submitter On Roebel Cable Geometry for Accelerator Magnet
Fleiter, J; Ballarino, A
2016-01-01
Roebel-type cables made of a ReBCO conductor are potential candidates for high-field accelerator magnets. The necessity to promote a large effective transverse section in a Roebel cable to avoid local overstress leading to degradation in electrical performance has been recently addressed. In this paper, a new geometry of meander tapes for a Roebel cable that enhances both the transverse effective section and the current margin at crossing segments is discussed. As Roebel cables are bent at the coil ends, the modulation of the bending radius of strands along the cable pitch leads to a shift of the strands with respect to each other. The shift magnitude is analytically investigated in this paper as a function of both cable features and coil geometry. Finally, the minimum transposition pitch of Roebel cables is determined on the basis of coil characteristics.
Net Shape 3D Printed NdFeB Permanent Magnet
Jacimovic, J.; Binda, F.; Herrmann, L. G.; Greuter, F.; Genta, J.; Calvo, M.; Tomse, T.; Simon, R. A.
2016-01-01
For two decades, NdFeB based magnets have been a critical component in a range of electrical devices engaged in energy production and conversion. The magnet shape and the internal microstructure of the selected NdFeB grade govern their efficiency and size. However, stricter requirements on device efficiency call for better performing magnets preferably with novel functionality not achievable today. Here we use 3D metal printing by Selective Laser Melting to fabricate dense net shape permanent...
International Nuclear Information System (INIS)
Alija, A; Sobrado, I; Rodriguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Parrondo, J M R
2010-01-01
Micromagnetic simulations have been performed in uniaxial magnetic films with 2D array of asymmetric arrow shape holes. In order to understand the asymmetric pinning potential created by the holes, different boundary geometries conditions are used on the simulations. The depinning fields for forward and backward domain wall propagation have been calculated by the analysis of the energy landscapes as a function of the domain wall position. Domain wall depinning occurs preferentially at the free ends of the domain wall at the film boundaries. We have found that the domain wall propagation is different at the top/bottom boundaries of the simulated film which can be understood in terms of the magnetostatic energy and the chirality of the domain wall.
Ambient Occlusion Effects for Combined Volumes and Tubular Geometry
Schott, M.; Martin, T.; Grosset, A. V. P.; Smith, S. T.; Hansen, C. D.
2013-01-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.
Ambient Occlusion Effects for Combined Volumes and Tubular Geometry
Schott, M.
2013-06-01
This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.
Dayside merging and cusp geometry
International Nuclear Information System (INIS)
Crooker, N.U.
1979-01-01
Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle
New helical-shape magnetic pole design for Magnetic Lead Screw enabling structure simplification
DEFF Research Database (Denmark)
Lu, Kaiyuan; Xia, Yongming; Wu, Weimin
2015-01-01
Magnetic lead screw (MLS) is a new type of high performance linear actuator that is attractive for many potential applications. The main difficulty of the MLS technology lies in the manufacturing of its complicated helical-shape magnetic poles. Structure simplification is, therefore, quite...
Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields
Wischnewski, Christian; Kierfeld, Jan
2018-04-01
We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.
Directory of Open Access Journals (Sweden)
Yan Gao
2014-01-01
Full Text Available The increasing marine activities in Arctic area have brought growing interest in ship-iceberg collision study. The purpose of this paper is to study the iceberg geometry shape effect on the collision process. In order to estimate the sensitivity parameter, five different geometry iceberg models and two iceberg material models are adopted in the analysis. The FEM numerical simulation is used to predict the scenario and the related responses. The simulation results including energy dissipation and impact force are investigated and compared. It is shown that the collision process and energy dissipation are more sensitive to iceberg local shape than other factors when the elastic-plastic iceberg material model is applied. The blunt iceberg models act rigidly while the sharp ones crush easily during the simulation process. With respect to the crushable foam iceberg material model, the iceberg geometry has relatively small influence on the collision process. The spherical iceberg model shows the most rigidity for both iceberg material models and should be paid the most attention for ice-resist design for ships.
Magnetic-Responsive Microparticles that Switch Shape at 37 °C
Directory of Open Access Journals (Sweden)
Koichiro Uto
2017-11-01
Full Text Available Shape-memory polymers have seen tremendous research efforts driven by the need for better drug carries and biomedical devices. In contrast to these advancements, fabrication of shape-memory particles which actuate at body temperature remains scarce. We developed a shape-memory microparticle system with dynamically tunable shapes under physiological temperature. Temperature-responsive poly(ε-caprolactone (PCL microparticles were successfully prepared by an in situ oil-in-water (o/w emulsion polymerization technique using linear telechelic and tetra-branched PCL macromonomers. By optimizing the mixing ratios of branched PCL macromonomers, the crystal-amorphous transition temperature was adjusted to the biological relevant temperature. The particles with a disk-like temporal shape were achieved by compression. The shape recovery from the disk to spherical shape was also realized at 37 °C. We also incorporated magnetic nanoparticles within the PCL microparticles, which can be remote-controllable by a magnet, in such a way that they can be actuated and manipulated in a controlled way.
Additive Manufacturing of Near-net Shaped Permanent Magnets
Energy Technology Data Exchange (ETDEWEB)
Paranthaman, M Parans [ORNL
2016-07-26
The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd_{2}Fe_{14}B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd_{2}Fe_{17}B_{x} solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd_{2}Fe_{14}B phase during fabrication.
Shaping magnetic fields to direct therapy to ears and eyes.
Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A
2014-07-11
Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.
Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake
International Nuclear Information System (INIS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2013-01-01
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes
Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake
Energy Technology Data Exchange (ETDEWEB)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2013-10-15
Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust—the scrape-off layer. A primary result of our analysis is the emergence of a physical “metric,” the Divertor Index DI, which quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics—the Standard Divertor (DI = 1), and two advanced geometries—the X-Divertor (XD, DI > 1) and the Snowflake (DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent National Spherical Torus Experiment and DIIID experiments are X-Divertors, not Snowflakes.
Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed
2017-11-01
Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.
Magnetic shape memory effect and highly mobile twin boundaries
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg
2014-01-01
Roč. 30, č. 13 (2014), s. 1559-1578 ISSN 0267-0836 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * ferromagnetic martensite * twinning * magnetically induced reorientation * reviews Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.995, year: 2014 http://dx.doi.org/10.1179/1743284714Y.0000000599
Muntingh, Georg
2014-01-01
This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis, and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.
Directory of Open Access Journals (Sweden)
Guang-Ming Hu
2017-01-01
This stream example demonstrates the subtleties of stream flow and the importance of flood discharge in shaping the channel geometry. Although it is difficult to scale up this example to a large river system that carves geomorphic landscape, this case shows how river geometries vary from the traditional patterns due to different gradient.
Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry
Energy Technology Data Exchange (ETDEWEB)
Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2016-10-15
EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.
Energy Technology Data Exchange (ETDEWEB)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)
2017-08-10
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.
A Few Simple Classroom Experiments with a Permanent U-Shaped Magnet
Babovic, Miloš; Babovic, Vukota
2017-01-01
A few simple experiments in the magnetic field of a permanent U-shaped magnet are described. Among them, pin oscillations inside the magnet are particularly interesting. These easy to perform and amusing measurements can help pupils understand magnetic phenomena and mutually connect knowledge of various physics branches.
Evolving shape coexistence in the lead isotopes: The geometry of configuration mixing in nuclei
International Nuclear Information System (INIS)
Frank, Alejandro; Isacker, Piet van; Vargas, Carlos E.
2004-01-01
A matrix coherent-state approach is applied to the interacting boson model (IBM) with configuration mixing to describe the evolving geometry of neutron-deficient Pb isotopes. It is found that for small mixing with parameters determined previously, the potential energy surface of 186 Pb has three minima, which correspond to spherical, oblate, and prolate shapes, in agreement with recent measurements and mean-field calculations. Away from midshell, in the heavier Pb isotopes, no deformed minima occur. Our analysis suggests that the configuration-mixing IBM, used in conjunction with a matrix coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei
Magnetic Shape Memory Alloy Actuator for Instrument Applications
National Aeronautics and Space Administration — This project will develop a simple actuator based on magnetic shape memory alloy (MSMA), a novel new family of crystalline materials which exhibit strain deformation...
Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples
International Nuclear Information System (INIS)
Hsu, L.-Y.; Tsai, M.-C.
2004-01-01
This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method
Energy Technology Data Exchange (ETDEWEB)
Malkov, Victor N.; Rogers, David W.O. [Carleton University (Canada)
2016-08-15
The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes) at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.
A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity
International Nuclear Information System (INIS)
Yu Xiongjun; Zhou Shaobing; Zheng Xiaotong; Guo Tao; Xiao Yu; Song Botao
2009-01-01
This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m -1 . The nanocomposite is composed of crosslinked poly(ε-caprolactone) (c-PCL) and Fe 3 O 4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe 3 O 4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe 3 O 4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe 3 O 4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.
Self-organizing magnetic beads for biomedical applications
International Nuclear Information System (INIS)
Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas
2012-01-01
In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle–particle particle–mesh method for effective computation of the magnetic force and torque acting on the particles. - Highlights: ► We propose to use self-organized bead structures to isolate circulating tumor cells. ► Flexible ways are important to get a high probability of catching cancer cells. ► The beads make it possible to tune the geometry in size position and shape.
An application of differential geometry to SSC magnet end winding
International Nuclear Information System (INIS)
Cook, J.M.
1990-04-01
It is expected that a large fraction of the total cost of the proposed Superconducting Supercollider will be spent on magnets, and, as Leon Lederman has remarked, ''most of the cost of making a magnet is in the ends.'' Among the mechanical problems to be solved there is the construction of an end-configuration for the superconducting cables which will minimize their strain energy. The purpose of this paper is to promote the use of differential geometry in this minimization. The use will be illustrated by a specific application to the winding of dipole ends. The cables are assumed to be clamped so firmly that their strain is not altered by Lorentz stresses. 15 refs
Open H-shaped permanent magnet structure for NMR imaging
International Nuclear Information System (INIS)
Nguyen, V.; Delamare, J.; Yonnet, J.P.
1996-01-01
Since NMR imaging at low field is now technically possible, permanent magnets can replace resistive coils or superconducting magnets. This paper reviews most of NMR structures that provide an uniform field using only permanent magnets. We propose a new open H-shaped structure that is simple to manufacture. This structure has been calculated thanks to an optimization program and a calculation method we presente here. It enables to determine with a good accuracy the field created by passive systems composed by permanent magnets and ferromagnetic materials. (author)
Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane
So, Hongyun
2014-07-01
We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical deflection and consecutive touchdown motion to the bottom of the dome-shaped drug reservoir in response to a magnetic field, thus achieving controlled discharge of the drug. Maximum drug release with 18 ± 1.5 μg per actuation was achieved under a 500 mT magnetic flux density, and various controlled drug doses were investigated with the combination of the number of accumulated actuations and the strength of the magnetic field.
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
Energy Technology Data Exchange (ETDEWEB)
Tavana, Nariman Roshandel, E-mail: nroshandel@ee.iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Shoulaie, Abbas, E-mail: shoulaie@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)
2011-01-15
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
International Nuclear Information System (INIS)
Tavana, Nariman Roshandel; Shoulaie, Abbas
2011-01-01
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
International Nuclear Information System (INIS)
Mostrom, M.A.
1979-01-01
Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap
Pole Shape Optimization of Permanent Magnet Synchronous Motors Using the Reduced Basis Technique
Directory of Open Access Journals (Sweden)
A. Jabbari
2010-03-01
Full Text Available In the present work, an integrated method of pole shape design optimization for reduction of torque pulsation components in permanent magnet synchronous motors is developed. A progressive design process is presented to find feasible optimal shapes. This method is applied on the pole shape optimization of two prototype permanent magnet synchronous motors, i.e., 4-poles/6-slots and 4-poles-12slots.
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
Use of Green functions in line shape problems in nuclear Magnetic resonance
International Nuclear Information System (INIS)
Martin, M.; Moreno, J.A.
1982-01-01
A method based on the two times Green function formalism is presented. It permits the straightforward determination of the line shape in Magnetic Resonance experiments together with its temperature behavior. Model calculations are made on a two-spin system attached to a one-dimensional rotor obtaining the temperature dependence of its Magnetic Resonance line shape and second moment
International Nuclear Information System (INIS)
Keyser, R.M.; Twomey, T.R.; Sangsingkeow, P.
1998-01-01
For 25 yr, coaxial germanium detector performance has been specified using the methods and values specified in Ref. 1. These specifications are the full-width at half-maximum (FWHM), FW.1M, FW.02M, peak-to-Compton ratio, and relative efficiency. All of these measurements are made with a 60 Co source 25 cm from the cryostat endcap and centered on the axis of the detector. These measurements are easy to reproduce, both because they are simple to set up and use a common source. These standard tests have been useful in guiding the user to an appropriate detector choice for the intended measurement. Most users of germanium gamma-ray detectors do not make measurements in this simple geometry. Germanium detector manufacturers have worked over the years to make detectors with better resolution, better peak-to-Compton ratios, and higher efficiency--but all based on measurements using the IEEE standard. Advances in germanium crystal growth techniques have made it relatively easy to provide detector elements of different shapes and sizes. Many of these different shapes and sizes can give better results for a specific application than other shapes and sizes. But, the detector specifications must be changed to correspond to the actual application. Both the expected values and the actual parameters to be specified should be changed. In many cases, detection efficiency, peak shape, and minimum detectable limit for a particular detector/sample combination are valuable specifications of detector performance. For other situations, other parameters are important, such as peak shape as a function of count rate. In this work, different sample geometries were considered. The results show the variation in efficiency with energy for all of these sample and detector geometries. The point source at 25 cm from the endcap measurement allows the results to be compared with the currently given IEEE criteria. The best sample/detector configuration for a specific measurement requires more and
International Nuclear Information System (INIS)
Forkl, A.; Kronmueller, H.
1995-01-01
The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries
Ni–Mn–Ga single crystal exhibiting multiple magnetic shape memory effects
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecký, Vít; Perevertov, Oleksiy
2016-01-01
Roč. 2, č. 3 (2016), s. 272-280 ISSN 2199-384X R&D Projects: GA ČR GB14-36566G; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic shape memory * NiMnGa * stress-strain * twinning * magnetic field-induced transformation * magnetic field-induced reorientation Subject RIV: BM - Solid Matter Physics ; Magnetism
Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities
Energy Technology Data Exchange (ETDEWEB)
Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States)
2015-06-15
The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a ≤ 0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability.
Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.
Kruber, S; Farrher, G D; Anoardo, E
2015-10-01
In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Xinran; Kofman, Jonathan
2017-07-10
A new fringe projection method for surface-shape measurement was developed using four high-frequency phase-shifted background modulation fringe patterns. The pattern frequency is determined using a new fringe-wavelength geometry-constraint model that allows only two corresponding-point candidates in the measurement volume. The correct corresponding point is selected with high reliability using a binary pattern computed from intensity background encoded in the fringe patterns. Equations of geometry-constraint parameters permit parameter calculation prior to measurement, thus reducing measurement computational cost. Experiments demonstrated the ability of the method to perform 3D shape measurement for a surface with geometric discontinuity, and for spatially isolated objects.
Magnetic structure of cross-shaped permalloy arrays embedded in silicon wafers
International Nuclear Information System (INIS)
Machida, Kenji; Tezuka, Tomoyuki; Yamamoto, Takahiro; Ishibashi, Takayuki; Morishita, Yoshitaka; Koukitu, Akinori; Sato, Katsuaki
2005-01-01
This paper describes the observed magnetic structure and the micromagnetic simulation of cross-shaped, permalloy (Ni 80 Fe 20 ) arrays embedded in silicon wafers. The nano-scale-width, cross-shaped patterns were fabricated using the damascene technique, electron beam lithography, and chemical mechanical polishing. The magnetic poles were observed as two pairs of bright and dark spots at the ends of the crossed-bars using a magnetic force microscope. The force gradient distributions were simulated based on micromagnetic calculations and tip's stray field calculations using the integral equation method. This process of calculation successfully explains the appearance of the poles and complicated spin structure at the crossing region
Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties
International Nuclear Information System (INIS)
Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.
2009-01-01
We present a study on the magnetic properties of naked and silica-coated Fe 3 O 4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO 2 shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO 2 functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe 3 O 4 nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.
THE EFFECTS OF MAGNETIC-FIELD GEOMETRY ON LONGITUDINAL OSCILLATIONS OF SOLAR PROMINENCES
International Nuclear Information System (INIS)
Luna, M.; Díaz, A. J.; Karpen, J.
2012-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side. We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
The Effects of Magnetic-field Geometry on Longitudinal Oscillaitons of Solar Prominences
Luna, M.; Diaz, A. J.; Karpen, J.
2013-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side.We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
International Nuclear Information System (INIS)
Mostafaei, Amir; Kimes, Katerina A.; Stevens, Erica L.; Toman, Jakub; Krimer, Yuval L.; Ullakko, Kari; Chmielus, Markus
2017-01-01
This study investigated microstructural evolution, phase transformation and magnetic behavior of additively manufactured magnetic shape memory alloy foam. Pre-alloyed angular Ni-Mn-Ga ball-milled powder was binder jet printed and sintered at 1020 °C for 4 h in both vacuum and argon atmospheres. Porosity of the manufactured foams was studied using micro-computed x-ray tomography and it was found that the relative density of the sintered parts was about 50–60%. In the printed sample that was sintered in argon, electron microscopy with elemental analysis showed no compositional gradient. X-ray diffraction indicated that 10M modulated martensite was present in the pre-alloyed powder as well as the sample sintered in argon. Differential scanning calorimetry and thermomagnetic results showed that martensitic transformation of the sample sintered in argon was at 34 °C, while barely detectable in the sample sintered in vacuum. Saturation magnetization of the printed sample sintered in argon atmosphere was around 68.4 Am"2/kg. Production of a magnetic shape memory alloy by printing would enable complex-shaped elements for demanding applications, and intentionally including porosity could allow these polycrystals to exhibit the magnetic shape memory effect. Therefore, a facile method for sintering of Ni–Mn–Ga printed parts has been presented for the first time.
Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field
Directory of Open Access Journals (Sweden)
A. Ghorbanpour Arani
2015-06-01
Full Text Available This study deals with the vibration and stability analysis of a Y-shaped single-walled carbon nanotube (SWCNT embedded in visco-Pasternak foundation and conveying nano-magnetic viscous fluid (NMF based on nonlocal elasticity theory and Euler–Bernoulli beam model. The fluid is two-phases due to the existence of magnetic nanoparticles which its volume fraction is much little in comparison with the base fluid where the influence of 2D magnetic field is taken into account. Also, Knudsen number is used to correct the velocity profile of fluid. The Galerkin method is applied to solve the equation of motion which is obtained by employing Hamilton’s principle. The detail parametric study is conducted, focusing on the combined effects of carbon nanotube and Y-shaped junction fitted at the downstream end, fluid velocity, Knudsen number and elastic medium. The results indicate that increasing the angle between centerline of the CNT and the downstream elbows decreases stability of system.
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
Directory of Open Access Journals (Sweden)
GHOLAMIAN, A. S.
2009-06-01
Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.
Energy Technology Data Exchange (ETDEWEB)
Zacchia, Nicholas A.; Valentine, Megan T. [Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)
2015-05-15
We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.
Zacchia, Nicholas A; Valentine, Megan T
2015-05-01
We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.
Directory of Open Access Journals (Sweden)
Ke Xu
2017-05-01
Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš
2015-01-01
Roč. 51, č. 11 (2015), s. 1-4, č. článku 2505304. ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.277, year: 2015
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš
2015-01-01
Roč. 51, č. 11 (2015), s. 7150406 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015
DEFF Research Database (Denmark)
Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech
2011-01-01
This paper deals with the effects of I-shaped cores in an outer-rotor transverse flux permanent magnet generator. Performance characteristics of a typical outer-rotor transverse flux permanent magnet generator are obtained in two cases; with and without I-shaped cores. The results show that altho...... the advantages and disadvantage of using I-shaped cores and emphasizes the necessity of performing a tradeoff study between using and not using I-shaped cores in practical transverse flux permanent magnet generators....
Energy Technology Data Exchange (ETDEWEB)
Lee, Hwi Joo; Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of); Park, Soon Dong; Jun, Bung Hyack; Kim, Chan Joong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-09-15
This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin 30mm x 30mm rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.
Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry
Energy Technology Data Exchange (ETDEWEB)
Pease, J.H.
1989-12-01
The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
International Nuclear Information System (INIS)
Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.
2016-01-01
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
Energy Technology Data Exchange (ETDEWEB)
Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)
2016-06-15
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.
The role of adaptive martensite in magnetic shape memory alloys
Czech Academy of Sciences Publication Activity Database
Niemann, R.; Rößler, U.K.; Gruner, M.E.; Heczko, Oleg; Schultz, L.; Fähler, S.
2012-01-01
Roč. 14, č. 8 (2012), s. 562-581 ISSN 1438-1656 Grant - others:AVČR(CZ) M100100913 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * modulated structure * adaptive phase * mobility of twin boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.608, year: 2012
Magnetic properties of Ni-Mn-Ga-Co-Cu tetragonal martensites exhibiting magnetic shape memory effect
Czech Academy of Sciences Publication Activity Database
Rameš, Michal; Heczko, Oleg; Sozinov, A.; Ullakko, K.; Straka, Ladislav
2018-01-01
Roč. 142, Jan (2018), s. 61-65 ISSN 1359-6462 R&D Projects: GA ČR GA16-00043S Institutional support: RVO:68378271 Keywords : ferromagnetic shape memory alloy * magnetic anisotropy * martensitic phase transformation * Heusler phases * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.747, year: 2016
Controlling the flux dynamics in superconductors by nanostructured magnetic arrays
Kapra, Andrey
In this thesis we investigate theoretically how the critical current jc of nano-engineered mesoscopic superconducting film can be improved and how one can control the dynamics of the magnetic flux, e.g., the transition from flux-pinned to flux-flow regime, using arrays of magnetic nanostructures. In particularly we investigate: (1) Vortex transport phenomena in superconductors with deposited ferromagnetic structures on top, and the influence of the sample geometry on the critical parameters and on the vortex configurations. Changing geometry of the magnetic bars and magnetization of the bars will affect the critical current jc of the superconducting film. Such nanostructured ferromagnets strongly alter the vortex structure in its neighborhood. The influence of geometry, position and magnetization of the ferromagnet (single bar or regular lattice of the bars) on the critical parameters of the superconductor is investigated. (2) Effect of flux confinement in narrow superconducting channels with zigzag-shaped banks: the flux motion is confined in the transverse (perpendicular) direction of a diamond-cell-shape channel. The matching effect for the magnetic flux is found in the system relevantless of boundary condition. We discuss the dynamics of vortices in the samples and vortex pattern formation in the channel. We show how the inclusion of higher-Tc superconductor into the sample can lead to enhanced properties of the system. By adding an external driving force, we study the vortex dynamics. The different dynamic regimes are discussed. They allowed an effective control of magnetic flux in superconductors.
Shape, size, and distribution of magnetic particles in Bjurbole chondrules
Nava, David F.
1994-01-01
Chondrules from the Bjurbole chondritic meteorite (L4) exhibit saturation remanence magnetization (SIRM) values which vary over three orders of magnitude. REM values (Natural Remanence Magnetization/SIRM) for Allende (C3V) and Chainpur (LL3) are less than 0.01 but in Bjurbole some chondrules were found to have REM values greater than 0.1 with several greater than 0.2. REM values greater than 0.1 are abnormal and cannot be acquired during weak field cooling. If exposure to a strong field (whatever the source) during the chondrules' history is responsible for the high REM values, was such history associated with a different processing which might have resulted in different shape, size, and distribution of metal particles compared to chondrules having REM values of less than 0.01? Furthermore, magnetic hysteresis results show a broad range of magnetic hardness and other intrinsic magnetic properties. These features must be related to (1) size and amount of metal; and (2) properties of, and amount of, tetrataenite in the chondrules (all chondrules thus far subjected to thermomagnetic analysis show the presence of tetrataenite). A scanning electron microscopy (SEM) study is underway to determine the relationship between the shape, size, and distribution of metal particles within individual chondrules and the magnetic properties of these chondrules. Results from the SEM study in conjunction with magnetic property data may also help to discern effects from possible lightning strikes in the nebula prior to incorporation of the chondrules into the parent body.
Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles
International Nuclear Information System (INIS)
Herbst, K.; Kopp, A.; Heber, B.
2013-01-01
Studies of the propagation of charged energetic particles in the Earth's magnetic field go back to Carl Stoermer. In the end, his investigations finally lead to the definition of the so-called cutoff rigidity RC; that is, the minimum momentum per charge a particle must have in order to reach a certain geographical location. Employing Monte Carlo simulations with the PLANETOCOSMICS code we investigate the correlation between the geomagnetic field structure and the cutoff rigidity. We show that the geometry of the magnetic field has a considerable influence on the resulting cutoff rigidity distribution. Furthermore, we will present a simple geometry-based parameter, δB, which is able to reflect the location-dependent cutoff rigidity. We show that this correlation is also visible in the temporal evolution of the Earth's magnetic field, at least over the last 100 yr. Using latitude scans with neutron monitors, changes of the relative counting rates at different positions are calculated, showing small variations for, e.g., Kiel and Moscow, while large ones occur at Mexico City as well as on the British Virgin Islands.
Refillable and magnetically actuated drug delivery system using pear-shaped viscoelastic membrane
So, Hongyun; Seo, Young Ho; Pisano, Albert P.
2014-01-01
We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Magnetic shape memory effect at 1.7 K
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Kopecký, Vít; Sozinov, A.; Straka, L.
2013-01-01
Roč. 103, č. 7 (2013), "072405-1"-"072405-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : shape memory alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013 http://dx.doi.org/10.1063/1.4817941
Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi
International Nuclear Information System (INIS)
Sehitoglu, H.; Efstathiou, C.; Maier, H.J.; Chumlyakov, Y.
2005-01-01
We report on the shape memory characteristics and magnetic behavior of polycrystalline and single crystalline FeNiCoTi. Predeforming the samples in the martensitic state and biasing of the martensite variants produced anisotropy in the magnetization behavior allowing the 'easy axis' to be identified as the 'a-axis' in the martensitic state. Based on these results, we provide an estimate of the magnetic anisotropy energy as 8.34x10 5 ergs/cm 3 . The results confirm the different magnetization behavior in the martensitic and austenitic states, and the shift in transformation temperatures upon application of a magnetic field. Shape memory strains near 2.5% are demonstrated under constant stress temperature cycling and upon heating at zero stress after deformation. We present a thermodynamics based theory that explains the origin of the hysteresis in this class of alloys emanating from the dissipation of energy due to plastic deformation. We predict the thermal hysteresis (135 K), and the shift in transformation temperature (14 K) with applied magnetic fields in agreement with the experimental results. The possibility of utilizing these classes of alloys as magnetic shape memory alloys is discussed
Three-dimensional simulations of magnetic reconnection in slab geometry
International Nuclear Information System (INIS)
Onofri, M.; Primavera, L.; Malara, F.; Veltri, P.
2004-01-01
Magnetic reconnection in an incompressible plasma in three-dimensional slab geometry has been studied through magnetohydrodynamics numerical simulations. Particular attention has been paid to the case in which several unstable modes that correspond to resonant surfaces in different positions of the simulation domain, are excited at the beginning of the simulation. The dynamical evolution of such a system leads to a behavior different than what is expected from the linear theory. In particular the effects of the equilibrium field dissipation and the fact that several resonant surfaces are initially excited both concur in modifying the initial growth rates of the instability. In the nonlinear phase two basic phenomena are observed: first, the rapid transfer of energy to large wave numbers, corresponding to a direct cascade of the energy in the spectrum, which approaches, with increasing time, a power law; second, an energy transfer towards smaller wave numbers, which corresponds in the physical space to a coalescence of magnetic islands. Finally, the spectra in the periodic directions exhibit a strongly anisotropic behavior
Czech Academy of Sciences Publication Activity Database
Fabbrici, S.; Porcari, G.; Cugini, F.; Solzi, M.; Kamarád, Jiří; Arnold, Zdeněk; Cabassi, R.; Albertini, F.
2014-01-01
Roč. 16, č. 4 (2014), s. 2204-2222 ISSN 1099-4300 Institutional support: RVO:68378271 Keywords : magnetic shape memory materials * magnetocaloric effect * multifunctional Heusler alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014
A new class of magnetic confinement device in the shape of a knot
Energy Technology Data Exchange (ETDEWEB)
Hudson, S. R., E-mail: shudson@pppl.gov; Startsev, E.; Feibush, E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-01-15
We describe a new class of magnetic confinement device, with the magnetic axis in the shape of a knot. We call such devices “knotatrons.” An example is given that has a large volume filled with magnetic surfaces, with significant rotational-transform, and with the magnetic field produced entirely by external circular coils.
Effects of magnetic core geometry on false detection in residual current sensor
International Nuclear Information System (INIS)
Colin, Bruno; Chillet, Christian; Kedous-Lebouc, Afef; Mas, Patrick
2006-01-01
Under high-supply current, residual circuit breakers are subject to abnormal tripping, caused by false residual currents. Geometric or magnetic anomalies in the circuit breaker ring core seem to be responsible for these abnormal currents. This paper studies a few anomalies (spiral shape effect, conductor eccentricity, lamination effect) and calculates different contributions using the finite element simulations. The results show that the ring core, made of thin wound magnetic tape, is particularly sensitive to primary conductor eccentricity
Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces
Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon
2011-01-01
The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The
Magnetic shape-memory alloys: thermomechanical modelling and analysis
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš; Stefanelli, U.
2014-01-01
Roč. 26, č. 6 (2014), s. 783-810 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetic shape- memory alloys * martensitic phase transformation * ferro/paramagnetic phase transformation Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007/s00161-014-0339-8#
Czech Academy of Sciences Publication Activity Database
Straka, L.; Soroka, A.; Heczko, Oleg; Hänninen, H.; Sozinov, A.
2014-01-01
Roč. 87, SEP (2014), s. 25-28 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GAP107/11/0391 Grant - others:AV ČR(CZ) M100101241 Institutional support: RVO:68378271 Keywords : heusler phases * ferromagnetic shape memory * magnetic properties * coercivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.224, year: 2014 http://www.sciencedirect.com/science/article/pii/S1359646214002176
Directory of Open Access Journals (Sweden)
Aamir Hussain
2016-06-01
Full Text Available This paper presents the design optimization of linear permanent magnet (PM generator for wave energy conversion using finite element method (FEM. A linear PM generator with triangular-shaped magnet is proposed, which has higher electromagnetic characteristics, superior performance and low weight as compared to conventional linear PM generator with rectangular shaped magnet. The Individual Parameter (IP optimization technique is employed in order to optimize and achieve optimum performance of linear PM generator. The objective function, optimization variables; magnet angle,M_θ(∆ (θ, the pole-width ratio, P_w ratio(τ_p/τ_mz,, and split ratio between translator and stator, δ_a ratio(R_m/R_e, and constraints are defined. The efficiency and its main parts; copper and iron loss are computed using time-stepping FEM. The optimal values after optimization are presented which yields highest efficiency. Key
Plasma streams mixing in two-channel t-shaped magnetic filter
International Nuclear Information System (INIS)
Aksyonov, D.S.; Aksenov, I.I.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.
2011-01-01
Ti-Al-N films were deposited by vacuum arc method. T-shaped magnetic filter with two channels was used for films preparation. Deposition was performed after aluminum and titanium separate plasma streams from two plasma sources were mixed into single one inside plasma duct having weakened magnetic field near its output. Obtained films have uniform distribution of composition and thickness on 180 mm diameter substrate surface. It was found that mixing and homogenization degree depends on nitrogen pressure, output magnetic field intensity and output- to-substrate distance. Film self-sputtering and aluminum preferential sputtering were observed for elevated negative substrate bias potentials.
Review of properties of magnetic shape memory (MSM) alloys and MSM actuator designs
International Nuclear Information System (INIS)
Gabdullin, N; Khan, S H
2015-01-01
Magnetic shape memory alloys are a new group of ''smart'' materials that exhibit large strain of 6-12% when subjected to magnetic fields. This indicates their enormous potential to be used in different electromagnetic (EM) devices such as actuators, sensors, energy harvesters and dampers. Shape change in MSM materials is controlled by magnetic field and doesn't involve phase transformation, allowing it to overcome a number of disadvantages of conventional shape memory alloys (SMAs). MSM devices are capable of producing large force and stroke output in considerably small dimensions. At the same time they can have fast response and potentially very long lifetime. This paper discusses different modern designs and approaches to MSM actuator design with their advantages and disadvantages. An overview on characteristics of MSM alloys is also presented in order to highlight how different properties of the material influence the total output of a device
Directory of Open Access Journals (Sweden)
Felix Tobias Kurz
2016-12-01
Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
International Nuclear Information System (INIS)
Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian
2016-01-01
Polylactide-based polyurethane shape memory nanocomposites (Fe 3 O 4 /PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe 3 O 4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe 3 O 4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe 3 O 4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe 3 O 4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent. (paper)
International Nuclear Information System (INIS)
Piskunov, N.E.
1985-01-01
Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves
Computer codes for shaping the magnetic field of the JINR phasotron
International Nuclear Information System (INIS)
Zaplatin, N.L.; Morozov, N.A.
1983-01-01
The computer codes providing for the shaping the magnetic field of the JINR high current phasotron are presented. Using these codes the control for the magnetic field mapping was realized in on- or off-line regimes. Then these field parameters were calculated and ferromagnetic correcting elements and trim coils setting were chosen. Some computer codes were realised for the magnetic field horizontal component measurements. The data are presented on some codes possibilities. The codes were used on the EC-1010 and the CDC-6500 computers
Magnetic sensorless control of plasma position and shape in a tokamak
International Nuclear Information System (INIS)
Nakamura, K.; Luo, J.R.; Wang, H.Z.
2005-01-01
Magnetic sensorless sensing and control experiments of the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made focusing on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem of integrator of magnetic sensors. Two kinds of control experiments were carried out, to keep the position constant and swing the position in a triangular waveform. And magnetic sensorless sensing of plasma shape is discussed. (author)
International Nuclear Information System (INIS)
Yamashita, F; Yamada, O; Ohya, S; Kobayashi, O; Nakano, M; Fukunaga, H
2010-01-01
We have already reported an advanced method for producing a radially-anisotropic rare earth composite bonded magnet with continuously controlled direction of anisotropy. The magnet has been applied to an inner rotor as a practical usage. In this study, the outstanding preparation method was adopted into the preparation of a magnet applied for an outer rotor. An optimized condition of extrusion and compaction at an elevated temperature could be obtained. In addition, a low pressure configuration to the ring-shaped magnet from plural preformed magnets was carried out, which had specific distribution of magnetic anisotropy for internal space for a small motor, by using self recoverability based on the viscous deformation without an alignment field. No deterioration of magnetic properties was detected through the process even if those magnets were miniaturized. Resultantly, the (BH) max of a ring-shaped magnet with the continuously controlled direction of magnetic anisotropy attained the value of 186 kJ/m 3 , and we obtained sine-wave magnetic anisotropy distribution, even if those magnets were miniaturized.
Lexan Linear Shaped Charge Holder with Magnets and Backing Plate
Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.
2013-01-01
A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.
Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar
2011-12-05
Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.
International Nuclear Information System (INIS)
Mohamed, Marwa A.A.
2014-01-01
Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles
Confinement of a non cylindrical z discharge by a cusp geometry
International Nuclear Information System (INIS)
Watteau, J.H.
1968-03-01
The plasma of a non-cylindrical z discharge is accumulated in the centre of a cusp geometry and then captured and confined by the rising cusp magnetic field. The cusp geometry is produced by two identical coaxial coils the currents of which are equal but in opposite directions. Stability and confinement properties of this zero minimum B geometry are recalled; in particular it is shown (the coils cross section being supposed punctual) that the magnetic well depth of the configuration without plasma is maximum for an optimum coils distance. Two modes of confinement are observed experimentally : - a collisional mode for which the plasma confinement is limited to 10 μsec (temperature 5 eV, density 7 x 10 16 cm -3 ) as a result of the gradual interpenetration of the plasma and of the magnetic field. - a collisionless mode (temperature 40 eV) where the radial leak thickness is of the order of the ion cyclotron radius. Plasma accumulation occurs even without confinement and is due to the non-cylindrical shape of the discharge chamber. The two-dimensional snow-plough model gives good account of the discharge dynamics. A comparison is made with plasma focus experiments: in particular experimental conditions (deuterium, pressure 1 torr,energy 3 kJ, current 100 kA) a 10 7 neutron yield is detected which appears to be connected with the unstable behavior of the discharge. (authors) [fr
CBM RICH geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration
2016-07-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.
Directory of Open Access Journals (Sweden)
Miaolei Zhou
Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Du, V; Fayol, D; Reffay, M; Luciani, N; Bacri, J-C; Gay, C; Wilhelm, C
2015-02-01
A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates.
Hock, Tan Tong; Tarmizi, Rohani Ahmad; Yunus, Aida Suraya Md.; Ayub, Ahmad Fauzi
2015-01-01
This study was conducted using a new hybrid method of research which combined qualitative and quantitative designs to investigate the viewpoints of primary school students' conceptual understanding in learning geometry from the aspect of shapes and spaces according to van Hiele theory. Q-methodology is used in this research to find out what…
Imaging magnetic domains in Ni nanostructures
International Nuclear Information System (INIS)
Asenjo, A.; Jaafar, M.; Gonzalez, E.M.; Martin, J.I.; Vazquez, M.; Vicent, J.L.
2007-01-01
The study of nanomagnets is the subject of increasing scientific effort. The size, the thickness and the geometric shape of the elements determine the magnetic properties and then the domain configuration. In this work, we fabricated by electron-beam lithography the three different arrays of Ni nanostructures keeping the size, the thickness and also the distance constant between the elements but varying the geometry: square, triangular and circular. The domain structure of the nanomagnets is studied by magnetic force microscopy
International Nuclear Information System (INIS)
Gruner, Markus Ernst; Hamann, Sven; Brunken, Hayo; Ludwig, Alfred; Entel, Peter
2013-01-01
Highlights: ► We discuss compositional trends in Fe–Pd–Cu and Fe–Pd–Mn magnetic shape memory alloys. ► We combine density functional theory and combinatorial thin film experiments. ► Magnetic excitations contribute decisively to the structural transformation behavior. -- Abstract: High throughput thin film experiments and first-principles calculations are combined in order to get insight into the relation between finite temperature transformation behavior and structural ground state properties of ternary Fe–Pd–X alloys. In particular, we consider the binding surface, i.e., the energy of the disordered alloy calculated along the Bain path between bcc and fcc which we model by a 108 atom supercell. We compare stoichiometric Fe 75 Pd 25 with ternary systems, where 4.6% of the Fe atoms were substituted by Cu and Mn, respectively. The computational trends are related to combinatorial experiments on thin film libraries for the systems Fe–Pd–Mn and Fe–Pd–Cu which reveal a systematic evolution of the martensitic start temperature with composition within the relevant concentration range for magnetic shape memory (MSM) applications. Our calculations include atomic relaxations, which were shown to be relevant for a correct description of the structural properties. Furthermore, we find that magnetic excitations can substantially alter the binding surface. The comparison of experimental and theoretical trends indicates that, both, compositional changes and magnetic excitations contribute significantly to the structural stability which may thus be tailored by specifically adding antiferromagnetic components
Direct observation of magnetic domains by Kerr microscopy in a Ni-Mn-Ga magnetic shape-memory alloy
Czech Academy of Sciences Publication Activity Database
Perevertov, Oleksiy; Heczko, Oleg; Schaefer, R.
2017-01-01
Roč. 95, č. 14 (2017), s. 1-5, č. článku 144431. ISSN 2469-9950 R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : shape memory * magnetic domains * Kerr microscopy * N-Mn-Ga alloy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016
Stress analysis studies in optimised 'D' shaped TOKAMAK magnet designs
International Nuclear Information System (INIS)
Diserens, N.J.
1975-07-01
A suite of computer programs TOK was developed which enabled simple data input to be used for computation of magnetic fields and forces in a toroidal system of coils with either D-shaped or circular cross section. An additional requirement was that input data to the Swansea stress analysis program FINESSE could be output from the TOK fields and forces program, and that graphical output from either program should be available. A further program was required to optimise the coil shape. This used the field calculating routines from the TOK program. The starting point for these studies was the proposed 40 coil Princeton design. The stresses resulting from three different shapes of D-coil were compared. (author)
Energy Technology Data Exchange (ETDEWEB)
Fang, J [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Luo, X M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Chen, D X [ICREA and Grup Electromagnetisme, Departament de Fisica, Universitat Autonoma Barcelona, 08193 Bellaterra (Spain); Alamgir, A K M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Collings, E W [MSE, Ohio State University, Columbus, OH 43210 (United States); Lee, E [MSE, Ohio State University, Columbus, OH 43210 (United States); Sumption, M D [MSE, Ohio State University, Columbus, OH 43210 (United States); Fang, J G [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Yi, H P [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Song, X H [Innova Superconductor Technology Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Guo, S Q [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Liu, M L [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Xin, Y [Innopower Superconductor Cable Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)
2004-10-01
On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field.
International Nuclear Information System (INIS)
Fang, J; Luo, X M; Chen, D X; Alamgir, A K M; Collings, E W; Lee, E; Sumption, M D; Fang, J G; Yi, H P; Song, X H; Guo, S Q; Liu, M L; Xin, Y; Han, Z
2004-01-01
On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field
Theory and numerics for shape optimization in superconductivity
International Nuclear Information System (INIS)
Heese, H.
2006-01-01
We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)
Control of the Dipole Cold Mass Geometry at CERN to Optimize LHC Performance
Wildner, E; La China, M; Tommasini, D
2006-01-01
The detailed shape of the 15 m long superconducting LHC dipole cold mass is of high importance as it determines three key parameters: the beam aperture, nominally of the order of 10 beam standard deviations; the connectivity of the beam- and technical lines between magnets; the transverse position of non-linear correctors mounted on the dipole ends. An offset of the latter produces unwanted beam dynamics perturbations. The tolerances are in the order of mm over the length of the magnet. The natural flexibility of the dipole and its mechanical structure allow deformations during handling and transportation which exceed the tolerances. This paper presents the observed deformations of the geometry during handling and various operations at CERN, deformations which are interpreted thanks to a simple mechanical model. These observations have led to a strategy of dipole geometry control at CERN, based on adjustment of the position of its central support (the dipole is supported at three positions, horizontally and v...
Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)
2017-06-20
Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.
Directory of Open Access Journals (Sweden)
Paulo Roberto Eckert
2014-07-01
Full Text Available This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.
Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira
2014-07-21
This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.
International Nuclear Information System (INIS)
Irzhak, Artemy; Koledov, Viktor; Zakharov, Dmitry; Lebedev, Gor; Mashirov, Alexey; Afonina, Veronika; Akatyeva, Kristina; Kalashnikov, Vladimir; Sitnikov, Nikolay; Tabachkova, Natalia; Shelyakov, Alexander; Shavrov, Vladimir
2014-01-01
Highlights: ► New results on the recently developed shape memory nanocomposites are reported. ► Impact of FIB fabrication method on shape memory properties was studied. ► Shape memory effect for Ti 2 NiCu sample prepared by FIB vanishes at thickness between 70 nm and 170 nm. ► Ni 2 MnGa-based magnetic microcomposite was fabricated and tested for the first time. -- Abstract: New composite functional material with shape memory effect (SME) has recently been proposed and tested for actuation on microscale. The composite nanotweezers have been designed and tested in manipulation of nano-objects. This report presents the new experiments on shape memory alloy’s (SMAs) properties on submicron scale of dimensions and the development of the technology of nanomanipulation on their bases. The minimal thickness of shape memory layer that undergoes SME was experimentally estimated for Ti 2 NiCu alloy. Impact of the focused ion beam modification of SMA superficial layer on the shape memory properties of micro-sized samples is discussed. Composite actuator of Ni–Mn–Ga magnetic SMA with the size of 20 × 4 × 2 μm 3 was fabricated for the first time and its thermal actuation was experimentally demonstrated ( (http://www.smwsm.org/microactuators/NiMnGa.html))
International Nuclear Information System (INIS)
Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.
1992-01-01
Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments
International Nuclear Information System (INIS)
Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji
2017-01-01
Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the
Effect of ablation geometry on the dynamics, composition, and geometrical shape of thin film plasma
Mondal, Alamgir; Singh, R. K.; Kumar, Ajai
2018-01-01
The characteristics of plasma plume produced by front and back ablation of thin films have been investigated using fast imaging and optical emission spectroscopy. Ablation geometry dependence of the plume dynamics, its geometrical aspect and composition is emphasized. Also, the effect of an ambient environment and the beam diameter of an ablating laser on the front and back ablations is briefly discussed. Analysis of time resolved images and plasma parameters indicates that the energetic and spherical plasma formed by front ablation is strikingly different in comparison to the slow and nearly cylindrical plasma plume observed in the case of back ablation. Further shock formation, plume confinement, thermalization and validity of different expansion models in these two ablation geometries are also presented. The present study demonstrates the manipulation of kinetic energy, shape, ion/neutral compositions and directionality of the expanding plume by adjusting the experimental configuration, which is highly relevant to its utilization in various applications e.g., generation of energetic particles, tokamak edge plasma diagnostics, thin film deposition, etc.
Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion
Indriani, A.; Dimas, S.; Hendra
2018-02-01
The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25
Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete
Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren
2018-03-01
Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.
Huang, Yiwen
2018-01-01
The ﬂuctuations in the initial energy density of heavy-ion collisions, reﬂected in the event-by-event variation of elliptic ﬂow v2, allow an eﬃcient selection of events corresponding to speciﬁc initial geometries. This technique, Event Shape Engineering, has been used to search for the Chiral Magnetic Eﬀect (CME), a parity violating eﬀect of the strong interaction. The three-particle correlator γαβ = hcos(ϕα + ϕβ − 2Ψ2)i, calculated for diﬀerent combinations of charges α and β, has been employed to disentangle the CME signal from background eﬀects in Pb–Pb collisions at √sNN = 5.02 TeV recorded by the ALICE detector. In order to constrain the CME contribution to the measured correlations, the charge-dependence of γαβ is compared with the expectations for the CME signal based on Monte Carlo calculations with magnetic ﬁeld of spectators.
A macroscopic model for magnetic shape-memory single crystals
Czech Academy of Sciences Publication Activity Database
Bessoud, A. L.; Kružík, Martin; Stefanelli, U.
2013-01-01
Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf
Energy Technology Data Exchange (ETDEWEB)
Irzhak, Artemy [National University of Science and Technology “MISiS”, Moscow (Russian Federation); Koledov, Viktor [Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Moscow (Russian Federation); Zakharov, Dmitry, E-mail: dmitry.zakharov@misis.ru [National University of Science and Technology “MISiS”, Moscow (Russian Federation); Lebedev, Gor [National University of Science and Technology “MISiS”, Moscow (Russian Federation); Mashirov, Alexey; Afonina, Veronika; Akatyeva, Kristina; Kalashnikov, Vladimir [Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Moscow (Russian Federation); Sitnikov, Nikolay [National Research Nuclear University “MEPhI”, Moscow (Russian Federation); Tabachkova, Natalia [National University of Science and Technology “MISiS”, Moscow (Russian Federation); Shelyakov, Alexander [National Research Nuclear University “MEPhI”, Moscow (Russian Federation); Shavrov, Vladimir [Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Moscow (Russian Federation)
2014-02-15
Highlights: ► New results on the recently developed shape memory nanocomposites are reported. ► Impact of FIB fabrication method on shape memory properties was studied. ► Shape memory effect for Ti{sub 2}NiCu sample prepared by FIB vanishes at thickness between 70 nm and 170 nm. ► Ni{sub 2}MnGa-based magnetic microcomposite was fabricated and tested for the first time. -- Abstract: New composite functional material with shape memory effect (SME) has recently been proposed and tested for actuation on microscale. The composite nanotweezers have been designed and tested in manipulation of nano-objects. This report presents the new experiments on shape memory alloy’s (SMAs) properties on submicron scale of dimensions and the development of the technology of nanomanipulation on their bases. The minimal thickness of shape memory layer that undergoes SME was experimentally estimated for Ti{sub 2}NiCu alloy. Impact of the focused ion beam modification of SMA superficial layer on the shape memory properties of micro-sized samples is discussed. Composite actuator of Ni–Mn–Ga magnetic SMA with the size of 20 × 4 × 2 μm{sup 3} was fabricated for the first time and its thermal actuation was experimentally demonstrated ( (http://www.smwsm.org/microactuators/NiMnGa.html))
Nadzharyan, T. A.; Makarova, L. A.; Kazimirova, E. G.; Perov, N. S.; Kramarenko, E. Yu
2018-03-01
We study the effects the geometric configuration has on magnetic interactions between a magnetoactive elastomer (MAE) sample and various systems of permanent magnets for problems with both flat and curved geometry. MAEs consist of a silicone polymer matrix and iron filler microparticles embedded in it. Permanent magnets are cylindrical neodymium magnets arranged in a line on a flat or curved solid surfaces. We use computer simulations, namely the finite element method, in order to study the interaction force and magnetic pressure in a system with an MAE sample and permanent magnets. The model is based on classical Maxwell magnetostatics and two factors taking into account field dependence of MAE’s magnetic properties and inhomogeneities caused by local demagnetization. We calculate magnetic pressure dependences on various geometric parameters of the system, namely, the diameter and the height of permanent magnets, the distance between the magnets and dimensions of MAE samples. This research aims to create a set of guidelines for choosing the geometric configuration of a retina fixator based on MAE seals to be used in eye surgery for retinal detachment treatment.
Directory of Open Access Journals (Sweden)
A. Lendlein
2012-01-01
Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.
Net-shape and crack-free production of Nd–Fe–B magnets by hot deformation
Energy Technology Data Exchange (ETDEWEB)
Dirba, I., E-mail: dirba@fm.tu-darmstadt.de [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, 01171 Dresden (Germany); Sawatzki, S. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, 01171 Dresden (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany)
2014-03-15
In order to reduce the amount of material waste and therefore to use the precious rare earth element Nd in a more efficient way, routes for the production of crack-free hot-deformed nanocrystalline Nd–Fe–B magnets (using melt-spun ribbons as a precursor) have been investigated. In contrast to the conventional route in which material flows into a cavity, pressing tool has been used in order to exert a back pressure during backward extrusion, leading to crack-free and net-shape production of radially oriented ring magnets, without detrimental influence on magnetic properties. Micrographs demonstrate overall good alignment of elongated platelet shaped grains with radially oriented c-axis in most parts of the ring. A mean remanence J{sub r} = 1.27 T and coercivity μ{sub 0i}H{sub c} = 1.5 T has been obtained. Degree of texture reaches around 0.7. Furthermore, die-upsetting has been performed for different degrees of deformation to obtain crack-free, mechanically and magnetically homogenous, axially oriented tablet magnets.
Theory and numerics for shape optimization in superconductivity
Energy Technology Data Exchange (ETDEWEB)
Heese, H.
2006-07-21
We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)
Proposal for the award of a contract to measure the geometry of the LHC cryo-magnets
2003-01-01
This document concerns the award of a contract to measure the geometry of the LHC cryo-magnets. Following a market survey carried out among 43 firms in eleven Member States, a call for tenders (IT-2989/EST/LHC) was sent on 10 March 2003 to one firm and three consortia, in seven Member States. By the closing date, CERN had received three tenders from the three consortia in six Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium SETAT (FR), INTROTECH (NL) and MAP (CH), the lowest bidder, to measure the geometry of the LHC cryo-magnets, for an amount not exceeding 2 097 582 euros (3 173 347 Swiss francs) covering an initial period of three years starting on 1 October 2003, subject to revision for inflation from 1 October 2004. The rate of exchange used is that stipulated in the tender. The contract will include options for two one-year extensions beyond the initial three-year period. The consortium has indicated the following distribution by country of th...
Self-assembly of designed supramolecular magnetic filaments of different shapes
Energy Technology Data Exchange (ETDEWEB)
Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)
2017-06-01
In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Czech Academy of Sciences Publication Activity Database
Zablotskyy, Vitaliy A.; Pérez-Landazábal, J.I.; Recarte, V.; Gómez-Polo, C.
2010-01-01
Roč. 22, č. 31 (2010), 316004/1-316004/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * magnetic susceptibility * martensitic transition * magnetic domains Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010
DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS
International Nuclear Information System (INIS)
BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.
2001-01-01
Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective
Zapiór, Maciej; Martínez-Gómez, David
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2017-11-01
This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.
Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
Masrour, R.; Jabar, A.
2018-05-01
The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.
Shape-matching soft mechanical metamaterials.
Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A
2018-01-17
Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.
Quantification of variability in bedform geometry
van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.
2008-01-01
We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.
Directory of Open Access Journals (Sweden)
Seungmun Jeon
2017-05-01
Full Text Available This paper proposes a novel sphericon-shaped magnetic millirobot (SSMM that can roll on a variety of surfaces. The SSMM comprises four identical half cones with a cylindrical magnet inserted into the geometric center. It can roll forward or backward on a surface with repeated rolling cone motions (wobbling motions. Since a rolling SSMM develops its entire surface by means of line contact, a relatively large maximum static friction force can make the SSMM move on a surface steadily and effectively. In this work, a new type of external wobbling magnetic field (EWMF was also derived to manipulate the SSMM’s rolling motions precisely. Then, the controlled rolling motions of prototype SSMMs under various surface conditions were demonstrated to examine the rolling ability of the proposed SSMM.
Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cerello, Piergiorgio; Chandra, Sinjini; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Espagnon, Bruno; Esumi, Shinichi; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hladky, Jan; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Llope, William; Lodato, Davide Francesco; Lonne, Per-ivar; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Lucio Martinez, Jose Antonio; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Nag, Dipanjan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Ohlson, Alice Elisabeth; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Pagano, Paola; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Jonghan; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Rana, Dhan Bahadur; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahlmuller, Baldo; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scharenberg, Rolf Paul; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silaeva, Svetlana; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Vigolo, Sonia; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Yalcin, Serpil; Yamakawa, Kosei; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang
2018-02-10
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow $v_2$ reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\\sqrt{s_{_{\\rm NN}}} =2.76$ TeV. The two-particle correlator $\\langle \\cos(\\varphi_\\alpha - \\varphi_\\beta) \\rangle$, calculated for different combinations of charges $\\alpha$ and $\\beta$, is almost independent of $v_2$ (for a given centrality), while the three-particle correlator $\\langle \\cos(\\varphi_\\alpha + \\varphi_\\beta - 2\\psid) \\rangle$ scales almost linearly both with the event $v_2$ and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong i...
Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.
2018-04-01
We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.
New magnetic real time shape control for MAST
Energy Technology Data Exchange (ETDEWEB)
Pangione, L., E-mail: luigi.pangione@ccfe.ac.uk [EURATOM/CCFE Fusion Association – Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); McArdle, G.; Storrs, J. [EURATOM/CCFE Fusion Association – Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)
2013-10-15
Highlights: ► New magnetic shape control system has been implemented. ► It has been intensively tested in a simulation environment. ► A tool chain to produce LTI model and simulate its behaviour has been implemented. ► Experimental results are shown. -- Abstract: The Mega Ampere Spherical Tokamak (MAST) real time plasma position controller is based on an optical linear camera placed on the mid plane of the vessel. This solution has the advantage of being a direct observation of the D{sub α} emissions coming from the interaction between the boundary of the plasma and neutral gas, but, on the other hand, it restricts the control to the outer radius of the plasma only. A complete chain of tools has been set up to implement, test and simulate a new real time magnetic plasma shape controller based on the rtEFIT code. The complete working path consists of three elements: a linear static relationship between control parameters and current demands, a linear state space model needed to represent the plasma dynamic response in closed loop simulations, and the possibility to run simulations inside the Plasma Control System (PCS). The linear relationship has been calculated using the FIESTA code, which is developed using Matlab at CCFE. The linear state space model was generated using the CREATE-L code developed by the CREATE Consortium. It has already been successfully used to model JET, FTU and TCV tokamaks. Using this working path many simulations have been carried out allowing fine tuning of the control gains before the real experiment. The simulation testing includes the plasma shape control law as implemented in PCS itself, so intensive debugging has been possible prior to operation. Successful control using rtEFIT was established in the second dedicated experiment during the MAST 2011–12 campaign. This work is a stepping stone towards divertor control which is ultimately intended for application to the super-X divertor in the MAST Upgrade experiment.
Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor
Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.
2009-09-01
The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.
International Nuclear Information System (INIS)
Diguet, Gildas; Lin, Guoxing; Chen, Jincan
2013-01-01
Based on Mean Field Theory (MFT), the entropy of magnetic material Gadolinium (Gd), which is a function of the local magnetic field and temperature, is calculated and analyzed. This local magnetic field is the sum of the applied field H 0 plus the exchange field H W =λM and the demagnetizing field H d =−NM, where the demagnetizing factor N depends on the shape of magnetic materials. Hereby, the impacts of the demagnetizing factor N on the magnetic entropy, magnetic entropy change and main thermodynamics performance of a regenerative magnetic Brayton refrigeration cycle using Gd as the working substance are investigated and evaluated in detail. The results obtained underline the importance of the shape of the working substance used in magnetic refrigerators for room-temperature application; elongated materials provide better thermodynamics performance such as higher COP and net heat absorption. It is pointed out that for low external fields, the magnetic refrigerator ceased to be functional if flat materials were used. - Highlights: ► Gd entropy is calculated as a function of temperature and internal magnetic field. ► Magnetic Brayton cycle properties generally depend on the demagnetizing factor. ► Redundant heat transfer is highly sensitive to the demagnetizing factor. ► The net cooling quantity is highly sensitive to the demagnetizing factor. ► Coefficient of performance is dependant to the magnetic material shape.
Energy Technology Data Exchange (ETDEWEB)
Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)
2016-02-01
Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli
2017-11-01
The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.
Pairwise harmonics for shape analysis
Zheng, Youyi
2013-07-01
This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.
Filament shape versus coronal potential magnetic field structure
Filippov, B.
2016-01-01
Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.
Determination of the plasma column shape in the Tokamak Novillo cross section by magnetic probes
International Nuclear Information System (INIS)
Hernandez Omana, A.
1993-01-01
The determination of plasma cross section shape in Tokamaks is an important diagnostic method for equilibrium conditions analysis. In this work, it is obtained a time dependent variation of the plasma column cross section in Novillo Tokamak. The experimental method is based on using one magnetic probe, which is installed inside of the vacuum vessel in a 1 mm. wall thickness stainless steel tube, in the protected region of the limiter shadow. The plasma column cross section is determined measuring the poloidal magnetic field produced by the plasma current. This method, now running for determining the plasma column shape, requires the measurement of magnetic present field outside plasma column. The measurements are carried out from a set of small coils, which are located inside the vacuum chamber in the radial and poloidal direction, so we can measure magnetic field with no current attenuations produced by the penetration time of the stainless steel vacuum chamber. The magnetic probe detect a real time variation of magnetic flux passing through them. In order to obtain the magnetic field values, it is required that the electric signals coming from the magnetic probe be integrated, this operation is carried out by active circuits located between the probe signal and one oscilloscope. The integrated signals can be exhibited photographed on the oscilloscope display. (Author)
Directory of Open Access Journals (Sweden)
S. Acharya
2018-02-01
Full Text Available In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at sNN=2.76 TeV. The two-particle correlator 〈cos(φα−φβ〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality, while the three-particle correlator 〈cos(φα+φβ−2Ψ2〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME, a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level.
Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2018-02-01
In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow v2 reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at √{sNN } = 2.76 TeV. The two-particle correlator 〈 cos (φα -φβ) 〉, calculated for different combinations of charges α and β, is almost independent of v2 (for a given centrality), while the three-particle correlator 〈 cos (φα +φβ - 2Ψ2) 〉 scales almost linearly both with the event v2 and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on v2 points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.
Students’ Errors in Geometry Viewed from Spatial Intelligence
Riastuti, N.; Mardiyana, M.; Pramudya, I.
2017-09-01
Geometry is one of the difficult materials because students must have ability to visualize, describe images, draw shapes, and know the kind of shapes. This study aim is to describe student error based on Newmans’ Error Analysis in solving geometry problems viewed from spatial intelligence. This research uses descriptive qualitative method by using purposive sampling technique. The datas in this research are the result of geometri material test and interview by the 8th graders of Junior High School in Indonesia. The results of this study show that in each category of spatial intelligence has a different type of error in solving the problem on the material geometry. Errors are mostly made by students with low spatial intelligence because they have deficiencies in visual abilities. Analysis of student error viewed from spatial intelligence is expected to help students do reflection in solving the problem of geometry.
Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong
2015-05-12
The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.
Temperature dependence of the magnetization of disc shaped NiO nanoparticles
DEFF Research Database (Denmark)
Klausen, Stine Nyborg; Lindgard, P.A.; Lefmann, Kim
2002-01-01
as a temperature dependent contribution of a structural peak in contrast to bulk NiO. The two magnetic signals vanish at the same temperature. The data are interpreted on the basis of an extended mean field model on disc shaped NiO particles. This model includes the finite size dependence of the effective field...
International Nuclear Information System (INIS)
Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P
2011-01-01
We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.
Metal Injection Molding (MIM) of NdFeB Magnets
Hartwig T.; Lopes L.; Wendhausen P.; Ünal N.
2014-01-01
Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM) is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of ...
Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.
Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng
2016-03-21
Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.
Fabrication of a pen-shaped portable biochemical reaction system based on magnetic bead manipulation
International Nuclear Information System (INIS)
Shikida, Mitsuhiro; Inagaki, Noriyuki; Okochi, Mina; Honda, Hiroyuki; Sato, Kazuo
2011-01-01
A pen-shaped platform that is similar to a mechanical pencil is proposed for producing a portable reaction system. A reaction unit, as the key component in the system, was produced by using a heat shrinkable tube. A mechanical pencil supplied by Mitsubishi Pencil Co. Ltd was used as the pen-shaped platform for driving the reaction cylinder. It was actuated using an inchworm motion. We confirmed that the magnetic beads were successfully manipulated in the droplet in the cylinder-shaped reaction units. (technical note)
Effect of drift-acoustic waves on magnetic island stability in slab geometry
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F.L.
2005-01-01
A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction
S-shaped magnetic macroparticle filter for cathodic arc deposition
International Nuclear Information System (INIS)
Anders, S.; Anders, A.; Dickinson, M.R.; MacGill, R.A.; Brown, I.G.
1996-01-01
A new magnetic macroparticle filter design consisting of two 90 o filters forming an S-shape is described. Transport properties of this S-filter are investigated using Langmuir and deposition probes. It is shown that filter efficiency is product of the efficiencies of two 90 o filters and the deposition rate is still acceptably high to perform thin film deposition. Films of amorphous hard carbon have been deposited using a 90 o filter and the S-filter, and macroparticle content of the films are compared
Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark
2002-07-01
The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.
Energy Technology Data Exchange (ETDEWEB)
Watteau, J H [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes
1968-03-01
The plasma of a non-cylindrical z discharge is accumulated in the centre of a cusp geometry and then captured and confined by the rising cusp magnetic field. The cusp geometry is produced by two identical coaxial coils the currents of which are equal but in opposite directions. Stability and confinement properties of this zero minimum B geometry are recalled; in particular it is shown (the coils cross section being supposed punctual) that the magnetic well depth of the configuration without plasma is maximum for an optimum coils distance. Two modes of confinement are observed experimentally : - a collisional mode for which the plasma confinement is limited to 10 {mu}sec (temperature 5 eV, density 7 x 10{sup 16} cm{sup -3}) as a result of the gradual interpenetration of the plasma and of the magnetic field. - a collisionless mode (temperature 40 eV) where the radial leak thickness is of the order of the ion cyclotron radius. Plasma accumulation occurs even without confinement and is due to the non-cylindrical shape of the discharge chamber. The two-dimensional snow-plough model gives good account of the discharge dynamics. A comparison is made with plasma focus experiments: in particular experimental conditions (deuterium, pressure 1 torr,energy 3 kJ, current 100 kA) a 10{sup 7} neutron yield is detected which appears to be connected with the unstable behavior of the discharge. (authors) [French] Le plasma d'une decharge lineaire non-cylindrique s'accumule au centre d'une geometrie magnetique cuspidee ou il est capture et confine par l'induction croissante de la geometrie. On rappelle les proprietes de stabilite et de confinement de la geometrie cuspidee, geometrie a champ minimum nul produite par deux spires identiques, coaxiales et parcourues par des courants egaux et opposes; on montre en particulier que pour des spires de section ponctuelle la profondeur du puits magnetique de la geometrie sans plasma est maximum pour une distance optimum des spires. Deux
Particle Trapping and Dropouts in Magnetic Turbulence in a Spherical Geometry
Tooprakai, P.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.
2006-12-01
The observed dropouts of solar energetic particles from impulsive solar events (i.e., the inhomogeneity and sharp gradients in particle density) indicate the partial filamentation of magnetic connection from small regions of the corona to Earth orbit. This can be understood in terms of persistent trapping of field lines due to small- scale topological structures in the solar wind. We further explore how this turbulence structure should be manifest in particle observations, by evaluating particle trajectories obtained from the Newton-Lorentz equations. By adapting a two-component model of turbulence to spherical geometry, we include the adiabatic focusing of particles. The 2D magnetic field is generated by either 1) a 2D fast Fourier transform, a valid approximation over a small angular region, or 2) a spherical harmonic series with ℓ up to 2000. Dropout features at 1 AU are clearly indicated for low-energy particles, but these features are washed out for E >~ 100 MeV. Different time-intensity profiles are found at locations at 1 AU that are distinct with regard to the small-scale topology. Partially supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NNG05GG83G.
Architectural Geometry and Fabrication-Aware Design
Pottmann, Helmut
2013-04-27
Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.
The effect of magnetic field on the shape of etch pits of paracetamol crystals
Energy Technology Data Exchange (ETDEWEB)
Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)
2002-04-01
In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)
Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Sarma, P. R.; Mukherjee, Paramita
2017-06-01
The helium vessel of the superconducting cyclotron (SCC) at the Variable Energy Cyclotron centre (VECC), Kolkata shows a gradual loss of insulation vacuum from 10-7 mbar to 10-4 mbar with increasing coil current in the magnet. The insulation vacuum restores back to its initial value with the withdrawal of current. The origin of such behavior has been thought to be related to the electromagnetic stress in the magnet. The electromagnetic stress distribution in the median plane of the helium vessel was studied to figure out the possible location of the helium leak. The stress field from the possible location was transferred to a simplified 2D model with different leak geometries to study the changes in conductance with coil current. The leak rate calculated from the changes in the leak geometry was compared with the leak rate calculated from the experimental insulation vacuum degradation behavior to estimate the initial leak shape and size.
Shape-shifting colloids via stimulated dewetting
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-01-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418
The Geometry of the Universe: Part 2
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
Effect of magnetostatic interactions on twin boundary motion in Ni-Mn-Ga magnetic shape memory alloy
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Vokoun, David; Kopecký, Vít; Beleggia, M.
2015-01-01
Roč. 6, Jul (2015), s. 1000204 ISSN 1949-307X R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetism in solids * demagnetization factors * magnetostatic interactions * shape memory alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.978, year: 2015
Reconstruction and Analysis of Shapes from 3D Scans
Haar, F.B. ter
2009-01-01
In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,
International Nuclear Information System (INIS)
Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.
2014-01-01
In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription
International Nuclear Information System (INIS)
Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar
2008-01-01
A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)
Boyd, J. D.
2017-12-01
The study of pluton emplacement and growth history offers a window into the evolution of the continental crust. Plutons, however, are often largely homogeneous in outcrop, lacking reliable structural markers for tracking their emplacement and growth through time. The ladder structures exposed on the glacially polished surfaces of the Tuolumne Intrusive Suite (TIS) in Yosemite National Park, California are an exception. Ladder structures (LS) are eye-catching concentrations of alternating mafic and felsic mineral assemblages in dominantly cresent-shaped, meter to sub-meter scale bands in outcrop that locally terminate into a mafic band forming a circular-shaped enclosure. Their geochemistry and modal mineralogy diverge sharply from host rock trends with large quantities of magnetite, titanite, and zircon in the mafic assemblages. The limited exposure of LS in outcrops has led to much debate as to their true geometries and orientations. The high concentration of magnetite in the LS is fortuitous in that it allows these features to be investigated by magnetic techniques. The preliminary results of new high resolution magnetic surveys of these LS are presented here. A grid of total magnetic intensity (TMI) was collected across the ladder structures. The TMI's were then inverted and modeled to determine the orientation of the magnetic bodies with depth using PyGMI freeware. With sufficient contrast in the magnetic susceptibility (Km) between the feature being imaged and the host rock, meter to sub-meter scale features can be resolved. The average Km of the LS mafic bands and the host rock is approximately 200-850 x10-3 and 15-20×10-3 SI units respectively. These measurements along with oriented samples were collected to determine input parameters (e.g. anisotropy and remanence) for the geocellular model used in this study.
Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion
International Nuclear Information System (INIS)
Kashid, Vikas; Shah, Vaishali; Salunke, H G; Mokrousov, Yuriy; Blügel, Stefan
2015-01-01
We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires. (paper)
International Nuclear Information System (INIS)
Du, Hailong; Sang, Chaofeng; Wang, Liang; Bonnin, Xavier; Sun, Jizhong; Wang, Dezhen
2016-01-01
Highlights: • The in-out divertor asymmetry is studied using SOLPS. • The discharge operation and the magnetic filed have a great influence on the divertor asymmetry. • The asymmetry is not obvious in low recycling regime as that in high recycling regime. - Abstract: This paper aims to investigate the reason why the divertor in-out asymmetry was not obvious as experimentally observed in EAST only considering the classical drifts from previous simulations (Guo et al., J. Nucl. Mater. 438 (2013) 280; Du et al., J. Nucl. Mater. 463 (2015) 485). With consideration of the classical drifts, a series of different typical discharge scenarios in EAST in different magnetic field geometries were simulated by using the SOLPS5.2 code package. The simulated results reveal that the classical drifts make a major contribution to the in-out divertor asymmetry in the high recycling regime (HRR) and partial detachment (one divertor target begins to detach, while the other divertor remains attached) regime. In comparison, in low recycling regime the classical drifts play a much smaller role in the contributions to the in-out divertor asymmetry, which can explain reasonably the reason for it in Guo et al. (J. Nucl. Mater. 438 (2013) 280). In addition, the magnetic field geometry also has a great impact on the classical drifts inducing the asymmetry; it is found that for lower single-null, upper single-null and connected double-null topologies, in HRR the classical drifts play an dominant role in the contribution to the in-out divertor asymmetry, while for a disconnected double null magnetic field configuration, they play a minor role, which is the reason why the in-out asymmetry was unobvious by considering the drifts in Du et al. (J. Nucl. Mater. 463 (2015) 485).
Energy Technology Data Exchange (ETDEWEB)
Du, Hailong; Sang, Chaofeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Liang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Bonnin, Xavier [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2016-11-01
Highlights: • The in-out divertor asymmetry is studied using SOLPS. • The discharge operation and the magnetic filed have a great influence on the divertor asymmetry. • The asymmetry is not obvious in low recycling regime as that in high recycling regime. - Abstract: This paper aims to investigate the reason why the divertor in-out asymmetry was not obvious as experimentally observed in EAST only considering the classical drifts from previous simulations (Guo et al., J. Nucl. Mater. 438 (2013) 280; Du et al., J. Nucl. Mater. 463 (2015) 485). With consideration of the classical drifts, a series of different typical discharge scenarios in EAST in different magnetic field geometries were simulated by using the SOLPS5.2 code package. The simulated results reveal that the classical drifts make a major contribution to the in-out divertor asymmetry in the high recycling regime (HRR) and partial detachment (one divertor target begins to detach, while the other divertor remains attached) regime. In comparison, in low recycling regime the classical drifts play a much smaller role in the contributions to the in-out divertor asymmetry, which can explain reasonably the reason for it in Guo et al. (J. Nucl. Mater. 438 (2013) 280). In addition, the magnetic field geometry also has a great impact on the classical drifts inducing the asymmetry; it is found that for lower single-null, upper single-null and connected double-null topologies, in HRR the classical drifts play an dominant role in the contribution to the in-out divertor asymmetry, while for a disconnected double null magnetic field configuration, they play a minor role, which is the reason why the in-out asymmetry was unobvious by considering the drifts in Du et al. (J. Nucl. Mater. 463 (2015) 485).
Maximilien Brice
2003-01-01
Photos 01, 02: The LHCb magnet is equipped with resistive coils. Having a "warm " rather than a superconducting magnet, as was originally planned, was a design choice advocated by former Technical Coordinator Hans-Jurgen Hilke. Although this solution was adopted to keep the experiment on budget and on schedule, the geometry required and the need for good lateral homogeneity of the magnetic field called for an innovative design, developed by Wilfried Flegel. Jacques André, Claude Rosset and Olivier Jamet were responsible for the working drawings while Marcello Losasso did the 3-D calculations of the magnetic field. The LHCb magnet design team is pictured in front of one of the two magnet coils which recently arrived at CERN. Each coil comprises 15 individual monolayer ´pancakes´ of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of 15 turns of conductor, wound from a 300-m length of extruded aluminium. Left to right: Olivier Jamet, Hans-Jur...
Directory of Open Access Journals (Sweden)
F. Mahmouditabar
2018-03-01
Full Text Available Permanent magnet motors have been considered for a variety of applications due to their features such as high power density and high efficiency. One of the issues that should be investigated in the design of these motors is the demagnetization problem. Usually, the demagnetization analysis is carried out in a steady state, while demagnetization effect in dynamic condition is more considerable due to pulse shaped of armature field. Based on this fact, in this paper, dynamic demagnetization is investigated for an IPM V‑shaped magnet. This study has been done for two types of magnet, each one in static & dynamic conditions and the results are compared. Moreover, the effect of flux weakening regime on demagnetization is investigated.
Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy
Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R
2002-01-01
We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)
Magnetic tension and instabilities in the Orion A integral-shaped filament
Schleicher, Dominik R. G.; Stutz, Amelia
2018-03-01
The Orion nebula is a prime example of a massive star-forming region in our galaxy. Observations have shown that gravitational and magnetic energy are comparable in its integral-shaped filament on a scale of ˜1 pc, and that the population of pre-main sequence stars appears dynamically heated compared to the protostars. These results have been attributed to a slingshot mechanism resulting from the oscillation of the filament by Stutz & Gould. In this paper, we show that radially contracting filaments naturally evolve towards a state where gravitational, magnetic, and rotational energy are comparable. While the contraction of the filament will preferentially amplify the axial component of the magnetic field, the presence of rotation leads to a helical field structure. We show how magnetic tension can give rise to a filament oscillation, and estimate a typical time-scale of 0.7 Myr for the motion of the filament to the position of maximum displacement, consistent with the characteristic time-scale of the ejected stars. Furthermore, the presence of helical magnetic fields is expected to give rise to magneto-hydrodynamical instabilities. We show here that the presence of a magnetic field significantly enhances the overall instability, which operates on a characteristic scale of about 1 pc. We expect the physics discussed here to be generally relevant in massive star-forming regions, and encourage further investigations in the future.
Shape-matching soft mechanical metamaterials
Mirzaali Mazandarani, M.; Janbaz, S.; Strano, M.; Vergani, L.; Zadpoor, A.A.
2018-01-01
Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional
Shape-induced anisotropy in antiferromagnetic nanoparticles
International Nuclear Information System (INIS)
Gomonay, O.; Kondovych, S.; Loktev, V.
2014-01-01
High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces
Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude
DEFF Research Database (Denmark)
Lund-Olesen, Torsten; Buus, Bjarke B.; Howalt, Jakob
2008-01-01
A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized by a homo......A scheme for the silicon microfabrication of lab-on-a-chip systems with mixing based on dynamic plugs of magnetic beads is presented. The systems consist of a microfluidic channel integrated with a number of soft magnetic elements by the sides of the channel. The elements are magnetized...... by a homogeneous external ac magnetic field. The systems are scalable with respect to the number of magnetic bead plugs and number of parallel channels, and thus they have high potential for use in biological separation using functionalized magnetic beads. The mixing efficiency is characterized for two different...
Hysteresis Curve Fitting Optimization of Magnetic Controlled Shape Memory Alloy Actuator
Directory of Open Access Journals (Sweden)
Fuquan Tu
2016-11-01
Full Text Available As a new actuating material, magnetic controlled shape memory alloys (MSMAs have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical precision positioning is poor, caused by weak repeatability under a certain stimulus. This problem results from the error of a large magnetic hysteresis in an external magnetic field. A suitable hysteresis modelling method can reduce the error and improve the accuracy of the MSMA actuator. After analyzing the original hysteresis modelling methods, three kinds of hysteresis modelling methods are proposed: least squares method, back propagation (BP artificial neural network, and BP artificial neural network based on genetic algorithms. Comparing the accuracy and convergence rate of three kinds of hysteresis modelling methods, the results show that the convergence rate of least squares method is the fastest, and the convergence accuracy of BP artificial neural networks based on genetic algorithms is the highest.
International Nuclear Information System (INIS)
Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto; Grisham, Larry R.
2014-01-01
Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production
OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Ding, M. D.; Yang, K. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J.; Longcope, D. W., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2016-05-20
We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggests the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.
Review of new shapes for higher gradients
International Nuclear Information System (INIS)
Geng, R.L.
2006-01-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration
Review of new shapes for higher gradients
Geng, R. L.
2006-07-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.
Using Figure and Concept Knowledge in Geometry
Directory of Open Access Journals (Sweden)
Yavuz Karpuz
2014-08-01
Full Text Available In this study, we aim to investigate how students build interaction between concepts and figure in geometry. For this purpose we developed two type data collection tool. First one called shapely is formed eight open ended question which has concepts and figure. Second one called shapeless is formed eight open ended question which has only concepts. To prepare this data collection tools’ difficulty level we took two math teachers’ opinions. Developed data collection tools were applied 120 students at 9th grade and 11th grade in Trabzon Gazi Anatolian High School. First of all we applied shapeless questions. One month later we applied shapely questions. We investigated students’ answer and the data showed that students more succeed in shapely questions than shapeless questions. We concluded that the difficulty of solving shapeless question result from students didn’t manage to draw figure representing concept knowledge or draw wrong figure, figure drawn by students can’t fulfıl generalizability condition and students who have little knowledge of concept in geometry is under the influence of prototype figure.Key Words: Figural concepts theory, geometrical reasoning, geometry teaching
The geometry ability of junior high school students in Karanganyar based on the Hoffer’s theory
Nurwijayanti, A.; Budiyono; Fitriana, L.
2018-03-01
Geometry ability is the aspect which underlay students to solve the geometry problems. However, some studies suggests the difficulty students when learning geometry. This leads to the ability of the geometri students difficult to develop. There are five the geometry ability based the Hoffer’s theory, namely visual, verbal, drawing, logical, and applied. These five aspects are basic geometry ability to be mastered by Junior High School students level. This study aimed to describe the students’ geometry ability according to the Hoffer’s theory. The participants of this study are six students from 9th grade in State Junior High School 1 Jaten at Karanganyar that consisted of three categories, namely higher ability, moderate ability, and lower ability students. The data collection methods used are geometry test and in-depth interview and than analyzed using triangulation. The result of the study showed that the ability of those three categories is different. Each of the students' geometry ability can be described as follows. (1) On visual skill, higher ability and moderate ability students could mention the elements of the geometrical shapes correctly based on its shapes obtained. However, lower ability students were unable to mention it specifically; (2) On verbal skill, moderate ability students were able to link the relationship among shapes based on the characteristics correctly, despite that the higher ability and lower ability seemed to have difficulty; (3) On drawing skill, higher ability students could construct the shapes based on the relationship among shapes well, but moderate ability and lower ability students continually faced difficulty; (4) On logical skill, both higher ability, and moderate ability students were able to determine the formula of a particular geometrical shape based on the relationship among the elements of the shape well, while the lower ability students were unable to; (5) On applied skill, higher ability, and moderate ability
Ferlemann, Paul G.; Gollan, Rowan J.
2010-01-01
Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.
Influence of Austenitic Steel Collar Dimensions on Magnetic Field Harmonics in the LHC Main Dipole
Bellesia, B; Todesco, Ezio
2005-01-01
The influence of the geometry of the collars in the main LHC dipole on the magnetic field harmonics is analyzed. The study aims at finding if the collar geometry is the driving mechanism of field quality for some harmonics and if the two different collar suppliers give a special signature on the magnetic field. Data of more than 700 magnets of the LHC series dipoles are analyzed and discussed. The main result of the analysis is that the collar shape is the driving mechanism of the magnetic field harmonics only for b2 and a3 in one of the three Cold Mass Assemblers (Firm3), where only collars of the supplier S2 are used. Two independent observations support this fact: firstly, strong correlations between apertures of the same magnet as expected from the assembly procedure have been found. Secondly, the expected values based on the measured dimensions of the collars and on a magneto-static model agree with magnetic measurements both for the average and for the standard deviation.
International Nuclear Information System (INIS)
Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.
2012-01-01
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Nanographenes have important edge geometry dependence in their electronic structures. In armchair edges, electron wave interference works to contribute to energetic stability. Meanwhile, zigzag edges possess an edge-localized and spin-polarized nonbonding edge state, which causes electronic, magnetic, and chemical activities. In addition to the geometry dependence, the electronic structures are seriously affected by edge chemistry details. The edge chemistry dependence together with edge geometries on the electronic structures are discussed with samples of randomly networked nanographenes (microporous activated carbon fibers) in pristine state and under high-temperature annealing. In the pristine sample with the edges oxidized in ambient atmospheric conditions, the edge state, which is otherwise unstable, can be stabilized because of the charge transfer from nanographene to terminating oxygen. Nanographene, whose edges consist of a combination of magnetic zigzag edges and nonmagnetic armchair edges, is found to be ferrimagnetic with a nonzero net magnetic moment created under the interplay between a strong intrazigzag-edge ferromagnetic interaction and intermediate-strength interzigzag-edge antiferromagnetic-ferromagnetic interaction. At heat-treatment temperatures just below the fusion start (approximately 1500 K), the edge-terminating structure is changed from oxygen-containing groups to hydrogen in the nanographene network. Additionally, hydrogen-terminated zigzag edges, which are present as the majority and chemically unstable, play a triggering role in fusion above 1500 K. The fusion start brings about an insulator-to-metal transition at TI -M˜1500 K . Local fusions taking place percolatively between nanographenes work to expand the π -bond network, eventually resulting in the development of antiferromagnetic short-range order toward spin glass in the
Energy Technology Data Exchange (ETDEWEB)
Kuncser, A. [National Institute of Materials Physics, PO Box MG-7, 077125 Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Antohe, S. [University of Bucharest, Faculty of Physics, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute of Materials Physics, PO Box MG-7, 077125 Bucharest-Magurele (Romania)
2017-02-01
Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio. - Highlights: • The formation and the dynamics of the domain walls in magnetic nanowires have been studied by micromagnetic simulations. • Simple criteria for making distinction between Stoner-Wohlfarth type and nucleation mechanisms in nanowires were discussed. • Corkscrew domain walls or quasi-coherent spin rotation may be induced depending on the field orientation. • The nucleation time was estimated at 3 ns and the wall velocity at 150 m/s. • A simple way for tuning the wall velocity in such systems was mentioned.
Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors
Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John
2001-10-01
Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.
An approach for management of geometry data
Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.
1980-01-01
The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.
International Nuclear Information System (INIS)
Minkin, A.V.; Tsarevskij, S.L.
2006-01-01
For high-temperature superconductors the shape of a NMR spectrum line is built regarding for variation of inhomogeneity of irregular vortex lattice magnetic field near superconductor surface. It is shown that the shape of a NMR line is not simply widened but noticeably varies depending on the degree of irregularity of a superconductor vortex lattice. This variation is associated with a local symmetry decrease in an irregular vortex lattice of the superconductor. Taking into account these circumstances may considerably change conclusions about the type of a vortex lattice and superconductor parameters which are commonly gained from NMR line shape analysis [ru
Development of controlled solid-state alignment for alnico permanent magnets in near-final shape
Directory of Open Access Journals (Sweden)
Iver E. Anderson
2017-05-01
Full Text Available The 2011 price shock in the rare earth (RE permanent magnet (PM marketplace precipitated realization of extremely poor RE supply diversity and drove renewed research in RE-free permanent magnets such as “alnico.” Essentially, alnico is an Al-Ni-Co-Fe alloy with high magnetic saturation and TC, but low coercivity. It also was last researched extensively in the 1970’s. Currently alnico “9” magnets with the highest energy product (10MGOe are manufactured by directional solidification to make highly aligned anisotropic magnets. This work developed novel powder processing techniques to improve on unaligned anisotropic alnico “8H” with elevated coercivity. Gas atomization was used to produce pre-alloyed powder for binder-assisted compression molding of near-final shape magnets that were vacuum sintered to full density (250g showed reduced overall loop squareness compared to unaligned (equiaxed 8H due to grain rotation-induced misalignment, while low stresses improved squareness and greatly improved alignment compared to equiaxed magnets, with squareness approaching 0.30 and remanence ratio as high as 0.79.
Directory of Open Access Journals (Sweden)
Qiang Sheng
2017-10-01
Full Text Available This work aims to give a comprehensive view of magnetic state stability and transformations in PZT-film/FeGa-dot multiferroic composite systems due to the combining effects of size, shape and interfacial coupling strain. It is found that the stable magnetic state of the FeGa nanodots is not only a function of the size and shape of the nanodot but also strongly sensitive to the interfacial coupling strain modified by the polarization state of PZT film. In particular, due to the large magnetostriction of FeGa, the phase boundaries between different magnetic states (i.e., in-plane/out-of-plane polar states, and single-/multi-vortex states of FeGa nanodots can be effectively tuned by the polarization-mediated strain. Fruitful strain-mediated transformation paths of magnetic states including those between states with different orderings (i.e., one is polar and the other is vortex, as well as those between states with the same ordering (i.e., both are polar or both are vortex have been revealed in a comprehensive view. Our result sheds light on the potential of utilizing electric field to induce fruitful magnetic state transformation paths in multiferroic film-dot systems towards a development of novel magnetic random access memories.
Effect of magnetic island geometry on ECRH/ECCD and consequences to the NTM stabilization dynamics
Chatziantonaki, I.; Tsironis, C.; Isliker, H.; Vlahos, L.
2012-09-01
In the majority of codes that model ECCD-based NTM stabilization, the analysis of the EC propagation and absorption is performed in terms of the axisymmetric magnetic field, ignoring effects due to the island topology. In this paper, we analyze the wave propagation, absorption and current drive in the presence of NTMs, as well as the ECCD-driven island growth, focusing on the effect of the island geometry on the wave de-position. A primary evaluation of the consequences of these effects on the NTM evolution is also made in terms of the modified Rutherford equation.
Czech Academy of Sciences Publication Activity Database
Soroka, A.; Sozinov, A.; Lanska, N.; Rameš, Michal; Straka, Ladislav; Ullakko, K.
2018-01-01
Roč. 144, Feb (2018), s. 52-55 ISSN 1359-6462 R&D Projects: GA ČR GA16-00043S Institutional support: RVO:68378271 Keywords : Heusler phases * martensite * ferromagnetic shape memory alloy * magnetic shape memory * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.747, year: 2016
Intermittent transport in edge plasma with a 3-D magnetic geometry in the Large Helical Device
International Nuclear Information System (INIS)
Tanaka, H.; Masuzaki, S.; Ohno, N.; Morisaki, T.; Tsuji, Y.
2013-01-01
Blobby plasma transport is a universally observed phenomenon in magnetic confinement devices, and it is considered to be closely related to edge plasma physics. We have investigated such an intermittent event observed inside the divertor region of the Large Helical Device by using a fast-scanning Langmuir probe with two electrodes. Ion saturation current fluctuations showed negative spikes in the divertor leg and positive spikes in the private region. Further, the time delay between the two fluctuations followed a unique trajectory in the positive-skewness region. We found common as well as different fluctuation characteristics between the LHD and tokamaks. We discuss the analysis results in relation to the blob-generation and propagation behaviors in the three-dimensional magnetic geometry around the divertor leg. In addition, we quantitatively estimated the blob propagation velocity and size based on a theoretical assumption
Energy Technology Data Exchange (ETDEWEB)
Liu, Jun, E-mail: linxj8686@163.com; Huang, Chenguang; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn
2017-03-15
Highlights: • A strong magnetic coupling appears if the gap between the superconducting rings is small. • The saturation magnetization of superconducting rings is related to the radial gap but independent of the vertical gap. • The array of rings in a non-uniform field experiences a levitation force, which increases with increasing height or thickness of the rings. - Abstract: This paper presents an analysis of the magnetic and mechanical properties of arrays of superconducting rings arranged in axial, radial, and matrix configurations under different magnetic fields. In terms of the Bean's critical state model and the minimum magnetic energy method, the dependences of the magnetization and levitation behaviors on the geometry, number, and gap of the superconducting rings are obtained. The results show that when the applied field is spatially uniform, the magnetic property of the superconducting array is associated with the gaps between the rings. For the case of small gaps, the entire array becomes not easy to be fully penetrated by the induced currents, and the magnetic field profiles of which are almost the same as ones in a single large ring. If the superconducting array is fully penetrated, its saturation magnetization value is affected by the radial interval and, however, is almost independent of the vertical separation. When the applied field produced by a cylindrical permanent magnet is nonuniform, the superconducting array will be subjected to a levitation force. The levitation force increases monotonically and finally reaches a saturation value with increasing height or thickness of the rings, and such saturation value is closely related to the inner radius of the array.
Magnetic fluid bridge in a non-uniform magnetic field
International Nuclear Information System (INIS)
Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.
2017-01-01
The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.
Magnetic fluid bridge in a non-uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.
2017-06-01
The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.
Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets
Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.
2018-05-01
A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.
Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry
International Nuclear Information System (INIS)
Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.
2004-01-01
We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers
Simulations of drift waves in 3D magnetic configurations
International Nuclear Information System (INIS)
Jost, G.
2000-06-01
Drift waves are commonly held responsible for anomalous transport in tokamak configurations and in particular for the anomalously high heat loss. The next generation of stellarators on the other hand are hoped to be characterized by a much smaller neo-classical transport and by particle confinement close to that of tokamaks. There is nevertheless a strong interest in the stellarator community to study the properties of drift waves in 3D magnetic configurations. To serve this interest we have developed the first global gyrokinetic code, EUTERPE, aimed at the investigation of linear drift wave stability in general toroidal geometry. The physical model assumes electrostatic waves and adiabatic electrons. EUTERPE is a particle-in-cell (PIC) code in which the gyrokinetic Poisson equation is discretized with the finite element method defined in the PEST -1 system of magnetic coordinates. The magnetic geometry is provided by the magnetohydrodynamic (MHD) equilibrium code VMEC. The complete 3D model has been successfully validated in toroidal axisymmetric and straight helical geometries and has permitted the first simulation of unstable global ITG driven modes in non-axisymmetric toroidal configurations. As a first application, two configurations have been studied, the Quasi-Axially symmetric Stellarator with three fields periods (QAS3) currently one system under consideration at the Princeton Plasma Physics Laboratory and the Helically Symmetric experiment (HSX) which has recently started operation at the University of Wisconsin. QAS3 is characterized by a tokamak-Iike field in the outer part of the torus. In this structure the drift waves are mainly affected by the magnetic shear and barely by the shape of the plasma. Also, the results are very close to those obtained for a tokamak. On the other hand, results for the HSX configuration, which is characterized by a dominant helical magnetic field, show a clear 3D effect, namely a strong toroidal variation of the drift wave
Mechanism of hot spots formation in magnetic Z-pinch
Energy Technology Data Exchange (ETDEWEB)
Kubes, P; Kravarik, J [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Fakulta Elektrotechnicka; Kolacek, K; Krejci, A [Akademie Ved Ceske Republiky, Prague (Czech Republic). Ustav Fyziky Plazmatu; Paduch, M; Tomaszewski, K [Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)
1997-12-31
The evolution of neon implosion of low energy discharge (4 kJ, 40 kV, 150 kA, 1.1 {mu}s) was studied using X-ray, schlieren and high speed electrooptical visible gated Quadro camera diagnostics. The geometry, the helical structure of pinched column, two steps of pinching and X-ray emission were studied. The diameters, electron density and temperature of the hot spots were determined. The hypothesis of axial component of magnetic field generation, of helical shape of magnetic and electric field lines, of the possibility of the release of magnetic energy and of the acceleration of the keV electrons and ions due to voltage induction during the second pinching of the column are discussed. (author). 3 figs., 5 refs.
Anode and cathode geometry and shielding gas interdependence in GTAW
International Nuclear Information System (INIS)
Key, J.F.
1979-01-01
Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW
Effects of geometry in itinerant electron magnets
Energy Technology Data Exchange (ETDEWEB)
Nakamura, H [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Muro, Y [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Shiga, M [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2007-04-11
The magnetism of quasi-one-dimensional itinerant electron magnets RMn{sub 4}Al{sub 8} is compared with that of the typical frustrated itinerant electron magnet YMn{sub 2}. The possible formation and observation of the spin pseudogap are discussed in connection with the spin-liquid state in strongly correlated itinerant electron systems.
Energy Technology Data Exchange (ETDEWEB)
Lim-Reinders, S [Sunnybrook Odette Cancer Centre, Toronto (Canada); University of Toronto, Department of Physics (Canada); Keller, B; McCann, C; Sahgal, A; Lee, J; Kim, A [Sunnybrook Odette Cancer Centre, Toronto (Canada); University of Toronto, Department of Radiation Oncology (Canada)
2016-06-15
Purpose: Hypofractionated partial breast irradiation (HPBI) is being used at our clinic to treat inoperable breast cancer patients who have advanced disease. We are investigating how these patients could benefit from being treated in an MRI-linac, where real-time daily MRI tumor imaging and plan adaptation would be possible. As a first step, this study evaluates the dosimetric impact of the magnetic field for different radiation beam geometries on relevant OARs. Methods: Five patients previously treated using HPBI were selected. Six treatment plans were generated for each patient, evaluating three beam geometries (VMAT, IMRT, 3DCRT) with and without B{sub 0}=1.5 T. The Monaco TPS was used with the Elekta MRI-Linac beam model, where the magnetic field is orthogonal to the radiation beam. All plans were re-scaled to the same isocoverage with a prescription of 40Gy/5 to the PTV. Plans were evaluated for the effect of the magnetic field and beam modality on skin V{sub 3} {sub 0}, lung V{sub 2} {sub 0} and mean heart dose. Results: Averaged over all patients, skin V{sub 3} {sub 0}for 3DCRT was higher than VMAT and IMRT (by +22% and +21%, with B{sub 0}-ON). The magnetic field caused larger increases in skin V{sub 3} {sub 0}for 3DCRT (+8%) than VMAT (+3%) and IMRT (+4%) compared with B{sub 0}-OFF. With B{sub 0}-ON, 3DCRT had a markedly lower mean heart dose than VMAT (by 538cGy) and IMRT (by 562cGy); for lung V{sub 2} {sub 0}, 3DCRT had a marginally lower dose than VMAT (by −2.2%) and IMRT (also −2.2%). The magnetic field had minimal effect on the mean heart dose and lung V{sub 2} {sub 0} for all geometries. Conclusion: The decreased skin dose in VMAT and IMRT can potentially mitigate the effects of skin reactions for HPBI in an MRI-linac. This study illustrated that more beam angles may result in lower skin toxicity and better tumor conformality, with the trade-off of elevated heart and lung doses. We are receiving funding support from Elekta.
Kan, Jinglan; Wang, Hailong; Sun, Wei; Cao, Wei; Tao, Jun; Jiang, Jianzhuang
2013-08-05
Employment of the raise-by-one step method starting from M(TClPP)(acac) (acac = monoanion of acetylacetone) and [Pc(OPh)8]M'[Pc(OPh)8] led to the isolation and free modulation of the two rare-earth ions in the series of four mixed tetrapyrrole dysprosium sandwich complexes {(TClPP)M[Pc(OPh)8]M'[Pc(OPh)8]} [1-4; TClPP = dianion of meso-tetrakis(4-chlorophenyl)porphyrin; Pc(OPh)8 = dianion of 2,3,9,10,16,17,23,24-octa(phenoxyl)phthalocyanine; M-M' = Dy-Dy, Y-Dy, Dy-Y, and Y-Y]. Single-crystal X-ray diffraction analysis reveals different octacoordination geometries for the two metal ions in terms of the twist angle (defined as the rotation angle of one coordination square away from the eclipsed conformation with the other) between the two neighboring tetrapyrrole rings for the three dysprosium-containing isostructural triple-decker compounds, with the metal ion locating between an inner phthalocyanine ligand and an outer porphyrin ligand with a twist angle of 9.64-9.90° and the one between two phthalocyanine ligands of 25.12-25.30°. Systematic and comparative studies over the magnetic properties reveal magnetic-field-induced single-molecule magnet (SMM), SMM, and non-SMM nature for 1-3, respectively, indicating the dominant effect of the coordination geometry of the spin carrier, instead of the f-f interaction, on the magnetic properties. The present result will be helpful for the future design and synthesis of tetrapyrrole lanthanide SMMs with sandwich molecular structures.
International Nuclear Information System (INIS)
Zhu Yuping; Dui Guansuo
2008-01-01
A model based on the micromechanical and the thermodynamic theory is presented for field-induced martensite reorientation in magnetic shape memory alloy (MSMA) single crystals. The influence of variants morphology and the material property to constitutive behavior is considered. The nonlinear and hysteretic strain and magnetization response of MSMA are investigated for two main loading cases, namely the magnetic field-induced reorientation of variants under constant compressive stress and tensile stress. The predicted results have shown that increasing tensile loading reduces the required field for actuation, while increasing compressive loads result in the required magnetic field growing considerably. It is helpful to design the intelligent composite with MSMA fibers
Magnetization reversal modes in fourfold Co nano-wire systems
International Nuclear Information System (INIS)
Blachowicz, T; Ehrmann, A
2015-01-01
Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities. (paper)
Magnetization reversal modes in fourfold Co nano-wire systems
Blachowicz, T.; Ehrmann, A.
2015-09-01
Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.
Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma
Energy Technology Data Exchange (ETDEWEB)
Hirota, M.; Hattori, Y. [Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8677 (Japan); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-05-15
A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally around the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.
International Nuclear Information System (INIS)
Kaszuwara, W.
2004-01-01
Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)
International Nuclear Information System (INIS)
Tandon, S.; Beleggia, M.; Zhu, Y.; De Graef, M.
2004-01-01
A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid, and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the magnetostatic energy and the volumetric demagnetization factors
Energy Technology Data Exchange (ETDEWEB)
Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)
2017-04-01
Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.
International Nuclear Information System (INIS)
Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej
2017-01-01
Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.
Macrophages recognize size and shape of their targets.
Directory of Open Access Journals (Sweden)
Nishit Doshi
2010-04-01
Full Text Available Recognition by macrophages is a key process in generating immune response against invading pathogens. Previous studies have focused on recognition of pathogens through surface receptors present on the macrophage's surface. Here, using polymeric particles of different geometries that represent the size and shape range of a variety of bacteria, the importance of target geometry in recognition was investigated. The studies reported here reveal that attachment of particles of different geometries to macrophages exhibits a strong dependence on size and shape. For all sizes and shapes studied, particles possessing the longest dimension in the range of 2-3 microm exhibited highest attachment. This also happens to be the size range of most commonly found bacteria in nature. The surface features of macrophages, in particular the membrane ruffles, might play an important role in this geometry-based target recognition by macrophages. These findings have significant implications in understanding the pathogenicity of bacteria and in designing drug delivery carriers.
Optimal Rotor Design of Line Start Permanent Magnet Synchronous Motor by Genetic Algorithm
Directory of Open Access Journals (Sweden)
Bui Minh Dinh
2017-07-01
Full Text Available Line start permanent magnet synchronous motor (LSPMSM is one of the highest efficiency motors due to no rotor copper loss at synchronous speed and self-starting. LSPMSM has torque characteristics of both induction motor IM and Permanent Magnet Synchronous Motor-PMSM. Using Genetic Algorithm (GA for balancing magnetic cost and for copper loss minimization, the magnetic sizes and geometry parameter of stator and rotor are found and manufactured for industrial evaluation. This article is also taking account practical manufacturing factors to minimize mass production cost. In order to maximize efficiency, an optimal design method of cage-bars and magnet shape has to be considered. The geometry parameters of stator and rotor can be obtained by an analytical model method and validated by FEM simulation. This paper presents the optimal rotor design of a three-phase line-start permanent magnet motor (LSPM considering the starting torque and efficiency. To consider nonlinear characteristics, the design process is comprised of the FEM and analytical method. During this study, permanent-magnets and cage bars were designed using the magnetic equivalent circuit method and the barriers that control all magnetic flux were designed using the FEM, and the tradeoff of starting torque and efficiency is controlled by weight function in Taguchi method simulation. Finally, some practical results have been obtained and analyzed based on a LSPMSM test bench.
Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A
2010-08-20
Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
International Nuclear Information System (INIS)
Wei, Xiao-Ping; Chu, Yan-Dong; Sun, Xiao-Wei; E, Yan; Deng, Jian-Bo; Xing, Yong-Zhong
2015-01-01
Highlights: • The analysis of phase stability trend is studied for Ti 2 CoX(X = Al, Ga, In). • Ti 2 CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti 2 CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment of 2μ B per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti 2 CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti 2 CoGa is a promising candidate for shape memory applications
Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith
2011-12-01
Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.
International Nuclear Information System (INIS)
Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith
2011-01-01
Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.
Magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.48Sb0.52
International Nuclear Information System (INIS)
Brown, P J; Gandy, A P; Neumann, K U; Sheikh, A; Ziebeck, K R A; Ishida, K; Oikawa, K; Ito, W; Kainuma, R; Kanomata, T; Ouladdiaf, B
2010-01-01
Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory compound Ni 2 Mn 1.48 Sb 0.52 have confirmed that it is ferromagnetic below 350 K and undergoes a structural phase transition at T M ∼310 K. The high temperature phase has the cubic L2 1 structure with a = 5.958 A, with the excess manganese atoms occupying the 4(b) Sb sites. In the cubic phase above ∼310 K the manganese moments are ferromagnetically aligned. The magnetic moment at the 4(a) site is 1.57(12) μ B and it is almost zero (0.15(9) μ B ) at the 4(b) site. The low temperature orthorhombic phase which is only fully established below 50 K has the space group Pmma with a cell related to the cubic one by a Bain transformation a orth = (a cub + b cub )/2; b orth = c cub and c orth = (a cub - b cub ). The change in cell volume is ∼2.5%. The spontaneous magnetization of samples cooled in fields less than 0.5 T decreases at temperatures below T M and at 2 K the magnetic moment per formula unit in fields up to 5.5 T is 2.01(5) μ B . Neutron diffraction patterns obtained below ∼132 K gave evidence for a weak incommensurate magnetic modulation with propagation vector (2/3, 1/3, 0).
Variable geometry Darrieus wind machine
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Kim, Youngdeuk
2011-04-15
The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).
Momentum-space cigar geometry in topological phases
Palumbo, Giandomenico
2018-01-01
In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.
International Nuclear Information System (INIS)
Ximen Jiye; Liu Zhixiong
2000-01-01
In the present paper, Gaussian optical property in the bi-potential electrostatic and the bell-shaped magnetic combined lens - a new theoretical model first proposed in electron optics - has been thoroughly studied. Meanwhile, based on electron optical canonical aberration theory, analytical formulas of third-order geometrical and first-order chromatic aberration coefficients and their computational results have first been derived for this bi-potential electrostatic and bell-shaped magnetic combined lens. It is to emphasized that this theoretical study can be used to estimate third-order geometric and first-order chromatic aberrations and to provide a theoretical criterion for numerical computation in a rotationally symmetric electromagnetic lens
Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.
2018-02-01
The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.
Exact solutions of the dirac equation for an electron in magnetic field with shape invariant method
International Nuclear Information System (INIS)
Setare, M.R.; Hatami, O.
2008-01-01
Based on the shape invariance property we obtain exact solutions of the Virac equation for an electron moving in the presence of a certain varying magnetic Geld, then we also show its non-relativistic limit. (authors)
Progress of conversion system from CAD data to MCNP geometry data in Japan
International Nuclear Information System (INIS)
Sato, S.; Nashif, H.; Masuda, F.; Morota, H.; Iida, H.; Konno, C.
2010-01-01
Automatic conversion systems from CAD data to MCNP geometry input data have been developed to convert the CAD data of the fusion reactor with very complicated structure. So far, two conversion systems (GEOMIT-1 and ARCMCP) have been developed and the third system (GEOMIT-2) is under developing. The void data can be created in these systems. GEOMIT-1 was developed in 2007, but a lot of manual shape splitting work for the CAD data was required to convert the complicated geometry. ARCMCP was developed in 2008. The algorithm has been drastically improved on automatic creation of ambiguous surface in ARCMCP, but it still required a little manual shape splitting work. The latest system, GEOMIT-2, does not require additional commercial software packages, though the previous systems require them. It also has functions of the CAD data healing and the automatic shape splitting. Geometrical errors of CAD data can be automatically revised by the healing function, and complicated geometries can be automatically split into simple geometries by the shape splitting function. Any manual works for CAD data are not required in GEOMIT-2. GEOMIT-2 is very useful for nuclear analyses of fusion reactors.
Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.
2017-11-01
The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
International Nuclear Information System (INIS)
L’vov, Victor A; Kosogor, Anna; Barandiaran, Jose M; Chernenko, Volodymyr A
2015-01-01
An influence of internal stress created by the crystal defects on the magnetically induced reorientation (MIR) of martensite variants in the ferromagnetic shape memory alloy (FSMA) has been analyzed. Using the internal stress conception, a noticeable influence of the spatial reconfiguration of crystal defects on the ordinary magnetostriction of FSMA and magnetic shape memory (MSM) effect has been predicted. It has been shown that the defect reconfiguration, which stabilizes the martensitic phase during martensite aging, increases the shear elastic modulus. The increase of shear modulus reduces the magnetostriction value and in this way suppresses the MSM effect. The magneto-thermo-mechanical training of aged alloys destabilizes the martensitic phase, restores the initial magnetostriction value, and promotes the MSM effect. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)
2015-07-01
Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.
Rational design of the exchange-spring permanent magnet.
Jiang, J S; Bader, S D
2014-02-12
The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.
Rational design of the exchange-spring permanent magnet
International Nuclear Information System (INIS)
Jiang, J S; Bader, S D
2014-01-01
The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH) max , while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH) max . The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication. (paper)
Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging
Kohan, Zohreh; Azmi, Reza
2016-03-01
There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.
Effect of tip geometry on photo-electron-emission from nanostructures.
Teki, Ranganath; Lu, Toh-Ming; Koratkar, Nikhil
2009-03-01
We show in this paper the strong effect of tip geometry on the photo-electron-emission behavior of nanostructured surfaces. To study the effect of tip geometry we compared the photo-emissivity of Ru and Pt nanorods with pyramidal shaped tips to that of carbon nanorods that display flat top (planar) tips. Flat top architectures gave no significant increase in the emission current, while nanostructures with pyramidal shaped tips showed 3-4 fold increase in photo-emission compared to a thin film of the same material. Pyramidal tip geometries increase the effective surface area that is exposed to the incident photon-flux thereby enhancing the photon-collection probability of the system. Such nano-structured surfaces show promise in a variety of device applications such as photo-detectors, photon counters and photo-multiplier tubes.
Characteristics of bowl-shaped coils for transcranial magnetic stimulation
Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki
2015-05-01
Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.
Three-dimensional magnetic engineering: The programs magnus and epilog
Fan, Mingwu; Pissanetzky, Sergio
1988-10-01
We present the post-processor EPILOG for the well established finite element program MAGNUS for three-dimensional magnetic engineering. MAGNUS solves problems of magnetostatics with nonlinear magnetic materials, permanent magnets and electric currents, for any 3-D geometry. The two-scalar-potentials formulation of magnetostatics used by MAGNUS combines numerical accuracy and computational efficiency, and is considered state of the art. The well known program KUBIK is used as a pre-processor to describe the geometry and finite element mesh. KUBIK is highly interactive and allows the user to effectively control all geometric details. The needs of magnetic engineers, however, go far beyond the simple availability of a mathematical solution. Once the solution has been obtained by MAGNUS in the form of a continuous magnetic scalar potential function defined at every point in the solution domain, those needs are met by EPILOG. EPILOG is command operated. Commands are independent of each other and can be used in any order, or not used at all. The purpose of each command is to use the solution for the calculation of a derived quantity or the production of a plot or table. The following derived quantities can be obtained: the magnetic energy in specific regions, the magnetic force on specified conductors in space, the magnetic torque on specified conductors, the magnetic flux across a given surface in space, the inductance of a circuit, and a variety of line integrals for specified lines in space. A useful facility is the automatic calculation of harmonic multipoles averaged along the beam direction for accelerator magnets, essential for end analysis and the integral effect of the magnetic field on the beam. Graphical facilities include color plots of the shapes of the conductors, the geometry, field lines and surfaces of constant magnetic scalar potential in specified regions of space. EPILOG produces a device independent graphical metafile, which can be seen on any device
Shape and crystallographic orientation of nanodiamonds for quantum sensing.
Ong, S Y; Chipaux, M; Nagl, A; Schirhagl, R
2017-05-03
Nanodiamonds with dimensions down to a few tens of nanometers containing nitrogen-vacancy (NV) color centers have revealed their potential as powerful and versatile quantum sensors with a unique combination of spatial resolution and sensitivity. The NV centers allow transducing physical properties, such as strain, temperature, and electric or magnetic field, to an optical transition that can be detected in the single photon range. For example, this makes it possible to sense a single electron spin or a few nuclear spins by detecting their magnetic resonance. The location and orientation of these defects with respect to the diamond surface play a crucial role in interpreting the data and predicting their sensitivities. Despite its relevance, the geometry of these nanodiamonds has never been thoroughly investigated. Without accurate data, spherical models have been applied to interpret or predict results in the past. With the use of High Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), we investigated nanodiamonds with an average hydrodynamic diameter of 25 nm (the most common type for quantum sensing) and found a flake-like geometry, with 23.2 nm and 4.5 nm being the average lateral and vertical dimensions. We have also found evidence for a preferred crystallographic orientation of the main facet in the (110) direction. Furthermore, we discuss the consequences of this difference in geometry on diamond-based applications. Shape not only influences the creation efficiency of nitrogen-vacancy centers and their quantum coherence properties (and thus sensing performance), but also the optical properties of the nanodiamonds, their interaction with living cells, and their surface chemistry.
Mapping Shape Geometry And Emotions Using Fuzzy Logic
DEFF Research Database (Denmark)
Achiche, Sofiane; Ahmed, Saeema
2008-01-01
An important aspect of artifact/product design is defining the aesthetic and emotional value. The success of a product is not only dependent on its functionality but also on the emotional value that it creates to its user. However, if several designers are faced with a task to create an object...... that would evoke a certain emotion (aggressive, soft, heavy, friendly, etc.), each would most likely interpret the emotion with a different set of geometric features and shapes. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object...... and the intended emotion using fuzzy logic. To achieve this; 3D objects (shapes) created by design engineering students to match a set of words/emotions were analyzed. The authors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map the relationships...
Super magnets for interaction regions
International Nuclear Information System (INIS)
Biallas, G.; Fowler, W.; Diebold, R.
1977-01-01
The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry
Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H
2018-02-01
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Koizumi, Satoshi; Nihei, Masayuki; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Bircher, Roland; Waldmann, Oliver; Ochsenbein, Stefan T; Güdel, Hans U; Fernandez-Alonso, Felix; Oshio, Hiroki
2007-01-01
The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.
A short course in computational geometry and topology
Edelsbrunner, Herbert
2014-01-01
With the aim to bring the subject of Computational Geometry and Topology closer to the scientific audience, this book is written in thirteen ready-to-teach sections organized in four parts: tessellations, complexes, homology, persistence. To speak to the non-specialist, detailed formalisms are often avoided in favor of lively 2- and 3-dimensional illustrations. The book is warmly recommended to everybody who loves geometry and the fascinating world of shapes.
Granular flows in constrained geometries
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
International Nuclear Information System (INIS)
Gupta, R.C.; Morgan, G.H.
1989-01-01
The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs
Field dependent shape variation of magnetic fluid droplets on magnetic dots
International Nuclear Information System (INIS)
Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang
2012-01-01
The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.
Latitude dependence of the solar wind speed: Influence of the coronal magnetic field geometry
International Nuclear Information System (INIS)
Pneuman, G.W.
1976-01-01
The dependence of solar wind speed on latitude as influenced by the magnetic field configuration of the inner corona is studied. It is found that in general, a dipolelike field geometry characteristic of a minimum-type corona tends to produce a solar wind speed distribution which increases with heliographic latitude, in accordance with observations. At very high coronal base densities and temperatures, however, this effect is minimal or even inverted. Physically, the field affects the wind speed through its area divergence, a larger divergence resulting in correspondingly lower speeds. During solar minimum, eclipse photographs suggest that the field divergence increases from pole to equator, a characteristic not apparent during solar maximum. Hence we expect the latitudinal increase in speed to be most pronounced at the minimum phase of solar activity
Parameters calculation of fuel assembly with complex geometry
International Nuclear Information System (INIS)
Wu Hongchun; Ju Haitao; Yao Dong
2006-01-01
The code DRAGON was developed for CANDU reactor by Ecole Polytechnique de Montreal of Canada. In order to validate the DRAGON code's applicability for complex geometry fuel assembly calculation, the rod shape fuel assembly of PWR benchmark problem and the plate shape fuel assembly of MTR benchmark problem were analyzed by DRAGON code. Some other shape fuel assemblies were also discussed simply. Calculation results show that the DRAGON code can be used to calculate variform fuel assembly and the precision is high. (authors)
Countercurrent in high-current microsecond diodes with magnetic insulation
International Nuclear Information System (INIS)
Bugaev, S.P.; Kim, A.A.; Koshelev, V.I.
1979-01-01
In order to increase the efficiency of the generation of tube electron beams in diodes and the efficiency of the electron beam current pulse duration studied is the formation of the electron counter current in microsecond diodes with magnetic insulation in dependence on the various geometry of the cathode joint. The experiments have been carried out at the accelerator with the following parameters: diode voltage from 400 to 600 kV, the front and duration of the pulse 75 ns and 1-2 μs respectively, beam current from 4 to 17 kA, magnetic field of 18 kGs. The current in the drift tube and the total current of the electron gun have been measured. Distributing resistance current of vacuum insulator has been controlled. Conclusions have been made, that, in the case when the diameters of cathode and cathode holder are equal, the electron current is being produced from the reverse side of cathode plasma, which expands across the magnetic field with the rate of (4-5)x10 5 sm/cs. The counter current value has constituted 15% of the total current at the use of reflector with the geometry repeating the shape of the magnetic field force lines, corresponding to the cathode radius. The counter current has not been present at the use of the flat reflector
Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai
2018-04-01
Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from -292.4 MPa to -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the
Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts
International Nuclear Information System (INIS)
Kachurin, A.M.; Smelyanskij, A.Ya.
1986-01-01
Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented
Magnetic Shape Memory Alloys as smart materials for micro-positioning devices
Directory of Open Access Journals (Sweden)
A. Hubert
2012-10-01
Full Text Available In the ﬁeld of microrobotics, actuators based on smart materials are predominant because of very good precision, integration capabilities and high compactness. This paper presents the main characteristics of Magnetic Shape Memory Alloys as new candidates for the design of micromechatronic devices. The thermo-magneto-mechanical energy conversion process is ﬁrst presented followed by the adequate modeling procedure required to design actuators. Finally, some actuators prototypes realized at the Femto-ST institute are presented, including a push-pull bidirectional actuator. Some results on the control and performances of these devices conclude the paper.
Crossing geometry for Main Ring on Doubler collisions
International Nuclear Information System (INIS)
Diebold, R.
1977-01-01
There are two basic methods for bringing about Main Ring on Doubler collisions: the transposed, and kissing geometries. Examples of both are discussed assuming maximum momenta of 250 on 1000 GeV/c. The magnets required to bring the beams into small-angle collision are substantial in both cases. Detailed engineering work will be required to distinguish a substantial cost advantage of one geometry over the other
International Nuclear Information System (INIS)
Adly, A.A.; Davino, D.; Visone, C.
2006-01-01
Materials exhibiting gigantic magnetostriction and magnetic shape memory are currently being widely used in various applications. Recently, an approach based on simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models has been introduced. The purpose of this paper is to present a detailed formulation and quantitative assessment for the simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using this recently proposed model. Details of the model formulation, identification procedure and experimental testing are given in the paper
Analysis of the effect of pore geometry in the physical properties of rocks
Directory of Open Access Journals (Sweden)
Luiz Alberto Oliveira Lima Roque
2012-12-01
Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.
Directory of Open Access Journals (Sweden)
S. N. Nikolaev
2016-01-01
Full Text Available The results of a comprehensive study of magnetic, magneto-transport and structural properties of nonstoichiometric MnxSi1-x (x ≈ 0.51-0.52 films grown by the Pulsed Laser Deposition (PLD technique onto Al2O3(0001 single crystal substrates at T = 340°C are present. A highlight of used PLD method is the non-conventional (“shadow” geometry with Kr as a scattering gas during the sample growth. It is found that the films exhibit high-temperature (HT ferromagnetism (FM with the Curie temperature TC ∼ 370 K accompanied by positive sign anomalous Hall effect (AHE; they also reveal the polycrystalline structure with unusual distribution of grains in size and shape. It is established that HT FM order is originated from the bottom interfacial self-organizing nanocrystalline layer. The upper layer adopted columnar structure with the lateral grain size ≥50 nm, possesses low temperature (LT type of FM order with Tc ≈ 46 K and contributes essentially to the magnetization at T ≤ 50 K. Under these conditions, AHE changes its sign from positive to negative at T ≤ 30K. We attribute observed properties to the synergy of distribution of MnxSi1-x crystallites in size and shape as well as peculiarities of defect-induced FM order in shadow geometry grown polycrystalline MnxSi1-x (x ∼ 0.5 films.
Yu, Xiaojia; Yang, Xiaoyu; Li, Guang
2018-01-01
We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.
Harmonic current layer method for the design of superconducting quadrupole magnetic field
International Nuclear Information System (INIS)
Zizek, F.
1977-01-01
The magnetic field of a superconducting quadrupole is investigated by the method of harmonic current layers of cylindrical shape. The superconducting winding is replaced by a system of thin current layers with a harmonically distributed density of the surface current along the circumference. The effect of the outer ferromagnetic circuit with an arbitrary constant permeability over the cross section is replaced analogically. The resultant magnetic field is then given by the superposition of the contributions from the individual current layers. The calculation method can be modified for the selection of the geometry of the winding for the latter to meet the demand for the high homogeneity of the gradient of magnetic induction in the working space of the superconducting quadrupole. (author)
In-situ magnetization of NdFeB magnets for permanent magnet machines
International Nuclear Information System (INIS)
Chang, L.; Eastham, T.R.; Dawson, G.E.
1991-01-01
In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper
International Nuclear Information System (INIS)
Bakshi, P.; Kalman, G.
1976-02-01
A new approach for the solution of the Vlasov equation for complex magnetic field geometries has been developed using operator techniques. The general approach is illustrated by determining the perturbed distribution function and density operator for the problem of shear stabilization of drift waves for transverse and arbitrary directions of propagation. The ensuing corrections to stability criteria of current theories are obtained for certain domains of physical parameters. Preliminary work on the integral equation approach to the dispersion relation has been initiated. As a prelude to the study of particle orbits in complex mirror geometries, the adiabatic and non-adiabatic behavior of a harmonic oscillator has been studied using operator methods. High-β, high shear plasma sheath configurations have been studied with the full ion dynamics taken into account and electrons treated in the zero and first order approximation, in the ratio of the electron Larmor radius to the scale length. The resulting sheath structure equation in the lowest order approximation has been solved for certain entering ion distributions, and prepared for computer analysis for others. In this approximation the electron current parallel to magnetic field lines has to be assumed suppressed or predetermined. Equations in the next order approximation include the finite Larmor radius stress tensor. This equation is under study
Micromagnetic recording model of writer geometry effects at skew
Plumer, M. L.; Bozeman, S.; van Ek, J.; Michel, R. P.
2006-04-01
The effects of the pole-tip geometry at the air-bearing surface on perpendicular recording at a skew angle are examined through modeling and spin-stand test data. Head fields generated by the finite element method were used to record transitions within our previously described micromagnetic recording model. Write-field contours for a variety of square, rectangular, and trapezoidal pole shapes were evaluated to determine the impact of geometry on field contours. Comparing results for recorded track width, transition width, and media signal to noise ratio at 0° and 15° skew demonstrate the benefits of trapezoidal and reduced aspect-ratio pole shapes. Consistency between these modeled results and test data is demonstrated.
Yang, Jing; Zhang, Jiasen
2013-04-08
We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles
Liu, Zhenyu; Wang, Guofeng
2017-12-01
In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.
How do fits of simulated magnetic clouds correspond to their real shapes in 3-D?
Directory of Open Access Journals (Sweden)
M. Vandas
2010-08-01
Full Text Available Magnetic clouds are important objects for space weather forecasters due to their impact on the Earth's magnetosphere and their consequences during geomagnetic storms. Being considered as cylindrical or toroidal flux ropes, their size, velocity, magnetic field strength, and axis orientation determine its impact on Earth. Above mentioned parameters are usually extracted from model fits using measurements from one-spacecraft crossings of these structures. In order to relate solar events with these spacecraft observations, the parameters are then compared to situation at the Sun around a most probable source region with a goal to correlate them with near-Sun observed quantities for prediction purposes. In the past we performed three-dimensional simulations of magnetic cloud propagation in the inner heliosphere. Simulated spacecraft measurements are fitted by models of magnetic clouds and resulting parameters are compared with real shapes of magnetic clouds which can be directly obtained from our simulations. The comparison shows that cloud parameters are determined quite reliably for spacecraft crossings near the cloud axis.
Is X-ray emissivity constant on magnetic flux surfaces?
International Nuclear Information System (INIS)
Granetz, R.S.; Borras, M.C.
1997-01-01
Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2009-06-21
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
International Nuclear Information System (INIS)
Salinas, F S; Lancaster, J L; Fox, P T
2009-01-01
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Salinas, F. S.; Lancaster, J. L.; Fox, P. T.
2009-06-01
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Cejpek, P.; Drahokoupil, Jan; Holý, V.
2016-01-01
Roč. 115, Aug (2016), s. 250-258 ISSN 1359-6454 R&D Projects: GA ČR GA13-30397S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic shape memory effect * X-ray diffraction * structure of Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.301, year: 2016
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
, observations, and field notes. The findings of the study showed that this instructional design could stimulate students to provide reflection characteristics and other transformation geometry informally, to classify them in the transformation isometry in the second level, and to find the reflection supporting line in the more formal level. In addition, the reflection supporting line was used by the students to draw the reflection image and the mirroring pattern and to understand the rotation and translation shapes as a combination of reflection at the highest level. Keyword: geometric transformation, rotation, translation, and HLT
Energy Technology Data Exchange (ETDEWEB)
Aryee, Dennis [Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005 (United States); Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States); Seifu, Dereje, E-mail: dereje.seifu@morgan.edu [Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States)
2017-05-01
Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbon and 3d-bands of the Fe-surface.
Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope
Qian, Hui; Egerton, Ray F.
2017-11-01
Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.
Computational geometry lectures at the morningside center of mathematics
Wang, Ren-Hong
2003-01-01
Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry, which are based on invited lectures and some contributed papers presented by researchers working during the program on Computational Geometry at the Morningside Center of Mathematics of the Chinese Academy of Science. The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in more detail in other papers in the volume. The topics include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and others.
Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping
2008-12-01
The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.
Current deposition profiles in advanced geometries
International Nuclear Information System (INIS)
Wright, J.C.; Phillips, C.K.; Bonoli, P.T.
1997-01-01
In advanced toroidal devices, plasma shaping can have a significant effect on quantities of interest, including the radio frequency (RF) deposited power and current. Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization is derived from a ray-tracing model in a low-beta model equilibrium. There are difficulties in applying it to a spectrum of waves, and it cannot account for multiple resonances and coherency effects between the electrons and the waves. By evaluating a formulation of the quasilinear diffusion coefficient in an arbitrary inhomogenous geometry with the fields from a full wave code, we address the effects of wave spectra, plasma inhomogeneity, and plasma profile on the evaluation of current deposition profiles. Current profiles are calculated directly from the quasilinear diffusion using the adjoint formulation, with the magnetic equilibrium specified consistently in both the adjoint routine and the full wave code. Results are benchmarked by comparing a power deposition calculation from conductivity to one from the quasilinear expression. RF driven current profiles for various devices, including tokamaks with different aspect ratios, will be presented. copyright 1997 American Institute of Physics
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Directory of Open Access Journals (Sweden)
Sara Shafaie
Full Text Available In vitro cell based models have been invaluable tools for studying cell behaviour and for investigating drug disposition, toxicity and potential adverse effects of administered drugs. Within this drug discovery pipeline, the ability to assess and prioritise candidate compounds as soon as possible offers a distinct advantage. However, the ability to apply this approach to a cell culture study is limited by the need to provide an accurate, in vitro-like, microenvironment in conjunction with a low cost and high-throughput screening (HTS methodology. Although the geometry and/or alignment of cells has been reported to have a profound influence on cell growth and differentiation, only a handful of studies have directly compared the growth of a single cell line on different shaped multiwell plates the most commonly used substrate for HTS, in vitro, studies. Herein, the impact of various surface geometries (flat, round and v-shaped 96 well plates, as well as fixed volume growth media and fixed growth surface area have been investigated on the characteristics of three commonly used human cell lines in biopharmaceutical research and development, namely ARPE-19 (retinal epithelial, A549 (alveolar epithelial and Malme-3M (dermal fibroblastic cells. The effect of the surface curvature on cells was characterised using a combination of a metabolic activity assay (CellTiter AQ/MTS, LDH release profiles (CytoTox ONE and absolute cell counts (Guava ViaCount, respectively. In addition, cell differentiation and expression of specific marker proteins were determined using flow cytometry. These in vitro results confirmed that surface topography had a significant effect (p < 0.05 on cell activity and morphology. However, although specific marker proteins were expressed on day 1 and 5 of the experiment, no significant differences were seen between the different plate geometries (p < 0.05 at the later time point. Accordingly, these results highlight the impact of
Affine Geometry, Visual Sensation, and Preference for Symmetry of Things in a Thing
Directory of Open Access Journals (Sweden)
Birgitta Dresp-Langley
2016-11-01
Full Text Available Evolution and geometry generate complexity in similar ways. Evolution drives natural selection while geometry may capture the logic of this selection and express it visually, in terms of specific generic properties representing some kind of advantage. Geometry is ideally suited for expressing the logic of evolutionary selection for symmetry, which is found in the shape curves of vein systems and other natural objects such as leaves, cell membranes, or tunnel systems built by ants. The topology and geometry of symmetry is controlled by numerical parameters, which act in analogy with a biological organism’s DNA. The introductory part of this paper reviews findings from experiments illustrating the critical role of two-dimensional (2D design parameters, affine geometry and shape symmetry for visual or tactile shape sensation and perception-based decision making in populations of experts and non-experts. It will be shown that 2D fractal symmetry, referred to herein as the “symmetry of things in a thing”, results from principles very similar to those of affine projection. Results from experiments on aesthetic and visual preference judgments in response to 2D fractal trees with varying degrees of asymmetry are presented. In a first experiment (psychophysical scaling procedure, non-expert observers had to rate (on a scale from 0 to 10 the perceived beauty of a random series of 2D fractal trees with varying degrees of fractal symmetry. In a second experiment (two-alternative forced choice procedure, they had to express their preference for one of two shapes from the series. The shape pairs were presented successively in random order. Results show that the smallest possible fractal deviation from “symmetry of things in a thing” significantly reduces the perceived attractiveness of such shapes. The potential of future studies where different levels of complexity of fractal patterns are weighed against different degrees of symmetry is pointed out
Fourier Series, the DFT and Shape Modelling
DEFF Research Database (Denmark)
Skoglund, Karl
2004-01-01
This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...
Geometry system used in the General Monte Carlo transport code SPARTAN
International Nuclear Information System (INIS)
Bending, R.C.; Easter, P.G.
1974-01-01
The geometry routines used in the general-purpose, three-dimensional particle transport code SPARTAN are described. The code is designed to deal with the very complex geometries encountered in lattice cell and fuel handling calculations, health physics, and shielding problems. Regions of the system being studied may be represented by simple shapes (spheres, cylinders, and so on) or by multinomial surfaces of any order, and many simple shapes may be combined to make up a complex layout. The geometry routines are designed to allow the program to carry out a number of tasks (such as sampling for a random point or tracking a path through several regions) in any order, so that the use of the routines is not restricted to a particular tracking or scoring method. Routines for reading, checking, and printing the data are included. (U.S.)
Metal Injection Molding (MIM of NdFeB Magnets
Directory of Open Access Journals (Sweden)
Hartwig T.
2014-07-01
Full Text Available Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.
Li7(BH)5(+): a new thermodynamically favored star-shaped molecule.
Torres-Vega, Juan J; Vásquez-Espinal, Alejandro; Beltran, Maria J; Ruiz, Lina; Islas, Rafael; Tiznado, William
2015-07-15
The potential energy surfaces (PESs) of Lin(BH)5(n-6) systems (where n = 5, 6, and 7) were explored using the gradient embedded genetic algorithm (GEGA) program, in order to find their global minima conformations. This search predicts that the lowest-energy isomers of Li6(BH)5 and Li7(BH)5(+) contain a (BH)5(6-) pentagonal fragment, which is isoelectronic and structurally analogous to the prototypical aromatic hydrocarbon anion C5H5(-). Li7(BH)5(+), along with Li7C5(+), Li7Si5(+) and Li7Ge5(+), joins a select group of clusters that adopt a seven-peak star-shape geometry, which is favored by aromaticity in the central five-membered ring, and by the preference of Li atoms for bridging positions. The theoretical analysis of chemical bonding, based on magnetic criteria, supports the notion that electronic delocalization is an important stabilization factor in all these star-shaped clusters.
An experimental study of passive regenerator geometries
DEFF Research Database (Denmark)
Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini
2011-01-01
Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...
One-step solution fabrication of magnetic chains consisting of jingle-bell-shaped cobalt mesospheres
Liang, Fang; Guo, Lin; Zhong, QunPeng; Wen, Xiaogang; Yang, Shihe; Zheng, Wangzhi; Chen, Chinping; Zhang, Nina; Chu, Weiguo
2006-09-01
Using a one-step solution phase approach, the authors have synthesized uniform jingle bell-shaped cobalt mesopheres (550-750nm) and assembled the mesospheres into long magnetic chains (20-30μm). All of the cobalt spheres are hollow with ˜40nm thick shells but each contains an ˜200nm diameter solid ball. The nano- to mesoscale structures were realized via reaction of CoCl2•6H2O and N2H4•H2O in the presence of polyvinylpyrrolidone (PVP) in an ethylene glycol solution. Magnetic measurements show a coercivity of about 75Oe with a remnance of 9.6emu /g at 300K. We propose a possible mechanism for the formation of the nanoto mesoscale structures.
Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke
2017-12-01
Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.
Yu, T; Sun, W X; Lin, J Y; Ding, J
2003-01-01
Half-metallic CrO sub 2 powder compact with rod-shaped nanoparticles was studied by micro-Raman scattering in the presence of an external magnetic field at room temperature (300 K). In the low-field region (H <= 250 mT), the frequency and intensity of the E sub g mode, an internal phonon mode of CrO sub 2 , increase dramatically with increase in the magnetic field, while the corresponding linewidth decreases. The above parameters become constant when the CrO sub 2 powder enters the saturation state at higher magnetic field. The pronounced anomalies of the Raman phonon parameters under a low magnetic field are attributed to the spin-phonon coupling enhanced by the magnetic ordering, which is induced by the external magnetic field. (letter to the editor)
A statistical skull geometry model for children 0-3 years old.
Directory of Open Access Journals (Sweden)
Zhigang Li
Full Text Available Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO. To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.
A statistical skull geometry model for children 0-3 years old.
Li, Zhigang; Park, Byoung-Keon; Liu, Weiguo; Zhang, Jinhuan; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen
2015-01-01
Head injury is the leading cause of fatality and long-term disability for children. Pediatric heads change rapidly in both size and shape during growth, especially for children under 3 years old (YO). To accurately assess the head injury risks for children, it is necessary to understand the geometry of the pediatric head and how morphologic features influence injury causation within the 0-3 YO population. In this study, head CT scans from fifty-six 0-3 YO children were used to develop a statistical model of pediatric skull geometry. Geometric features important for injury prediction, including skull size and shape, skull thickness and suture width, along with their variations among the sample population, were quantified through a series of image and statistical analyses. The size and shape of the pediatric skull change significantly with age and head circumference. The skull thickness and suture width vary with age, head circumference and location, which will have important effects on skull stiffness and injury prediction. The statistical geometry model developed in this study can provide a geometrical basis for future development of child anthropomorphic test devices and pediatric head finite element models.
Gravitation compensation using a spherical magnetic spring
2016-01-01
A magnetic positioning device is provided that includes a first cup-shape permanent magnet having at least one permanent magnet segment conforming to the first cup-shape, where the first cup-shape permanent magnet has a first polarity, a second cup-shape permanent magnet that includes at least one
Isogeometric shape optimization of photonic crystals via Coons patches
DEFF Research Database (Denmark)
Qian, Xiaoping; Sigmund, Ole
2011-01-01
In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have...
Manifold Shape: from Differential Geometry to Mathematical Morphology
Roerdink, J.B.T.M.
1994-01-01
Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition or shape description of patterns on spherical surfaces. Also in computer vision much use is made of spherical mappings to describe the world as seen by a human or machine observer. Stimulated by th...
Shape recovery mechanism observed in single crystals of shape memory alloys
Czech Academy of Sciences Publication Activity Database
Seiner, Hanuš; Sedlák, Petr; Landa, Michal
2008-01-01
Roč. 81, č. 6 (2008), s. 537-551 ISSN 0141-1594 Institutional research plan: CEZ:AV0Z20760514 Keywords : shape memory alloys * shape recovery process * martensitic microstructure * non-classical boundaries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.201, year: 2008
Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape
International Nuclear Information System (INIS)
Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W
2006-01-01
We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape
Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container
International Nuclear Information System (INIS)
Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya
2008-01-01
This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system
Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container
Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya
2008-02-01
This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system.
Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical Geometry
Bakhsh, Abeer
2018-05-13
We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic
Energy Technology Data Exchange (ETDEWEB)
Yao, Shuang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yi, Fei-Yan [The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Guanghua [State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu, Yang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Wang, Jing-yuan, E-mail: jywang@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190 (China); Liu, Dan, E-mail: liudan2007@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Song, Shu-Yan [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)
2017-06-15
Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing feature is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
The Common Evolution of Geometry and Architecture from a Geodetic Point of View
Bellone, T.; Fiermonte, F.; Mussio, L.
2017-05-01
Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,…) those most frequently employed in architectural design are: - Euclidean Geometry - Projective Geometry - The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.
Hill, S.; Maccagnano, S.; Park, Kyungwha; Achey, R. M.; North, J. M.; Dalal, N. S.
2002-06-01
It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high-field electron paramagnetic resonance (EPR) spectra for single-crystal samples of the uniaxial and biaxial spin S=10 single-molecule magnets (SMM's) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed line shapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (MS values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D strain, g strain, and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR line shapes for Fe8 and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMM's.
Laser-generated magnetic fields in quasi-hohlraum geometries
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
International Nuclear Information System (INIS)
McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.
2010-01-01
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)
Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.
2017-09-01
Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.
Perspectives in shape analysis
Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie
2016-01-01
This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...
International Nuclear Information System (INIS)
Shirani, M; Kadkhodaei, M
2014-01-01
Ferromagnetic shape memory alloys (FSMAs) and magnetic shape memory alloys (MSMAs) are metallic alloys that can undergo inelastic responses when exposed to magnetic fields. Several constitutive models have been proposed so far to model the behaviors of FSMAs. In this work, the effects of loading history on reorientation start conditions are considered, and it is shown that reorientation start conditions are not fixed values; rather, they change with respect to the amount of loading history. To consider the effects of loading history on reorientation start conditions, an available phase diagram in stress-field space is generalized to reorientation surfaces in stress-field-loading history space. Correspondingly, kinetic laws are derived in a continuum framework to be used with the reorientation surfaces to determine the amount of the martensitic variant 2 volume fraction. Based on the geometry of the reorientation surfaces, conditions that must be satisfied to ensure the continuation of reorientations are obtained. Available experimental findings validate the proposed model and the reorientation surfaces. (paper)
Three-dimensional protein shape rendering in magnetized solution with Lambert-Beer law.
Gu, HongYan; Chang, WeiShan
2012-07-10
When monochromatic light passes through a homogeneous absorbing medium, the absorbance is proportional to the growth of concentration and thickness of the medium, which is the Lambert-Beer law. The shade selection of protein solution magnetized for a certain time from different angles makes different absorbance, which does not meet the Lambert-Beer law. Accordingly, we derive that the absorbance A is not only proportional to the concentration and thickness of the medium but also proportional to the light area S(S) of a certain direction. For the same protein solution, we can obtain the absorbance A of six directions and thus get six values for S(S) the relative ratio of which will inevitably reveal plentiful information of the protein shape. The conformation of the protein can be easily drawn out by software (MATLAB 7.0.1). We have drawn out the molecular shape of lysozyme and bovine serum albumin. In brief, we have developed the Lambert-Beer law A=K·C·b·S(s) and a new method of exploring protein spatial structure.
Theoretical aspects of magnetic helicity
International Nuclear Information System (INIS)
Hammer, J.H.
1985-01-01
The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries
Multimaterial magnetically assisted 3D printing of composite materials
Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.
2015-10-01
3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.
Magnetic fields for transporting charged beams
International Nuclear Information System (INIS)
Parzen, G.
1976-01-01
The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES
Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie
2018-01-01
Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.
Size, shape, and stamina: the impact of left ventricular geometry on exercise capacity.
Lam, Carolyn S P; Grewal, Jasmine; Borlaug, Barry A; Ommen, Steve R; Kane, Garvan C; McCully, Robert B; Pellikka, Patricia A
2010-05-01
Although several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction > or = 50% and no valvular disease, myocardial ischemia, or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. All of the subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60+/-14 years; 57% male) subjects, 166 (45%) had normal geometry, 106 (29%) had concentric remodeling, 40 (11%) had eccentric hypertrophy, and 54 (15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents were 9.9+/-2.8 in normal, 8.9+/-2.6 in concentric remodeling, 8.6+/-3.1 in eccentric hypertrophy, and 8.0+/-2.7 in concentric hypertrophy (all P<0.02 versus normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r=-0.14; P=0.009 and r=-0.21; P<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared with normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation, and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease.
Magnetic and calorimetric investigations of ferromagnetic shape memory alloy Ni54Fe19Ga27
International Nuclear Information System (INIS)
Sharma, V K; Chattopadhyay, M K; Kumar, Ravi; Ganguli, Tapas; Kaul, Rakesh; Majumdar, S; Roy, S B
2007-01-01
We report results of magnetization and differential scanning calorimetry measurements in the ferromagnetic shape memory alloy Ni 54 Fe 19 Ga 27 . This alloy undergoes an austenite-martensite phase transition in its ferromagnetic state. The nature of the ferromagnetic state, both in the austenite and the martensite phase, is studied in detail. The ferromagnetic state in the martensite phase is found to have higher anisotropy energy as compared with the austenite phase. The estimated anisotropy constant is comparable to that of a well-studied ferromagnetic shape memory alloy system NiMnGa. Further, the present study highlights various interesting features accompanying the martensitic transition (MT). These features suggest the possibility of either a premartensitic transition and/or an inter-MT in this system
THE COMMON EVOLUTION OF GEOMETRY AND ARCHITECTURE FROM A GEODETIC POINT OF VIEW
Directory of Open Access Journals (Sweden)
T. Bellone
2017-05-01
Full Text Available Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,… those most frequently employed in architectural design are: – Euclidean Geometry – Projective Geometry – The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.
Kleibert, Armin; Balan, Ana; Yanes, Rocio; Derlet, Peter M.; Vaz, C. A. F.; Timm, Martin; Fraile Rodríguez, Arantxa; Béché, Armand; Verbeeck, Jo; Dhaka, R. S.; Radovic, Milan; Nowak, Ulrich; Nolting, Frithjof
2017-05-01
Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3 d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.
International Nuclear Information System (INIS)
Birkenmeier, Gregor
2012-01-01
For more than 60 years, fusion scientists try to confine a plasma by means of external magnetic fields in order to achieve appropriately high densities and temperatures for the ignition of nuclear fusion. Despite of great progress in the design of confinement concepts, which are considered for the confinement of burning plasmas in the near future, theoretical plasma physics promises further confinement improvements using novel magnetic field geometries. Therefor, the key is the minimization of turbulent transport by choosing appropiate magnetic field geometries, which necessitates a fundamental understanding of the influence of magnetic field geometry on plasma turbulence. There are several theoretical works on turbulent plasma dynamics in three-dimensional geometries, but only a few experimental studies for validation of the theoretical results exist. Hence, the present work aims at providing experimental data for comparison with theory and to gain insights into the interplay between drift-wave turbulence and magnetic field geometry. By means of two multi-probe arrays, local density and potential fluctuations are measured in low-temperature plasmas at 128 positions on a single flux surface of the stellarator TJ-K with high temporal resolution. Using methods of statistical timeseries analysis structure sizes and dynamic properties of the drift-wave turbulence in TJ-K are determined. Thereby, it is shown that the size of turbulent structures perpendicular to the magnetic field is reduced in regions of high absolute local magnetic shear. In addition, a poloidal displacement with respect to the magnetic field lines and a complex propagation pattern of parallelly extended turbulent structures is found. Also, poloidal profiles of turbulent transport are calculated from the probe data. The maximum transport is found to be poloidally localized in a region of negative normal curvature (unfavourable curvature). In addition, the results point to an influence of geodesic
International Nuclear Information System (INIS)
Kurihara, K.
2000-01-01
A new shape reproduction method is investigated on the basis of an applied mathematical approach. An analytically exact solution of Maxwell's equations in a static current field yields an (boundary) integral equation. In application of this equation to tokamak plasma shape reproduction, it is made clear that a Cauchy condition (both Dirichlet and Neumann conditions) on a hypothetical surface is necessarily identified. To calculate the Cauchy condition using magnetic sensor signals, conversion to numerical formulation of this method is conducted. Then, reproduction errors by this method are evaluated through two numerical tests: The first test uses ideal signals produced from a full equilibrium code in the JT-60 geometry, and the second test uses actual sensor signals in JT-60 experiments. In addition, it is shown that positioning and shape of the Cauchy condition surface is insensitive to reproduction error. Finally, this method is clarified to have preferable features for real-time tokamak reactor control
Directory of Open Access Journals (Sweden)
Khoerul Umam
2018-03-01
Full Text Available Many learners hold traditional beliefs about perimeter and area that a shape with a larger area must have a larger perimeter while shape with the same perimeter must have the same area. To address this issue, non-routine geometry problem is given. This qualitative descriptive research used to reach the goal and to explore the effect of non-routine geometry problem on elementary student belief in mathematics. The instrument has been developed to accommodate intuitive student belief and student’s belief about the concept of perimeter. The results provide evidence that students’ intuitive belief about perimeter can be change through non-routine geometry problem which is required understanding and some mathematical analysis. Fortunately, the problem has helped the elementary students revise and correct their beliefs, thoughts, and understandings relating to the circumference of shape.
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
Energy Technology Data Exchange (ETDEWEB)
Philippe, F.; Villette, B. [CEA, DAM, DIF, F-91297 Arpajon (France); Michel, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Giraldez, E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; and others
2014-07-15
A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.
2014-07-01
A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
International Nuclear Information System (INIS)
Philippe, F.; Villette, B.; Michel, P.; Petrasso, R.; Stoeckl, C.; Giraldez, E.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.
2014-01-01
A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
Energy Technology Data Exchange (ETDEWEB)
Philippe, F. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Tassin, V. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Depierreux, S. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Gauthier, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Masson-Laborde, P. E. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Monteil, M. C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Seytor, P. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Villette, B. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA), Arpajon (France); Lasinski, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ross, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doeppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wallace, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu-Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sorce, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Nikroo, A. [General Atomics, San Diego, CA (United States); Giraldez, E. [General Atomics, San Diego, CA (United States)
2014-07-25
A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.
Fadlallah, Mohamed M.
2016-12-02
Graphene nanomeshes (GNMs), formed by creating a superlattice of pores in graphene, possess rich physical and chemical properties. Many of these properties are determined by the pore geometry. In this work, we use first principles calculations to study the magnetic and electronic properties of metal-doped nitrogen-passivated GNMs. We find that the magnetic behaviour is dependent on the pore shape (trigonal versus hexagonal) as dictated by the number of covalent bonds formed between the 3d metal and the passivating N atoms. We also find that Cr and V doped trigonal-pore GNMs, and Ti doped GNMs are the most favourable for spintronic applications. The calculated magnetic properties of Fe-doped GNMs compare well with recent experimental observations. The studied systems are useful as spin filters and chemical sensors.
International Nuclear Information System (INIS)
Volkov, N.V.; Eremin, E.V.; Tarasov, A.S.; Rautskii, M.V.; Varnakov, S.N.; Ovchinnikov, S.G.; Patrin, G.S.
2012-01-01
Different phenomena that give rise to a spin-polarized current in some systems with magnetic tunnel junctions are considered. In a manganite-based magnetic tunnel structure in CIP geometry, the effect of current-channel switching was observed, which causes bias-driven magnetoresistance, rf rectification, and the photoelectric effect. The second system under study, ferromagnetic/insulator/semiconductor, exhibits the features of the transport properties in CIP geometry that are also related to the current-channel switching effect. The described properties can be controlled by a bias, a magnetic field, and optical radiation. At last, the third system under consideration is a cooperative assembly of magnetic tunnel junctions. This system exhibits tunnel magnetoresistance and the magnetic-field-driven microwave detection effect.
Plasma sprayed Nd-Fe-B permanent magnets
International Nuclear Information System (INIS)
Willson, M.; Bauser, S.; Liu, S.; Huang, M.
2003-01-01
This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt
International Nuclear Information System (INIS)
Ravari, M R Karamooz; Kadkhodaei, M; Ghaei, A; Esfahani, S Nasr; Andani, M Taheri; Elahinia, M; Karaca, H
2016-01-01
Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress–strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure. (paper)
Energy Technology Data Exchange (ETDEWEB)
Salazar-Aravena, D.; Corona, R.M. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Goerlitz, D.; Nielsch, K. [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2013-11-15
The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions. - Highlights: • Magnetic states of wire/tube were investigated as a function of their geometry. • Multisegmented systems present two well-defined jumps in the hysteresis curve. • It is possible to prepare an antiparallel magnetic configuration. • The step width for the optimum condition reaches 60 mT. • The tube segments reverse their magnetization first than the wire segments.
Energy Technology Data Exchange (ETDEWEB)
Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit [Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700 098 (India); Kaphle, Gopi Chandra [Central Department of Physics, Tribhuvan University, Kathmandu (Nepal)
2015-08-28
Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.
Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy
Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.
2016-05-01
Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.
A symmetry measure for damage detection with mode shapes
Chen, Justin G.; Büyüköztürk, Oral
2017-11-01
This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
Weak-link-induced thermoelectricity in U-shaped BSCCO superconductor
International Nuclear Information System (INIS)
Doyle, R.A.; Gridin, V.V.
1992-01-01
The recently reported weak-link-induced analogue of the Fountain effect in high-Tc superconductors involves measurement of the response of a micro-bridge-shaped sample to superimposed electrical and thermal gradients. This geometry is however asymmetric since the current contacts are always at different temperatures. Consequently doubts might be expressed about the interference of Peltier effects at the current contacts with the measured symmetry in the I-V characteristics of the sample. We have studied the temrature dependence of the voltage response of U-shaped samples of polycrystalline BSCCO 2212 superconductor in the presence of a parallel applied temperature gradient and applied current when the current direction is reversed. It is shown that this method is directly complementary to the measurement of asymmetry in critical current density by use of I-V characteristics at fixed temperature. The U-shaped geometry employed here allows the current electrodes to be held equipotential and at the same temperature. Our results show that the Fountain effect, which is due to supercurrent-induced phase differences across weak links in the sample, is apparent in this material when measured using the U-shaped geometry. This provides further support for the importance of weak-link-related thermoelectric effects in high-temperature superconductors. (orig.)
International Nuclear Information System (INIS)
Schaden, M.; Zhao, K. F.; Wu, Z.
2007-01-01
In an evanescent wave magnetometer the Zeeman polarization is probed at micrometer to submicrometer distances from the cell surface. The electron paramagnetic resonance lines of an evanescent wave magnetometer in the presence of a magnetic field gradient exhibit edge enhancement seen previously in nuclear magnetic resonance lines. We present a theoretical model that describes quantitatively the shape of the magnetic resonance lines of an evanescent wave magnetometer under a wide range of experimental conditions. It accounts for diffusion broadening in the presence of a magnetic field gradient as well as interactions of spin polarized Rb atoms with the coated Pyrex glass surfaces. Depending on the field gradient, cell thickness, and buffer gas pressure, the resonance line may have the form of a single asymmetric peak or two peaks localized near the front and back surfaces in frequency space. The double-peaked response depends on average characteristics of the surface interactions. Its shape is sensitive to the dwell time, relaxation probability, and average phase shift of adsorbed spin polarized Rb atoms
Magnetic flux reconstruction methods for shaped tokamaks
International Nuclear Information System (INIS)
Tsui, Chi-Wa.
1993-12-01
The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p' and FF' functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green's function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green's functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising
Evolution of regular geometrical shapes in fiber lumens
Le, Ngoc Lieu
2017-08-17
The geometry of polymeric hollow fibers for hemodialysis or desalination is a key factor determining their performance. Deformations are frequently observed, but they are rather random. Here we were able to exactly control the shape evolution of the internal channels or lumens of polymeric hollow fibers, leading to polygonal geometries with increasing number of sides. The elasticity of the incipient channel skin and instabilities during fiber formation are affected by the internal coagulant fluid composition and flow rate; and highly influence the polygonal shape. We propose a holistic explanation by analyzing the thermodynamic, kinetic and rheological aspects involved in the skin formation and their synergy.
Almost-commutative geometries beyond the standard model
International Nuclear Information System (INIS)
Stephan, Christoph A
2006-01-01
In Iochum et al (2004 J. Math. Phys. 45 5003), Jureit and Stephan (2005 J. Math. Phys. 46 043512), Schuecker T (2005 Preprint hep-th/0501181) and Jureit et al (2005 J. Math. Phys. 46 072303), a conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this paper, a counter-example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle, these new particles provide a novel dark matter candidate
Meijs, J.W.H.; Bosch, F.G.C.; Peters, M.J.; Lopes da silva, F.H.
1987-01-01
The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the
A novel ULA-based geometry for improving AOA estimation
Shirvani-Moghaddam, Shahriar; Akbari, Farida
2011-12-01
Due to relatively simple implementation, Uniform Linear Array (ULA) is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA) estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA) configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE) of the detected angles descends as the input Signal to Noise Ratio (SNR) increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.
A novel ULA-based geometry for improving AOA estimation
Directory of Open Access Journals (Sweden)
Akbari Farida
2011-01-01
Full Text Available Abstract Due to relatively simple implementation, Uniform Linear Array (ULA is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE of the detected angles descends as the input Signal to Noise Ratio (SNR increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.
Size dependence of magnetization reversal of ring shaped magnetic tunnel junction
International Nuclear Information System (INIS)
Chen, C.C.; Kuo, C.Y.; Chang, Y.C.; Chang, C.C.; Horng, Lance; Wu, Teho; Chern, G.; Huang, C.Y.; Tsunoda, M.; Takahashi, M.; Wu, J.C.
2007-01-01
The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process
submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC
Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David
2017-01-01
The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb$_{3}$Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb$_{3}$Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.
submitter Optimization of Nb$_{3}$Sn Rutherford Cables Geometry for the High Luminosity LHC
Fleiter, Jerome; Bonasia, Angelo; Bordini, Bernardo; Richter, David
2017-01-01
The quadrupole and dipole magnets for the LHC High Luminosity (HL-LHC) upgrade will be based on Nb3Sn Rutherford cables that operate at 1.9 K and experience magnetic fields of up to about 12 T. An important step in the design of these magnets is the development of the high aspect ratio Nb3Sn cables to achieve the nominal field with sufficient margin. The strong plastic deformation of unreacted $Nb_3Sn$ strands during the Rutherford cabling process may induce non negligible $I_c$ and RRR degradation. In this paper, the cabling degradation is investigated as a function of the cable geometry for both PIT and RRP conductors. Based on this analysis, new baseline geometries for both 11 T and QXF magnets of HL-LHC are proposed.
Magnetization reversal in ultrashort magnetic field pulses
International Nuclear Information System (INIS)
Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.
2000-01-01
We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question
Plasma shape experiments for an optimized tokamak
International Nuclear Information System (INIS)
Hyatt, A.W.; Osborne, T.H.; Lazarus, E.A.
1994-07-01
In this paper we present results from recent experiments at DIII-D which measured the plasma stability and confinement performance product, βτ E , in one previously studied and three new plasma shapes. One important goal of these experiments was to identify performance vs shape trends which would identify a shape compatible with both high performance and the planned effort to decrease the power flux to the divertor floor using a closed ''slot'' divertor geometry. power flux to the divertor floor using a closed ''slot'' divertor geometry. The closed divertor hardware must be designed for a reduced set of plasma shapes, so care must be taken to choose the shape that optimizes βτ E and divertor performance. The four shapes studied form a matrix of moderate and high elongations (κ congruent 1.8 and 2.1) and low and high triangularities (δ congruent 0.3 and 0.9). All configurations were double-null diverted (DND), held fixed during a shot, with neutral beam heating. The shapes span a range of X-point locations compatible with the envisioned closed divertor. We find that from shape to shape, a shot's transient normalized performance, β N H, where β N ≡ β/(I p )/aB T and H ≡ τ E /τ E ITER-89P , increases strongly with triangularity, but depends only weakly on elongation. However, the normalized performance during quasi stationary ELMing H-mode, to which these discharges eventually relax, is insensitive to both triangularity and elongation. The moderate elongation, high triangularity DND shape is shown to be near optimum for future studies on DIII-D
Control of flow geometry using electromagnetic body forcing
International Nuclear Information System (INIS)
Rossi, L.; Bocquet, S.; Ferrari, S.; Garcia de la Cruz, J.M.; Lardeau, S.
2009-01-01
This paper presents conceptual experiments and simulations aiming at controlling flow geometries. Such flow design is performed by driving electromagnetically a shallow layer of brine, the forcing being generated by a transverse electrical current and different combinations of permanent magnets placed underneath the brine supporting wall. It is shown how different basic flow characteristics can be obtained with a single pair of magnets, by varying the angle with the electrical current. These basic flows are proposed as potential building blocks for advanced and complex flows studies. Three typical flow structures are presented to illustrate these building blocks. The discussion is then extended to multi-scale geometry by using blocks of various sizes. The flow is analysed using complementary experiments and numerical simulations. A good agreement is found between the 3D simulations and the experiments for both velocity and acceleration fields, which allows a higher degree of confidence in designing and modelling such flows. As the control of the flow geometry is important for mixing, in particular at low Reynolds number, we also illustrate the different stirring properties of the electromagnetically forced flows by comparing visualisations of passive scalars. They reveal complementary mixing properties for each of the building blocks.
Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection
Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.
Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
A dissipative particle dynamics method for arbitrarily complex geometries
Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em
2018-02-01
Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its
Mathematical efficiency calibration with uncertain source geometries using smart optimization
International Nuclear Information System (INIS)
Menaa, N.; Bosko, A.; Bronson, F.; Venkataraman, R.; Russ, W. R.; Mueller, W.; Nizhnik, V.; Mirolo, L.
2011-01-01
The In Situ Object Counting Software (ISOCS), a mathematical method developed by CANBERRA, is a well established technique for computing High Purity Germanium (HPGe) detector efficiencies for a wide variety of source shapes and sizes. In the ISOCS method, the user needs to input the geometry related parameters such as: the source dimensions, matrix composition and density, along with the source-to-detector distance. In many applications, the source dimensions, the matrix material and density may not be well known. Under such circumstances, the efficiencies may not be very accurate since the modeled source geometry may not be very representative of the measured geometry. CANBERRA developed an efficiency optimization software known as 'Advanced ISOCS' that varies the not well known parameters within user specified intervals and determines the optimal efficiency shape and magnitude based on available benchmarks in the measured spectra. The benchmarks could be results from isotopic codes such as MGAU, MGA, IGA, or FRAM, activities from multi-line nuclides, and multiple counts of the same item taken in different geometries (from the side, bottom, top etc). The efficiency optimization is carried out using either a random search based on standard probability distributions, or using numerical techniques that carry out a more directed (referred to as 'smart' in this paper) search. Measurements were carried out using representative source geometries and radionuclide distributions. The radionuclide activities were determined using the optimum efficiency and compared against the true activities. The 'Advanced ISOCS' method has many applications among which are: Safeguards, Decommissioning and Decontamination, Non-Destructive Assay systems and Nuclear reactor outages maintenance. (authors)
Method for the detection of a magnetic field utilizing a magnetic vortex
Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL
2010-04-13
The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.
Processing of complex shapes with single-mode resonant frequency microwave applicators
International Nuclear Information System (INIS)
Fellows, L.A.; Delgado, R.; Hawley, M.C.
1994-01-01
Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry
Effect of composition on the magnetic and elastic properties shape-memory Ni-Mn-Ga
Malla, Aayush; Dapino, Marcelo J.; Lograsso, Thomas A.; Schlagel, Deborah
2003-08-01
The growing interest in ferromagnetic shape-memory Ni-Mn-Ga for implementation in actuator applications originates from the fact that this class of materials exhibits large strains when driven by a magnetic field. Large bidirectional strains up to a theoretical 6% are produced in these materials by twin boundary motion as martensite variants rotate to align respectively parallel or perpendicular to applied magnetic fields or stresses. These strains represent a significant improvement over piezoelectric and magnetostrictive materials. In this paper, we report on experimental measurements conducted on Ni-Mn-Ga cylindrical rods subjected to uniaxial stresses and uniaxial magnetic fields which were applied collinearly along the magnetic easy axis direction of the rods. To this end, a test apparatus was developed which consists of a water-cooled solenoid actuator and a loading fixture. Despite the lack of a readily recognizable mechanism for reversible deformations, bidirectional strains as large as 4300 ppm (0.43%) were observed, or three times the saturation magnetostriction of Terfenol-D. This paper presents room-temperature data including magnetization hysteresis, strain versus field and peak strain versus stress curves collected over a range of stresses between 0-65 MPa. From the latter set of curves, blocking force values are estimated as those for which the strain is 1% of the maximum (zero-load) strain. The results illustrate the sensitivity of material behavior with respect to composition at different driving conditions and offer insight on the choice of material compositions at which maximum actuation performance is achieved.
Mechanically programmed shape change in laminated elastomeric composites.
Robertson, Jaimee M; Torbati, Amir H; Rodriguez, Erika D; Mao, Yiqi; Baker, Richard M; Qi, H Jerry; Mather, Patrick T
2015-07-28
Soft, anisotropic materials, such as myocardium in the heart and the extracellular matrix surrounding cells, are commonly found in nature. This anisotropy leads to specialized responses and is imperative to material functionality, yet few soft materials exhibiting similar anisotropy have been developed. Our group introduced an anisotropic shape memory elastomeric composite (A-SMEC) composed of non-woven, aligned polymer fibers embedded in an elastomeric matrix. The composite exhibited shape memory (SM) behavior with significant anisotropy in room-temperature shape fixing. Here, we exploit this anisotropy by bonding together laminates with oblique anisotropy such that tensile deformation at room temperature - mechanical programming - results in coiling. This response is a breakthrough in mechanical programming, since non-affine shape change is achieved by simply stretching the layered A-SMECs at room temperature. We will show that pitch and curvature of curled geometries depend on fiber orientations and the degree of strain programmed into the material. To validate experimental results, a model was developed that captures the viscoplastic response of A-SMECs. Theoretical results correlated well with experimental data, supporting our conclusions and ensuring attainability of predictable curling geometries. We envision these smart, soft, shape changing materials will have aerospace and medical applications.
International Nuclear Information System (INIS)
Gerhardt, S.; Belova, E.V.; Yamada, M.; Ji, H.; Inomoto, M.; Jacobson, C.M.; Maqueda, R.; McGeehan, B.; Ren, Y.
2008-01-01
Oblate field-reversed configurations FRCs have been sustained for >300 (micro)s, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.
Uniform irradiation of irregularly shaped cavities for photodynamic therapy
Rem, A. I.; van Gemert, M. J.; van der Meulen, F. W.; Gijsbers, G. H.; Beek, J. F.
1997-01-01
It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a
Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.
2018-04-01
The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.
The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection
Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie
2012-01-01
One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.
Experimental and Numerical Analysis of Egg-Shaped Sewer Pipes Flow Performance
Directory of Open Access Journals (Sweden)
Manuel Regueiro-Picallo
2016-12-01
Full Text Available A Computational Fluid Dynamics (CFD model was developed to analyze the open-channel flow in a new set of egg-shaped pipes for small combined sewer systems. The egg-shaped cross-section was selected after studying several geometries under different flow conditions. Once the egg-shaped cross-section was defined, a real-scale physical model was built and a series of partial-full flow experiments were performed in order to validate the numerical simulations. Furthermore, the numerical velocity distributions were compared with an experimental formulation for analytic geometries, with comparison results indicating a satisfactory concordance. After the hydraulic performance of the egg-shaped pipe was analyzed, the numerical model was used to compare the average velocity and shear stress against an equivalent area circular pipe under low flow conditions. The proposed egg shape showed a better flow performance up to a filling ratio of h/H = 0.25.
Shemelin, Valery; Zadeh, Shahnam Gorgi; Heller, Johann; van Rienen, Ursula
2016-10-01
Elliptic cavities at medium- and high-β range are receiving broader use in the particle accelerator applications. Optimizing the shape of these cavities is a complex and demanding process. In this paper we propose an optimization approach to minimize the ratio of peak magnetic field to the acceleration field Hpk/Eacc while keeping the ratio of peak surface electric field to the accelerating field Epk/Eacc, aperture radius and wall slope angle α at some permitted values. We show that it is possible to substantially vary the cavity geometry without violating the constraints or deteriorating the objective of the optimization. This gives us freedom in designing the geometry to overcome problems such as multipactor while maintaining the minimal Hpk/Eacc . The optimization is then performed to find a set of optimized geometries with minimum Hpk/Eacc for different β 's ranging from 0.4 to 1, different peak surface electric fields, wall slope angles and aperture radii. These data could be generally used as a suitable starting point in designing elliptic cavities.
Functional and shape data analysis
Srivastava, Anuj
2016-01-01
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)
2015-01-15
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.
International Nuclear Information System (INIS)
Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.
2015-01-01
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics
Geometry and self-righting of turtles.
Domokos, Gábor; Várkonyi, Péter L
2008-01-07
Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise.
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Bilal; Kumar, Sachin; Kumar, Sumeet; Ojha, Animesh K., E-mail: animesh@mnnit.ac.in
2016-09-15
CdS nanostructures of different shapes such as, nanoparticles (NPs), nanosheets (NS) and nanorods (NRs) have been synthesized by one step chemical solvothermal method. The synthesized samples were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, UV–visible (UV-VIS) spectroscopy, Raman spectroscopy (RS) and vibrating sample magnetometer (VSM) techniques. The effect of shape on optical and magnetic properties of CdS nanostructures was studied. The optical band gap and emission spectra are found to be shape dependent. CdS NRs were found to have high saturation (Ms) magnetization than that of CdS NPs and NS. The role of shape on photocatalytic performance of CdS NPs, NS and NRs was investigated by monitoring the photodegradation of methylene blue (MB) dye under the UV irradiation of wavelength 365 nm. The lower recombination rate of electron-hole pairs and larger surface area as reactive facets for adsorption of MB dye molecules in CdS NS are mainly lead to the better photocatalytic performance of CdS NS compared to NPs and NRs. - Highlights: • Synthesis of CdS nanostructures with different shapes (spherical, rod and sheet) by easy and low cost solvothermal method. • Shape induced optical and magnetic properties of CdS nanostructures have been investigated. • The shapes of nanostructures play an important role for photocatalytic performance of CdS nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Löwa, Norbert, E-mail: norbert.loewa@ptb.de; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank
2017-04-01
Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non–linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment. - Highlights: • MPS signal amplitude: allows for MNP quantification in physiological environment. • MPS signal shape: specifically detects changes due to MNP interaction. • Correlation between changes in MPS amplitude and shape were found. • MPS signal (shape/amplitude) correlation allow for a quantification correction. • Reliable quantification result if the dynamic magnetic behavior of MNP do not change.
Sossinsky, A B
2012-01-01
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...
Comparative analysis of linear motor geometries for Stirling coolers
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy
DEFF Research Database (Denmark)
Heczko, Oleg; Vokoun, David; Kopecky, Vit
2015-01-01
on the initial position of the twin boundary, the magnetic field providing the critical stress varied in the range 832 kA/m. By taking into account the variants sizes and their mutual interactions, we explained the observed dependence of the switching field on the location of the boundary. The resulting match......We investigated the effect of magnetostatic interactions on the field-induced reorientation of martensite variants in Ni50.0Mn27.5Ga22.5. The reorientation, achieved by sweeping a single Type-II twin boundary along the sample, was triggered by a twinning stress of about 0.1 MPa. However, depending...... between model predictions and measurements illustrates the fundamental role played by demagnetization effects and magnetostatic interactions in magnetic shape memory effect....
Superbanana orbits in stellarator geometries
International Nuclear Information System (INIS)
Derr, J.A.; Shohet, J.L.
1979-04-01
The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron
Multiple-view, Multiple-selection Visualization of Simulation Geometry in CMS
International Nuclear Information System (INIS)
Bauerdick, L A T; Eulisse, G; Jones, C; McCauley, T; Osborne, I; Kovalskyi, D; Mrak Tadel, A; Tadel, M; Yagil, A
2012-01-01
Fireworks, the event-display program of CMS, was extended with an advanced geometry visualization package. ROOT's TGeo geometry is used as internal representation, shared among several geometry views. Each view is represented by a GUI list-tree widget, implemented as a flat vector to allow for fast searching, selection, and filtering by material type, node name, and shape type. Display of logical and physical volumes is supported. Color, transparency, and visibility flags can be modified for each node or for a selection of nodes. Further operations, like opening of a new view or changing of the root node, can be performed via a context menu. Node selection and graphical properties determined by the list-tree view can be visualized in any 3D graphics view of Fireworks. As each 3D view can display any number of geometry views, a user is free to combine different geometry-view selections within the same 3D view. Node-selection by proximity to a given point is possible. A visual clipping box can be set for each geometry view to limit geometry drawing into a specified region. Visualization of geometric overlaps, as detected by TGeo, is also supported. The geometry visualization package is used for detailed inspection and display of simulation geometry with or without the event data. It also serves as a tool for geometry debugging and inspection, facilitating development of geometries for CMS detector upgrades and for SLHC.
A magnetic and gravity investigation of the Liberia Basin, West Africa
Morris Cooper, S.; Liu, Tianyou
2011-02-01
Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.
Investigating shape and space in mathematics: A case study | Kotze ...
African Journals Online (AJOL)
Evidence was obtained regarding mathematics teachers' and mathematics learners' knowledge of space and shape. Problems experienced in concept formation in geometry were investigated and analysed. An account is provided of how teachers and learners responded to problems related to space and shape.
International Nuclear Information System (INIS)
Bruno, Nickolaus M.; Yegin, Cengiz; Karaman, Ibrahim; Chen, Jing-Han; Ross, Joseph H.; Liu, Jian; Li, Jianguo
2014-01-01
The inverse magnetocaloric effect (MCE) in bulk polycrystalline and melt-spun ribbons of the Ni 43 Mn 42 Co 4 Sn 11 meta-magnetic shape memory alloy (MSMA) is investigated. The influence of several material properties on the MCE and relative cooling power (RCP) are discussed and the property combinations for optimum MCE and RCP identified for a given thermodynamic framework. These include a small slope of magnetic field vs. martensitic transformation temperature phase diagram, a narrow transformation range, low transformation thermal hysteresis and a large change in magnetization on martensitic transformation, which results in low levels of applied magnetic fields desired for repeated MCE on field cycling. The thermo-magnetic responses of the samples were measured before and after heat treatments. The heat-treated ribbons produced the most favorable MCE by exhibiting the highest magnetization change and smallest elastic energy storage through the transformation. This was attributed to the specific microstructural features, including grain size to thickness ratio and degree of L2 1 ordering. In addition, issues in the literature in determining RCP for MSMAs are discussed, and a new method to find RCP is proposed and implemented. Completely reversible magnetic-field-induced martensitic transformation cycles were used to investigate hysteresis losses relative to actual refrigeration cycles, whereby the RCP was calculated using the defined thermodynamic framework and indirectly measured entropy changes. The annealed ribbons exhibited the high RCP level of 242 J kg −1 under the applied field of 7 T compared with a theoretical maximum of 343 J kg −1 . Similar values of RCP in other MSMAs can be achievable if microstructural elastic energy storage and hysteresis loss are minimized during the transformation with the help of annealing treatments
Shaping distinct magnetic interactions in molecular compounds
International Nuclear Information System (INIS)
Filoti, George; Bartolome, Juan; Palade, Petru; Prisecaru, Ion; Valsangiacom, Cristina; Kuncser, Victor; Mindru, Ioana; Patron, Luminita
2011-01-01
Oxalates containing various 3d transitional elements and positive NH 4 or negative OH groups were newly synthesized. Each above-mentioned component has directly influenced the structure, the electronic or interaction properties, while some unexpected behaviors were revealed by various magnetic and Moessbauer measurements. The main magnetic parameters, the long-range anti-ferromagnetic couplings observed at very low temperature and, particularly the uncompensated moment are discussed in detail. The induced lower spin states for bivalent ions and especially the anti-parallel arrangement of the spins belonging to trivalent and bivalent iron inside the molecule are also emphasized. - Research highlights: → Nine new oxalates, with 3d elements, showing interesting characteristics were synthesized. →The oxalate units and the positive or negative groups have induced various magnetic properties. → The Moessbauer data revealed two different positions for each valence state of iron in molecule. → There is a competition of anti-ferromagnetic couplings inside the magnetic units and between them. → An overall ferri-magnetic long range ordering was demonstrated unambiguously.
International Nuclear Information System (INIS)
Toepfer, J.; Pawlowski, B.; Beer, H.; Ploetner, K.; Hofmann, P.; Herrfurth, J.
2004-01-01
Multi-pole magnetization of NdFeB plate magnets of thickness between 0.25 and 2 mm with a stripe pattern and a pole pitch of 2 or 1 mm was performed by pulse magnetization. The experimental conditions of the magnetization process were optimized to give a maximum surface flux density at the poles. The magnetic field distribution above the magnets was measured with a field mapping device that automatically scans the surface of the magnet with a Hall probe. It is demonstrated for different magnet geometries that the field mapping system is a useful device to study the magnetic surface pole structure. The characterization of the pole flux density of multi-pole NdFeB flat magnets is an important prerequisite for the application of these magnets in miniature actuators
Ta, Wurui; Shao, Tianchong; Gao, Yuanwen
2018-04-01
High-temperature superconductor (HTS) rare-earth-barium-copper-oxide (REBCO) tapes are very promising for use in high-current cables. The cable geometry and the layout of the superconducting tapes are directly related to the performance of the HTS cable. In this paper, we use numerical methods to perform a comparison study of multiple-stage twisted stacked-tape cable (TSTC) conductors to find better cable structures that can both improve the critical current and minimize the alternating current (AC) losses of the cable. The sub-cable geometry is designed to have a stair-step shape. Three superconducting tape layouts are chosen and their transport performance and AC losses are evaluated. The magnetic field and current density profiles of the cables are obtained. The results show that arrangement of the superconducting tapes from the interior towards the exterior of the cable based on their critical current values in descending order can enhance the cable's transport capacity while significantly reducing the AC losses. These results imply that cable transport capacity improvements can be achieved by arranging the superconducting tapes in a manner consistent with the electromagnetic field distribution. Through comparison of the critical currents and AC losses of four types of HTS cables, we determine the best structural choice among these cables.
Fundamental geodesic deformations in spaces of treelike shapes
DEFF Research Database (Denmark)
Feragen, Aasa; Lauze, Francois Bernard; Nielsen, Mads
2010-01-01
This paper presents a new geometric framework for analysis of planar treelike shapes for applications such as shape matching, recognition and morphology, using the geometry of the space of treelike shapes. Mathematically, the shape space is given the structure of a stratified set which...... is a quotient of a normed vector space with a metric inherited from the vector space norm. We give examples of geodesic paths in tree-space corresponding to fundamental deformations of small trees, and discuss how these deformations are key building blocks for understanding deformations between larger trees....
Uniform irradiation of irregularly shaped cavities for photodynamic therapy.
Rem, A I; van Gemert, M J; van der Meulen, F W; Gijsbers, G H; Beek, J F
1997-03-01
It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a cubical box, a sphere, a cylinder and a 'bottle-neck' geometry have been investigated experimentally and the results have been compared with computed light distributions obtained using the 'radiosity method'. A high reflection coefficient of the mould and the best uniform direct irradiance possible on the inside of the mould were found to be important determinants for achieving a uniform light distribution.
Energy Technology Data Exchange (ETDEWEB)
Stender, Anthony [Iowa State Univ., Ames, IA (United States)
2013-01-01
Gold nanoparticles, particularly those with an anisotropic shape, have become a popular optical probe for experiments involving work on the nanoscale. However, to carry out such delicate and intricate experiments, it is first necessary to understand the detailed behavior of individual nanoparticles. In this series of experiments, optical and electron microscopy were utilized for the characterization of individual nanoparticles and small assemblies of nanoparticles. In the first experiment, gold nanorods were investigated. Single, isolated nanorods exhibit two maxima of localized surface plasmon resonance (LSPR), which are associated with the two nanorod axes. Upon the physical rotation of a nanorod at one of its LSPR wavelengths under polarized illumination, the optical behavior varies in a sinusoidal fashion. A dimer of nanorods exhibits optical behavior quite similar to a nanorod, except the LSPR maxima are shifted and broader. Under differential interference contrast (DIC) microscopy, a pair of nanorods separated by a distance below the diffraction limit can be distinguished from a single nanorod due to its optical behavior upon rotation. Dark field microscopy is unable to distinguish the two geometries. For the second set of experiments, the optical behavior of single gold nanorods at non-plasmonic wavelengths was investigated. The same nanorod was rotated with respect to a polarized light source under DIC, dark field, and polarized light microscopy. DIC microscopy was found to produce diffraction pattern peaks at non-plasmonic wavelengths, which could be altered by adjusting the setting of the polarizer. In the third set of experiments, the optical behavior of a single gold dumbbell and several simple dumbbell geometries were investigated with microscopy and simulations. The single dumbbell displayed behavior quite similar to that of a nanorod, but dumbbells exhibit a shift in both LSPR wavebands. Moreover, the shape of dumbbell particles allows them to
Czech Academy of Sciences Publication Activity Database
Bártová, Barbora; Wiese, N.; Schryvers, D.; Chapman, J. N.; Ignacová, Silvia
2008-01-01
Roč. 56, č. 16 (2008), 4470-4476 ISSN 1359-6454 Institutional research plan: CEZ:AV0Z10100520 Keywords : CoNiAl shape memory alloys * microstructure * precipitates * magnetic domains * Lorentz microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.729, year: 2008
Noncontact orientation of objects in three-dimensional space using magnetic levitation.
Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M
2014-09-09
This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.
Energy Technology Data Exchange (ETDEWEB)
Blum, C.G.F. [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Institute of Solid State Research, IFW Dresden, D-01171 Dresden (Germany); Ouardi, S.; Fecher, G.H.; Balke, B.; Felser, C. [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Wurmehl, S.; Buechner, B. [Institute of Solid State Research, IFW Dresden, D-01171 Dresden (Germany); Ueda, S.; Kobayashi, K. [NIMS Beamline Station, National Institute for Materials Science, Hyogo 679-5148, Japan. (Germany)
2011-07-01
Magnetic shape memory based on Heusler compounds have received increasing interest, due their potential use for actuator and sensor applications. The single crystals Mn{sub 2}NiGa were grown by the optical floating zone method using a image furnace with vertical setup under a purified argon atmosphere. The both cubic (austenite) and tetragonal (martensite) phases of the sample were determined using temperature dependence powder x-ray diffraction XRD. The effect of martensitic transitions on the magnetic and transport properties of the compound was investigated by measuring the saturation magnetization, electrical resistivity {rho}(T), the Seebeck coefficient S(T) and magnetoresistance R{sub M}. All measurements detect clear signatures of the martensitic transition around room temperature with a thermal hysteresis up to 30 K. The electronic structures of the martensitic as well the austenitic phase were investigated using bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES).
Using Dance to Deepen Student Understanding of Geometry
Moore, Candice; Linder, Sandra M.
2012-01-01
This article provides an example of a collaborative effort between a dance specialist and four third-grade classroom teachers at an arts magnet school. They developed a dance and geometry integration project including implementation strategies, assessment tools, and reflections completed by both the classroom teacher and the third-grade students.…
KENO-VI: A Monte Carlo Criticality Program with generalized quadratic geometry
International Nuclear Information System (INIS)
Hollenbach, D.F.; Petrie, L.M.; Landers, N.F.
1993-01-01
This report discusses KENO-VI which is a new version of the KENO monte Carlo Criticality Safety developed at Oak Ridge National Laboratory. The purpose of KENO-VI is to provide a criticality safety code similar to KENO-V.a that possesses a more general and flexible geometry package. KENO-VI constructs and processes geometry data as sets of quadratic equations. A lengthy set of simple, easy-to-use geometric functions, similar to those provided in KENO-V.a., and the ability to build more complex geometric shapes represented by sets of quadratic equations are the heart of the geometry package in KENO-VI. The code's flexibility is increased by allowing intersecting geometry regions, hexagonal as well as cuboidal arrays, and the ability to specify an array boundary that intersects the array
Magnetic matrices used in high gradient magnetic separation (HGMS: A review
Directory of Open Access Journals (Sweden)
Wei Ge
Full Text Available HGMS is effective in separating or filtering fine and weakly magnetic particles and widely applied in mineral processing, water treatment, cell and protein purification. The magnetic matrix is a crucial device used in magnetic separator to generate high magnetic field gradient and provide surface sites for capturing magnetic particles. The material, geometry, size and arrangement of the matrix elements can significantly affect the gradient and distribution of the magnetic field, and the separating or filtrating performance. In this paper, the researches and developments of magnetic matrices used in HGMS are reviewed. Keywords: Magnetic matrix, HGMS, Review
Surface magnetic structures in amorphous ferromagnetic microwires
Energy Technology Data Exchange (ETDEWEB)
Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)
2017-05-01
The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.
Magnetic Actuation of Self-Assembled DNA Hinges
Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.
DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.
360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure
Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.
2018-03-01
A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.
The electromagnetic design of a permanent magnet based separator
International Nuclear Information System (INIS)
Nedelcu, S.
2002-08-01
The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio η between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio η ∼ 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometry for such arrangements. An experimental system has been also built, and the experimental values were compared against the theory. However, the results produced evidence that the manufacturing of any improved geometry (an estimated η ∼ 100) in this direction might be very difficult, for the tolerances involved were very strict. The disk arrangement was the latest device to be investigated. Particularly, a magnetic dipole model developed earlier for the ring arrangement suggested the way in which to arrange the magnets in the ON position. Moreover, the use of the magnetic symmetry of the device forced the OFF magnetic fields to negligible values. Detailed computer simulations of the dynamics of the particles in the applied magnetic field of the tubular and disk arrangements have been earned out. The adopted models could show realistic phenomena, e.g. particle clustering, chaining, block movement, etc. The separation efficiency proved to be nearly 100%. For the
Ultra-high-field magnets for future hadron colliders
International Nuclear Information System (INIS)
McIntyre, P.M.; Shen, W.
1997-01-01
Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet
Differential Geometry Applied to Rings and Möbius Nanostructures
DEFF Research Database (Denmark)
Lassen, Benny; Willatzen, Morten; Gravesen, Jens
2014-01-01
Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chap......Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable....... In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy...
Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT
International Nuclear Information System (INIS)
Stanescu, T.; Wachowicz, K.; Jaffray, D. A.
2012-01-01
using an annular phantom mimicking the water-air and water-oil χ interfaces. For quadratic geometries, the magnitude of field distortion increased rapidly with the size of the inhomogeneity up to about 10 mm and then tended to plateau. This trend became more evident for materials with a larger Δχ relative to water. The simulations showed only a slight increase in the maximum distortion values when the B 0 orientation was varied with regard to the shape of the χ inhomogeneity. In the case of patient anatomy, the largest distortion values arose at the air-soft-tissue interface. Considering the two MR-linac system configurations and comparing the field distortion values corresponding to all organ structures, the distortions tended to be larger for the biplanar magnet. The authors provide a reference table with ppm values which can be used to easily evaluate the geometric distortions for patient data as a function of B 0 and the strength of the encoding gradient. Conclusions: The susceptibility distortions were quantified as a function of multiple parameters such as the χ inhomogeneity size and shape, the magnitude of B 0 and the readout gradient, and the orientation of B 0 with respect to the sample geometry. The analysis was performed for several anatomical sites and corresponding to two B 0 orientations as featured by MR-linac systems.
Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT.
Stanescu, T; Wachowicz, K; Jaffray, D A
2012-12-01
phantom mimicking the water-air and water-oil χ interfaces. For quadratic geometries, the magnitude of field distortion increased rapidly with the size of the inhomogeneity up to about 10 mm and then tended to plateau. This trend became more evident for materials with a larger Δχ relative to water. The simulations showed only a slight increase in the maximum distortion values when the B(0) orientation was varied with regard to the shape of the χ inhomogeneity. In the case of patient anatomy, the largest distortion values arose at the air-soft-tissue interface. Considering the two MR-linac system configurations and comparing the field distortion values corresponding to all organ structures, the distortions tended to be larger for the biplanar magnet. The authors provide a reference table with ppm values which can be used to easily evaluate the geometric distortions for patient data as a function of B(0) and the strength of the encoding gradient. The susceptibility distortions were quantified as a function of multiple parameters such as the χ inhomogeneity size and shape, the magnitude of B(0) and the readout gradient, and the orientation of B(0) with respect to the sample geometry. The analysis was performed for several anatomical sites and corresponding to two B(0) orientations as featured by MR-linac systems.
Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings
Britcher, Colin P. (Editor); Groom, Nelson J.
1996-01-01
Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration
Giant moving vortex mass in thick magnetic nanodots.
Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O
2015-09-10
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.
Evaluating the geometric shape of a flying paraglider
Directory of Open Access Journals (Sweden)
K. Hanke
2014-06-01
Full Text Available This paper describes the photogrammetric approach to find the geometric shape of a paraglider. As its geometry is only available during the flight this had to be done under special conditions. The layout of the camera positions was limited by the strict safety of the pilot as well as a wind and flying situation that guarantees a stable geometry of the object for several minutes. The data acquisition was finally carried out in the area of Lake Garda and the pilot had the challenging task to handle the calibrated camera using a telescope arm in predefined positions during his flight. The evaluation of the 3D position of selected discrete points representing the paraglider's shape was done by employing a bundle adjustment software and led to very satisfying results which were also proof of the stability of the paraglider during data acquisition as well as of the symmetry of the resulting shape.
Influence of soil particle shape on saturated hydraulic conductivity
Directory of Open Access Journals (Sweden)
Zięba Zofia
2017-03-01
Full Text Available The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0C index (Parylak, 2000, which expresses the variability of several shape properties, such as sphericity, angularity and roughness.
Magnetically pinned ring dots for spin valve or magnetic tunnel junction memory cells
International Nuclear Information System (INIS)
Nakatani, Ryoichi; Yoshida, Tetsuo; Endo, Yasushi; Kawamura, Yoshio; Yamamoto, Masahiko; Takenaga, Takashi; Aya, Sunao; Kuroiwa, Takeharu; Beysen, Sadeh; Kobayashi, Hiroshi
2005-01-01
Ni-Fe/Mn-Ir asymmetric ring dots with partially planed outer sides are investigated in order to confirm a method for obtaining pinned layers in magnetic memories with asymmetric ring shapes. Magnetic force microscopy revealed that the direction of vortical magnetization is pinned in Ni-Fe/Mn-Ir asymmetric ring dots despite the direction of the magnetic fields. This investigation shows that the Ni-Fe/Mn-Ir asymmetric ring dots can be applied to pinned layers in magnetic memories with asymmetric ring shapes
Directory of Open Access Journals (Sweden)
Jing Zhao
2014-12-01
Full Text Available This paper investigated a 12-slot/11-pole flux switching permanent magnet (FSPM machine used for electric vehicles (EVs. Five novel rotor teeth shapes are proposed and researched to reduce the cogging torque and torque ripple of the FSPM machine. These rotor teeth shapes are notched teeth, stepped teeth, eccentric teeth, combination of notched and stepped teeth, and combination of notched and eccentric teeth. They are applied on the rotor and optimized, respectively. The influences of different rotor teeth shapes on cogging torque, torque ripple and electromagnetic torque are analyzed by the 2-D finite-element method (FEM. Then, the performance of FSPMs with different rotor teeth shapes are compared and evaluated comprehensively from the points of view of cogging torque, torque ripple, electromagnetic torque, flux linkage, back electromotive force (EMF, and so on. The results show that the presented rotor teeth shapes, especially the combination of stepped and notched teeth, can greatly reduce the cogging torque and torque ripple with only slight changes in the average electromagnetic torque.
ONIX results: Comparison of grid geometry (BATMAN - ELISE - flat grid)
Revel, Adrien; Mochalskyy, Serhiy; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu
2017-08-01
The 3D PIC-MCC code ONIX is dedicated to the modelling of negative hydrogen or deuterium ion extraction and the co-extracted electrons from the plasma in radio-frequency driven sources. The extraction process highly depends on the plasma characteristics close to the plasma grid where it is difficult to obtain experimental data. ONIX brings valuable insights on the plasma behavior in this area. In the code, the numerical treatment of the boundaries have been improved in order to describe with more accuracy the potential and the electric field in this vicinity. The computation time has been reduced by a factor of 2 and the parallelization efficiency has been highly improved. The influence of the magnetic field in BATMAN on the plasma behaviour has been investigated by comparing two different configurations of the magnet bars producing the filter field (internal magnets: x = 3 cm; external magnets: x = 9 cm). A flat grid geometry for the PG instead of the usual conical grid geometry has been studied to evaluate its impact on the extracted current, especially for the negative ions emitted from the surface of the PG. Finally, the ONIX code has been used for the first 3D PIC calculations ever performed for the ELISE experiment.
Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization
Directory of Open Access Journals (Sweden)
R. Mukesh
2012-01-01
Full Text Available The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA, simulated annealing (SA, and particle swarm optimization (PSO, are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.
Prasolov, V V
2015-01-01
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy
Directory of Open Access Journals (Sweden)
H. Corte-León
2016-05-01
Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.
Energy Technology Data Exchange (ETDEWEB)
Annadurai, A. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India); Manivel Raja, M., E-mail: mraja@dmrl.drdo.in [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabahar, K.; Kumar, Atul [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Kannan, M.D.; Jayakumar, S. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India)
2011-11-15
The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 deg. C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm{sup 3} and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature. - Highlights: > Compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. > Annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. > The highest Curie transition in the films was observed at 365 K. > The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.
Morphing methods to parameterize specimen-specific finite element model geometries.
Sigal, Ian A; Yang, Hongli; Roberts, Michael D; Downs, J Crawford
2010-01-19
Shape plays an important role in determining the biomechanical response of a structure. Specimen-specific finite element (FE) models have been developed to capture the details of the shape of biological structures and predict their biomechanics. Shape, however, can vary considerably across individuals or change due to aging or disease, and analysis of the sensitivity of specimen-specific models to these variations has proven challenging. An alternative to specimen-specific representation has been to develop generic models with simplified geometries whose shape is relatively easy to parameterize, and can therefore be readily used in sensitivity studies. Despite many successful applications, generic models are limited in that they cannot make predictions for individual specimens. We propose that it is possible to harness the detail available in specimen-specific models while leveraging the power of the parameterization techniques common in generic models. In this work we show that this can be accomplished by using morphing techniques to parameterize the geometry of specimen-specific FE models such that the model shape can be varied in a controlled and systematic way suitable for sensitivity analysis. We demonstrate three morphing techniques by using them on a model of the load-bearing tissues of the posterior pole of the eye. We show that using relatively straightforward procedures these morphing techniques can be combined, which allows the study of factor interactions. Finally, we illustrate that the techniques can be used in other systems by applying them to morph a femur. Morphing techniques provide an exciting new possibility for the analysis of the biomechanical role of shape, independently or in interaction with loading and material properties. Copyright 2009 Elsevier Ltd. All rights reserved.
Discussion of discrete D shape toroidal coil
International Nuclear Information System (INIS)
Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada
1988-01-01
A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)
Magnetotransport and magnetization reversal of electrodeposited multilayer nanowires
Tang, Xueti
2007-12-01
Electrodeposited magnetic multilayer nanowires are ideal materials to study nanoscale magnetism and the giant magnetoresistance (GMR) in the current-perpendicular-to-plane (CPP) geometry. This is because the diameter of each nanowire is uniform, the surface of the nanowire is smooth, and the thickness of both the magnetic and non-magnetic layers can be varied to either larger or smaller than the spin diffusion length which is an important parameter in magnetotransport study. In addition, the aspect ratio (layer-thickness/diameter) that is related to shape anisotropy can be varied for magnetization reversal study. There has been little understanding in the magnetization reversal mechanism of multilayer nanowires, which is complicated due to the dipolar interactions between magnetic layers in each nanowire and between nanowires. The objective of this work is to study the magnetization reversal mechanism of multilayer nanowires using a vibrating sample magnetometer (VSM), where various dipolar interactions are taken into account. Although multilayer nanowires are ideal for the study of the CPP-GMR effect, there remains technical difficulty in making an electrical contact with individual nanowires for the CPP-GMR measurements. In this work, a point-contact method using a conductive plunger tip was developed in-house, that enabled us to measure the CPP-GMR of selected multilayer nanowires in an array of vertically aligned nanowires in each sample. To examine the CPP-GMR and compare the results with theoretical models, the CPP-GMR data were systematically obtained from samples with various magnetic and non-magnetic layer thicknesses. It was found from VSM measurement that the magnetization reversal mode in electrodeposited CoNi/Cu multilayer nanowires depends on the shape and thickness of the CoNi layers where the mode in rod-shaped thick CoNi layers is different from that in disk-shaped thin CoNi layers. The reversal mode in coherent rotation or curling was determined
Multiple-view, multiple-selection visualization of simulation geometry in CMS
Mrak Tadel, Alja
2012-01-01
Fireworks, the event-display program of CMS, was extended with an advanced geometry visualization package. ROOT's TGeo geometry is used as internal representation, shared among several geometry views. Each view is represented by a GUI list-tree widget, implemented as a flat vector to allow for fast searching, selection, and filtering by material type, node name, and shape type. Display of logical and physical volumes is supported. Color, transparency, and visibility flags can be modified for each node or for a selection of nodes. Further operations, like opening of a new view or changing of the root node, can be performed via a context menu. Node selection and graphical properties determined by the list-tree view can be visualized in any 3D graphics view of Fireworks. As each 3D view can display any number of geometry views, a user is free to combine different geometry-view selections within the same 3D view. Node-selection by proximity to a given point is possible. A visual clipping box can be set for each g...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.
Energy Technology Data Exchange (ETDEWEB)
Jain, Richa [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India); Department of Physics, ARSD college, University of Delhi, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, Siri Fort Road, New Delhi 110049 (India); Gokhale, Shubha, E-mail: sgokhale@ignou.ac.in [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi 110068 (India)
2016-09-15
The effect of dysprosium doping on evolution of structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles is reported. A standard route of co-precipitation was used for the synthesis of undoped and doped magnetite nanoparticles Fe{sub 3−x}Dy{sub x}O{sub 4} (x=0.0–0.1). Transmission electron microscopy (TEM) shows formation of round shaped particles with diameter in the range of 8–14 nm for undoped sample. On doping beyond x=0.01, the formation of rod like structures is initiated along with the round shaped particles. The number of rods is found to increase with increasing doping concentration. Magnetic characterization using Vibrating Sample Magnetometer (VSM) revealed doping dependent magnetic properties which can be correlated with the crystallite size as determined from X-ray diffraction (XRD). Enhancement in the saturation magnetization in the initial stages of doping can be explained on the basis of incorporation of Dy{sup 3+} ions in the inverse spinel structure at the octahedral site in place of Fe{sup 3+} ions. Subsequent decrease in saturation magnetization observed beyond x=0.03 could be attributed to precipitation of excess Dy in form of dysprosium ferrite phase. - Highlights: • Report on formation of nanorods in magnetite prompted by Dy doping. • Observation of anisotropic magnetic behaviour emanating from the shape anisotropy. • Evidence of Dy{sup 3+} ions occupying octahedral site in place of Fe{sup 3+} ions. • Nanorods envisaged to be useful as catalysts and in biomedical applications.
Geometry dependence of the magnetization reversal process in bridged dots
International Nuclear Information System (INIS)
Escobar, R.A.; Lage, E.; D’Albuquerque e Castro, J.; Altbir, D.; Ross, C.A.
2017-01-01
Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.
Geometry dependence of the magnetization reversal process in bridged dots
Energy Technology Data Exchange (ETDEWEB)
Escobar, R.A. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Lage, E. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States); D’Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21945-970 (Brazil); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Ross, C.A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States)
2017-06-15
Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.
Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals
International Nuclear Information System (INIS)
Leon, H; Estevez-Rams, E
2009-01-01
A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.
International Nuclear Information System (INIS)
Schoefs, Franck; Chevreuil, Mathilde; Pasqualini, Olivier; Cazuguel, Mikaël
2016-01-01
Welded joints are used in various structures and infrastructures like bridges, ships and offshore structures, and are submitted to cyclic stresses. Their fatigue behaviour is an industrial key issue to deal with and still offers original research subjects. One of the available methods relies on the computing of the stress concentration factor. Even if some studies were previously driven to evaluate this factor onto some cases of welded structures, the shape of the weld joint is generally idealized through a deterministic parametric geometry. Previous experimental works however have shown that this shape plays a key role in the lifetime assessment. We propose in this paper a methodology for computing the stress concentration factor in presence of random geometries of welded joints. In view to make the results available by engineers, this method merges stochastic computation and semi-probabilistic analysis by computing partial safety factors with a dedicated method. - Highlights: • Numerical computation of stress concentration factor with random geometry of weld. • Real data are used for probabilistic modelling. • Identification of partial safety factor from SFEM computation in case of random geometries.
Controlling vortex chirality and polarity by geometry in magnetic nanodots
Agramunt Puig, Sebastià
2014-01-01
The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...
Construction of 3D Metallic Nanowire Arrays on Arbitrarily-Shaped Substrate.
Chen, Fei; Li, Jingning; Yu, Fangfang; Peng, Ru-Wen; Wang, Mu; Mu Wang Team
Formation of three-dimensional (3D) nanostructures is an important step of advanced manufacture for new concept devices with novel functionality. Despite of great achievements in fabricating nanostructures with state of the art lithography approaches, these nanostructures are normally limited on flat substrates. Up to now it remains challenging to build metallic nanostructures directly on a rough and bumpy surface. Here we demonstrate a unique approach to fabricate metallic nanowire arrays on an arbitrarily-shaped surface by electrodeposition, which is unknown before 2016. Counterintuitively here the growth direction of the nanowires is perpendicular to their longitudinal axis, and the specific geometry of nanowires can be achieved by introducing specially designed shaped substrate. The spatial separation and the width of the nanowires can be tuned by voltage, electrolyte concentration and temperature in electrodeposition. By taking cobalt nanowire array as an example, we demonstrate that head-to-head and tail-to-tail magnetic domain walls can be easily introduced and modulated in the nanowire arrays, which is enlightening to construct new devices such as domain wall racetrack memory. We acknowledge the foundation from MOST and NSF(China).
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
International Nuclear Information System (INIS)
Reiter, Gert; Reiter, Ursula; Rienmueller, Rainer; Gagarina, Nina; Ryabikin, Alexander
2004-01-01
Objective: Methodological comparison of ellipsoid model-based approaches and Simpson method to evaluate left ventricular volumetric parameters by magnetic resonance (MR) and electron beam tomography (EBT) and analysis of the origin of possible discrepancies. Methods and material: 100 subjects (87 patients, 13 healthy volunteers) were studied in MR in various cardiac views and EBT long axis view to determine left ventricular volumes and masses by applying (rotational) ellipsoid and Simpson model. Observer variation and method agreement was quantified by means of variance component and Bland-Altman analysis. Results: Simpson approach showed smaller observer variability than all ellipsoid approaches. All geometry-based models gave smaller left ventricular volumes than Simpson approach, the bias in mass determination was minimal. Whereas high correlation coefficients (typically 0.85-0.95) for left ventricular volume and mass measurements indicated satisfying correspondence between methods, large 95% limits of agreement made a transfer of results for single subjects between Simpson and ellipsoid approaches difficult and between different geometry-based models almost impossible. Because 95% limits of agreement and observer variability of geometry-based approaches were of equal order, the latter could be identified as main limiting factor of methodological agreement. Conclusion: MR Simpson approach is superior to all ellipsoid model-based approaches, because observer variability is smaller
Czech Academy of Sciences Publication Activity Database
Heczko, Oleg; Klimša, Ladislav; Kopeček, Jaromír
2017-01-01
Roč. 131, Apr (2017), s. 76-79 ISSN 1359-6462 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GA15-00262S Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : a-b twin laminate * magnetic shape memory alloys * martensitic trans formation * twinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.747, year: 2016
Controlling the influence of elastic eigenmodes on nanomagnet dynamics through pattern geometry
Energy Technology Data Exchange (ETDEWEB)
Berk, C., E-mail: crberk@soe.ucsc.edu [School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Yahagi, Y. [School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dhuey, S.; Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmidt, H. [School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)
2017-03-15
The effect of the nanoscale array geometry on the interaction between optically generated surface acoustic waves (SAWs) and nanomagnet dynamics is investigated using Time-Resolved Magneto-Optical Kerr Effect Microscopy (TR-MOKE). It is demonstrated that altering the nanomagnet geometry from a periodic to a randomized aperiodic pattern effectively removes the magneto-elastic effect of SAWs on the magnetization dynamics. The efficiency of this method depends on the extent of any residual spatial correlations and is quantified by spatial Fourier analysis of the two structures. Randomization allows observation and extraction of intrinsic magnetic parameters such as spin wave frequencies and damping to be resolvable using all-optical methods, enabling the conclusion that the fabrication process does not affect the damping.
Controlling the influence of elastic eigenmodes on nanomagnet dynamics through pattern geometry
Berk, C.; Yahagi, Y.; Dhuey, S.; Cabrini, S.; Schmidt, H.
2017-03-01
The effect of the nanoscale array geometry on the interaction between optically generated surface acoustic waves (SAWs) and nanomagnet dynamics is investigated using Time-Resolved Magneto-Optical Kerr Effect Microscopy (TR-MOKE). It is demonstrated that altering the nanomagnet geometry from a periodic to a randomized aperiodic pattern effectively removes the magneto-elastic effect of SAWs on the magnetization dynamics. The efficiency of this method depends on the extent of any residual spatial correlations and is quantified by spatial Fourier analysis of the two structures. Randomization allows observation and extraction of intrinsic magnetic parameters such as spin wave frequencies and damping to be resolvable using all-optical methods, enabling the conclusion that the fabrication process does not affect the damping.
International Nuclear Information System (INIS)
Alnaemi, F.; Moses, A.J.
2003-01-01
FEM modelling of PM motor was carried out to demonstrate the effects of the addition of various types of ferromagnetic tubes (shell) to a rotor of surface mount permanent magnet motor. An enhancement in magnet operating point towards the high field region is obtained. A shell made of amorphous ribbon offers optimum advantages
Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.
2010-01-01
This paper presents novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular-shaped charged surfaces. These versatile expressions are suitable to model triangularshaped permanent magnets and can be expanded to any polyhedral shape. Many applications are
Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.
2009-01-01
This paper presents novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular-shaped charged surfaces. These versatile expressions are suitable to model triangularshaped permanent magnets and can be expanded to any polyhedral shape. Many applications are
3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet
International Nuclear Information System (INIS)
Lari, R.J.
1984-01-01
A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%
Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope
Venter, Christo; Harding, Alice; Guillemot, L.
2009-01-01
An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.
Fractal reactor: An alternative nuclear fusion system based on nature's geometry
International Nuclear Information System (INIS)
Siler, T. L.
2007-01-01
The author presents his concept of the Fractal Reactor, which explores the possibility of building a plasma fusion power reactor based on the real geometry of nature [fractals], rather than the virtual geometry that Euclid postulated around 330 BC; nearly every architect of our plasma fusion devices has been influenced by his three-dimensional geometry. The idealized points, lines, planes, and spheres of this classical geometry continue to be used to represent the natural world and to describe the properties of all geometrical objects, even though they neither accurately nor fully convey nature's structures and processes. The Fractal Reactor concept contrasts the current containment mechanisms of both magnetic and inertial containment systems for confining and heating plasmas. All of these systems are based on Euclidean geometry and use geometrical designs that, ultimately, are inconsistent with the Non-Euclidean geometry and irregular, fractal forms of nature (3). The author explores his premise that a controlled, thermonuclear fusion energy system might be more effective if it more closely embodies the physics of a star
Magnetic Refrigeration Technology for High Efficiency Air Conditioning
Energy Technology Data Exchange (ETDEWEB)
Boeder, A; Zimm, C
2006-09-30
Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate
Shaped excitation current for synchrotron magnets
International Nuclear Information System (INIS)
Foss, M.; Praeg, W.
1981-01-01
A 500-MeV synchrotron at Argonne National Laboratory (ANL) operates at 30 Hz with its beam spill locked to neutron choppers with a precision of +- 0.5 μs. The average beam will be increased by running the magnets at 45 Hz. Three 45-Hz circuits are discussed which differ greatly in overall cost and complexity. The first is a conventional 45-Hz sine wave circuit. The reduction in time for beam acceleration results in a costly increase in peak rf power. This problem is avoided in the other two circuits by making the field rise slowly and fall rapidly. The second circuit discussed is resonant at 45 Hz and 90 Hz. Exciting this circuit with a mixture of dc, 45 Hz, and 90 Hz can produce a magnetic field with the same maximum dB/dt as the present 30-Hz field. A third, and possibly least expensive, solution is a novel circuit which produces 30 Hz during acceleration and 90 Hz when the magnets are reset. The rf requirements are, of course, identical to present requirements during acceleration. Circuit details are given
Directory of Open Access Journals (Sweden)
M. A. A. Mohamed
2016-10-01
Full Text Available The focus of this study is to explore the potential use of Polyamide 6 nanocomposite reinforced with nanocrystalline (nc Fe20Ni80 alloy (Fe20Ni80/PA6 PNC in electromagnetic applications and provide understanding of how the alloy particle geometry is controlling the nanocomposite’s physical properties. Thermomechanical rigidity, room-temperature soft magnetic performance and thermal soft magnetic stability of Fe20Ni80/PA6 PNCs based on spherical-sea urchin alloy particles (UMB2-SU and necklace-like alloy chains (UMB2-NC have been investigated. Both PNCs have considerably superior bulk properties compared to neat PA6 and UMB2-SU exhibits the most remarkable overall performance. Morphological observations disclose two relevant phenomena: i improved dispersion and distribution of the SU alloy particles than the NC ones within PA6 matrix, leading to stronger filler-matrix interfacial interactions within the UMB2-SU as compared to the UMB2-NC and ii presence of constraint polymer regions in between alloy segments within the UMB2-SU that provide secondary reinforcing and soft magnetic mechanisms. Such phenomena along with the lower alloy crystallite size and PA6 γ-crystal type content within the UMB2-SU than in the UMB2-NC, are considered the main responsible factors for the distinctive performance of UMB2-SU. Overall, compared to various ferromagnetic nanocrystalline metallic materials, the research proposes the SU nc Fe20Ni80 alloy as a valuable nanofiller in polymers for electromagnetic applications.
Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.
2018-04-01
Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.
Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad
2018-04-01
Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.
Shape optimization of a sodium cooled fast reactor
International Nuclear Information System (INIS)
Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.
2013-01-01
Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)
Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2015-01-01
Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405
Resonance Transport of Graphene Nanoribbon T-Shaped Junctions
International Nuclear Information System (INIS)
Xiao-Lan, Kong; Yong-Jian, Xiong
2010-01-01
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction
Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco
2017-10-01
Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.
The Prints: A Picture Book for Pre-Formal Geometry
Skoumpourdi, Chrysanthi; Mpakopoulou, Ifigenia
2011-01-01
A pre-test questionnaire was conducted in a kindergarten and it showed that, although the children were able to give various examples of objects, from their everyday lives, that are similar to solid shapes, the examples they gave for plane figures were also tangible objects. Since it is suggested that geometry instruction has to begin early,…
Directory of Open Access Journals (Sweden)
Valery Shemelin
2016-10-01
Full Text Available Elliptic cavities at medium- and high-β range are receiving broader use in the particle accelerator applications. Optimizing the shape of these cavities is a complex and demanding process. In this paper we propose an optimization approach to minimize the ratio of peak magnetic field to the acceleration field H_{pk}/E_{acc} while keeping the ratio of peak surface electric field to the accelerating field E_{pk}/E_{acc}, aperture radius and wall slope angle α at some permitted values. We show that it is possible to substantially vary the cavity geometry without violating the constraints or deteriorating the objective of the optimization. This gives us freedom in designing the geometry to overcome problems such as multipactor while maintaining the minimal H_{pk}/E_{acc}. The optimization is then performed to find a set of optimized geometries with minimum H_{pk}/E_{acc} for different β’s ranging from 0.4 to 1, different peak surface electric fields, wall slope angles and aperture radii. These data could be generally used as a suitable starting point in designing elliptic cavities.
International Nuclear Information System (INIS)
Suess, S.T.
1987-01-01
Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun
Geometrical protection of topological magnetic solitons in microprocessed chiral magnets
Mito, Masaki; Ohsumi, Hiroyuki; Tsuruta, Kazuki; Kotani, Yoshinori; Nakamura, Tetsuya; Togawa, Yoshihiko; Shinozaki, Misako; Kato, Yusuke; Kishine, Jun-ichiro; Ohe, Jun-ichiro; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya
2018-01-01
A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed and fixed over a wide range of magnetic fields.
Hugon, Cedric; D'Amico, Francesca; Aubert, Guy; Sakellariou, Dimitris
2010-07-01
Starting from general results of magnetostatics, we give fundamental considerations on the design and characterization of permanent magnets for NMR based on harmonic analysis and symmetry. We then propose a simple geometry that takes advantage of some of these considerations and discuss the practical aspects of the assembly of a real magnet based on this geometry, involving the characterization of its elements, the optimization of the layout and the correction of residual inhomogeneities due to material and geometry imperfections. We report with this low-cost, light-weight magnet (100 euros and 1.8 kg including the aluminum frame) a field of 120 mT (5.1 MHz proton) with a 10 ppm natural homogeneity over a sphere of 1.5 mm in diameter. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry
Lüker, S.; Kuhn, T.; Reiter, D. E.
2017-12-01
Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.
Vortex distribution in small star-shaped Mo{sub 80}Ge{sub 20} plate
Energy Technology Data Exchange (ETDEWEB)
Vu, The Dang, E-mail: vu-dang@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Physics and Electronics, University of Sciences, Vietnam National University HCMC (Viet Nam); Matsumoto, Hitoshi; Miyoshi, Hiroki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Huy, Ho Thanh [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Physics and Electronics, University of Sciences, Vietnam National University HCMC (Viet Nam); Shishido, Hiroaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Kato, Masaru [Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Department of Mathematical Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Ishida, Takekazu [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)
2017-02-15
Highlights: • We found the general feature of vortex configuration in small star-shaped Mo{sub 80}Ge{sub 20} plates such as the appearance of symmetric line, the rule of shell filling and the existence of a magic number in both theoretical predictions and experimental results. • We found that the vortex distribution in a concave decagon tends to adapt to one of the five symmetric axes of the star-shaped plate expected in confining vortices in a restricted sample geometry. • The numerical results of Ginzburg–Landau equation confirmed that the filling rules for a vortex configuration and the existence of a magic number for small star-shaped plates are in good agreement with experiment results. - Abstract: We investigated vortex states in small star-shaped Mo{sub 80}Ge{sub 20} plates both theoretically and experimentally. The numerical calculations of the Ginzburg–Landau equation have been carried out with the aid of the finite element method, which is convenient to treat an arbitrarily shaped superconductor. The experimental results were observed by using a scanning SQUID microscope. Through systematic measurements, we figured out how vortices form symmetric configuration with increasing the magnetic field. The vortex distribution tends to adapt to one of five mirror symmetric lines when vortices were located at the five triangular horns of a star-shaped plate. The crystalline homogeneity of a sample was confirmed by the X-ray diffraction and the superconducting properties so that vortices are easily able to move for accommodating vortices in the geometric symmetry of the star-shaped plate. The experimental vortex configurations obtained for a star-shaped plate are in good agreement with theoretical predictions from the nonlinear Ginzburg–Landau equation.