Sample records for shaped m-oxo tiiv

  1. Extraction chromatographic studies of Ti(IV) with Cyanex 301 as impregnant - recovery from red mud

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.; Deep, A.; Malik, P.; Rajput, S. [Dept. of Chemistry, Univ. of Roorkee, Roorkee, Uttranchal (India)


    A silica gel column impregnated with bis-(2,4,4-trimethylpentyl)dithiophosphinic acid has been studied for the uptake of Ti(IV). Its chemical stability has been examined and its regeneration power checked. The stoichiometry of the extracted species is proposed and the loading capacity of the column material for Ti(IV) assessed. Some important binary separations of Ti(IV) from commonly associated metal ions have been achieved and the column has been used to recover high-purity titanium from red mud, a secondary sector material. (orig.)

  2. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. (United States)

    Jones, Kayleigh E; Batchler, Kathleen L; Zalouk, Célia; Valentine, Ann M


    The siderophore desferrioxamine B (DFOB) binds Ti(IV) tightly and precludes its hydrolytic precipitation under biologically and environmentally relevant conditions. This interaction of DFOB with Ti(IV) is investigated by using spectro-potentiometric and spectro-photometric titrations, mass spectrometry, isothermal titration calorimetry (ITC), and computational modeling. The data from pH 2-10 suggest two one-proton equilibria among three species, with one species predominating below pH 3.5, a second from pH 3.5 to 8, and a third above pH 8. The latter species is prone to slow hydrolytic precipitation. Electrospray mass spectrometry allowed the detection of [Ti(IV) (HDFOB)] 2+ and [Ti(DFOB)] + ; these species were assigned as the pH Ti(IV)-DFOB was determined by using UV/vis-monitored competition with ethylenediaminetetraacetic acid (EDTA). Taking into consideration the available binding constant of Ti(IV) and EDTA, the data reveal values of log β 111 = 41.7, log β 110 = 38.1, and log β 11-1 = 30.1. The former value was supported by ITC, with the transfer of Ti(IV) from EDTA to DFOB determined to be both enthalpically and entropically favorable. Computational methods yielded a model of Ti-DFOB. The physiological and environmental implications of this tight interaction and the potential role of DFOB in solubilizing Ti(IV) are discussed.

  3. PVC Based Membrane of Ti(IV Iodovanadate for Pb(II Determination

    Directory of Open Access Journals (Sweden)

    Mu. Naushad


    Full Text Available Ti(IV iodovanadate has been synthesized by mixing a mixture of aqueous solutions of 0.1 M sodium vanadate and 0.1 M potassium iodate with 0.1 M solution of Ti(IV chloride at pH 1.0. Distribution coefficients (Kd of various metal ions were determined on the column of Ti(IV iodovanadate which showed the selectivity of Pb(II ions by this cation exchange material. So Ti(IV iodovanadate has been used as an electoactive material for the construction of Pb(II selective electrode. The main purpose of this study is to develop an inexpensive, simple and reliable ion-selective electrode for Pb(II determination. The sensor exhibit Nernstian response for Pb(II ions over a wide concentration range of 1 x 10-7 M to 1 x 10-1 M with a slope of 30±0.4 mV per decade of activity. The electrode is suitable for use in aqueous solution in a pH range of 2-7.2 with a response time of 10 second. The membrane electrode can be used at least for 4 months without any divergence in potential. The selectivity coefficients were determined by the mixed solution method and revealed that the electrode was selective for Pb(II ions in the presence of interfering cations. The sensor could be used as an indicator electrode in the potentiometric titration of Pb(II ions with EDTA. The practical applicability of the proposed sensor has been reported for Pb(II determination in a standard rock sample and water sample. The results are found to be in good agreement with those obtained by using conventional methods.

  4. Expanding the Therapeutic Potential of the Iron Chelator Deferasirox in the Development of Aqueous Stable Ti(IV) Anticancer Complexes. (United States)

    Loza-Rosas, Sergio A; Vázquez-Salgado, Alexandra M; Rivero, Kennett I; Negrón, Lenny J; Delgado, Yamixa; Benjamín-Rivera, Josué A; Vázquez-Maldonado, Angel L; Parks, Timothy B; Munet-Colón, Charlene; Tinoco, Arthur D


    The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) 2 in solution. The predominant complex at pH 7.4, [Ti(deferasirox) 2 ] 2- , exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and 1 H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox) 2 ] 2- transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion

  5. Photocatalytic reduction of nitrogen to ammonia with coprecipitated Fe(III) and Ti(IV) hydrous oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tennakone, K.; Fernando, C.A.N.; Damayanthi, M.W.P.; Silva, L.H.K.; Wijeratne, W.; Wickramanayake, S.; Punchihewa, S.; Illeperuma, O.A.


    An aqueous suspension of coprecipitated hydrous oxides of Fe(III) and Ti(IV) is found to photocatalyse reduction of molecular nitrogen to ammonia with visible light. The activity of the complex catalyst is higher than that of pure hydrous ferric oxide which also catalyses the above reaction. It is suggested that hydrous TiO/sub 2/ acts as the hole transfer agent so that water oxidation takes place at the TiO/sub 2/ sites and nitrogen reduction at ferric oxide sites.

  6. Key role of Ti(IV) in the selective radical-radical cross-coupling mediated by the Ingold-Fischer effect. (United States)

    Spaccini, Raffaele; Pastori, Nadia; Clerici, Angelo; Punta, Carlo; Porta, Ombretta


    We report an innovative approach for the selective synthesis of polyfunctional derivatives by cross-combination of different radicals generated under mild conditions. The coordinating effect of Ti(IV) plays a key role in the reaction mechanism: due to its chelating action on the hydroxyl groups, it promotes the homolytic C-C bond cleavage of alpha,beta-dihydroxy ketones by enhancing the captodative effect and the consequent stabilization of the corresponding alpha-hydroxy-alpha-carbonyl radicals. When these radicals are generated in the presence of stoichiometric amounts of TiCl(4) and 2,2'-azo-bis-isobutyronitrile (AIBN) is employed as a source of alpha-cyanoisopropyl radicals, the selective radical-radical cross-coupling is observed, affording the corresponding beta-hydroxynitriles in high yields. This innovative methodology allows application of the well-known Ingold-Fischer effect to a wider range of stabilized carbon-centered radicals, whose formation derives from the chelating action of Ti(IV).

  7. Efficient generation of volatile cadmium species using Ti(III) and Ti(IV) and application to determination of cadmium by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)† (United States)

    Arslan, Zikri; Yilmaz, Vedat; Rose, LaKeysha


    In this study, a highly efficient chemical vapor generation (CVG) approach is reported for determination of cadmium (Cd). Titanium (III) and titanium (IV) were investigated for the first time as catalytic additives along with thiourea, L-cysteine and potassium cyanide (KCN) for generation of volatile Cd species. Both Ti(III) and Ti(IV) provided the highest enhancement with KCN. The improvement with thiourea was marginal (ca. 2-fold), while L-cysteine enhanced signal slightly only with Ti(III) in H2SO4. Optimum CVG conditions were 4% (v/v) HCl + 0.03 M Ti(III) + 0.16 M KCN and 2% (v/v) HNO3 + 0.03 M Ti(IV) + 0.16 M KCN with a 3% (m/v) NaBH4 solution. The sensitivity was improved about 40-fold with Ti(III) and 35-fold with Ti(IV). A limit of detection (LOD) of 3.2 ng L−1 was achieved with Ti(III) by CVG-ICP-MS. The LOD with Ti(IV) was 6.4 ng L−1 which was limited by the blank signals in Ti(IV) solution. Experimental evidence indicated that Ti(III) and Ti(IV) enhanced Cd vapor generation catalytically; for best efficiency mixing prior to reaction with NaBH4 was critical. The method was highly robust against the effects of transition metal ions. No significant suppression was observed in the presence of Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II) and Zn(II) up to 1.0 μg mL−1. Among the hydride forming elements, no interference was observed from As(III) and Se(IV) at 0.5 μg mL−1 level. The depressive effects from Pb(II) and Sb(III) were not significant at 0.1 μg mL−1 while those from Bi(III) and Sn(II) were marginal. The procedures were validated with determination of Cd by CVG-ICP-MS in a number certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4), Mussel tissue (SRM 2976) and Domestic Sludge (SRM 2781). PMID:26251554

  8. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. (United States)

    Deng, Hui; Wei, Zhilai; Wang, XiaoNing


    A Ti(IV) functionalized chitosan molecularly imprinted polymer (Ti-CSMIP) was successfully prepared. Ti 4+ as Lewis acidic was used to modify chitosan MIP by producing metal hydroxyl group and protonated surface of adsorbent in aqueous solution to recognize X-3B molecule as a Lewis base. The adsorbent was characterized by FTIR, SEM, XRD, BET, elemental and zeta potential analysis. XRD illustrated Ti-CSMIP exhibited a weak anatase phase when Ti 4+ cross-linked with chitosan. Batch adsorption experiments were performed to evaluate adsorption condition, including sorption isotherm, kinetics and reusability. The maximum adsorption capacity of Ti-CSMIP for X-3B was 161.1mg/g at 293K when solution pH was in the range of 6.0-7.0. Equilibrium data was well analyzed by three-parameter isotherm model, and the kinetics of adsorption followed the pseudo-second kinetics equation. Regeneration experiments indicated a possible application as an effective sorbent for the selective removal of azo anionic dye in aqueous solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Formation of Ti(III) and Ti(IV) states in Ti{sub 3}O{sub 5} nano- and microfibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si

    Energy Technology Data Exchange (ETDEWEB)

    Stem, Nair, E-mail: [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil); Souza, Michele L.; Araújo de Faria, Dalva Lúcia Araújo [Laboratório de Espectroscopia Molecular (LEM), Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508900 São Paulo, SP (Brazil); Santos Filho, Sebastião G. dos [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil)


    In this work, it is investigated the formation of Ti(III) and Ti(IV) states at the surface and in the bulk of the Ti{sub 3}O{sub 5} material grown as meshes of nano- and micro-fibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si. The topography and distribution of the fibers in the meshes were characterized by atomic force microscopy. When the fiber distribution was more compact, a higher photoluminescence signal at 850 nm (1.46 eV) was obtained, indicating the presence of a higher number of defects corresponding to the Ti(III) sites. From X-ray photoelectron spectroscopy, it was obtained a Ti(III)/Ti(IV) ratio much lower than the expected value for the Ti{sub 3}O{sub 5} phase (2 Ti(III): 1 Ti(IV)). The discrepancy was mainly attributed to the reaction of surface Ti(III) states of the Ti{sub 3}O{sub 5} fibers with water during the hydrothermal annealing, resulting in surface Ti(IV) with -OH radicals. On the other hand, X-ray photoelectron spectroscopy also indicated that substitutional and interstitial carbon atoms coexist, elemental carbon exists in the samples due to the co-deposition process and, as a result, the carbon inside of the TiO{sub 2} rutile lattice is acting as one of the precursors for the formation of Ti{sub 3}O{sub 5}. - Highlights: • Ti(III) states are detected inside of Ti{sub 3}O{sub 5} nano- and microfibers. • Ti(IV) states are predominantly detected on the surface of Ti{sub 3}O{sub 5} nano- and microfibers. • Photoluminescence at 850 nm for Ti{sub 3}O{sub 5} is due to defects associated to Ti(III). • Rutile possibly changes to C2/m Ti{sub 3}O{sub 5} during the hydrothermal annealing of C-doped TiO{sub 2}.

  10. Liquid-liquid extraction (LLE) of Fe(III) and Ti(IV) by bis-(2-ethyl-hexyl) phosphoric acid (D2EHPA) in sulfuric acid medium; Extracao liquido-liquido de ferro (III) e titanio (IV) pelo acido bis-(2-etil-hexil) fosforico (D2EHPA) em meio de acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Glauco Correa da; Cunha, Jose Waldemar Silva Dias da [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Dept. de Quimica e Materiais Nucleares; Dweck, Jo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica. Dept. de Processos Inorganicos; Afonso, Julio Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica]. E-mail:


    This work presents a study on the separation of Fe(III) and Ti(IV) from sulfuric acid leaching solutions of ilmenite (FeTiO{sub 3}) using liquid-liquid extraction with D2EHPA in n-dodecane as extracting agent. The distribution coefficients (K{sub D}) of the elements related to free acidity and concentration of Fe(III) and Ti(IV) were determined. Free acidity was changed from 3x10{sup -2} to 11.88 mol L{sup -1} and D2EHPA concentration was fixed at 1.5 mol L{sup 1}. Recovery of final products as well as recycling of wastes generated in the process were also investigated. The LLE process as a feasible alternative to obtain high-purity TiO{sub 2}. (author)

  11. Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. (United States)

    Bordiga, Silvia; Bonino, Francesca; Damin, Alessandro; Lamberti, Carlo


    This work is intended to underline how the most-advanced experimental and theoretical physical chemistry tools must be used synergistically to understand the reactivity of Ti-silicalite-1 (TS-1) in an important number of low-temperature oxidation reactions with aqueous H(2)O(2) as the oxidant. Literature results are carefully reviewed and accompanied with new, unpublished highlights of both experimental and computational origin. The first part of this work is devoted to a discussion of the defective nature of the material and to the synergic role played by Si vacancies and Ti insertion in the framework. A summary of the experimental Ti-K-edge EXAFS and XANES literature concerning the activated material in vacuo conditions is then presented and compared to the corresponding Ti geometries obtained by ab initio calculations. From such a comparison, the excellent agreement between experiment and theory is evident. A very good agreement is also obtained for the interaction with water and ammonia. For both H(2)O and NH(3), the agreement is due to the possibility to perform experiments in which the probe molecule is dosed from the gas phase, thus allowing to reach the 1 : 1 (or 1 : 2) ratio between the adsorbing Ti sites and the adsorbed molecule. Then, interaction with hydrogen peroxide is discussed, underlining the problems faced in reaching a common view between experimental and theoretical results, owing to the difficulties both in performing experiments where anhydrous H(2)O(2) is dosed on TS-1, and in taking into account the role played by the aqueous medium in the reactivity of Ti(iv) centres toward H(2)O(2) using ab initio calculations. Only once such difficulties have been overcome, by increasing the complexities of both experiments and ab initio models, is a joint-view finally obtained. Where needed, comparison with other experimental results (X-ray and neutron diffraction, NMR, IR, Raman, UV-vis and resonant Raman) is made.

  12. Schapiro Shapes (United States)

    O'Connell, Emily


    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  13. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.


    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  14. Shape language - How people describe shapes and shape operations

    NARCIS (Netherlands)

    Wiegers, T.; Langeveld, L.H.; Vergeest, J.S.M.


    Many designers do not use CAD tools for shape ideation. They consider CAD systems not appropriate for the ideation phase. This research investigates how designers ideate shape, in particular which terms they use to exteriorize shape. The goal is to be able to propose digital tools that are useful

  15. Shape memory polymers (United States)

    Wilson, Thomas S.; Bearinger, Jane P.


    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  16. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves


    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... shape-changing interfaces be used for, (b) which parts of the design space are not well understood, and (c) why studying user experience with shape-changing interfaces is important....

  17. Self-erecting shapes (United States)

    Reading, Matthew W.


    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  18. The Hue of Shapes (United States)

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo


    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  19. Building with shapes

    CERN Document Server

    Mooney, Carla


    There are shapes everywhere you look. You can put shapes together or build with them. What can you build with three circles? In this title, students will explore and understand that certain attributes define what a shape is called. This title will allow students to identify the main purpose of a text, including what the author wants to answer, explain, or describe.

  20. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter


    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  1. Transforming shape in design

    DEFF Research Database (Denmark)

    Prats, Miquel; Lim, Sungwoo; Jowers, Iestyn


    This paper is concerned with how design shapes are generated and explored by means of sketching. It presents research into the way designers transform shapes from one state to another using sketch representations. An experimental investigation of the sketching processes of designers is presented...... phenomenon of ‘subshape' and suggests that a computational mechanism for detecting sub-shapes in design sketches might augment explorative sketching by providing important opportunities for manipulating and generating shape in design........ Connections between sketches are defined in terms of shape transformations and described according to shape rules. These rules provide a formal description of the shape exploration process and develop understanding of the mechanics of sketching in design. The paper concludes by discussing the important...

  2. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.


    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  3. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie


    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  4. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.


    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  5. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.


    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  6. Shape from touch

    NARCIS (Netherlands)

    Kappers, A.M.L.; Bergmann Tiest, W.M.


    The shape of objects cannot only be recognized by vision, but also by touch. Vision has the advantage that shapes can be seen at a distance, but touch has the advantage that during exploration many additional object properties become available, such as temperature (Jones, 2009), texture (Bensmaia,

  7. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane


    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  8. Shaping light with MOEMS (United States)

    Noell, W.; Weber, S.; Masson, J.; Extermann, J.; Bonacina, L.; Bich, A.; Bitterli, R.; Herzig, H. P.; Kiselev, D.; Scharf, T.; Voelkel, R.; Weible, K. J.; Wolf, J.-P.; de Rooij, N. F.


    Shaping light with microtechnology components has been possible for many years. The Texas Instruments digital micromirror device (DMD) and all types of adaptive optics systems are very sophisticated tools, well established and widely used. Here we present, however, two very dedicated systems, where one is an extremely simple MEMS-based tunable diffuser, while the second device is complex micromirror array with new capabilities for femtosecond laser pulse shaping. Showing the two systems right next to each other demonstrates the vast options and versatility of MOEMS for shaping light in the space and time domain.

  9. Shape memory polyurethane nanocomposites (United States)

    Cao, Feina

    Shape memory polymers are smart materials which can remember their original shapes. However, the low recovery stress and low mechanical strength limit the commercial applications of shape memory polymers. In this study, nanoclays were introduced to shape memory polyurethanes (SMPU) to augment these properties by enhance the network of SMPU. Several factors which influence the shape recovery stress were evaluated, including the nature of polymer chain by using different monomers, type of clay particles, extent of filler dispersion, clay content and deformation conditions. It was found that only reactive clay particles were well dispersed into polyurethane matrix by the tethering between --CH2CH 2OH functional groups in clay surfactants and polyurethane chains. Two different shape memory polyurethanes (Systems I & II) prepared by bulk polymerization were compared. The shape memory effect of System I was triggered by melting of the soft segment crystals, while that of System II was by glass transition of the soft segments. It was seen that the reactive clay particles dispersed well in both polyurethane matrices and augmented the recovery stress, e.g., 20% increase with 1 wt % nanoclay in System I and 40% increase with 5 wt % nanoclay in System II were observed. In System I, clay particles interfered with soft segment crystallization, and promoted phase mixing between the hard and soft segments, thus affecting the fixity and recovery ratio. Nevertheless, the soft segment crystallinity was still enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. The higher loading of clay particles accelerated the stress relaxation, resulting in reduction of recovery stress. In System II, no significant effect of clay particles in phase separation was observed, so there was no influence of clay on shape fixity and recovery ratio. The recovery stress increased with reactive nanoclay content. It was also found that the recovery

  10. Shaping the Global Environment (United States)


    SHAPING THE GLOBAL ENVIRONMENT BY LIEUTENANT COLONEL MICHAEL D. ELLERBE United States Army DISTRIBUTION STATEMENT A: Approved for public release...THE GLOBAL ENVIRONMENT by Lieutenant Colonel Michael D. Ellerbe United States Army Colonel Jef Troxel Project Advisor The views expressed in this...Distribution is unlimited. ii ABSTRACT AUTHOR: Michael D. Ellerbe TITLE: SHAPING THE GLOBAL ENVIRONMENT FORMAT: Strategy Research Project DATE: 09 April

  11. Shape memory alloy engine

    International Nuclear Information System (INIS)

    Tanaka, M.


    This paper discusses a shape memory alloy engine, developed for the purpose of extracting the mechanical energy from a small difference in temperature. The engine is mainly composed of two pulleys (high temperature and low temperature) and single belt made of the nickel titanium shape memory alloy. The alloy memorizes a shape arcing in the direction opposite to the direction of the belt arc around the pulleys. When the temperature of the belt which is in contact with the high temperature pulley rises above the transformation temperature, a return to the memorized shape generates a force which rotates the pulleys. To make the heat transfer more effective, the engine was designed so that the lower part of the two pulleys are embedded in hot and cold water, respectively. To predict the performance of the shape memory alloy engine, the stress change of the shape memory alloy caused by temperature change has been also investigated with the bending stress test, and a torque loss of the engine system was measured. The predicted results were coincident with the output power experiment

  12. On Characterizing Particle Shape (United States)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon


    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  13. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian


    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  14. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R


    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  15. Shape memory polymer medical device (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA


    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  16. Jet Shapes at CMS

    CERN Document Server

    Kurt, Pelin


    The CMS (Compact Muon Solenoid) detector will observe high transverse momentum jets produced in the final state of proton-proton collisions at the center of mass energy of 14 TeV. These data will allow us to measure jet shapes, defined as the fractional transverse momentum distribution as a function of the distance from the jet axis. Since jet shapes are sensitive to parton showering processes they provide a good test of Monte Carlo event simulation programs. In this note we present a study of jet shapes reconstructed using calorimeter energies. We compare the predictions of the Monte Carlo generators PYTHIA and HERWIG++. Presented results are expected for $pp$ collisions at 14 TeV assuming an integrated luminosity of 10 pb$^{-1}$.

  17. Laser beam shaping techniques

    Energy Technology Data Exchange (ETDEWEB)



    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  18. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.


    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  19. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer


    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  20. Social Shaping of Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Mack, Alexandra

    - in particular in a large corporation? This workshop explores how innovation is socially shaped in organizations. Based on our experiences with practices around innovation and collaboration, we start from three proposition about the social shaping of innovation: • Ideas don't thrive as text (i.e. we need...... to consider other media) • Ideas need socialization (ideas are linked to people, we need to be careful about how we support the social innovation context) • Ideas are local (ideas spring out of a local contingency, we need to take care in how we like them to travel)....

  1. Trends Shaping Education 2010 (United States)

    OECD Publishing (NJ3), 2010


    "Trends Shaping Education 2010" brings together evidence showing the effects on education of globalisation, social challenges, changes in the workplace, the transformation of childhood, and ICT. To make the content accessible, each trend is presented on a double page, containing an introduction, two charts with brief descriptive text and a set of…

  2. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig


    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  3. Shape Up Europe

    DEFF Research Database (Denmark)

    Simovska, Venka; Jensen, Bjarne Bruun

    "Shape Up: a School Community Approach to Influencing the Determinants of Childhood Overweight and Obesity, Lessons Learnt" is a report that aims to provide a synthesis of the project overall evaluation documentation, with a view to systematically review and discuss lessons learnt, and to suggest...

  4. Perceiving animacy from shape. (United States)

    Schmidt, Filipp; Hegele, Mathias; Fleming, Roland W


    Superordinate visual classification-for example, identifying an image as "animal," "plant," or "mineral"-is computationally challenging because radically different items (e.g., "octopus," "dog") must be grouped into a common class ("animal"). It is plausible that learning superordinate categories teaches us not only the membership of particular (familiar) items, but also general features that are shared across class members, aiding us in classifying novel (unfamiliar) items. Here, we investigated visual shape features associated with animate and inanimate classes. One group of participants viewed images of 75 unfamiliar and atypical items and provided separate ratings of how much each image looked like an animal, plant, and mineral. Results show systematic tradeoffs between the ratings, indicating a class-like organization of items. A second group rated each image in terms of 22 midlevel shape features (e.g., "symmetrical," "curved"). The results confirm that superordinate classes are associated with particular shape features (e.g., "animals" generally have high "symmetry" ratings). Moreover, linear discriminant analysis based on the 22-D feature vectors predicts the perceived classes approximately as well as the ground truth classification. This suggests that a generic set of midlevel visual shape features forms the basis for superordinate classification of novel objects along the animacy continuum.

  5. The moon changes shape

    CERN Document Server

    Beaton, Kathryn


    "Young children are naturally curious about the world around them. The Moon Changes Shape offers answers to their most compelling questions about the lunar phases. Age-appropriate explanations and appealing photos encourage readers to continue their quest for knowledge. Additional text features and search tools, including a glossary and an index, help students locate information and learn new words."-- Provided by publisher.

  6. Bend me, shape me

    CERN Document Server


    A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).

  7. How life shaped Earth. (United States)

    Gross, Michael


    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  8. Duality based contact shape optimization

    DEFF Research Database (Denmark)

    Vondrák, Vít; Dostal, Zdenek; Rasmussen, John


    An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization.......An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization....

  9. Nanoreinforced shape memory polyurethane (United States)

    Richardson, Tara Beth

    Shape memory polymers (SMPs) are functional materials, which find applications in a broad range of temperature sensing elements and biological micro-electro-mechanical systems (MEMS). These polymers are capable of fixing a transient shape and recovering to their original shape after a series of thermo-mechanical treatments. Generally, these materials are thermoplastic segmented polyurethanes composed of soft segments, usually formed by a polyether macroglycol, and hard segments formed from the reaction of a diisocyanate with a low molecular mass diol. The hard segment content is a key parameter to control the final properties of the polymer, such as rubbery plateau modulus, melting point, hardness, and tensile strength. The long flexible soft segment largely controls the low temperature properties, solvent resistance, and weather resistance properties. The morphology and properties of polyurethanes (PU) are greatly influenced by the ratio of hard and soft block components and the average block lengths. However, in some applications, SMPs may not generate enough recovery force to be useful. The reinforcement of SMPs using nanofillers represents a novel approach of enhancing the performance of these materials. The incorporation of these fillers into SMPs can produce performance enhancements (particularly elastic modulus) at small nanoparticle loadings (˜1-2 wt %). An optimal performance of nanofiller-polymer nanocomposites requires uniform dispersion of filler in polymers and good interfacial adhesion. The addition of nanofillers like cellulose nanofibers (CNF), conductive cellulose nanofibers (C-CNF), and carbon nanotubes (CNTs) allows for the production of stiffer materials with deformation capacity comparable to that of the unfilled polymer. Additionally, the use of conductive nanoreinforcements such as C-CNF and CNTs leads to new pathways for actuation of the shape memory effect. During this work, thermoplastic shape memory polyurethanes were synthesized with

  10. Biomedical Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    SHEN Xue-lin


    Full Text Available Shape memory polymers(SMPs are a class of functional "smart" materials that have shown bright prospects in the area of biomedical applications. The novel smart materials with multifunction of biodegradability and biocompatibility can be designed based on their general principle, composition and structure. In this review, the latest process of three typical biodegradable SMPs(poly(lactide acide, poly(ε-caprolactone, polyurethane was summarized. These three SMPs were classified in different structures and discussed, and shape-memory mechanism, recovery rate and fixed rate, response speed was analysed in detail, also, some biomedical applications were presented. Finally, the future development and applications of SMPs are prospected: two-way SMPs and body temperature induced SMPs will be the focus attension by researchers.

  11. Antiferroelectric Shape Memory Ceramics

    Directory of Open Access Journals (Sweden)

    Kenji Uchino


    Full Text Available Antiferroelectrics (AFE can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26% associated with the AFE to Ferroelectric (FE phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms. In the Pb0.99Nb0.02[(Zr0.6Sn0.41-yTiy]0.98O3 (PNZST system, the shape memory function is observed in the intermediate range between high temperature AFE and low temperature FE, or low Ti-concentration AFE and high Ti-concentration FE in the composition. In the AFE multilayer actuators (MLAs, the crack is initiated in the center of a pair of internal electrodes under cyclic electric field, rather than the edge area of the internal electrodes in normal piezoelectric MLAs. The two-sublattice polarization coupling model is proposed to explain: (1 isotropic volume expansion during the AFE-FE transformation; and (2 piezoelectric anisotropy. We introduce latching relays and mechanical clampers as possible unique applications of shape memory ceramics.

  12. Audiometric shape and presbycusis. (United States)

    Demeester, Kelly; van Wieringen, Astrid; Hendrickx, Jan-jaap; Topsakal, Vedat; Fransen, Erik; van Laer, Lut; Van Camp, Guy; Van de Heyning, Paul


    The aim of this study was to describe the prevalence of specific audiogram configurations in a healthy, otologically screened population between 55 and 65 years old. The audiograms of 1147 subjects (549 males and 598 females between 55 and 65 years old) were collected through population registries and classified according to the configuration of hearing loss. Gender and noise/solvent-exposure effects on the prevalence of the different audiogram shapes were determined statistically. In our population 'Flat' audiograms were most dominantly represented (37%) followed by 'High frequency Gently sloping' audiograms (35%) and 'High frequency Steeply sloping' audiograms (27%). 'Low frequency Ascending' audiograms, 'Mid frequency U-shape' audiograms and 'Mid frequency Reverse U-shape' audiograms were very rare (together less than 1%). The 'Flat'-configuration was significantly more common in females, whereas the 'High frequency Steeply sloping'-configuration was more common in males. Exposure to noise and/or solvents did not change this finding. In addition, females with a 'Flat' audiogram had a significantly larger amount of overall hearing loss compared to males. Furthermore, our data reveal a significant association between the prevalence of 'High frequency Steeply sloping' audiograms and the degree of noise/solvent exposure, despite a relatively high proportion of non-exposed subjects showing a 'High frequency Steeply sloping' audiogram as well.

  13. Shape descriptors for mode-shape recognition and model updating

    International Nuclear Information System (INIS)

    Wang, W; Mottershead, J E; Mares, C


    The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.

  14. Oriented active shape models. (United States)

    Liu, Jiamin; Udupa, Jayaram K


    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  15. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.


    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  16. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H


    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  17. Pairwise harmonics for shape analysis

    KAUST Repository

    Zheng, Youyi


    This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.

  18. Mean gust shapes

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Bierbooms, W.; Hansen, K.S.


    The gust events described in the IEC-standard are formulated as coherent gusts of an inherent deterministic character, whereas the gusts experienced in real situation are of a stochastic nature with a limited spatial extension. This conceptual difference may cause substantial differences in the load patterns of a wind turbine when a gust event is imposed. Methods exist to embed a gust of a prescribed appearance in a stochastic wind field. The present report deals with a method to derive realistic gust shapes based only on a few stochastic features of the relevant turbulence field. The investigation is limited to investigation of the longitudinal turbulence component, and consequently no attention is paid to wind direction gusts. A theoretical expression, based on level crossing statistics, is proposed for the description of a mean wind speed gust shape. The description also allows for information on the spatial structure of the wind speed gust and relies only on conventional wind field parameters. The theoretical expression is verified by comparison with simulated wind fields as well as with measured wind fields covering a broad range of mean wind speed situations and terrain conditions. The work reported makes part of the project 'Modelling of Extreme Gusts for Design Calculations' (NEWGUST), which is co-funded through JOULEIII on contract no. JOR3-CT98-0239. (au)

  19. Issues in Biological Shape Modelling

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen

    This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape or appear......This talk reflects parts of the current research at informatics and Mathematical Modelling at the Technical University of Denmark within biological shape modelling. We illustrate a series of generalizations, modifications, and applications of the elements of constructing models of shape...

  20. Ferromagnetic shape memory materials (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  1. Shape memory heat engines (United States)

    Salzbrenner, R.


    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  2. Shape Bonding method (United States)

    Pontius, James T. (Inventor)


    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  3. Boosted Higgs Shapes

    CERN Document Server

    Schlaffer, Matthias; Takeuchi, Michihisa; Weiler, Andreas; Wymant, Chris


    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of $H\\to 2\\ell+\\mathbf{p}\\!\\!/_T$ via $H\\to \\tau\\tau$ and $H\\to WW^*$ could be performed and demonstrate that it offers a compelling alternative to the $t\\bar t H$ channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  4. Digital pulse shape discrimination

    International Nuclear Information System (INIS)

    Miller, L. F.; Preston, J.; Pozzi, S.; Flaska, M.; Neal, J.


    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogous techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogous signal processing. Results illustrate the effectiveness of digital PSD. (authors)

  5. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. (United States)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R; Krogh, Anders; Vinther, Jeppe


    Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) is an accurate method for probing of RNA secondary structure. In existing SHAPE methods, the SHAPE probing signal is normalized to a no-reagent control to correct for the background caused by premature termination of the reverse transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES-based selection of cDNA-RNA hybrids on streptavidin beads effectively removes the large majority of background signal present in SHAPE probing data and that sequencing-based SHAPES data contain the same amount of RNA structure data as regular sequencing-based SHAPE data obtained through normalization to a no-reagent control. Moreover, the selection efficiently enriches for probed RNAs, suggesting that the SHAPES strategy will be useful for applications with high-background and low-probing signal such as in vivo RNA structure probing. © 2015 Poulsen et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Surface shape memory in polymers (United States)

    Mather, Patrick


    Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and

  7. Modeling the shape memory effect of shape memory polymer (United States)

    Zhou, Bo; Liu, Yanju; Wang, Zhenqing; Leng, Jin-Song


    Dynamic mechanical analysis (DMA) tests are conducted on the styrene-based shape memory polymer (SMP) to investigate its state transition behaviors. Tensile tests at various constant temperatures are carried out to reveal the stressstrain- temperature relationship of the styrene-based SMP. A new mechanical constitutive equation is developed to describe the stress-strain-temperature relationship of the styrene-based SMP. Numerical calculations illustrate the proposed theory well describes the thermo-mechanical cycle of shape memory of styrene-based SMP, such as deformation at high temperature, shape fixity, unloading at low temperature and shape recovery.

  8. Vaccines: Shaping global health. (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Lobos, Fernando


    The Developing Countries Vaccine Manufacturers' Network (DCVMN) gathered leaders in immunization programs, vaccine manufacturing, representatives of the Argentinean Health Authorities and Pan American Health Organization, among other global health stakeholders, for its 17th Annual General Meeting in Buenos Aires, to reflect on how vaccines are shaping global health. Polio eradication and elimination of measles and rubella from the Americas is a result of successful collaboration, made possible by timely supply of affordable vaccines. After decades of intense competition for high-value markets, collaboration with developing countries has become critical, and involvement of multiple manufacturers as well as public- and private-sector investments are essential, for developing new vaccines against emerging infectious diseases. The recent Zika virus outbreak and the accelerated Ebola vaccine development exemplify the need for international partnerships to combat infectious diseases. A new player, Coalition for Epidemic Preparedness Innovations (CEPI) has made its entrance in the global health community, aiming to stimulate research preparedness against emerging infections. Face-to-face panel discussions facilitated the dialogue around challenges, such as risks of viability to vaccine development and regulatory convergence, to improve access to sustainable vaccine supply. It was discussed that joint efforts to optimizing regulatory pathways in developing countries, reducing registration time by up to 50%, are required. Outbreaks of emerging infections and the global Polio eradication and containment challenges are reminders of the importance of vaccines' access, and of the importance of new public-private partnerships. Copyright © 2017.

  9. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  10. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.


    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  11. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel


    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  12. Young Children's Concepts of Shape. (United States)

    Clements, Douglas H.; Swaminathan, Sudha; Hannibal, Mary Anne Zeitler; Sarama, Julie


    Investigates, by conducting individual clinical interviews of 97 children ages 3 to 6, the criteria preschool children use to distinguish members of a class of shapes from other figures, emphasizing identification and descriptions of shapes and reasons for these identifications. Concludes that young children initially form schemas on the basis of…

  13. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj


    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  14. Pileup subtraction for jet shapes

    CERN Document Server

    Soyez, Gregory; Kim, Jihun; Dutta, Souvik; Cacciari, Matteo


    Jet shapes have the potential to play a role in many LHC analyses, for example in quark-gluon discrimination or jet substructure analyses for hadronic decays of boosted heavy objects. Most shapes, however, are significantly affected by pileup. We introduce a general method to correct for pileup effects in shapes, which acts event-by-event and jet-by-jet, and accounts also for hadron masses. It involves a numerical determination, for each jet, of a given shape's susceptibility to pileup. Together with existing techniques for determining the level of pileup, this then enables an extrapolation to zero pileup. The method can be used for a wide range of jet shapes and we show its successful application in the context of quark/gluon discrimination and top-tagging.

  15. Snout shape in extant ruminants.

    Directory of Open Access Journals (Sweden)

    Jonathan P Tennant

    Full Text Available Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by 'blunt' and 'pointed' snouts respectively, often with specification of an 'intermediate' sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is 'unknown' can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation

  16. A theory of shape identification

    CERN Document Server

    Cao, Frédéric; Morel, Jean-Michel; Musé, Pablo; Sur, Frédéric


    Recent years have seen dramatic progress in shape recognition algorithms applied to ever-growing image databases. They have been applied to image stitching, stereo vision, image mosaics, solid object recognition and video or web image retrieval. More fundamentally, the ability of humans and animals to detect and recognize shapes is one of the enigmas of perception. The book describes a complete method that starts from a query image and an image database and yields a list of the images in the database containing shapes present in the query image. A false alarm number is associated to each detection. Many experiments will show that familiar simple shapes or images can reliably be identified with false alarm numbers ranging from 10-5 to less than 10-300. Technically speaking, there are two main issues. The first is extracting invariant shape descriptors from digital images. The second is deciding whether two shape descriptors are identifiable as the same shape or not. A perceptual principle, the Helmholtz princi...

  17. Shape reconstruction from gradient data. (United States)

    Ettl, Svenja; Kaminski, Jürgen; Knauer, Markus C; Häusler, Gerd


    We present a generalized method for reconstructing the shape of an object from measured gradient data. A certain class of optical sensors does not measure the shape of an object but rather its local slope. These sensors display several advantages, including high information efficiency, sensitivity, and robustness. For many applications, however, it is necessary to acquire the shape, which must be calculated from the slopes by numerical integration. Existing integration techniques show drawbacks that render them unusable in many cases. Our method is based on an approximation employing radial basis functions. It can be applied to irregularly sampled, noisy, and incomplete data, and it reconstructs surfaces both locally and globally with high accuracy.

  18. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T


    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  19. Aging changes in body shape (United States)

    ... MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Aging changes in body shape URL of this page: // ...

  20. Shape morphing Kirigami mechanical metamaterials. (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto


    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  1. Shape-morphing nanocomposite origami. (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A


    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  2. Shape Deformations in Atomic Nuclei


    Hamamoto, Ikuko; Mottelson, Ben R.


    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  3. Electrochromic fiber-shaped supercapacitors. (United States)

    Chen, Xuli; Lin, Huijuan; Deng, Jue; Zhang, Ye; Sun, Xuemei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Guan, Guozhen; Peng, Huisheng


    An electrochromic fiber-shaped super-capacitor is developed by winding aligned carbon nanotube/polyaniline composite sheets on an elastic fiber. The fiber-shaped supercapacitors demonstrate rapid and reversible chromatic transitions under different working states, which can be directly observed by the naked eye. They are also stretchable and flexible, and are woven into textiles to display designed signals in addition to storing energy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ESR powder line shape calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vitko, J. Jr.; Huddleston, R.E.


    A program has been developed for computing the ESR spectrum of a collection of randomly oriented spins subject only to an electronic Zeeman interaction and having a Lorentzian single crystal line shape. Other single crystal line shapes, including numerical solutions of the Bloch equations, can be accommodated with minor modifications. The program differs in several features from those existing elsewhere, thus enabling one to study saturation effects, over-modulation effects, both absorptive and dispersive signals, and second and higher order derivative signals.

  5. Shape changes in 101Pd

    International Nuclear Information System (INIS)

    Dinesh, S.; Carmel Vigila Bai, G.M.; Santhosh Kumar, S.; Anusha, B.


    In heavy ion collision compound nuclei can be formed with high excitation energies and with very high angular momenta. Most of these emphasize and discuss the structure effects, yrast traps etc. The spin degree of freedom inherently involves deformation and structural or shape changes. The shape of a nucleus should be very sensitive to the increase of its temperature. The increasing temperature affects the occupations of the single particle levels near the Fermi energy are investigated

  6. Deformation Based Curved Shape Representation. (United States)

    Demisse, Girum G; Aouada, Djamila; Ottersten, Bjorn


    In this paper, we introduce a deformation based representation space for curved shapes in Rn. Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution. Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore, invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the proposed representation is robust to uninformative cues, e.g. local shape perturbation and displacement. In comparison to state of the art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99 and Kimia216 datasets.

  7. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João


    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  8. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong


    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  9. Triple shape memory effect of star-shaped polyurethane. (United States)

    Yang, Xifeng; Wang, Lin; Wang, Wenxi; Chen, Hongmei; Yang, Guang; Zhou, Shaobing


    In this study, we synthesized one type of star-shaped polyurethane (SPU) with star-shaped poly(ε-caprolactone) (SPCL) containing different arm numbers as soft segment and 4,4'-diphenyl methane diisocyanate (MDI) as well as chain extender 1,4-butylene glycol (BDO) as hard segment. Proton nuclear magnetic resonance (1H-NMR) confirmed the chemical structure of the material. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) results indicated that both the melting temperature (Tm) and transition temperature (Ttrans) of SPU decreased with the hard segment composition increase. X-ray diffraction (XRD) results demonstrated that the increase of the crystallinity of SPU following the raised arm numbers endowed a high shape fixity of six-arm star-shaped polyurethane (6S-PU) and a wide melting temperature range, which resulted in an excellent triple-shape memory effect of 6S-PU. The in vitro cytotoxicity assay evaluated with osteoblasts through Alamar blue assay demonstrates that this copolymer possessed good cytocompatibility. This material can be potentially used as a new smart material in the field of biomaterials.

  10. Shape memory polymer foams for endovascular therapies (United States)

    Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA


    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  11. Shape memory polymer foams for endovascular therapies (United States)

    Wilson, Thomas S.; Maitland, Duncan J.


    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  12. Emotional collectives: How groups shape emotions and emotions shape groups. (United States)

    van Kleef, Gerben A; Fischer, Agneta H


    Group settings are epicentres of emotional activity. Yet, the role of emotions in groups is poorly understood. How do group-level phenomena shape group members' emotional experience and expression? How are emotional expressions recognised, interpreted and shared in group settings? And how do such expressions influence the emotions, cognitions and behaviours of fellow group members and outside observers? To answer these and other questions, we draw on relevant theoretical perspectives (e.g., intergroup emotions theory, social appraisal theory and emotions as social information theory) and recent empirical findings regarding the role of emotions in groups. We organise our review according to two overarching themes: how groups shape emotions and how emotions shape groups. We show how novel empirical approaches break important new ground in uncovering the role of emotions in groups. Research on emotional collectives is thriving and constitutes a key to understanding the social nature of emotions.

  13. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris


    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  14. Shapes formed by interacting cracks (United States)

    Daniels, Karen


    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

  15. Shape Synthesis in Mechanical Design

    Directory of Open Access Journals (Sweden)

    C. P. Teng


    Full Text Available The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that can lead to failure-prone stress concentrations. Indeed, as mechanical designers have known for a while, stress concentrations occur, first and foremost, by virtue of either dramatic changes in curvature or extremely high values thereof. As an alternative, we propose here the use of smooth curves that can be simply generated using standard concepts such as non-parametric cubic splines. These curves can be readily used to produce either extruded surfaces or surfaces of revolution. 

  16. Shape morphing hinged truss structures

    International Nuclear Information System (INIS)

    Sofla, A Y N; Elzey, D M; Wadley, H N G


    Truss structures are widely used for the support of structural loads in applications where minimum mass solutions are required. Their nodes are normally constructed to resist rotation to maximize their stiffness under load. A multi-link node concept has recently been proposed that permits independent rotation of tetrahedral trusses linked by such a joint. High authority shape morphing truss structures can therefore be designed by the installation of linear displacement actuators within the truss mechanisms. Examples of actuated structures with either linear or planar shapes are presented and their ability to bend, twist and undulate is demonstrated. An experimental device has been constructed using one-way shape memory wire actuators in antagonistic configurations that permit reversible actuated structures. It is shown that the actuated structure displacement response is significantly amplified by use of a mechanically magnified design

  17. Event shape engineering with ALICE

    CERN Document Server

    Dobrin, A


    The strong fluctuations in the initial energy density of heavy-ion collisions allow an efficient selection of events corresponding to a specific initial geometry. For such "shape engineered events", the elliptic flow coefficient, $v_2$, of unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\\snn = 2.76$ TeV is measured by the ALICE collaboration. $v_2$ obtained with the event plane method at mid-rapidity, $|\\eta|<0.8$, is reported for different collision centralities as a function of transverse momentum, $\\pt$, out to $\\pt=20$ GeV/$c$. The measured $v_2$ for the shape engineered events is significantly larger or smaller than the average which demonstrates the ability to experimentally select events with the desired shape of the initial spatial asymmetry.

  18. Lunar Regolith Particle Shape Analysis (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer


    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  19. A Survey of Algorithmic Shapes

    Directory of Open Access Journals (Sweden)

    Ulrich Krispel


    Full Text Available In the context of computer-aided design, computer graphics and geometry processing, the idea of generative modeling is to allow the generation of highly complex objects based on a set of formal construction rules. Using these construction rules, a shape is described by a sequence of processing steps, rather than just by the result of all applied operations: shape design becomes rule design. Due to its very general nature, this approach can be applied to any domain and to any shape representation that provides a set of generating functions. The aim of this survey is to give an overview of the concepts and techniques of procedural and generative modeling, as well as their applications with a special focus on archeology and architecture.

  20. Quantifying the shape of aging

    DEFF Research Database (Denmark)

    Wrycza, Tomasz F; Missov, Trifon I; Baudisch, Annette


    In Biodemography, aging is typically measured and compared based on aging rates. We argue that this approach may be misleading, because it confounds the time aspect with the mere change aspect of aging. To disentangle these aspects, here we utilize a time-standardized framework and, instead...... of aging rates, suggest the shape of aging as a novel and valuable alternative concept for comparative aging research. The concept of shape captures the direction and degree of change in the force of mortality over age, which—on a demographic level—reflects aging. We 1) provide a list of shape properties...... suggested here aim to provide a general means to classify aging patterns independent of any particular mortality model and independent of any species-specific time-scale. Thereby they support systematic comparative aging research across different species or between populations of the same species under...

  1. Nuclear shapes: from earliest ideas to multiple shape coexisting structures

    International Nuclear Information System (INIS)

    Heyde, K; Wood, J L


    The concept of the atomic nucleus being characterized by an intrinsic property such as shape came as a result of high precision hyperfine studies in the field of atomic physics, which indicated a non-spherical nuclear charge distribution. Herein, we describe the various steps taken through ingenious experimentation and bold theoretical suggestions that mapped the way for later work in the early 50s by Aage Bohr, Ben Mottelson and James Rainwater. We lay out a long and winding road that marked, in the period of 50s to 70s, the way shell-model and collective-model concepts were reconciled. A rapid increase in both accelerator and detection methods (70s towards the early 2000s) opened new vistas into nuclear shapes, and their coexistence, in various regions of the nuclear mass table. Next, we outline a possible unified view of nuclear shapes: emphasizing decisive steps taken as well as questions remaining, next to the theoretical efforts that could result in an emerging understanding of nuclear shapes, building on the nucleus considered as a strongly interacting system of nucleons as the microscopic starting point. (invited comment)

  2. Emotional collectives : How groups shape emotions and emotions shape groups

    NARCIS (Netherlands)

    van Kleef, G.A.; Fischer, A.H.


    Group settings are epicentres of emotional activity. Yet, the role of emotions in groups is poorly understood. How do group-level phenomena shape group members’ emotional experience and expression? How are emotional expressions recognised, interpreted and shared in group settings? And how do such

  3. Shaping Discourse and Setting Examples

    DEFF Research Database (Denmark)

    Persson, Anders


    around an issue. By using Tuomas Forsberg's framework of four different mechanisms of normative power: persuasion, invoking norms, shaping the discourse and the power of example on three important case studies from the conflict (EC/EU's declaratory diplomacy on the need for a just peace in the conflict...

  4. Shape evolution of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang, Y. Q.; Liang, W. S.; Geng, C. Y.


    The tetraoctylammonium bromide-stabilized gold nanoparticles have been successfully fabricated. The shape evolution of these nanoparticles under different annealing temperatures has been investigated using high-resolution transmission electron microscopy. After an annealing at 100 o C for 30 min, the average diameters of the gold nanoparticles change a little. However, the shapes of gold nanoparticles change drastically, and facets appear in most nanoparticles. After an annealing at 200 o C for 30 min, not only the size but also the shape changes a lot. After an annealing at 300 o C for 30 min, two or more gold nanoparticles coalesce into bigger ones. In addition, because of the presence of Cu grid during the annealing, some gold particles become the nucleation sites of Cu 2 O nanocubes, which possess a microstructure of gold-particle core/Cu 2 O shell. These Au/Cu 2 O heterostructure nanocubes can only be formed at a relatively high temperature (≥300 o C). The results can provide some insights on controlling the shapes of gold nanoparticles.

  5. Shape coexistence in 74Se

    Czech Academy of Sciences Publication Activity Database

    Thiamová, Gabriela


    Roč. 51, č. 6 (2001), s. 553-556 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : shape coexistence * 74Se Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.345, year: 2001

  6. What shapes social decision making? (United States)

    Reader, Simon M; Leris, Ioannis


    Outcome transparency and the weight given to social information both play important roles in decision making, but we argue that an overarching influence is the degree to which individuals can and do gather information. Evolution, experience, and development may shape individual specializations in social decision making that carry over across contexts, and these individual differences may influence collective behavior and cultural evolution.

  7. Lorentz invariance in shape dynamics

    International Nuclear Information System (INIS)

    Carlip, S; Gomes, Henrique


    Shape dynamics is a reframing of canonical general relativity in which time reparametrization invariance is ‘traded’ for a local conformal invariance. We explore the emergence of Lorentz invariance in this model in three contexts: as a maximal symmetry, an asymptotic symmetry and a local invariance. (paper)

  8. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    (Duerig et al 1990) of the alloy. Unlike conventional materials, which show only, limited effect on stress–strain behaviour (Duerig et al 1990; Mellor 1989), SMA shows marked temperature dependence, because of reversible austenite to martensite transformation. The underlying phenomenon of the shape memory effect is ...

  9. Shape-Memory Polymer Composites (United States)

    Madbouly, Samy A.; Lendlein, Andreas

    The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting from adding functional fillers to SMP-matrices will be introduced and discussed: magnetic SMPCs with different types of magnetic nanoparticles, conductive SMPCs based on carbon nanotubes (CNTs), carbon black (CB), short carbon fiber (SCF), and biofunctional SMPCs containing hydroxyapatite (HA). Indirect induction of the shape-memory effect (SME) was realized for magnetic and conductive SMPCs either by exposure to an alternating magnetic field or by application of electrical current. Major challenges in design and fundamental understanding of polymer composites are the complexity of the composite structure, and the relationship between structural parameters and properties/functions, which is essential for tailoring SMPCs for specific applications. Therefore the novel functions and enhanced properties of SMPCs will be described considering the micro-/nanostructural parameters, such as dimension, shape, distribution, volume fraction, and alignment of fillers as well as interfacial interaction between the polymer matrix and dispersed fillers. Finally, an outlook is given describing the future challenges of this exciting research field as well as potential applications including automotive, aerospace, sensors, and biomedical applications.

  10. Banana-shaped Liquid Crystals

    NARCIS (Netherlands)

    Achten, R.


    This thesis describes the liquid crystalline properties of molecules with a bent shape. The objective of the research is to allow further insight in structure-property relationships for this class of liquid crystals. Specifically, we are interested in chemically stable

  11. Shape analysis of synthetic diamond

    CERN Document Server

    Mullan, C


    Two-dimensional images of synthetic industrial diamond particles were obtained using a camera, framegrabber and PC-based image analysis software. Various methods for shape quantification were applied, including two-dimensional shape factors, Fourier series expansion of radius as a function of angle, boundary fractal analysis, polygonal harmonics, and comer counting methods. The shape parameter found to be the most relevant was axis ratio, defined as the ratio of the minor axis to the major axis of the ellipse with the same second moments of area as the particle. Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating table. A model was derived based on the probability that a particle of a given axis ratio would travel to a certain bin. The model described the sorting of bulk material accurately but it was found not to be applicable if the shape mix of the feed material changed dramatically. This was attributed to the fact that the particle-particle interference was not taken int...

  12. How Faults Shape the Earth. (United States)

    Bykerk-Kauffman, Ann


    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  13. Shape and Dimensions of Ripples

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl

    In this work, the flow and bed load transport over ripple profiles under the influence of oscillatory will be investigated. The investigation is made through a parametric study, where the bed shape and the ripple steepness are varied. For the sediment transport, the Shields parameter relative to ...


    Directory of Open Access Journals (Sweden)

    Jing Hu


    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  15. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.


    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  16. Shape memory polymer actuator and catheter (United States)

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.


    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  17. Shape memory polymer actuator and catheter

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, Duncan J. (Pleasant Hill, CA); Lee, Abraham P. (Walnut Creek, CA); Schumann, Daniel L. (Concord, CA); Matthews, Dennis L. (Moss Beach, CA); Decker, Derek E. (Byron, CA); Jungreis, Charles A. (Pittsburgh, PA)


    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  18. Isogeometric Shape Optimization of Vibrating Membranes

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund


    We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization....

  19. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)


    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  20. Engineering Cell Shape and Function (United States)

    Singhvi, Rahul; Kumar, Amit; Lopez, Gabriel P.; Stephanopoulos, Gregory N.; Wang, Daniel I. C.; Whitesides, George M.; Ingber, Donald E.


    An elastomeric stamp, containing defined features on the micrometer scale, was used to imprint gold surfaces with specific patterns of self-assembled monolayers of alkanethiols and, thereby, to create islands of defined shape and size that support extracellular matrix protein adsorption and cell attachment. Through this technique, it was possible to place cells in predetermined locations and arrays, separated by defined distances, and to dictate their shape. Limiting the degree of cell extension provided control over cell growth and protein secretion. This method is experimentally simple and highly adaptable. It should be useful for applications in biotechnology that require analysis of individual cells cultured at high density or repeated access to cells placed in specified locations.

  1. Shape-Shifting Droplet Networks. (United States)

    Zhang, T; Wan, Duanduan; Schwarz, J M; Bowick, M J


    We consider a three-dimensional network of aqueous droplets joined by single lipid bilayers to form a cohesive, tissuelike material. The droplets in these networks can be programed to have distinct osmolarities so that osmotic gradients generate internal stresses via local fluid flows to cause the network to change shape. We discover, using molecular dynamics simulations, a reversible folding-unfolding process by adding an osmotic interaction with the surrounding environment which necessarily evolves dynamically as the shape of the network changes. This discovery is the next important step towards osmotic robotics in this system. We also explore analytically and numerically how the networks become faceted via buckling and how quasi-one-dimensional networks become three dimensional.

  2. New trends in shape optimization

    CERN Document Server

    Leugering, Günter


    This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

  3. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander


    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  4. Shape coexistence in 153Ho (United States)

    Pramanik, Dibyadyuti; Sarkar, S.; Saha Sarkar, M.; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A.; Krishichayan, Kshetri, Ritesh; Ray, Indrani; Ganguly, S.; Pradhan, M. K.; Ray Basu, M.; Raut, R.; Ganguly, G.; Ghugre, S. S.; Sinha, A. K.; Basu, S. K.; Bhattacharya, S.; Mukherjee, A.; Banerjee, P.; Goswami, A.


    The high-spin states in 153Ho have been studied by the La57(20Ne139,6 n ) reaction at a projectile energy of 139 MeV at the Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of the Indian National Gamma Array (INGA) setup. Data from γ -γ coincidence, directional correlation, and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-γ time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.

  5. Box-shaped halophilic bacteria.


    Javor, B; Requadt, C; Stoeckenius, W


    Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain ...

  6. Dumbbell Shaped Transforaminal Paravertebral Meningioma

    Directory of Open Access Journals (Sweden)

    ismail serifoglu


    Full Text Available Dumbbell tumors are tumors of two or more regions of the spinal column. The majority of the dumbbell tumors are schwannomas. The presentation of spinal meningiomas as a dumbbell tumors are very rare. The diagnosis of Dumbbell-shaped meningiomas with imaging methods is important for preoperative accurate treatment planning and to prevent its postsurgical recurrences. [Cukurova Med J 2015; 40(Suppl 1: 38-41

  7. Strategic Planning: Shaping Future Success (United States)


    Defense AT&L: September-October 2016 46 Strategic Planning Shaping Future Success Brian Schultz “What’s the use of running if you are not on the...fielding, the PM may also be planning for future increments, sustainment and other long-term ef- forts. Strategic planning can help the PM position these...future programs and actions for good outcomes. So what is this strategic planning all about? Let’s start with some background, including a strategic

  8. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.


    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  9. Optimum shapes for pump limiters

    International Nuclear Information System (INIS)

    Ulrickson, M.


    The design of a pump limiter depends strongly on the details of the plasma scrapeoff zone. A model has been developed which allows the transport coefficients in the scrapeoff to be functions of n and t. This model has been used to predict scrapeoff profiles for FED/INTOR. The profiles are used to find and analyze limiter profiles. The results suggest the use of limiter shapes which curve toward the plasma

  10. Remark on shape invariant potential

    International Nuclear Information System (INIS)

    Drigo Filho, Elso; Ricotta, Regina Maria


    For more than a decade, Supersymmetry has provided new information about ordinary quantum mechanical problems, and Supersymmetric Quantum Mechanics has become a field research by itself. If has been shown that the symmetry between two different systems that share energy spectra can be interpreted in terms of supersymmetry. From the knowledge of the ground state of a given potential it is possible to find another potential with the same energy spectrum, except for the ground state. In fact, from the use of supersymmetric partner Hamiltonians and their degeneracy spectra it has become possible to determine a ladder of Hamiltonians and their spectra, only through the ground states of the ladder. Concerning the partner Hamiltonians with potentials V + and V - that are similar in shape but Differ in the parameters. Gedenshtein introduced in 1983 the concept of shape invariance. Here we propose an extension of this concept. It is formulated in terms of the functional form of the whole super-family and not only between any two members of the ladder. We give two examples where all the members of the super-family can be written in a general functional form and conclude that Gedenshtein's conditions of shape invariance is sufficient but not necessary in order to obtain the super-family. (author)

  11. Body shape preferences: associations with rater body shape and sociosexuality.

    Directory of Open Access Journals (Sweden)

    Michael E Price

    Full Text Available There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters' body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low VHI and attractive (low WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for

  12. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo


    tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...... was performed with a higher thickness reduction. Memory steps were performed at room temperature and 120 °C so as to test the foam core in the glassy and rubbery state, respectively. Shape memory tests revealed the ability of the shape memory composite structures to recover the initial shape also after severe......A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...

  13. Instance-Based Generative Biological Shape Modeling. (United States)

    Peng, Tao; Wang, Wei; Rohde, Gustavo K; Murphy, Robert F


    Biological shape modeling is an essential task that is required for systems biology efforts to simulate complex cell behaviors. Statistical learning methods have been used to build generative shape models based on reconstructive shape parameters extracted from microscope image collections. However, such parametric modeling approaches are usually limited to simple shapes and easily-modeled parameter distributions. Moreover, to maximize the reconstruction accuracy, significant effort is required to design models for specific datasets or patterns. We have therefore developed an instance-based approach to model biological shapes within a shape space built upon diffeomorphic measurement. We also designed a recursive interpolation algorithm to probabilistically synthesize new shape instances using the shape space model and the original instances. The method is quite generalizable and therefore can be applied to most nuclear, cell and protein object shapes, in both 2D and 3D.

  14. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys (United States)

    Park, Jungkyu; Headings, Leon; Dapino, Marcelo; Baur, Jeffery; Tandon, Gyaneshwar


    Shape memory composites (SMCs) based on shape memory alloys (SMAs) and shape memory polymers (SMPs) allow many design possibilities due to their controllable temperature-dependent mechanical properties. The complementary characteristics of SMAs and SMPs can be utilized in systems with shape recovery created by the SMA and shape fixity provided by the SMP. In this research, three SMC operating regimes are identified and the behavior of SMC structures is analyzed by focusing on composite shape fixity and interfacial stresses. Analytical models show that SMPs can be used to adequately fix the shape of SMA actuators and springs. COMSOL finite element simulations are in agreement with analytical expressions for shape fixity and interfacial stresses. Analytical models are developed for an end-coupled linear SMP-SMA two-way actuator and the predicted strain is shown to be in good agreement with experimental test results.

  15. Cartography of irregularly shaped satellites (United States)

    Batson, R. M.; Edwards, Kathleen


    Irregularly shaped satellites, such as Phobos and Amalthea, do not lend themselves to mapping by conventional methods because mathematical projections of their surfaces fail to convey an accurate visual impression of the landforms, and because large and irregular scale changes make their features difficult to measure on maps. A digital mapping technique has therefore been developed by which maps are compiled from digital topographic and spacecraft image files. The digital file is geometrically transformed as desired for human viewing, either on video screens or on hard copy. Digital files of this kind consist of digital images superimposed on another digital file representing the three-dimensional form of a body.

  16. Shape Memory Effect Actuators from Chlorides Project (United States)

    National Aeronautics and Space Administration — Shape Change Technologies is developing a radical new technique for the fabrication of Shape Memory alloys, such as TiNi and its ternary alloys of Hf, Zr, and Cu....

  17. Joint shape segmentation with linear programming

    KAUST Repository

    Huang, Qixing


    We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques. © 2011 ACM.

  18. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.


    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  19. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N


    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  20. Shaping drops with textured surfaces (United States)

    Ehlinger, Quentin; Biance, Anne-Laure; Ybert, Christophe


    When a drop impacts a substrate, it can behave differently depending on the nature of the surface and of the liquid (spreading, bouncing, resting, splashing ...). Understanding these behaviors is crucial to predict the drop morphology during and after impact. Whereas surface wettability has extensively been studied, the effect of surface roughness remains hardly explored. In this work, we consider the impact of a drop in a pure non-wetting situation by using superheated substrates i.e. in the Leidenfrost regime. The surface texture consists of a well-controlled microscopic defect shaped with photolithography on a smooth silicon wafer. Different regimes are observed, depending on the distance between the defect and the impact point and the defect size. Comparing the lamella thickness versus the defect height proves relevant as the transition criteria between regimes. Others characteristics of the drop behavior (direction of satellite droplet ejection, lamella rupture) are also well captured by inertial/capillary models. Drop impacts on multiple defects are also investigated and drop shape well predicted considering the interactions between the local flow and the defects.

  1. Justifications shape ethical blind spots. (United States)

    Pittarello, Andrea; Leib, Margarita; Gordon-Hecker, Tom; Shalvi, Shaul


    To some extent, unethical behavior results from people's limited attention to ethical considerations, which results in an ethical blind spot. Here, we focus on the role of ambiguity in shaping people's ethical blind spots, which in turn lead to their ethical failures. We suggest that in ambiguous settings, individuals' attention shifts toward tempting information, which determines the magnitude of their lies. Employing a novel ambiguous-dice paradigm, we asked participants to report the outcome of the die roll appearing closest to the location of a previously presented fixation cross on a computer screen; this outcome would determine their pay. We varied the value of the die second closest to the fixation cross to be either higher (i.e., tempting) or lower (i.e., not tempting) than the die closest to the fixation cross. Results of two experiments revealed that in ambiguous settings, people's incorrect responses were self-serving. Tracking participants' eye movements demonstrated that people's ethical blind spots are shaped by increased attention toward tempting information. © The Author(s) 2015.

  2. Acoustic echoes reveal room shape. (United States)

    Dokmanic, Ivan; Parhizkar, Reza; Walther, Andreas; Lu, Yue M; Vetterli, Martin


    Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room's response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its response to a known sound, recorded by a few microphones. Geometric relationships between the arrival times of echoes enable us to "blindfoldedly" estimate the room geometry. This is achieved by exploiting the properties of Euclidean distance matrices. Furthermore, we show that under mild conditions, first-order echoes provide a unique description of convex polyhedral rooms. Our algorithm starts from the recorded impulse responses and proceeds by learning the correct assignment of echoes to walls. In contrast to earlier methods, the proposed algorithm reconstructs the full 3D geometry of the room from a single sound emission, and with an arbitrary geometry of the microphone array. As long as the microphones can hear the echoes, we can position them as we want. Besides answering a basic question about the inverse problem of room acoustics, our results find applications in areas such as architectural acoustics, indoor localization, virtual reality, and audio forensics.

  3. Shaping the Future of Surgery (United States)

    Callcut, Rachael A.; Breslin, Tara M.


    Objective: To educate surgeons about the growth of the private regulatory movement and its potential implications for the practice of surgery. Methods: An in-depth analysis and literature review of one of the largest private regulatory groups, the Leapfrog Group, provides a model for understanding the impact of these groups on the practice of surgery. A detailed discussion of the history, mission, structure, and quality initiatives of Leapfrog is included. Results: Private regulatory groups are using quality standards as a method for controlling the rising cost of health care. Traditionally, little financial support, manpower, or incentives have existed for individual surgeons and hospitals to report and maintain their own outcomes data. However, as surgical outcomes have increasingly become the target of quality improvement initiatives, the need to measure performance is gaining importance. Surgical quality has been both a direct target of private regulation, as illustrated by the evidence-based hospital referral guidelines of Leapfrog, and an indirect target with initiatives like computerized physician order entry and ICU staffing guidelines. Conclusions: Private regulation is rapidly reshaping the way we practice and teach surgery. It is almost a certainty that their power, popularity, financial support, and missions will all continue to expand. As surgeons, we must decide soon if we wish to be an active participant in shaping the movement or, rather, if we are going to let it shape us by remaining largely uninvolved. PMID:16495692

  4. Shape-memory actuated gimbal (United States)

    Carpenter, Bernie F.; Head, R. J.; Gehling, Russ


    Future spacecraft systems will require advanced positioning systems to meet stringent reliability, vibration, lightweighting, and cost requirements. Current devices employing stepping motor and gear reduction assemblies may not be able to meet future design needs. A shape memory alloy (SMA) actuated multiaxis gimbal has been developed that provides solutions to these mechanism issues. SMAs utilize a thermally activated reversible phase transformation to recover their original heat-treated shape or to generate high-recovery stresses. when heated above a critical transformation temperature. NiTiCu alloy wires have been wound into helical spring actuators to control gimbal rotation using mechanical elements to convert the linear motion of antagonistic SMA springs into rotation. Analytical models that incorporate the nonlinear hysteretic behavior of SMAs have been generated to aid in spring design and SMA conditioning. Indirect resistive hearing of SMA springs was accomplished using programmable power supplies. A potentiometer sensor attached to the output axis of the gimbal was used to provide angular feedback to a digital controller. An antagonistic approach was used to independently control heating and cooling of the opposing spring element for improved stability and bandwidth response. Proportional-integral derivative control was implemented on the active SMA spring to obtain the desired level of rotation while overcoming an external load. Mechanical testing was conducted on the gimbal to assess control system stability, dynamic response, and power requirements. Torque in excess of 3 in./lb was generated using less than 20 watts of applied power.

  5. Hydraulics of free overfall in -shaped channels

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    MS received 15 October 2001; revised 13 February 2002. Abstract. In this paper, two methods are presented to analyse the free overfall in. -shaped (equilateral triangle-shaped) channels. First, the flow upstream of a free overfall from smooth horizontal or mildly sloping -shaped channels is analysed theoretically to ...

  6. Shape memory alloys – characterization techniques

    Indian Academy of Sciences (India)

    Abstract. Shape memory alloys are the generic class of alloys that show both thermal and mechan- ical memory. The basic physics involved in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases in shape memory alloys, viz., a high- temperature phase or ...

  7. Shape memory alloys – characterization techniques

    Indian Academy of Sciences (India)

    Shape memory alloys are the generic class of alloys that show both thermal and mechanical memory. The basic physics involved in the shape memory effect is the reversible thermoelastic martensitic transformation. In general, there exists two phases in shape memory alloys, viz., a hightemperature phase or austenitic ...

  8. General quadrupole nuclear shapes. An algebraic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab. (LANL), NM (USA). Theoretical Div.); Shao Bin (Yale Univ., New Haven, CT (USA). Sloane Physics Lab.)


    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.).

  9. General quadrupole nuclear shapes. An algebraic perspective

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao Bin


    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.)

  10. Active Shape Analysis of Mandibular Growth

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Larsen, Rasmus; Kreiborg, Sven


    Active Shape Model is proposed targeting growth modelling by applying Partial Least Squares regression in decomposing the Procrustes tangent space. Shape centroid size is applied as dependent variable but the method generalizes to handle other, both uni- and multivariate, effects probing for high...... covariation wrt. shape variation....

  11. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    International Nuclear Information System (INIS)

    Tobushi, Hisaaki; Ejiri, Yoshihiro; Hayashi, Syunichi; Hoshio, Kazumasa


    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated

  12. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    Directory of Open Access Journals (Sweden)

    Hisaaki Tobushi et al


    Full Text Available In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated.

  13. Nanomaterials based on carbon and Ti(IV) oxides: some aspects of their electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav


    Roč. 9, 8/9 (2012), s. 652-679 ISSN 1475-7435 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : carbon nanostructures * titanium oxide * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 1.087, year: 2012

  14. Shape Memory of Human Red Blood Cells


    Fischer, Thomas M.


    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spher...

  15. Shape theory categorical methods of approximation

    CERN Document Server

    Cordier, J M


    This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and

  16. Shape separation of gold nanorods using centrifugation (United States)

    Sharma, Vivek; Park, Kyoungweon; Srinivasarao, Mohan


    We demonstrate the use of centrifugation for efficient separation of colloidal gold nanorods from a mixture of nanorods and nanospheres. We elucidate the hydrodynamic behavior of nanoparticles of various shapes and illustrate that the shape-dependent drag causes particles to have shape-dependent sedimentation behavior. During centrifugation, nanoparticles undergo Brownian motion under an external field and move with different sedimentation velocities dictated by their Svedberg coefficients. This effects a separation of particles of different shape and size. Our theoretical analysis and experiments demonstrate the viability of using centrifugation to shape-separate a mixture of colloidal particles. PMID:19255445

  17. Shape Memory Composite Hybrid Hinge (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen


    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  18. Shape memory alloy consortium (SMAC) (United States)

    Jacot, A. Dean


    The application of smart structures to helicopter rotors has received widespread study in recent years. This is one of the major thrusts of the Shape Memory Alloy Consortium (SMAC) program. SMAC includes 3 companies and 4 Universities in a cost sharing consortium funded under DARPA Smart Materials and Structures program. This paper describes the objective of the SMAC effort, and its relationship to a previous DARPA smart structure rotorcraft program from which it originated. The SMAC program includes NiTinol fatigue/characterization studies, SMA actuator development, and ferromagnetic SMA material development. The paper summarizes the SMAC effort, and includes background and details on Boeing's development of a SMA torsional actuator for rotorcraft applications. SMA actuation is used to retwist the rotorcraft blade in flight, and result in a significant payload increase for either helicopters or tiltrotors. This paper is also augmented by several other papers in this conference with specific results from other SMAC consortium members.

  19. The perfect shape spiral stories

    CERN Document Server

    Hammer, Øyvind


    This book uses the spiral shape as a key to a multitude of strange and seemingly disparate stories about art, nature, science, mathematics, and the human endeavour. In a way, the book is itself organized as a spiral, with almost disconnected chapters circling around and closing in on the common theme. A particular strength of the book is its extremely cross-disciplinary nature - everything is fun, and everything is connected! At the same time, the author puts great emphasis on mathematical and scientific correctness, in contrast, perhaps, with some earlier books on spirals. Subjects include the mathematical properties of spirals, sea shells, sun flowers, Greek architecture, air ships, the history of mathematics, spiral galaxies, the anatomy of the human hand, the art of prehistoric Europe, Alfred Hitchcock, and spider webs, to name a few.

  20. Shape memory thermal conduction switch (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)


    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  1. Active Light Shaping using GPC

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical secur...... the active light shaping of a supercontinuum laser over most of the visible wavelength range.......Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical...... security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. First, a compact GPC Light Shaper...

  2. Optimal shapes of compact strings

    International Nuclear Information System (INIS)

    Maritan, A.; Micheletti, C.; Trovato, A.; Banavar, J.R.


    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem-that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins. (author)


    Directory of Open Access Journals (Sweden)

    Muhadjir Darwin


    Full Text Available This article elaborates citizens’ participation in shaping local development in the Indonesian context. The main question is how to make local development more participatory as a guarantee that citizens’ rights are fully realized. In that respects, social accountability is a key that should be improved from supply and demand sides simultaneously. From the supply side, there is a need to reform local governance, in order to improve the quality of local regulations, local planning, local budgeting, and local public service provision. While from the demand side, there is a need to empower local citizens so that they are engaged in five forms or local development efforts: local regulation formulation, local development planning, local budgeting, community driven development, and public service provision.

  4. Children Literature: Shaping Gender Identities

    Directory of Open Access Journals (Sweden)



    Full Text Available The aim of this paper is to analyze stereotype construction of gender roles in the text of children's stories which inculcate in the children’s crude minds socially developed gender differences. For this purpose, the study followed Dell Hymes’ speaking model. This model has sixteen components that can be applied to different types of Discourse (speech interaction: message form; message content; setting; scene; Speaker/sender; address or; the hearer/receiver/audience; addressee; purposes (outcomes; purposes (goals; key; channels; forms of speech; norms of interaction; norms of interpretation; and genres. Selected children's stories were analyzed to identify their role as primary thought developing sources in the mind of young learners thus shaping their gender identities. This study would be beneficial in drawing the attention of authors, editors and writers of children's literature to redefine gender roles in order to minimize gender differences.

  5. Nanoparticle shape, thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Marks, L D; Peng, L


    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)

  6. Contextual predictability shapes signal autonomy. (United States)

    Winters, James; Kirby, Simon; Smith, Kenny


    Aligning on a shared system of communication requires senders and receivers reach a balance between simplicity, where there is a pressure for compressed representations, and informativeness, where there is a pressure to be communicatively functional. We investigate the extent to which these two pressures are governed by contextual predictability: the amount of contextual information that a sender can estimate, and therefore exploit, in conveying their intended meaning. In particular, we test the claim that contextual predictability is causally related to signal autonomy: the degree to which a signal can be interpreted in isolation, without recourse to contextual information. Using an asymmetric communication game, where senders and receivers are assigned fixed roles, we manipulate two aspects of the referential context: (i) whether or not a sender shares access to the immediate contextual information used by the receiver in interpreting their utterance; (ii) the extent to which the relevant solution in the immediate referential context is generalisable to the aggregate set of contexts. Our results demonstrate that contextual predictability shapes the degree of signal autonomy: when the context is highly predictable (i.e., the sender has access to the context in which their utterances will be interpreted, and the semantic dimension which discriminates between meanings in context is consistent across communicative episodes), languages develop which rely heavily on the context to reduce uncertainty about the intended meaning. When the context is less predictable, senders favour systems composed of autonomous signals, where all potentially relevant semantic dimensions are explicitly encoded. Taken together, these results suggest that our pragmatic faculty, and how it integrates information from the context in reducing uncertainty, plays a central role in shaping language structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Nanoparticle shape, thermodynamics and kinetics (United States)

    Marks, L. D.; Peng, L.


    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review.

  8. Synthesis of shape memory alloys using electrodeposition (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  9. Confinement optimisation by plasma shaping on TCV

    International Nuclear Information System (INIS)

    Moret, J.M.; Behn, R.; Franke, S.; Hofmann, F.; Weisen, H.


    Any improvement in the energy confinement time of a tokamak reactor may facilitate its access to ignition. TCV has the unique capability of creating a wide variety of plasma shapes and can therefore investigate to which extent an appropriate choice of the plasma shape can improve the energy confinement time. For simple shapes defined only by their elongation and triangularity, it has already been observed on TCV that the confinement properties of the plasma depend strongly on the shape. This previous work has now been extended to include more complex shapes and higher elongations, in order firstly to test the applicability of the previously proposed explanation for the shape dependence of the confinement time and secondly to propose new shapes which offer a substantial gain on their confinement characteristics. (author) 4 figs., 1 tab., 2 refs

  10. Updated Methods for Seed Shape Analysis. (United States)

    Cervantes, Emilio; Martín, José Javier; Saadaoui, Ezzeddine


    Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index). The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc.) provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  11. Updated Methods for Seed Shape Analysis

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes


    Full Text Available Morphological variation in seed characters includes differences in seed size and shape. Seed shape is an important trait in plant identification and classification. In addition it has agronomic importance because it reflects genetic, physiological, and ecological components and affects yield, quality, and market price. The use of digital technologies, together with development of quantification and modeling methods, allows a better description of seed shape. Image processing systems are used in the automatic determination of seed size and shape, becoming a basic tool in the study of diversity. Seed shape is determined by a variety of indexes (circularity, roundness, and J index. The comparison of the seed images to a geometrical figure (circle, cardioid, ellipse, ellipsoid, etc. provides a precise quantification of shape. The methods of shape quantification based on these models are useful for an accurate description allowing to compare between genotypes or along developmental phases as well as to establish the level of variation in different sets of seeds.

  12. U-Shaped Interest in U-Shaped Development--and What It Means (United States)

    Siegler, Robert S.


    Interest in U-shaped development has itself undergone a U-shaped progression. Twenty-five years ago, interest in U-shaped development was high. This interest was evident at a 1978 conference in Tel Aviv on "U-shaped Behavioral Growth" that resulted in the publication of a book of the same title 4 years later (Strauss, 1982). The breadth…

  13. Supernova Explosions Stay In Shape (United States)


    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  14. Pathways to Shape the Bioeconomy

    Directory of Open Access Journals (Sweden)

    Carmen Priefer


    Full Text Available In view of the increasing depletion of fossil fuel resources, the concept “bioeconomy” aims at the gradual replacement of fossil fuels by renewable feedstock. Seen as a comprehensive societal transition, the bioeconomy is a complex field that includes a variety of sectors, actors, and interests and is related to far-reaching changes in today’s production systems. While the objectives pursued—such as reducing dependence on fossil fuels, mitigating climate change, ensuring global food security, and increasing the industrial use of biogenic resources—are not generally contentious, there is fierce controversy over the possible pathways for achieving these objectives. Based on a thorough literature review, the article identifies major lines of conflict in the current discourse. Criticism of the prevalent concept refers mainly to the strong focus on technology, the lack of consideration given to alternative implementation pathways, the insufficient differentiation of underlying sustainability requirements, and the inadequate participation of societal stakeholders. Since today it cannot be predicted which pathway will be the most expedient—the one already being taken or one of the others proposed—this paper suggests pursuing a strategy of diversity concerning the approaches to shape the bioeconomy, the funding of research topics, and the involvement of stakeholders.

  15. Wedding ring shaped excitation coil (United States)

    MacLennan, Donald A.; Tsai, Peter


    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  16. Shaping asteroid models using genetic evolution (SAGE) (United States)

    Bartczak, P.; Dudziński, G.


    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  17. Shape Modelling Using Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    of Active Shape Models by Timothy Cootes and Christopher Taylor by building new information into the model. This new information consists of two types of prior knowledge. First, in many situation we will be given an ordering of the shapes of the training set. This situation occurs when the shapes....... Both these types of knowledge may be used to defined Shape Maximum Autocorrelation Factors. The resulting point distribution models are compared to ordinary principal components analysis using leave-one-out validation.......This paper addresses the problems of generating a low dimensional representation of the shape variation present in a training set after alignment using Procrustes analysis and projection into shape tangent space. We will extend the use of principal components analysis in the original formulation...

  18. Shape measurements of volcanic particles by CAMSIZER


    Lo Castro, Maria Deborah; Andronico, Daniele; Nunnari, Giuseppe; Spata, Alessandro; Torrisi, Alessio


    The shape of volcanic particles is an important parameter holding information related to physical and geochemical processes. The study of particle shape may help improving knowledge on the main eruptive processes (fragmentation, transport and sedimentation) during explosive activity. In general, volcanic ash is formed by different components, namely juvenile, lithic and crystal particles, each one characterized by peculiar morphology. Moreover, quantifying the shape of pyroclasts is needed by...

  19. Post polymerization cure shape memory polymers (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P


    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  20. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.


    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  1. Thermomechanical macroscopic model of shape memory alloys

    International Nuclear Information System (INIS)

    Volkov, A.E.; Sakharov, V.Yu.


    The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru

  2. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.


    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  3. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)


    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  4. Shape coexistence in N = 40 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S.K.; Aggarwal, Mamta


    Recently, shape coexistence in 72 Ge is investigated using projectile multistep Coulomb excitation with GRETINA and CHICO-2 and shape coexistence in the Ge and Se isotopes are studied within the interacting boson model (IBM) with the microscopic input from the self-consistent meanfield calculation based on the Gogny-D1M energy density functional. We investigated the phenomenon of shape coexistence in N = 40 isotones using Relativistic Mean-Field (RMF) plus BCS approach with TMA parameter and Nilson Strutinsky (NS) method that includes triaxial shapes also

  5. Shape memory of human red blood cells. (United States)

    Fischer, Thomas M


    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.

  6. Preliminary Measurement of Lunar Particle Shapes. (United States)

    Rickman, Doug


    Particle shape is a basic parameter and essential for many engineering applications. Very little data is published on the shape of lunar particles. An unpublished review found that even where the same samples were studied the results were contradictory, probably because of extremely small sample sizes. Other workers have made fundamental errors in algorithms. There are many ways to measure particle shape. One common approach is to examine the particles as intersected by a plain, such as a thin section. If discrete particles can be segmented from the image, programs such as ImageJ can readily obtain shape measurements for each particle.

  7. Document image retrieval through word shape coding. (United States)

    Lu, Shijian; Li, Linlin; Tan, Chew Lim


    This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.

  8. A jumping shape memory alloy under heat. (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun


    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  9. Robust estimation of seismic coda shape (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry


    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  10. Fuel pellets of various shapes- fabrication experience

    International Nuclear Information System (INIS)

    Ramachandran, R.; Nair, M.R.; Majumdar, S.; Purushotham, D.S.C.


    Sintered uranium oxide and mixed oxide pellets are extensively used as nuclear reactor fuel. The shape of the fuel-pellets influence greatly their in-reactor performance. Fuel pellets of various shapes were prepared in Radiometallurgy Division to study their fabricability and in-reactor performance. This paper presents the experience in fabricating these fuel pellets. (author)

  11. Hand Shape Affects Access to Memories

    NARCIS (Netherlands)

    K. Dijkstra (Katinka); M.P. Kaschak; R.A. Zwaan (Rolf)


    textabstractThe present study examined the ways that body posture facilitated retrieval of autobiographical memories in more detail by focusing on two aspects of congruence in position of a specific body part: hand shape and hand orientation. Hand shape is important in the tactile perception and

  12. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl


    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  13. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik


    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...

  14. Alpha Shape Topology of the Cosmic Web

    NARCIS (Netherlands)

    Weygaert, Rien van de; Platen, Erwin; Vegter, Gert; Eldering, Bob; Kruithof, Nico


    We study the topology of the Megaparsec Cosmic Web on the basis of the Alpha Shapes of the galaxy distribution. The simplicial complexes of the alpha shapes are used to determine the set of Betti numbers (βk, k = 1, . . . , D), which represent a complete characterization of the topology of a

  15. Iterated random walks with shape prior

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma


    We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate th...

  16. Shape configuration and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B


    We examined the neural correlates of visual shape configuration, the binding of local shape characteristics into wholistic object descriptions, by comparing the regional cerebral blood flow associated with recognition of outline drawings and fragmented drawings. We found no areas that responded m...

  17. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Listening to the Shape of a Drum - You Cannot Hear the Shape of a Drum! S Kesavan. General Article Volume 3 Issue 10 October 1998 pp 49-58. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Deformable segmentation via sparse shape representation. (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean


    Appearance and shape are two key elements exploited in medical image segmentation. However, in some medical image analysis tasks, appearance cues are weak/misleading due to disease/artifacts and often lead to erroneous segmentation. In this paper, a novel deformable model is proposed for robust segmentation in the presence of weak/misleading appearance cues. Owing to the less trustable appearance information, this method focuses on the effective shape modeling with two contributions. First, a shape composition method is designed to incorporate shape prior on-the-fly. Based on two sparsity observations, this method is robust to false appearance information and adaptive to statistically insignificant shape modes. Second, shape priors are modeled and used in a hierarchical fashion. More specifically, by using affinity propagation method, our deformable surface is divided into multiple partitions, on which local shape models are built independently. This scheme facilitates a more compact shape prior modeling and hence a more robust and efficient segmentation. Our deformable model is applied on two very diverse segmentation problems, liver segmentation in PET-CT images and rodent brain segmentation in MR images. Compared to state-of-art methods, our method achieves better performance in both studies.

  19. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen


    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Quantum Computation with Ultrafast. Laser Pulse Shaping. Debabrata Goswami is at the Department of. Chemistry, Indian. Institute of Technology,. Kanpur, where he explores the applications of ultrafast shaped pulses to bio-imaging, coherent control, high-speed communication and quantum computing. Keywords. Qubit ...

  1. Adiabatic excitation of longitudinal bunch shape oscillations

    Directory of Open Access Journals (Sweden)

    M. Bai


    Full Text Available By modulating the rf voltage at near twice the synchrotron frequency, the longitudinal bunch shape can be modulated. This method can be used to shorten bunches. We show experimentally that the bunch shape can be modulated while preserving the longitudinal emittance when the rf voltage modulation is turned on adiabatically. Experimental measurements will be presented along with theoretical predictions.


    African Journals Online (AJOL)


    hypothetical shape of a common ancestor and visualize changes and transformations that .... specimen's centroid). Finally, the centroid size was obtained for each specimen. Consensus. (mean) configuration, uniform and non- uniform components of shape were computed. The program was allowed to view different.

  3. Oriented Shape Index Histograms for Cell Classification

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Dahl, Anders Bjorholm; Larsen, Rasmus


    evaluate our new feature descriptor using a public dataset consisting of HEp-2 cell images from indirect immunoflourescence lighting. Our results show that we can improve classification performance significantly when including the shape index orientation. Notably, we show that shape index orientation...

  4. How Tiny Collisions Shape Mercury (United States)

    Kohler, Susanna


    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  5. Shape-matching soft mechanical metamaterials. (United States)

    Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A


    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.

  6. Statistical shape analysis with applications in R

    CERN Document Server

    Dryden, Ian L


    A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...

  7. Ultrafast shape recognition: method and applications. (United States)

    Ballester, Pedro J


    Molecular shape complementarity is widely recognized as a key indicator of biological activity. Unfortunately, efficient computation of shape similarity is challenging, which severely limits the potential of shape-based virtual screening. Ultrafast shape recognition (USR) is a recent shape similarity technique that is characterized by its extremely high speed of operation. Here we review important methodological aspects for the optimal application of USR as well as its first applications to medicinal chemistry problems. These applications already include several particularly successful prospective virtual screens, which shows the important role that USR can play in identifying bioactive molecules to be used as chemical probes and potentially as starting points for the drug-discovery process.


    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek


    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  9. Equilibrium shapes of tubular lipid membranes. (United States)

    Jelerčič, Urška


    Tubular vesicles represent abundant structural motifs which are observed both in experiments and in nature. We analyse them within the theory of bending elasticity and determine the equilibrium solutions at fixed volume, surface area, and segment length without imposing any specific symmetry or periodicity. We identify four different non-periodic equilibrium shapes. Depending on the precise value of the constraints or the corresponding Lagrange multipliers, these four shapes include: (i) snake-like and (ii) helical structures, (iii) tubes with a spherical body, and (iv) tubes with a discoidal body. However different in the details, all of the shapes have the same general cylindrical morphology which is either globally modulated or is a superposition of an additional structural motif and the cylinder. These results point to a great significance of the circular cylindrical shape and offer a comprehensive and general analysis of the shape of tubular vesicles.

  10. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis


    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  11. Biodegradable Shape Memory Polymers in Medicine. (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L


    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Confidence regions for fabric shape diagrams (United States)

    Ringrose, Trevor J.; Benn, Douglas I.


    Fabric shape is often quantified using the three eigenvalues from the 'orientation tensor' method applied to a sample of directions. Several studies have used eigenvalues plotted on fabric shape diagrams to distinguish sedimentary facies or strain histories. However, such studies seldom consider how well the sample eigenvalues represent the true fabric shape. In this paper, we use 'bootstrapping' techniques to define confidence regions for sample eigenvalues, and show that sample and population eigenvalues may differ substantially. Confidence regions are often very large for small sample sizes, and we recommend that sample sizes should be at least 50.

  13. Molecular shape and medicinal chemistry: a perspective. (United States)

    Nicholls, Anthony; McGaughey, Georgia B; Sheridan, Robert P; Good, Andrew C; Warren, Gregory; Mathieu, Magali; Muchmore, Steven W; Brown, Scott P; Grant, J Andrew; Haigh, James A; Nevins, Neysa; Jain, Ajay N; Kelley, Brian


    The eight contributions here provide ample evidence that shape as a volume or as a surface is a vibrant and useful concept when applied to drug discovery. It provides a reliable scaffold for "decoration" with chemical intuition (or bias) for virtual screening and lead optimization but also has its unadorned uses, as in library design, ligand fitting, pose prediction, or active site description. Computing power has facilitated this evolution by allowing shape to be handled precisely without the need to reduce down to point descriptors or approximate metrics, and the diversity of resultant applications argues for this being an important step forward. Certainly, it is encouraging that as computation has enabled our intuition, molecular shape has consistently surprised us in its usefulness and adaptability. The first Aurelius question, "What is the essence of a thing?", seems well answered, however, the third, "What do molecules do?", only partly so. Are the topics covered here exhaustive, or is there more to come? To date, there has been little published on the use of the volumetric definition of shape described here as a QSAR variable, for instance, in the prediction or classification of activity, although other shape definitions have been successful applied, for instance, as embodied in the Compass program described above in "Shape from Surfaces". Crystal packing is a phenomenon much desired to be understood. Although powerful models have been applied to the problem, to what degree is this dominated purely by the shape of a molecule? The shape comparison described here is typically of a global nature, and yet some importance must surely be placed on partial shape matching, just as the substructure matching of chemical graphs has proved useful. The approach of using surfaces, as described here, offers some flavor of this, as does the use of metrics that penalize volume mismatch less than the Tanimoto, e.g., Tversky measures. As yet, there is little to go on as to how

  14. Isogeometric analysis and shape optimization in electromagnetism

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh

    In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...

  15. Shape memory polyurethane nanocomposites with functionalized graphene

    International Nuclear Information System (INIS)

    Choi, Jin Taek; Dao, Trung Dung; Oh, Kyung Min; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu


    The roles of graphene in shape memory polyurethane nanocomposite (SMPUN) as a reinforcing filler, as a fixed structure for memorizing a specified original shape, and as a conductive filler to actuate shape recovery by resistive heating, were examined. The effectiveness of each role was modulated by functionalizing graphene with a hydroxyl group through oxidation with H 2 O 2 . The reinforcing effect of graphene and its role as a fixed structure were enhanced by the hydroxyl groups due to the increased grafting of polyurethane chains on graphene during the in situ preparation of SMPUN. However, the oxidation reduced the conductivity of SMPUN, resulting in deterioration of the resistive heating. (paper)

  16. Influence of Microfield Directionality on Line Shapes

    Directory of Open Access Journals (Sweden)

    Annette Calisti


    Full Text Available In the framework of the Spectral Line Shapes in Plasmas Code Comparison Workshop (SLSP, large discrepancies appeared between the different approaches to account for ion motion effects in spectral line shape calculations. For a better understanding of these effects, in the second edition of the SLSP in August, 2013, two cases were dedicated to the study of the ionic field directionality on line shapes. In this paper, the effects of the direction and magnitude fluctuations are separately analyzed. The effects of two variants of electric field models, (i a pure rotating field with constant magnitude and (ii a time-dependent magnitude field in a given direction, together with the effects of the time-dependent ionic field on shapes of the He II Lyman-α and -β lines for different densities and temperatures, are discussed.

  17. Shape Metamorphism Using p-Laplacian Equation

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Ge; Esser, Mehmet; Parvin, Bahram; Bebis, George


    We present a new approach for shape metamorphism, which is a process of gradually changing a source shape (known) through intermediate shapes (unknown) into a target shape (known). The problem, when represented with implicit scalar function, is under-constrained, and regularization is needed. Using the p-Laplacian equation (PLE), we generalize a series of regularization terms based on the gradient of the implicit function, and we show that the present methods lack additional constraints for a more stable solution. The novelty of our approach is in the deployment of a new regularization term when p --> infinity which leads to the infinite Laplacian equation (ILE). We show that ILE minimizes the supremum of the gradient and prove that it is optimal for metamorphism since intermediate solutions are equally distributed along their normal direction. Applications of the proposed algorithm for 2D and 3D objects are demonstrated.

  18. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong


    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  19. Shaped and Seamless Thermal Protection System (United States)

    National Aeronautics and Space Administration — This proposal is to fabricate customized geometric shapes using knitting technology and infiltrating refractory fibers either in-situ or before attachment to the...

  20. Shape-matching soft mechanical metamaterials

    NARCIS (Netherlands)

    Mirzaali Mazandarani, M.; Janbaz, S.; Strano, M.; Vergani, L.; Zadpoor, A.A.


    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional

  1. Locating irregularly shaped clusters of infection intensity

    DEFF Research Database (Denmark)

    Yiannakoulias, Niko; Wilson, Shona; Kariuki, H. Curtis


    Patterns of disease may take on irregular geographic shapes, especially when features of the physical environment influence risk. Identifying these patterns can be important for planning, and also identifying new environmental or social factors associated with high or low risk of illness. Until...... recently, cluster detection methods were limited in their ability to detect irregular spatial patterns, and limited to finding clusters that were roughly circular in shape. This approach has less power to detect irregularly-shaped, yet important spatial anomalies, particularly at high spatial resolutions....... We employ a new method of finding irregularly-shaped spatial clusters at micro-geographical scales using both simulated and real data on Schistosoma mansoni and hookworm infection intensities. This method, which we refer to as the "greedy growth scan", is a modification of the spatial scan method...

  2. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.


    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  3. Equilibrium Crystal Shapes by Virtual Work (United States)

    Reivinen, M.; Salonen, E.-M.; Todoshchenko, I.; Vaskelainen, V. P.


    A formulation on equilibrium crystal shape determination based on the principle of virtual work is presented. The treatment is restricted to two dimensions. A corresponding discrete solution method is given. Some example cases are presented.

  4. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa


    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/ than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  5. Shape optimization in biomimetics by homogenization modelling

    International Nuclear Information System (INIS)

    Hoppe, Ronald H.W.; Petrova, Svetozara I.


    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  6. Statistical shape and appearance models of bones. (United States)

    Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A


    When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Shape oscillations of a viscoelastic drop

    International Nuclear Information System (INIS)

    Khismatullin, Damir B.; Nadim, Ali


    Small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity are theoretically analyzed. Using the Jeffreys constitutive equation for linear viscoelasticity, the characteristic equation for the frequency and decay factor of the shape oscillations is derived. Asymptotic analysis of this equation is performed in the low- and high-viscosity limits and for the cases of small, moderate, and large elasticities. Elastic effects are shown to give rise to a type of shape oscillation that does not depend on the surface tension. The existence of such oscillations is confirmed by numerical solution of the characteristic equation in various regimes. A method for determining the viscoelastic properties of highly viscous liquids based upon experimental measurements of the frequency and damping rate of such shape oscillations is suggested

  8. Shape Memory Alloy Adaptive Structures, Phase I (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate and scale up an innovative manufacturing process that yields aerospace grade shape memory alloy (SMA) solids and periodic...

  9. Thermal, electrochemical and mechanical properties of shape ...

    African Journals Online (AJOL)

    A Cu based shape memory alloy (Cu-Al-Ni) having a composition 83% Cu, 14% Al, 3% Ni, was developed and studied to determine the shape memory effect. Powder of Cu, Al and Ni was melted in a pit furnace at about 15500C, and casted alloy was heat treated at 8500C for a period of 50 minutes followed by water ...

  10. Shape Descriptors for the Quantification of Microstructures (United States)


    crostructure. This distribution can be represented as a point in a metric space. We use the Hellinger distance as the measure for this space, which allows quantify the similarity of two microstruc- tures. Example applications include: determination of a 3D shape by computing the Hellinger 1This paper...Comparisons between shape maps can then be made quantitatively by using the Hellinger distance, H(p, q) between two normalized distributions (histograms

  11. Fundamentals of shaped charge penetration in concrete

    International Nuclear Information System (INIS)

    Kuklo, R M; Murphy, M J


    We have conducted several studies on the interaction of efp, hemi, and shaped charge jets with concrete targets. Our studies have investigated various liner geometries, liner materials, liner angle variations, liner thickness variations, charge diameter effects, charge standoff effects, high explosive variations, point and wave shaped initiation, monolithic and finite thickness targets, and target obliquity. We describe several relations that correlate the concrete target damage to the warhead and target configuration

  12. Constellation design with geometric and probabilistic shaping (United States)

    Zhang, Shaoliang; Yaman, Fatih


    A systematic study, including theory, simulation and experiments, is carried out to review the generalized pairwise optimization algorithm for designing optimized constellation. In order to verify its effectiveness, the algorithm is applied in three testing cases: 2-dimensional 8 quadrature amplitude modulation (QAM), 4-dimensional set-partitioning QAM, and probabilistic-shaped (PS) 32QAM. The results suggest that geometric shaping can work together with PS to further bridge the gap toward the Shannon limit.

  13. Two-dimensional shapes and lemniscates


    Ebenfelt, P.; Khavinson, D.; Shapiro, H. S.


    A shape in the plane is an equivalence class of sufficiently smooth Jordan curves, where two curves are equivalent if one can be obtained from the other by a translation and a scaling. The fingerprint of a shape is an equivalence of orientation preserving diffeomorphisms of the unit circle, where two diffeomorphisms are equivalent if they differ by right composition with an automorphism of the unit disk. The fingerprint is obtained by composing Riemann maps onto the interior and exterior of a...

  14. Minimum Description Length Shape and Appearance Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik


    The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...... source Matlab code. The problems with the early MDL approaches are discussed. Finally the MDL approach is extended to an MDL Appearance Model, which is proposed as a means to perform unsupervised image segmentation....

  15. Rebounding of a shaped-charge jet (United States)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.


    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.

  16. Mesomechanical modeling of shape memory effect (United States)

    Vokoun, David; Kafka, Vratislav


    Shape memory alloys (SMA) are well known materials. There is a lot of technical applications making use of their unique properties. Most of the significant applications are based on use of the thermomechancial properties. Growing number of those applications causes a need for an universal mathematical model with ability to describe all thermomechancial properties of SMA by relatively simple final set of constitutive equations that could be helpful for development of further sophisticated shape memory applications. Unfortunately, a lot of attention has been paid to metallurgical research of shape memory alloys in a few last decades and less attention was dedicated to shape memory modeling. Our model does not claim to be a universal model, but only one contribution to modeling of shape memory effect for binary SMA. The model is adapted for the most applied SMA -- nitinol and is based on the hypothesis that in the course of shape memory effect the distances of first atomic neighbors (Ni-Ti) remain nearly unchanged, whereas the distances of second neighbors (Ti-Ti and Ni-Ni) change substantially. Consequently, we consider some mechanical properties of Ni-substructure and Ti- substructure separately. The mechanical behavior of Ti- substructure is modeled as elastic whereas that of Ni- substructure as elasto-plastic. The resulting relatively simple differential constitutive equations express relationship among internal stress tensors, macroscopic stress tensors, macroscopic strain tensors and temperature.

  17. Locating irregularly shaped clusters of infection intensity

    Directory of Open Access Journals (Sweden)

    Niko Yiannakoulias


    Full Text Available Patterns of disease may take on irregular geographic shapes, especially when features of the physical environment influence risk. Identifying these patterns can be important for planning, and also identifying new environmental or social factors associated with high or low risk of illness. Until recently, cluster detection methods were limited in their ability to detect irregular spatial patterns, and limited to finding clusters that were roughly circular in shape. This approach has less power to detect irregularly-shaped, yet important spatial anomalies, particularly at high spatial resolutions. We employ a new method of finding irregularly-shaped spatial clusters at micro-geographical scales using both simulated and real data on Schistosoma mansoni and hookworm infection intensities. This method, which we refer to as the “greedy growth scan”, is a modification of the spatial scan method for cluster detection. Real data are based on samples of hookworm and S. mansoni from Kitengei, Makueni district, Kenya. Our analysis of simulated data shows how methods able to find irregular shapes are more likely to identify clusters along rivers than methods constrained to fixed geometries. Our analysis of infection intensity identifies two small areas within the study region in which infection intensity is elevated, possibly due to local features of the physical or social environment. Collectively, our results show that the “greedy growth scan” is a suitable method for exploratory geographical analysis of infection intensity data when irregular shapes are suspected, especially at micro-geographical scales.

  18. Social Shaping in Danish Technology Assessment

    DEFF Research Database (Denmark)

    Hansen, Anne Grethe; Clausen, Christian


    The term ‘social shaping of technology’ has been used broadly as a response to techno-economic deterministic understandings of the relations between technology and society. Social shaping has brought together analysts from different backgrounds who share a common interest in the role of social an...... in these projects contributed to new insights into the processes of technological change and thus to policy formulation. The social shaping perspective and technology assessment experiences are suggested as important guides to future technology strategies....... and political action for technology change. The authors of this article suggest that the social shaping perspective draws on lessons from technology assessments of earlier decades, lessons about the role of technology debate, participation and democratic control. We suggest that these are important......The term ‘social shaping of technology’ has been used broadly as a response to techno-economic deterministic understandings of the relations between technology and society. Social shaping has brought together analysts from different backgrounds who share a common interest in the role of social...

  19. Statistical Shape Modeling of Cam Femoroacetabular Impingement

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Michael D.; Dater, Manasi; Whitaker, Ross; Jurrus, Elizabeth R.; Peters, Christopher L.; Anderson, Andrew E.


    In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in both groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.

  20. A Review of Works on Shaped Charges

    Directory of Open Access Journals (Sweden)

    M. Ahmed


    Full Text Available Shaped charges are used to pierce hard targets in all three versions of warfare land, air and naval. High explosives compositions fillings produce a thin high velocity metal jet which is used for target damage. Shaped charges can efficiently damage tanks possessing thick armour protection, bunkers and aircraft and are also useful for attacking ships and submarines. Shaped charges have a very long history since the Second World War Theoretical modeling started with the steady state theory of Birkhoff in 1948, which was modified by the non-steady state theory known as PER theory of shaped charges. To review the development in the shaped charges three stages are defined. In the first stage development until 1990 is presented when shaped charge theory was fully developed and penetration predictions with fairly good accuracy were possible. In the second stage, review of the work carried out in the last decade of the 20th century is discussed. During this period experimental verification of different parameters was established. The third stage deals with all the work carried out in the 21st century (2000-2010, including tools for advanced diagnostics, new fabrication and inspection, as well as new liner materials were included. The anomalies occurred were resolved by further refinements in the theoretical models.

  1. Shape memory of polyurethanes with silver nanoparticles

    International Nuclear Information System (INIS)

    Monteiro, Fernanda M.A.; Souza, Patterson P. de; Pereira, Iaci M.; Silva, Livio B.J. da; Orefice, Rodrigo L.


    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol -1 ) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO 3 and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  2. An in situ neutron diffraction study of shape setting shape memory NiTi

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S.A.; Noebe, R.D.; Brown, D.W.; Clausen, B.; Vaidyanathan, R.


    A bulk polycrystalline Ni 49.9 Ti 50.1 (at.%) shape memory alloy specimen was shape set while neutron diffraction spectra were simultaneously acquired. The objective was to correlate internal stress, phase volume fraction, and texture measurements (from neutron diffraction spectra) with the macroscopic stress and shape changes (from load cell and extensometry measurements) during the shape setting procedure and subsequent shape recovery. Experimental results showed the evolution of the martensitic transformation (lattice strains, phase fractions and texture) against external constraints during both heating and cooling. Constrained heating resulted in a build-up of stresses during the martensite to austenite transformation, followed by stress relaxation due to thermal expansion, final conversion of retained martensite, and recovery processes. Constrained cooling also resulted in stress build-up arising from thermal contraction and early formation of martensite, followed by relaxation as the austenite fully transformed to martensite. Comparisons were also made between specimens pre-shape set and post-shape set with and without external constraints. The specimens displayed similar shape memory behavior consistent with the microstructure of the shape set sample, which was mostly unchanged by the shape setting process and similar to that of the as-received material

  3. Shape memory system with integrated actuation using embedded particles (United States)

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA


    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  4. Shape memory system with integrated actuation using embedded particles (United States)

    Buckley, Patrick R.; Maitland, Duncan J.


    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  5. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M


    shape representation is deformed into the training shapes followed by computation of the shape mean and modes of shape variation. In the first iteration, a generic shape model is used as starting point - in the following iterations in the bootstrap method, the resulting mean and modes from the previous...

  6. High-Temperature Shape Memory Polymers (United States)

    Yoonessi, Mitra; Weiss, Robert A.


    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  7. Minimizing tooth bending stress in spur gears with simplified shapes of fillet and tool shape determination

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard


    by different standards, with the ISO standard probably being the most common one. Gears are manufactured using two principally different tools: rack tools and gear tools. In this work, the bending stress of involute teeth is minimized by shape optimization made directly on the final gear. This optimized shape...... is then used to find the cutting tool (the gear envelope) that can create this optimized gear shape.A simple but sufficiently flexible root parameterization is applied and emphasis is put on the importance of separating the shape parameterization from the finite element analysis of stresses. Large improvements......The strength of a gear is typically defined relative to durability (pitting) and load capacity (tooth-breakage). Tooth-breakage is controlled by the root shape and this gear part can be designed because there is no contact between gear pairs here. The shape of gears is generally defined...

  8. Shape and spin determination of Barbarian asteroids (United States)

    Devogèle, M.; Tanga, P.; Bendjoya, P.; Rivet, J. P.; Surdej, J.; Hanuš, J.; Abe, L.; Antonini, P.; Artola, R. A.; Audejean, M.; Behrend, R.; Berski, F.; Bosch, J. G.; Bronikowska, M.; Carbognani, A.; Char, F.; Kim, M.-J.; Choi, Y.-J.; Colazo, C. A.; Coloma, J.; Coward, D.; Durkee, R.; Erece, O.; Forne, E.; Hickson, P.; Hirsch, R.; Horbowicz, J.; Kamiński, K.; Kankiewicz, P.; Kaplan, M.; Kwiatkowski, T.; Konstanciak, I.; Kruszewki, A.; Kudak, V.; Manzini, F.; Moon, H.-K.; Marciniak, A.; Murawiecka, M.; Nadolny, J.; Ogłoza, W.; Ortiz, J. L.; Oszkiewicz, D.; Pallares, H.; Peixinho, N.; Poncy, R.; Reyes, F.; de los Reyes, J. A.; Santana-Ros, T.; Sobkowiak, K.; Pastor, S.; Pilcher, F.; Quiñones, M. C.; Trela, P.; Vernet, D.


    Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been suggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims: With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main-Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods: We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the convergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results: Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed. The light curves are only available at the CDS via anonymous ftp to ( or via

  9. Shape Restoration by Active Self-Assembly

    Directory of Open Access Journals (Sweden)

    D. Arbuckle


    Full Text Available Shape restoration is defined as the problem of constructing a desired, or goal, solid shape Sg by growing an initial solid Si, which is a subset of the goal but is otherwise unknown. This definition attempts to capture abstractly a situation that often arises in the physical world when a solid object loses its desired shape due to wear and tear, corrosion or other phenomena. For example, if the top of the femur becomes distorted, the hip joint no longer functions properly and may have to be replaced surgically. Growing it in place back to its original shape would be an attractive alternative to replacement. This paper presents a solution to the shape restoration problem by using autonomous assembly agents (robots that self-assemble to fill the volume between Sg and Si. If the robots have very small dimension (micro or nano, the desired shape is approximated with high accuracy. The assembly agents initially execute a random walk. When two robots meet, they may exchange a small number of messages. The robot behavior is controlled by a finite state machine with a small number of states. Communication contact models chemical communication, which is likely to be the medium of choice for robots at the nanoscale, while small state and small messages are limitations that also are expected of nanorobots. Simulations presented here show that swarms of such robots organize themselves to achieve shape restoration by using distributed algorithms. This is one more example of an interesting geometric problem that can be solved by the Active Self-Assembly paradigm introduced in previous papers by the authors.

  10. Influence of Holding Time on Shape Recovery in a Polyurethane Shape-Memory Polymer (United States)

    Santiago, David; Ferrando, Francesc; De la Flor, Silvia


    Shape-memory polymers have attracted a lot of interest in recent years. A shape-memory polymer can be deformed and fixed into a temporary shape and subsequently made to recover its original shape when a suitable stimulus is applied. This is accomplished by means of a thermomechanical cycle called programming. Programming can be performed in a stress- or strain-controlled mode. The thermomechanical conditions of the programming affect shape-memory properties differently in each programming mode. One of the parameters which significantly affects shape-memory properties in a stress-controlled procedure is stress-holding time ( t H) at high temperature. This paper studies how stress-holding time affects the most significant shape-memory properties under successive thermomechanical cycles. The experiments were conducted using two different programming temperatures in the vicinity of the T g. The shape-recovery ratio decreased dramatically with cycling even when the holding time was just a few seconds, however, the impact of the stress-holding time depends on the temperature at which it has been applied. Shape-fixity ratio and switching temperature were also studied, but stress-holding time and successive cycles do not seem to affect either of these factors.

  11. Multifractal Characterization of Soil Pore Shapes (United States)

    Gimenez, Daniel; Posadas, Adolfo; Cooper, Miguel


    Two dimensional (2-D) images representing pores and solids are used for direct quantification of soil structure using tools that are sensitive to the spatial arrangement of pores or by grouping pores by morphological properties such as shape and size. Pore shapes and sizes are related and have been used to interpret soil processes. Fractal and multifractal methods of pore characterization have been applied separately to spatial arrangement of soil pores and to pore size distributions derived from 2-D images. The objective of this work was to estimate fractal dimensions of spatial arrangement of soil pores of predetermined shapes. Images covering a range of soil structures were analyzed. Pore shape was classified using a shape factor S that quantifies the circularity of pores (S=1 for circular pores). Images containing only pores with S values smaller than 0.1, between 0.1 and 0.2, 0.2 and 0.5, 0.5 and 0.7 and greater than 0.7 were derived from the initial images and analyzed with a multifractal algorithm. The findings of this work will be discussed in relation to models of soil hydraulic properties.

  12. Shape configuration and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, I; Paulson, Olaf B.


    a recent account of category-specificity and lends support to the notion that category-specific impairments can occur for both natural objects and artefacts following damage to pre-semantic stages in visual object recognition. The implications of the present findings are discussed in relation to theories......We examined the neural correlates of visual shape configuration, the binding of local shape characteristics into wholistic object descriptions, by comparing the regional cerebral blood flow associated with recognition of outline drawings and fragmented drawings. We found no areas that responded...... more to fragmented drawings than to outline drawings even though fragmentation had a clear impact on recognition performance. Instead, a region extending from the inferior occipital gyri to the middle parts of the fusiform gyri was activated during shape configuration of both outline drawings...

  13. Shape, connectedness and dynamics in neuronal networks. (United States)

    Comin, Cesar Henrique; da Fontoura Costa, Luciano


    The morphology of neurons is directly related to several aspects of the nervous system, including its connectedness, health, development, evolution, dynamics and, ultimately, behavior. Such interplays of the neuronal morphology can be understood within the more general shape-function paradigm. The current article reviews, in an introductory way, some key issues regarding the role of neuronal morphology in the nervous system, with emphasis on works developed in the authors' group. The following topics are addressed: (a) characterization of neuronal shape; (b) stochastic synthesis of neurons and neuronal systems; (c) characterization of the connectivity of neuronal networks by using complex networks concepts; and (d) investigations of influences of neuronal shape on network dynamics. The presented concepts and methods are useful also for several other multiple object systems, such as protein-protein interaction, tissues, aggregates and polymers. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Shape evolution of a melting nonspherical particle. (United States)

    Kintea, Daniel M; Hauk, Tobias; Roisman, Ilia V; Tropea, Cameron


    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  15. Hand Shape and Carpal Tunnel Syndrome. (United States)

    Neral, Mithun; Winger, Dan; Imbriglia, Joseph; Wollstein, Ronit


    The literature evaluating external anatomical measurements and carpal tunnel syndrome (CTS) remains inconclusive. The purpose of this study was to compare hand- shape measurements of patients with and without (CTS). A retrospective case - control study of participants with suspected CTS (male/female ratio of 0.69) was performed. Nerve conduction tests (NCT) defined 65 involved hands (CTS) and 73 control hands. The relationship between 3 different hand index ratios (measuring palm length and width) and CTS (defined by NCT) was evaluated using Generalized Estimating Equations model (GEE) with the binary outcome of CTS. Palmar Length/Palmar Width index had the strongest and negative association with CTS with greatest sensitivity and specificity to detect CTS. Hands with more square shape had increased tendency to be diagnosed with CTS. Hand indices that include the shape of the palm may help identify patients with greater likelihood of developing CTS for early screening and prevention.

  16. Directional depletion interactions in shaped particles

    Directory of Open Access Journals (Sweden)

    A. Scala


    Full Text Available Entropic forces in colloidal suspensions and in polymer-colloid systems are of long-standing and continuing interest. Experiments show how entropic forces can be used to control the self-assembly of colloidal particles. Significant advances in colloidal synthesis made in the past two decades have enabled the preparation of high quality nano-particles with well-controlled sizes, shapes, and compositions, indicating that such particles can be utilized as "artificial atoms" to build new materials. To elucidate the effects of the shape of particles upon the magnitude of entropic interaction, we analyse the entropic interactions of two cut-spheres. We show that the solvent induces a strong directional depletion attraction among flat faces of the cut-spheres. Such an effect highlights the possibility of using the shape of particles to control directionality and strength of interaction.

  17. New magnet pole shape for isochronous cyclotrons

    International Nuclear Information System (INIS)

    Thorn, C.E.; Chasman, C.; Baltz, A.J.


    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction

  18. Shape-Memory PVDF Exhibiting Switchable Piezoelectricity. (United States)

    Hoeher, Robin; Raidt, Thomas; Novak, Nikola; Katzenberg, Frank; Tiller, Joerg C


    In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%. Programming upon rolling induces the transformation from the nonelectroactive α-phase to the piezoelectric β-phase. The highest β-phase content is found to be 83% for a programming strain of 200% affording a d33 value of -30 pm V(-1). This is in good accordance with literature known values for piezoelectric properties. Thermal triggering this material does not only result in a shape change but also renders the material nonelectroactive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Shape and Size from the Mist

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg; Jørgensen, Thomas Martini; Gundu, Phanindra Narayan


    particles are behind or in front of the focus plane. In most applications only in-focus particles get analyzed, but this weakens the statistical basis and requires either particle sampling over longer time or results in uncertain predictions. We propose a new method for estimating the size and the shape...... with ground truth depth, shape and size information. The outcome of our approach is a reliable particle analysis obtained from shorter sampling time.......Process optimization often depends on the correct estimation of particle size, their shape and their concentration. In case of the backlight microscopic system, which we investigate here, particle images suffer from out-of-focus blur. This gives a bias towards overestimating the particle size when...

  20. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom


    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  1. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang


    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  2. Digital Modeling and Shaping of Design Practices

    DEFF Research Database (Denmark)

    Reijonen, Satu

    This paper focuses on the role of digital modeling in shaping coordinative practices between architects and energy engineers in construction design. The paper presents a case study of the use of an energy performance calculation programme, a numeric digital modeling tool, that not only enables...... coordination between the two communities but also shapes coordinative practices around the emerging building. The paper draws on two interlinked strands of literature that have engaged in the role of material artefacts in the social: the entanglement of technology in organizing and management (Orlikowski 2000......, 2010), and the socio-material constructivist studies of technology (Akrich 1992, Akrich et al. 2000, Latour 1991). The programme influences the coordinative practices in following ways: it shapes the modus of interaction between energy engineers and architects and enforces particular jurisdictional...

  3. Flaw shape reconstruction – an experimental approach

    Directory of Open Access Journals (Sweden)

    Marilena STANCULESCU


    Full Text Available Flaws can be classified as acceptable and unacceptable flaws. As a result of nondestructive testing, one takes de decision Admit/Reject regarding the tested product related to some acceptability criteria. In order to take the right decision, one should know the shape and the dimension of the flaw. On the other hand, the flaws considered to be acceptable, develop in time, such that they can become unacceptable. In this case, the knowledge of the shape and dimension of the flaw allows determining the product time life. For interior flaw shape reconstruction the best procedure is the use of difference static magnetic field. We have a stationary magnetic field problem, but we face the problem given by the nonlinear media. This paper presents the results of the experimental work for control specimen with and without flaw.

  4. Abnormal fetal head shape: aetiology and management

    DEFF Research Database (Denmark)

    Petersen, Olav Bjørn; David, Anna; Thomasson, Louise


    and define management pathways for fetuses with an abnormal skull shape. Methods: Our FMU databases were searched to ascertain all fetuses with an abnormal skull shape. Sonographic findings, diagnosis and outcome were reviewed. Results: Of the 370 cases identified, 31.6% were associated with spinabifida......Background: Abnormal head shape is an uncommon finding on prenatal ultrasound, often associated with breech presentation, spinabifida, aneuploidy or secondary to oligohydramnios or fetal position. Other aetiologies are rarer and may be more difficult to define. Objective: To determine the aetiology...... incidence of genetic syndromes, in the absence of a clear diagnosis, referral to a tertiary centre and genetic input is advised as detection of subtle sonographic features may aid diagnosis, allowing for targeted molecular analysis. An algorithm for management will be proposed....

  5. Rethinking Robot Vision - Combining Shape and Appearance

    Directory of Open Access Journals (Sweden)

    Matthias J. Schlemmer


    Full Text Available Equipping autonomous robots with vision sensors provides a multitude of advantages by simultaneously bringing up difficulties with regard to different illumination conditions. Furthermore, especially with service robots, the objects to be handled must somehow be learned for a later manipulation. In this paper we summarise work on combining two different vision sensors, namely a laser range scanner and a monocular colour camera, for shape-capturing, detecting and tracking of objects in cluttered scenes without the need of intermediate user interaction. The use of different sensor types provides the advantage of separating the shape and the appearance of the object and therefore overcome the problem with changing illumination conditions. We describe the framework and its components of visual shape-capturing, fast 3D object detection and robust tracking as well as examples that show the feasibility of this approach.

  6. Dielectric Polarization and Particle Shape Effects

    Directory of Open Access Journals (Sweden)

    Ari Sihvola


    Full Text Available This article reviews polarizability properties of particles and clusters. Especially the effect of surface geometry is given attention. The important parameter of normalized dipolarizability is studied as function of the permittivity and the shape of the surface of the particle. For nonsymmetric particles, the quantity under interest is the average of the three polarizability dyadic eigenvalues. The normalized polarizability, although different for different shapes, has certain universal characteristics independent of the inclusion form. The canonical shapes (sphere, spheroids, ellipsoids, regular polyhedra, circular cylinder, semisphere, double sphere are studied as well as the correlation of surface parameters with salient polarizability properties. These geometrical and surface parameters are essential in the material modeling problems in the nanoscale.

  7. Aging and the shape of the mandible. (United States)

    Pessa, Joel E; Slice, D E; Hanz, Kevin R; Broadbent, T H; Rohrich, Rod J


    The clinical observation has been made that the shape of the mandible changes with age in certain individuals. Because the shape and size of the mandible are so important to the human perception of youth, this observation was subjected to a pilot study. Longitudinal data available at the Bolton Brush Growth Study were evaluated. Only dentate individuals were included in the study. Serial frontal radiographs were analyzed from the same individual taken during youth and maturity for 16 individuals, eight female subjects and eight male subjects (n = 16). The mean age for youth was 16.2 years for female and male subjects. The mean age at maturity was 56.1 years for female subjects and 56.4 years for male subjects. Tracings were made of the mandibular border for each individual, at youth and at maturity. The only reliable way to analyze shape is the modern technique of geometric morphometric analysis, which was therefore used in this study. Other techniques, such as angular values and two-dimensional linear measurements, were dismissed because they have been shown to be unreliable for evaluating shape. There was a statistically significant difference in shape for both male subjects and female subjects that occurred with age (p = 0.02 for female subjects and p = 0.001 for male subjects). The mandible continued to grow: the shape changed because some areas continued to grow faster than other areas. This is in accordance with the principle of differential growth of the facial skeleton. It is important for the cosmetic surgeon to evaluate the lower face before surgery and to understand that both bone and soft tissue can play a role in the appearance of the lower face in older individuals. A small lower face is highly attractive and conveys the impression of youth, and any soft-tissue procedure that can create the illusion of a diminutive lower face will improve the cosmetic result of the face lift procedure.

  8. A mathematical approach to human pterygium shape

    Directory of Open Access Journals (Sweden)

    Pajic B


    Full Text Available Bojan Pajic,1–4 Iraklis Vastardis,1 Predrag Rajkovic,5 Brigitte Pajic-Eggspuehler,1 Daniel M Aebersold,6 Zeljka Cvejic2 1Eye Clinic ORASIS, Swiss Eye Research Foundation, Reinach AG, Switzerland; 2Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad,3Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia; 4Division of Ophthalmology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; 5Department of Mathematics, Faculty of Mechanical Engineering, University of Niš, Niš, Serbia; 6Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland Purpose: Pterygium is a common lesion affecting the population in countries with high levels of ultraviolet exposure. The final shape of a pterygium is the result of a growth pattern, which remains poorly understood. This manuscript provides a mathematical analysis as a tool to determine the shape of human pterygia.Materials and methods: Eighteen patients, all affected by nasal unilateral pterygia, were randomly selected from our patient database independently of sex, origin, or race. We included all primary or recurrent pterygia with signs of proliferation, dry eye, and induction of astigmatism. Pseudopterygia were excluded from this study. Pterygia were outlined and analyzed mathematically using a Cartesian coordinate system with two axes (X, Y and five accurate landmarks of the pterygium.Results: In 13 patients (72%, the shape of the pterygia was hyperbolic and in five patients (28%, the shape was rather elliptical.Conclusion: This analysis gives a highly accurate mathematical description of the shape of human pterygia. This might help to better assess the clinical results and outcome of the great variety of therapeutic approaches concerning these lesions. Keywords: etiology, pterygium, limbal stem cells, stem cells dysfunction, mathematical shape analysis

  9. Shape-controlled nanostructures in heterogeneous catalysis. (United States)

    Zaera, Francisco


    Nanotechnologies have provided new methods for the preparation of nanomaterials with well-defined sizes and shapes, and many of those procedures have been recently implemented for applications in heterogeneous catalysis. The control of nanoparticle shape in particular offers the promise of a better definition of catalytic activity and selectivity through the optimization of the structure of the catalytic active site. This extension of new nanoparticle synthetic procedures to catalysis is in its early stages, but has shown some promising leads already. Here, we survey the major issues associated with this nanotechnology-catalysis synergy. First, we discuss new possibilities associated with distinguishing between the effects originating from nanoparticle size versus those originating from nanoparticle shape. Next, we survey the information available to date on the use of well-shaped metal and non-metal nanoparticles as active phases to control the surface atom ensembles that define the catalytic site in different catalytic applications. We follow with a brief review of the use of well-defined porous materials for the control of the shape of the space around that catalytic site. A specific example is provided to illustrate how new selective catalysts based on shape-defined nanoparticles can be designed from first principles by using fundamental mechanistic information on the reaction of interest obtained from surface-science experiments and quantum-mechanics calculations. Finally, we conclude with some thoughts on the state of the field in terms of the advances already made, the future potentials, and the possible limitations to be overcome. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Developing of CIAE2170 pulse shape discriminator

    International Nuclear Information System (INIS)

    Shen Guanren; Wuru Gongsang; Zhou Zuying; Guo Li; Gao Weixiang; Ni Hefeng; Sun Gong


    The pulse shape discriminator is very important electronics for reducing γ rays background. The CIAE2170 pulse shape discriminator is developed and is applied to the experiments on neutron and fission physics and measurements of nuclear data for more than 1500 h. It's very stable and reliable, and continually worked for more than 200 h. The main performance is carefully tested and is in the lead in china and arrived at international advanced level. Specially, the temperature stability is less than 0.10 ns/degree C in 5-45 degree C range

  11. General method for designing wave shape transformers. (United States)

    Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu


    An effective method for designing wave shape transformers (WSTs) is investigated by adopting the coordinate transformation theory. Following this method, the devices employed to transform electromagnetic (EM) wave fronts from one style with arbitrary shape and size to another style, can be designed. To verify this method, three examples in 2D spaces are also presented. Compared with the methods proposed in other literatures, this method offers the general procedure in designing WSTs, and thus is of great importance for the potential and practical applications possessed by such kinds of devices.

  12. Energy Transfer of a Shaped Charge.

    Energy Technology Data Exchange (ETDEWEB)

    Milinazzo, Jared Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A cylinder of explosive with a hollow cavity on one and a detonator at the other is considered a hollow charge. When the explosive is detonated the detonation products form a localized intense force. If the hollow charge is placed near or in contact with a steel plate then the damage to the plate is greater than a solid cylinder of explosive even though there is a greater amount of explosive in the latter charge. The hollow cavity can take almost any geometrical shape with differing amounts of damage associated with each shape. This phenomenon is known in the United States as the Munroe effect.

  13. Shaping instructional communication competence of preservice teachers (United States)

    Tandyonomanu, D.; Mutiah; Setianingrum, V. M.


    This study aims to understand the process of shaping communication competence. Participants were pre-service teachers in the primary school education teacher who conducted teaching program internship program. Observations and interviews found that culture, experience, and education were the components that developed the communication competence within the instructional context. The former two components dominantly shape communication instructional competencies, whereas the latter contributes insignificantly. Education emphasizes on teacher’s pedagogy and professional competences. In the future, educational institutions for pre-service teachers could use this research results to Determine the process of developing communication competence.

  14. Locating irregularly shaped clusters of infection intensity

    DEFF Research Database (Denmark)

    Yiannakoulias, Niko; Wilson, Shona; Kariuki, H. Curtis


    . We employ a new method of finding irregularly-shaped spatial clusters at micro-geographical scales using both simulated and real data on Schistosoma mansoni and hookworm infection intensities. This method, which we refer to as the "greedy growth scan", is a modification of the spatial scan method...... of infection intensity identifies two small areas within the study region in which infection intensity is elevated, possibly due to local features of the physical or social environment. Collectively, our results show that the "greedy growth scan" is a suitable method for exploratory geographical analysis...... of infection intensity data when irregular shapes are suspected, especially at micro-geographical scales....

  15. Observation of shape effects in terbium orthoferrite

    International Nuclear Information System (INIS)

    Bouree, J.E.; Hammann, J.


    The low temperature magnetic properties of terbium orthoferrite have been studied by means of magnetization measurements performed on various samples between 1 K and 10 K. The curves obtained for the x and y crystallographic direction enable characteristic parameters of the Tb 3+ ions to be determined. Although these values are the same, measurements along the z axis clearly show up two kinds of samples with different behavior as a function of temperature. This discrepancy is accounted for by shape effects which arise from the possibility of domain wall motion. These shape effects are due to dipolar interactions and are consistent with the predictions of the theoretical phase diagram published previously [fr

  16. A fast charge integrating and shaping circuit

    International Nuclear Information System (INIS)

    Kulka, Z.; Szoncso, F.


    The development of a low cost fast charge integrating and shaping circuit (FCISC) was motivated by the need for an interface between the photomultipliers of an existing hadronic calorimeter and recently developed new readout electronics designed to match the output of small ionization chambers for the upgraded UA1 detector at the CERN proton-antiproton collider. This paper describes the design principles of gated and ungated charge integrating and shaping circuits. An FCISC prototype using discrete components was made and its properties were determined with a computerized test setup. Finally an SMD implementation of the FCISC is presented and the performance is reported. (orig.)

  17. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense


    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...... alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant...

  18. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J


    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  19. Shape and topology optimization of enzymatic microreactors

    DEFF Research Database (Denmark)

    Pereira Rosinha, Ines

    of extensive experimental work to find the best reactor configuration.Shape optimization has been applied to an YY-microreactor with a rectangular cross-section withthe intention to investigate the shape influence on the active mixing of substances and consequently in the reaction yield. The inlet...... with a selfprogrammedMATLAB® code. ANSYS CFX® performs the discretization of the microreactorinto finite volume elements and calculates the main reactor outputs. The MATLAB® routine performs the optimization by changing the geometry. Furthermore, it includes the evaluation of the objective function, the new definition...


    DEFF Research Database (Denmark)

    Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens


    for solving this problem is based on shape optimization and isogeometric analysis. One of the major di±culties we face to make these methods work together is the need to maintain a valid parametrization of the computational domain during the optimization. Our approach to generating a domain parametrization......We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...

  1. Shape recovery of viscoelastic beams after stowage

    DEFF Research Database (Denmark)

    Kwok, Kawai


    The deployment of viscoelastic structures that have been held stowed for a given time duration can be formulated as a viscoelastic boundary value problem in which the prescribed condition switches from constant displacement to constant traction. This paper presents closed-form expressions...... for the load relaxation and shape recovery of a linear viscoelastic beam subject to such time-varying constraints. It is shown that a viscoelastic beam recovers to its original shape asymptotically over time. The analytical solutions are employed to investigate the effect of temperature and stowage time...

  2. What shapes output of policy reform?

    DEFF Research Database (Denmark)

    Carlsen, Kirsten

    and personal benefits. Rather, the thesis shows how state actors decisions are shaped by a complex inter-relation of circumstances, interests and resources at play during the level of policy implementation. Thesis findings are based on collection and analysis of qualitative data collected from actors within...... and with a particular focus on the factors influencing reform output. The main message is that state actor decisions are central determinants for the ways in which reform output is shaped. It contests political economy theory by showing that these decisions are not only determined by state actors sole pursuit of power...

  3. On the shape of wedding cakes (United States)

    Krug, Joachim


    The large-scale morphology of a growing surface is characterized for a simple model of crystal growth in which interlayer transport is completely suppressed due to the Ehrlich-Schwoebel effect. In the limit where the ratio of the surface diffusion coefficient to the deposition rate D/F→∞ the surface consists of wedding-cake-like structures whose shape is given by the inverse of an error function. The shape can be viewed as a separable solution of the singular diffusion equation u 1=[ u -2 u x ] x . As an application, expressions for the number of exposed layers as a function of coverage and diffusion length are derived.

  4. Optical properties of graphene nanoflakes: Shape matters

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla Wettstein, Candela; Bonafé, Franco P.; Sánchez, Cristián G., E-mail: [Instituto de Investigaciones Fisicoquímicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (INFIQC - CONICET), Departamento de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Oviedo, M. Belén [Department of Chemical & Environmental Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 (United States)


    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  5. Shape component analysis: structure-preserving dimension reduction on biological shape spaces. (United States)

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge


    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  6. Two-way shape memory behavior of shape memory polyurethanes with a bias load

    International Nuclear Information System (INIS)

    Hong, Seok Jin; Yu, Woong-Ryeol; Youk, Ji Ho


    Thermo-responsive shape memory polyurethane (SMPU) is a smart material that can respond to external heat by changing its macroscopic shape from a temporary configuration to a memorized permanent one. The temporary shape can be processed using mechanical forces above a certain temperature (the transition temperature) and can be maintained until the material acquires a certain thermal energy. Thereafter, the material will recover its memorized permanent shape. However, it is unclear what will occur if the thermal energy is then dissipated, i.e., the material temperature decreases. There are two possibilities: the material will respond to the dissipated energy, resulting in another macroscopic shape change; or nothing will happen beyond the thermal contraction. The former is called two-way shape memory (TWSM) behavior and the latter is called one-way shape memory behavior. This paper reports novel findings showing that TWSM behavior can be imparted to SMPUs using a thermo-mechanical treatment, i.e., imposing a constant stress on them after their temporary shaping. A series of experiments were carried out to characterize the TWSM behavior of SMPUs and to explain its mechanism

  7. Shape recovery mechanism observed in single crystals of shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Sedlák, Petr; Landa, Michal


    Roč. 81, č. 6 (2008), s. 537-551 ISSN 0141-1594 Institutional research plan: CEZ:AV0Z20760514 Keywords : shape memory alloy s * shape recovery process * martensitic microstructure * non-classical boundaries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.201, year: 2008

  8. New pulse-shape analysis method with multi-shaping amplifiers

    CERN Document Server

    Sakai, H; Takenaka, Y; Mori, C; Iguchi, T


    A novel pulse-shape analysis method that uses similarity to recognize an individual pulse shape is presented in this paper. We obtain four pulse heights by using four linear amplifiers with different shaping time constants. We treat a combination of the four pulse heights as a pattern vector. A similarity of the pulse shape can be obtained by comparison between the pattern vector and a discriminant vector which was given in advance. Each pulse shape is analyzed by using the similarity. The method has been applied for the improvement of characteristics of a CdZnTe semiconductor detector. The characteristics of the energy spectrum of the CdZnTe detector such as the photopeak efficiency or the peak-to-valley ratio are improved after the correction procedure with the similarity.

  9. Fabrication of shape memory nanofibers by electrospinning method (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong


    Shape memory nanofibers are capable of fixing a temporary shape and recovering a permanent shape in response to stimulus. Nafion nanofibers with shape memory effect are achieved via electrospinning technology. The resulting nanofibres exhibit the smooth, continuous, uniform fibrous structure. The diameter of nanofibers increases after annealing progress at different temperatures. The shape memory effect is evaluated in a fixed force controlled tensile test. Electrospun Nafion nanofibers show excellent shape memory properties upon heat. The shape fixity rates and shape recovery rates are about 95-96% and 87-89% after consecutive three shape memory cycles, respectively. The structure of electrospun nanofibers is stable and reversible for at least three cycles of shape memory tests. These results indicate that shape memory Nafion nanofibers can be used in a wide potential application fields such as smart materials and structures in the future.

  10. The U-Shapes of Occupational Mobility

    DEFF Research Database (Denmark)

    Groes, Fane Naja; Kircher, Philipp; Manovskii, Iourii


    Using administrative panel data on the entire Danish population we document a new set of facts characterizing occupational mobility. For most occupations, mobility is U-shaped and directional: not only low but also high wage earners within an occupation have a particularly large probability...

  11. The U-Shapes of Occupational Mobility

    DEFF Research Database (Denmark)

    Groes, Fane; Kircher, Philipp; Manovskii, Iourii

    Using administrative panel data on the entire Danish population we document a new set of facts characterizing occupational mobility. For most occupations, mobility is U-shaped and directional: both low and high wage earners within an occupation have a particularly large probability of leaving...

  12. A shape dynamical approach to holographic renormalization

    International Nuclear Information System (INIS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee


    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)

  13. Grating image with desired shaped dots (United States)

    Honma, Hideaki; Toda, Toshiki; Takahashi, Susumu; Sawamura, Chikara; Iwata, Fujio


    A new type of Grating Image we dominate as `Sparklegram' is presented. The Sparklegram is characterized because it provides high quality and better design flexibility. These features are achieved by constructing it with shaped dots as desired. Each dot can be designed as an individual shape, for example, a star or a triangle. As dot shapes, we can use not only geometric patterns, but also some kind of symbols. Not only flexibility of each consists dot shape, but also the quality of reconstructed image is remarkably increased too. Because of these features, the constructed image with the new type of Grating Image, Sparklegram has high quality and high flexibility. It can be applied to security use, for example on credit-cards, tickets, etc., and also can be applied to the package of software products, CDs, videos and other kind of items requiring security. And with these features of flexibility and high quality, Sparklegram has also advantages to be applied to other use, for example amusement use, comics and game characters' goods and packages.

  14. Power corrections and event shapes at LEP

    CERN Document Server

    Sanders, Michiel P


    Measurements of event shape variables from hadronic events collected by the LEP experiments, corresponding to hadronic center of mass energies between 30 GeV and 202 GeV are presented. Fits are performed to extract a, and the effective infrared strong coupling o with the power correction ansatz. Universality is observed for the effective coupling and comparisons are made with fragmentation models.

  15. Some mechanisms governing shape changes in biological ...

    Indian Academy of Sciences (India)

    Yeast Pichia Pastoris. Mammalian. Normal Rat. Kidney. A confocal fluorescence image of a COS cell expressing an ER-localized protein. G. G. N. V. M. ER. G. N. L. M. ER. NE. Shape of most cellular organelles are highly conserved across species .... curvature Rc=11 at various adhesion strengths. Equilibrium splay angle ...

  16. Shape coexistence in light Xe-isotopes

    International Nuclear Information System (INIS)

    Gast, K.F.W.


    There are essentially four regions of problems which are discussed in the framework of this thesis. They can be entitled as follows: Backbending and the nature of the S-band, Nuclear softness and shape coexistence, the validity of the IBA-approximation, and the boson cutoff effect. (orig./HSI) [de

  17. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.


    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  18. What shapes output of policy reform?

    DEFF Research Database (Denmark)

    Carlsen, Kirsten

    This thesis deals with the factors shaping forest policy output during the stages implementation and bases its main message on empirical findings from the forestry sector in Ghana. Policy and institutional factors are important underlying causes for deforestation, especially in the tropics. Fores...

  19. Sexual dimorphism in human vertebral body shape.


    Taylor, J R; Twomey, L T


    This study demonstrates that the earlier growth spurt in vertebral height in females and the greater growth in vertebral transverse diameter in males, both give rise to sexual dimorphism in vertebral shape, female vertebral bodies being significantly more slender than male vertebral bodies from the age of 8 years onwards. The possible relationship of this difference to sex differences in scoliosis prevalence is discussed.

  20. Educational Alternatives As, and Shaping, Consumption (United States)

    Watley, George


    Compulsory education experiences are not commonly thought to shape future consumer behaviour, except for defining social and cultural differentiation. This article will illustrate how Caribbeans in Northamptonshire, England used compulsory education, even by antithesis, to thwart institutional and social views of Caribbean inferiority through…

  1. Shape and stability of a viscous thread

    DEFF Research Database (Denmark)

    Bohr, Tomas; Senchenko, Sergey


    When a viscous fluid, like oil or syrup, streams from a small orifice and falls freely under gravity, it forms a long slender thread, which can be maintained in a stable, stationary state with lengths up to several meters. We discuss the shape of such liquid threads and their surprising stability...

  2. Memorizing Shape to Orient Cell Division. (United States)

    Michel, Marcus; Dahmann, Christian


    A century ago, Oscar Hertwig discovered that cells orient their cleavage plane orthogonal to their long axis. Reporting recently in Nature, Bosveld et al. (2016) shed light on how, showing that NuMA/Mud localization at tricellular junctions provides mitotic cells with the memory of interphase shape used to orient cleavage plane. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. PICTORIAL INTERLUDES Flake-shaped rice bodies

    African Journals Online (AJOL)

    The bursa wall was thickened, with marked enhancement representing bursitis. At surgery, the bursa and numerous flake-shaped lesions were resected. The pathological appearances were consistent with rice bodies. The patient recovered well and, at one-year follow-up, no underlying disorder was identified. Discussion.

  4. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan


    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  5. Modelling shape distortions in composite products

    NARCIS (Netherlands)

    Lamers, E.A.D.; Wijskamp, Sebastiaan; Akkerman, Remko; Storen, A.


    Shape distortions often occur after the forming of woven fabric reinforced composite products. The thermomechanical behaviour of the product must be known in order to predict these product distortions. A two-step strategy is proposed to model the thermomechanical behaviour of a product. First, the

  6. Shape and Reinforcement Optimization of Underground Tunnels (United States)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  7. DNA nanotechnology: Bringing lipid bilayers into shape (United States)

    Howorka, Stefan


    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

  8. Climate history shapes contemporary leaf litter decomposition (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford


    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  9. Cell sorting using efficient light shaping approaches

    DEFF Research Database (Denmark)

    Banas, Andrew; Palima, Darwin; Villangca, Mark Jayson


    distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the catapulted cells. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading...

  10. A shape dynamical approach to holographic renormalization (United States)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee


    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  11. Some mechanisms governing shape changes in biological ...

    Indian Academy of Sciences (India)

    fluorescence image of a COS cell expressing an ER-localized protein. G. G. N. V. M. ER. G. N. L. M. ER. NE. Shape of most cellular organelles are highly conserved across species. A characteristic feature of eukaryotic cells is the variety of identifiable membrane bound organelles, distinguished by their unique morphology ...

  12. Shape from focus for large image fields

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Hamarová, Ivana


    Roč. 54, č. 33 (2015), s. 9747-9751 ISSN 1559-128X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : shape from focus * large image fields * optically rough surface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.598, year: 2015

  13. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Light pulse shapes from plastic scintillators

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.


    A detailed study of the light pulse shape from the binary NE 111 and the ternary Pilot U, Naton 136, KL 236, NE 102A, NE 104 and NE 110 plastic scintillators was performed by the single photon method using XP 1021 and C 31024 photomultipliers. The analysis of the shape of the light pulses determined experimentally for several samples of different dimensions gave the following conclusions. The original light pulse shape from the binary NE 111 scintillator, as measured with a 5 mm thick polished sample is described analytically by the convolution integral of a Gaussian and an exponential function. The Gaussian function may reflect a deexcitation of several higher levels of the solvent molecules excited by nuclear particles preceding an intermolecular energy transfer in the scintillator. It may introduce a rather important limitation of the speed of plastic scintillators as the standard deviation of the Gaussian function is equal to 0.2 ns. The light pulse shape from the ternary plastics is described by the convolution integral of a Gaussian and two exponential functions. The Gaussian function presents the rate of energy transfer from nuclear particles to the primary solute as in the binary plastics. The exponential functions describe the energy transfer from the primary solute to the wavelength shifter and the final emission of the light. (Auth.)

  15. Shape corrections for 3D EIT (United States)

    Paridis, Kyriakos; Lionheart, William R. B.


    Movement of the boundary in biomedical Electrical Impedance Tomography (EIT) has been always a source of error in image reconstruction. In the case of pulmonary EIT, where the patient's chest shape changes during respiration, this is inevitable, so it is essential to be able to correct for shape changes and consequently avoid artifacts. Assuming that the conductivity is isotropic, an assumption that is reasonable for lung tissue but admittedly violated for muscle, the boundary shape up to a Möbius transformation (conformal mapping) as well as the conductivity can theoretically be determined by 3D EIT data. While in two dimensions the space of conformal mappings are infinite dimensional, in the three dimensional case the Möbius transformations are given by a finite number of parameters. In this paper, we concentrate on the three dimensional case and take a linear approximation. We will give results of numerical studies analogous to the two dimensional work of Boyle et al on the effect of electrode movement and shape error in 3D EIT.

  16. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín


    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  17. A case of impaired shape integration

    DEFF Research Database (Denmark)

    Gerlach, Christian; Marstrand, Lisbet; Habekost, Thomas


    We describe a patient, HE, who was left with a remarkably selective deficit in intermediate vision following an infarct in the right occipito-temporal region. Thus, HE was able to group elements by colour and proximity but impaired in grouping based on similarity in shape. This finding supports...

  18. Shape coexistence in the platinum isotopes

    Czech Academy of Sciences Publication Activity Database

    Thiamová, Gabriela; Van Isacker, P.


    Roč. 64, č. 1 (2001), s. 23-25 ISSN 0031-8949 Institutional research plan: CEZ:AV0Z1048901 Keywords : shape coexistence * Pt * IBA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.663, year: 1999


    NARCIS (Netherlands)


    This paper presents a numerical study of the time evolution of Marangoni convection in two V-shaped containers involved in the microgravity experiments reported in Hoefsloot et al.[7]. First the case of the triangular container with a plane gas/liquid interface is considered, next the container

  20. Study of event shape variables at LEP

    CERN Document Server

    Sarkar, Subir


    We present the LEP results on the study of the hadronic event shape variables. Excellent detector performance and improved theoretical calculations make it possible to study quantum chromodynamics with small experimental and theoretical uncertainties. QCD predictions describe data well at energies above the Z peak.

  1. Shape parameters measurement of ultralight mirrors

    Czech Academy of Sciences Publication Activity Database

    Pech, Miroslav; Mandát, Dušan; Hrabovský, Miroslav; Palatka, Miroslav; Schovánek, Petr


    Roč. 121, č. 20 (2010), s. 1881-1884 ISSN 0030-4026 R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : Hartmann test * roughness * scattering * BRDF * mirror shape Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.454, year: 2010

  2. Gaussian shaping filter for nuclear spectrometry

    International Nuclear Information System (INIS)

    Menezes, A.S.C. de.


    A theorical study of a gaussian shaping filter, using Pade approximation, for using in gamma spectroscopy is presented. This approximation has proved superior to the classical cascade RC integrators approximation in therms of signal-to-noise ratio and pulse simmetry. An experimental filter was designed, simulated in computer, constructed, and tested in the laboratory. (author) [pt

  3. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E


    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  4. The pace and shape of ageing

    DEFF Research Database (Denmark)

    Baudisch, Annette


    exhibits negligible ageing - contrary to the commonly held view that long-lived species are good candidates for negligible ageing. 5.Analysis of species in pace-shape space provides a tool to identify key determinants of the evolution of ageing for species across the tree of life....

  5. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Listening to the Shape of a Drum. 1. The Mathematics of Vibrating Drums. S Kesavan is with the. Institute of. Mathematical Sciences,. Chennai and has spent two decades at the. Bangalore centre of. TIFR. His areas of interest are partial differential equations. S Kesavan. A drum vibrates at distinct frequencies. These fre-.

  6. Listening to the Shape of a Drum

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Listening to the Shape of a Drum - The Mathematics of Vibrating Drums. S Kesavan. General Article Volume 3 Issue 9 September 1998 pp 26-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. The Destinee Project: Shaping Meaning through Narratives (United States)

    Thorne, Michelle Moore


    Using narrative method in the form of journaling has the power to shape identity and relationships between teachers and students. This article reflects on such journaling and the process of writing poetry to create a space of understanding between two very different people who found themselves in the relationship of teacher and student. "The…

  8. Shape rheocasting of high purity aluminium

    CSIR Research Space (South Africa)

    Curle, UA


    Full Text Available It is demonstrated experimentally that using the Council for Scientific and Industrial Research Rheo Casting System and high pressure die casting it is possible to semi-solid process and cast into a shape high purity aluminium without a...

  9. Seed shape quantification in the order Cucurbitales

    Directory of Open Access Journals (Sweden)

    Emilio Cervantes


    Full Text Available Seed shape quantification in diverse species of the families belonging to the order Cucurbitales is done based on the comparison of seed images with geometric figures. Quantification of seed shape is a useful tool in plant description for phenotypic characterization and taxonomic analysis. J index gives the percent of similarity of the image of a seed with a geometric figure and it is useful in taxonomy for the study of relationships between plant groups. Geometric figures used as models in the Cucurbitales are the ovoid, two ellipses with different x/y ratios and the outline of the Fibonacci spiral. The images of seeds have been compared with these figures and values of J index obtained. The results obtained for 29 species in the family Cucurbitaceae support a relationship between seed shape and species ecology. Simple seed shape, with images resembling simple geometric figures like the ovoid, ellipse or the Fibonacci spiral, may be a feature in the basal clades of taxonomic groups.

  10. Delving Deeper: Transforming Shapes Physically and Analytically (United States)

    Rathouz, Margaret; Novak, Christopher; Clifford, John


    Constructing formulas "from scratch" for calculating geometric measurements of shapes--for example, the area of a triangle--involves reasoning deductively and drawing connections between different methods (Usnick, Lamphere, and Bright 1992). Visual and manipulative models also play a role in helping students understand the underlying…

  11. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.


    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  12. Natural Erosion of Sandstone as Shape Optimisation. (United States)

    Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan


    Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.

  13. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.


    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  14. How Synthetic Experience Shapes Social Reality. (United States)

    Funkhouser, G. Ray; Shaw, Eugene F.


    Explores how motion pictures, television, and computers manipulate and rearrange the content and processes of communicated experience, thereby shaping how the audience perceives and interprets the physical and social reality depicted. Suggests that these media are fourth removed from reality (behind the Platonic Ideal, the actual, and art and…

  15. Functional 2D Procrustes Shape Analysis

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve sh...

  16. Wavelength-independent laser beam shaping

    CSIR Research Space (South Africa)

    Degama, MP


    Full Text Available This paper presents a beam shaping device namely, a Diffractive Optical Element (DOE), which is used to change a beam having a Gaussian intensity profile into a beam with a uniform intensity profile. The DOE used in this work was fabricated from ZnSe...

  17. Experiments on shape perception in stereoscopic displays (United States)

    Leroy, Laure; Fuchs, Philippe; Paljic, Alexis; Moreau, Guillaume


    Stereoscopic displays are increasingly used for computer-aided design. The aim is to make virtual prototypes to avoid building real ones, so that time, money and raw materials are saved. But do we really know whether virtual displays render the objects in a realistic way to potential users? In this study, we have performed several experiments in which we compare two virtual shapes to their equivalent in the real world, each of these aiming at a specific issue by a comparison: First, we performed some perception tests to evaluate the importance of head tracking to evaluate if it is better to concentrate our efforts on stereoscopic vision; Second, we have studied the effects of interpupillary distance; Third, we studied the effects of the position of the main object in comparison with the screen. Two different tests are used, the first one using a well-known shape (a sphere) and the second one using an irregular shape but with almost the same colour and dimension. These two tests allow us to determine if symmetry is important in their perception. We show that head tracking has a more important effect on shape perception than stereoscopic vision, especially on depth perception because the subject is able to move around the scene. The study also shows that an object between the subject and the screen is perceived better than an object which is on the screen, even if the latter is better for the eye strain.

  18. Shape Memory Alloys (Part I: Significant Properties

    Directory of Open Access Journals (Sweden)

    I. Ivanic


    Full Text Available Shape memory alloys (SMAs belong to a group of functional materials with the unique property of “remembering” the shape they had before pseudoplastic deformation. Such an effect is based on crystallographic reversible thermo-elastic martensitic transformation. There are two crystal phases in SMAs: the austenite phase (stable at high temperature and the martensite phase (stable at low temperature. Austenite to martensite phase transformation can be obtained by mechanical (loading and thermal methods (heating and cooling. During martensitic transformation, no diffusive process is involved, only inelastic deformation of the crystal structure. When the shape memory alloy passes through the phase transformation, the alloy transforms from high ordered phase (austenite to low ordered phase (martensite. There are two types of martensite transformations. First is temperature-induced martensite, which is also called self-accommodating (twinned martensite. The second is stress-induced martensite, also called detwinned martensite. The entire austenite to martensite transformation cycle can be described with four characteristic temperatures: Ms – martensite start temperature, Mf – martensite finish temperature, As – austenite start temperature, and Af – austenite finish temperature. The main factors influencing transformation temperatures are chemical composition, heat treatment procedure, cooling speed, grain size, and number of transformation cycles. As a result of martensitic transformation in SMAs, several thermomechanical phenomena may occur: pseudoelasticity, shape memory effect (one-way and two-way SME and rubber-like behavior. Pseudoelasticity occurs when the SMA is subjected to a mechanical loading at a constant temperature above Af. The second thermomechanical behaviour that can be observed in SMA is the shape memory effect (SME, mainly one-way SME, which is the most commonly used SME. When the sample is subjected to a mechanical

  19. Review of new shapes for higher gradients

    International Nuclear Information System (INIS)

    Geng, R.L.


    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration

  20. Fast and robust shape diameter function. (United States)

    Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe


    The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.

  1. Scanning freeform objects by combining shape from silhouette and shape from line structured light (United States)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming


    Freeform shape is usually designed by reverse engineering method thorough a 3D scanner, which is often expensive to most persons. The paper proposes a new scanning system combining shape from structured light and shape from silhouette, which can be implemented easily with low cost. The two methods are very complementary. For shape from silhouette, it can capture correct topological information of the object and obtain a closed envelop, and for shape from hand-held laser line, precise point clouds with some holes can be obtained. To gain their complementary advantages, a new data fusion strategy based a mesh energy functional is proposed to integrate the information from the two scanning methods, in which the points resulted from laser light will attract closed envelop from silhouette. After fusion, the precision of shape from silhouette is increased, and the topological error of shape from structured light is corrected. The design details are introduced, and a toy model is used to test the new method, which is difficult to scan using other systems. The test results proof the validity of the new method.

  2. The time course of activation of object shape and shape+colour representations during memory retrieval. (United States)

    Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G


    Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  3. The time course of activation of object shape and shape+colour representations during memory retrieval.

    Directory of Open Access Journals (Sweden)

    Toby J Lloyd-Jones

    Full Text Available Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP study. The main findings were as follows: (1 we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2 we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3 these findings were apparent across both familiar (i.e., correctly coloured - yellow banana and novel (i.e., incorrectly coloured - blue strawberry objects; and (4 neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  4. Shape matters: the effect of red blood cell shape on perfusion of an artificial microvascular network. (United States)

    Piety, Nathaniel Z; Reinhart, Walter H; Pourreau, Patrick H; Abidi, Rajaa; Shevkoplyas, Sergey S


    The shape of human red blood cells (RBCs) deteriorates progressively throughout hypothermic storage, with echinocytosis being the most prevalent pathway of this morphologic lesion. As a result, each unit of stored blood contains a heterogeneous mixture of cells in various stages of echinocytosis and normal discocytes. Here we studied how the change in shape of RBCs following along the path of the echinocytic transformation affects perfusion of an artificial microvascular network (AMVN). Blood samples were obtained from healthy consenting volunteers. RBCs were leukoreduced, resuspended in saline, and treated with various concentrations of sodium salicylate to induce shape changes approximating the stages of echinocytosis experienced by RBCs during hypothermic storage (e.g., discocyte, echinocyte I, echinocyte II, echinocyte III, spheroechinocyte, and spherocyte). The AMVN perfusion rate was measured for 40% hematocrit suspensions of RBCs with different shapes. The AMVN perfusion rates for RBCs with discocyte and echinocyte I shapes were similar, but there was a significant decline in the AMVN perfusion rate between RBCs with shapes approximating each subsequent stage of echinocytosis. The difference in AMVN perfusion between discocytes and spherocytes (the last stage of the echinocytic transformation) was 34%. The change in shape of RBCs from normal discocytes progressively through various stages of echinocytosis to spherocytes produced a substantial decline in the ability of these cells to perfuse an AMVN. Echinocytosis induced by hypothermic storage could therefore be responsible for a similarly substantial impairment of deformability previously observed for stored RBCs. © 2015 AABB.

  5. Modeling Self-Occlusions/Disocclusions in Dynamic Shape and Appearance Tracking for Obtaining Precise Shape

    KAUST Repository

    Yang, Yanchao


    We present a method to determine the precise shape of a dynamic object from video. This problem is fundamental to computer vision, and has a number of applications, for example, 3D video/cinema post-production, activity recognition and augmented reality. Current tracking algorithms that determine precise shape can be roughly divided into two categories: 1) Global statistics partitioning methods, where the shape of the object is determined by discriminating global image statistics, and 2) Joint shape and appearance matching methods, where a template of the object from the previous frame is matched to the next image. The former is limited in cases of complex object appearance and cluttered background, where global statistics cannot distinguish between the object and background. The latter is able to cope with complex appearance and a cluttered background, but is limited in cases of camera viewpoint change and object articulation, which induce self-occlusions and self-disocclusions of the object of interest. The purpose of this thesis is to model self-occlusion/disocclusion phenomena in a joint shape and appearance tracking framework. We derive a non-linear dynamic model of the object shape and appearance taking into account occlusion phenomena, which is then used to infer self-occlusions/disocclusions, shape and appearance of the object in a variational optimization framework. To ensure robustness to other unmodeled phenomena that are present in real-video sequences, the Kalman filter is used for appearance updating. Experiments show that our method, which incorporates the modeling of self-occlusion/disocclusion, increases the accuracy of shape estimation in situations of viewpoint change and articulation, and out-performs current state-of-the-art methods for shape tracking.

  6. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  7. Shape forming of ceramics via gelcasting of aqueous particulate ...

    Indian Academy of Sciences (India)


    sions are cast to form net shape porous ceramic shapes. The present study attempts to highlight the use of gel- casting in forming simple and complex dense ceramic components with a wide range of shapes and sizes. The process has great potential in fabrication of net shaped highly porous ceramics as demonstrated in ...

  8. Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

    CERN Multimedia

    Guttormsen, M S; Reiter, P; Larsen, A; Korten, W; Clement, E; Siem, S; Renstrom, T; Buerger, A; Jenkins, D G

    We propose to investigate nuclear shapes and shape coexistence in neutron-deficient rare earth nuclei below the N=82 shell closure at the ISOLDE facility by employing Coulomb excitation of Nd, Sm, Gd, and Dy beams from the REX accelerator and the Miniball experiment. Nuclear shapes are expected to change rapidly in this region of the nuclear chart. The measurement of electric quadrupole moments of excited states and the transition rates between them serves as a stringent test of theoretical models and effective nucleon-nucleon interactions.

  9. Near Net Shape Fabrication Technology for Shape Memory Alloy Components Project (United States)

    National Aeronautics and Space Administration — This STTR Phase I effort proposes to develop an innovative, affordable processing route for larger-sized shape memory alloy (SMA) components. Despite significant...

  10. Transparency windows of the plasmonic nanostructure composed of C-shaped and U-shaped resonators (United States)

    Zhou, Xin; Ouyang, Min; Tang, Bin; Wang, Zhibing; He, Jun


    We in this study investigated numerically the plasmon-induced transparency (PIT) effect on the plasmonic nanostructures composed of C-shaped and U-shaped resonators by using finite difference time domain (FDTD) method. The PIT effect in the nanosystem stemmed from the near field coupling between the bright and dark modes. The nanostructure composed of three resonators exhibited double PIT effect. And the PIT spectral response of the proposed nanostructures was demonstrated having a dependence on the parameters of the compound plasmonic system such as the widths of C-shaped resonator and U-shaped resonator, the resonators spatial arrangement and the edge-to-edge distance between the adjacent resonators. The electric and magnetic field distributions of certain resonance wavelengths were also given to discuss the underlying physics. The resonator design strategy opens up a rich pathway to develop the building block of systems for all optical switching, plasmonic sensing applications.

  11. Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central sulcus shape

    DEFF Research Database (Denmark)

    Le Goualher, G; Argenti, A.M.; Duyme, M


    Principal Component Analysis allows a quantitative description of shape variability with a restricted number of parameters (or modes) which can be used to quantify the difference between two shapes through the computation of a modal distance. A statistical test can then be applied to this set...... of measurements in order to detect a statistically significant difference between two groups. We have applied this methodology to highlight evidence of genetic encoding of the shape of neuroanatomical structures. To investigate genetic constraint, we studied if shapes were more similar within 10 pairs...... of monozygotic twins than within interpairs and compared the results with those obtained from 10 pairs of dizygotic twins. The statistical analysis was performed using a Mantel permutation test. We show, using simulations, that this statistical test applied on modal distances can detect a possible genetic...

  12. Near Net Shape Fabrication Technology for Shape Memory Alloy Components, Phase I (United States)

    National Aeronautics and Space Administration — This STTR Phase I effort proposes to develop an innovative, affordable processing route for larger-sized shape memory alloy (SMA) components. Despite significant...

  13. Polymorphic Ring-Shaped Molecular Clusters Made of Shape-Variable Building Blocks

    Directory of Open Access Journals (Sweden)

    Keitel Cervantes-Salguero


    Full Text Available Self-assembling molecular building blocks able to dynamically change their shapes, is a concept that would offer a route to reconfigurable systems. Although simulation studies predict novel properties useful for applications in diverse fields, such kinds of building blocks, have not been implemented thus far with molecules. Here, we report shape-variable building blocks fabricated by DNA self-assembly. Blocks are movable enough to undergo shape transitions along geometrical ranges. Blocks connect to each other and assemble into polymorphic ring-shaped clusters via the stacking of DNA blunt-ends. Reconfiguration of the polymorphic clusters is achieved by the surface diffusion on mica substrate in response to a monovalent salt concentration. This work could inspire novel reconfigurable self-assembling systems for applications in molecular robotics.

  14. GPC light shaping a supercontinuum source

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Bañas, Andrew Rafael; Villangca, Mark Jayson


    Generalized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain...... both projection length scale and high efficiency over a range [0.75λ0; 1.5λ0] with λ0 as the characteristic design wavelength. With this performance across multiple wavelengths and the recent availability of tabletop supercontinuum lasers, GPC light shaping opens the possibility for creatively...... incorporating various multi-wavelength approaches into spatially shaped excitations that can enable new broadband light applications. We verify this new approach using a supercontinuum light source, interfaced with a compact GPC light shaper. Our experiments give ~70% efficiency, ~3x intensity gain, and ~85...

  15. Design of shape memory alloy (SMA) actuators

    CERN Document Server

    Rao, Ashwin; Reddy, J N


    This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for different applications. The solid-solid, diffusionless phase transformations in thermally responsive SMA allows them to demonstrate unique characteristics like superelasticity and shape memory effects. The combined sensing and actuating capabilities of such materials allows them to provide a system level response by combining multiple functions in a single material system. In SMA, the combined mechanical and thermal loading effects influence the functionality of such materials. The aim of this book is to make the analysis of these materials accessible to designers by developing a "strength of materials" approach to the analysis and design of such SMA components inspired from their various applications with a review of various factors influencing the design process for such materials.

  16. Critical state in disk-shaped superconductors (United States)

    Däumling, M.; Larbalestier, D. C.


    We have calculated the magnetic fields and currents occurring in a disk-shaped superconductor (radius >>thickness) in the critical state in a self-consistent way using finite-element analysis. We find that the field shielded (or trapped) in the center of the disk is roughly equal to Jcd, where d is the thickness of the disk. The shielding currents also create radial fields which are or order Jcd/2 on the disk surface. For low applied fields Happltelsa applied field. The field dependence of the calculated magnetic moment in the self-field dominated regime is independent of whether Jc is weakly or strongly (~1/H) dependent on field. The calculations were validated by comparison to both magnetic and resistive measurements on a disk-shaped section in Nb3Sn tape.

  17. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J


    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  18. Improving the efficiency of aerodynamic shape optimization (United States)

    Burgreen, Greg W.; Baysal, Oktay; Eleshaky, Mohamed E.


    The computational efficiency of an aerodynamic shape optimization procedure that is based on discrete sensitivity analysis is increased through the implementation of two improvements. The first improvement involves replacing a grid-point-based approach for surface representation with a Bezier-Bernstein polynomial parameterization of the surface. Explicit analytical expressions for the grid sensitivity terms are developed for both approaches. The second improvement proposes the use of Newton's method in lieu of an alternating direction implicit methodology to calculate the highly converged flow solutions that are required to compute the sensitivity coefficients. The modified design procedure is demonstrated by optimizing the shape of an internal-external nozzle configuration. Practically identical optimization results are obtained that are independent of the method used to represent the surface. A substantial factor of 8 decrease in computational time for the optimization process is achieved by implementing both of the design procedure improvements.

  19. Shaping 3D Root System Architecture. (United States)

    Morris, Emily C; Griffiths, Marcus; Golebiowska, Agata; Mairhofer, Stefan; Burr-Hersey, Jasmine; Goh, Tatsuaki; von Wangenheim, Daniel; Atkinson, Brian; Sturrock, Craig J; Lynch, Jonathan P; Vissenberg, Kris; Ritz, Karl; Wells, Darren M; Mooney, Sacha J; Bennett, Malcolm J


    Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds - gravity and light - direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a 'custom-made' 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of fibril shape on adhesive properties (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom


    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  1. Star-shaped oscillations of Leidenfrost drops (United States)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.


    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  2. On Optimal Shapes in Materials and Structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli


    In the micromechanics design of materials, as well as in the design of structural connections, the boundary shape plays an important role. The objective may be the stiffest design, the strongest design or just a design of uniform energy density along the shape. In an energy formulation it is proven...... that these three objectives have the same solution, at least within the limits of geometrical constraints, including the parametrization. Without involving stress/strain fields, the proof holds for 3D-problems, for power-law nonlinear elasticity and for anisotropic elasticity. To clarify the importance...... of parametrization, the problem of material/hole design for maximum bulk modulus is analysed. A simple optimality criterion is derived and with a simple superelliptic parametrization, agreement with Hashin-Shtrikman bounds are found. More general examples including nonequal principal strains, nonlinear elasticity...

  3. Examination of shaped charge liner shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.J.; Moore, T.W.; Lee, C.G.; Breithaupt, R.; Avara, G.R.


    A series of experiments was conducted for the purpose of achieving a more fundamental understanding of the shaped charge liner shock loading environment. The test configuration, representing the middle portion of a shaped charge, consists of a 50 mm deep, 100 mm tall, and 2 mm thick copper plate driven by 50 mm deep, 100 mm tall, tapered thickness wedge of LX-14. An electrically driven 50 mm square flyer is used to surface initiate the base of the LX-14 causing a plane detonation wave to propagate into the explosive wedge along the liner surface. Fabry-Perot laser velocimetry measures the particle velocity time history of the plate. The CTH and DYNA2D hydrocodes are used to simulate the experiments. Calculations of the velocity profiles are compared to the experimental results. The effects of mesh density, copper material failure and strength models, and explosive detonation models are discussed.

  4. Shape and the first hundred nouns. (United States)

    Gershkoff-Stowe, Lisa; Smith, Linda B


    This paper reports evidence from a longitudinal study in which children's attention to shape in a laboratory task of artificial noun learning was correlated with a rate shift in noun acquisitions. Eight children were tested in the laboratory at 3-week intervals beginning when they had less than 25 nouns in their productive vocabulary (M age=17 months). Children were presented with a novel word generalization task at each session. Additionally, the study examined the kinds of words the children learned early, based on parent reports, and the statistical regularities inherent in those vocabularies. The results indicate that as children learned nouns, they also learned to attend to shape in the novel word task. At the same time, children showed an acceleration in new noun production outside of the laboratory. Copyright 2004 Society for Research in Child Development, Inc.

  5. Fission processes through compact and creviced shapes

    International Nuclear Information System (INIS)

    Royer, G.; Remaud, B.


    Using a one-parameter family of compact and creviced shapes the deformation energy of the liquid-drop model including the nuclear proximity energy has been calculated. The introduction of the proximity forces on such a shape sequence leads to the identification of fission and scission barriers since the rupture of the neck between the fragments is assumed before the barrier is crossed. The fission barrier heights are well reproduced and are much lower than those given by the liquid-drop model (without proximity) for the medium systems. It is shown that these low barriers are compatible with a strong enhancement of the critical angular momentum for cold fission. The translational kinetic energy of the fragments agrees with experimental data. Double-humped barriers are predicted for actinides; the inner barrier has essentially a microscopic origin while the outer one (which plays the role of a scission barrier) is governed mostly by the balance between Coulomb and nuclear forces. (author)

  6. Lower hybrid current drive in shaped tokamaks

    International Nuclear Information System (INIS)

    Kesner, J.


    A time dependent lower hybrid current drive tokamak simulation code has been developed. This code combines the BALDUR tokamak simulation code and the Bonoli/Englade lower hybrid current drive code and permits the study of the interaction of lower hybrid current drive with neutral beam heating in shaped cross-section plasmas. The code is time dependent and includes the beam driven and bootstrap currents in addition to the current driven by the lower hybrid system. Examples of simulations are shown for the PBX-M experiment which include the effect of cross section shaping on current drive, ballooning mode stabilization by current profile control and sawtooth stabilization. A critical question in current drive calculations is the radial transport of the energetic electrons. The authors have developed a response function technique to calculate radial transport in the presence of an electric field. The consequences of the combined influences of radial diffusion and electric field acceleration are discussed

  7. Exemplar Based Recognition of Visual Shapes

    DEFF Research Database (Denmark)

    Olsen, Søren I.


    This paper presents an approach of visual shape recognition based on exemplars of attributed keypoints. Training is performed by storing exemplars of keypoints detected in labeled training images. Recognition is made by keypoint matching and voting according to the labels for the matched keypoint....... The matching is insensitive to rotations, limited scalings and small deformations. The recognition is robust to noise, background clutter and partial occlusion. Recognition is possible from few training images and improve with the number of training images.......This paper presents an approach of visual shape recognition based on exemplars of attributed keypoints. Training is performed by storing exemplars of keypoints detected in labeled training images. Recognition is made by keypoint matching and voting according to the labels for the matched keypoints...

  8. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro


    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  9. Crystal shapes on striped surface domains

    International Nuclear Information System (INIS)

    Valencia, Antoni


    The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain

  10. Solving the shape conundrum in $^{70}$Se

    CERN Multimedia

    We propose a multi-step Coulomb-excitation study of $^{70}$Se at HIE-ISOLDE using the $^{208}$Pb( $^{70}$Se, $^{70}$Se*)$^{208}$Pb* reaction at a safe energy of 5.0 MeV/u. We aim at a precise measurement of the $\\left \\langle 2^{+}_{1} \\hspace{0.1cm} || \\hspace{0.1cm}\\hat{E}2 \\hspace{0.1cm} || \\hspace{0.1cm}2^{+}_{ 1} \\right \\rangle$ diagonal matrix element as well as gaining information on additional matrix elements. Such information will shed light onto the shape conundrum of the 2$^{+}_{1}$ state in $^{70}$Se as well as foreseeing the opportunity for a more detailed understanding of the shape-coexistence phenomenon in this region.

  11. Reforming Shapes for Material-aware Fabrication

    KAUST Repository

    Yang, Yongliang


    © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. As humans, we regularly associate shape of an object with its built material. In the context of geometric modeling, however, this inter-relation between form and material is rarely explored. In this work, we propose a novel data-driven reforming (i.e.; reshaping) algorithm that adapts an input multi-component model for a target fabrication material. The algorithm adapts both the part geometry and the inter-part topology of the input shape to better align with material-aware fabrication requirements. As output, we produce the reshaped model along with respective part dimensions and inter-part junction specifications. We evaluate our algorithm on a range of man-made models and demonstrate a variety of model reshaping examples focusing only on metal and wooden materials.

  12. Shape Grammars for Innovative Hybrid Typological Design

    DEFF Research Database (Denmark)

    Al-kazzaz, Dhuha; Bridges, Alan; Chase, Scott Curland


    This paper describes a new methodology of deriving innovative hybrid designs using shape grammars of heterogeneous designs. The method is detailed within three phases of shape grammars: analysis, synthesis and evaluation. In the analysis phase, the research suggests that original rules of each...... design component are grouped in subclass rule sets to facilitate rule choices. Additionally, adding new hybrid rules to original rules expands the options available to the grammar user. In the synthesis phase, the research adopts state labels and markers to drive the design generation. The former...... is implemented with a user guide grammar to ensure hybridity in the generated design, while the latter aims to ensure feasible designs. Lastly evaluation criteria are added to measure the degree of innovation of the hybrid designs. This paper describes the derivation of hybrid minaret designs from a corpus...

  13. The Shaped Charge Concept. Part 2. The History of Shaped Charges (United States)


    the hollow cavity effect and the lined shaped charge effect, Also, M. Neumann (1911) and E. Neumann (1914) (who ame often confused in the literature ...large Gennan holov charge called the " MISTERIE ?" (This is undoubtedl) the MISTEL which evo ved fhom the Beethoven charge discussed earlier). From the...references, with informative abstracts, to all pertinent literature found in books, periodicals, and reports on the subject of shaped charges, particularly

  14. 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints (United States)

    Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent


    The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.

  15. A Developmental Difference in Shape Processing and Word-Shape Associations between 4 and 6.5 Year Olds

    Directory of Open Access Journals (Sweden)

    Bart Ons


    Full Text Available In distinguishing individual shapes (defined by their contours, older children (6.5 years of age on average performed better than younger children (4 years of age on average, and, although the task did not involve any categorization or generalization, the error pattern was qualitatively affected by shape differences that are generally common distinctions between objects belonging to different categories. The influence of these shape differences was also observed for unfamiliar shapes, demonstrating that the influence of categorization experience was not modulated by the retrieval of shape features from known categories but rather related to a different perception of shape by age. The results suggest a direct influence of categorization experience on more abstract shape processing. When children were distinguishing shapes, new words were paired with the target shapes, and in 2 additional tasks, the acquired name–shape associations were tested. The younger age group was able to remember more words correctly.

  16. Shape of the growing front of biofilms (United States)

    Wang, Xin; Stone, Howard A.; Golestanian, Ramin


    The spatial organization of bacteria in dense biofilms is key to their collective behaviour, and understanding it will be important for medical and technological applications. Here we study the morphology of a compact biofilm that undergoes unidirectional growth, and determine the condition for the stability of the growing interface as a function of the nutrient concentration and mechanical tension. Our study suggests that transient behaviour may play an important role in shaping the structure of a biofilm.

  17. Improved peak shape fitting in alpha spectra




    Peak overlap is a recurrent issue ina lpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown...

  18. Genetic algorithm simulation for line shape spectroscopy

    International Nuclear Information System (INIS)

    Sun Ping; Pan Chuanhong; Cui Zhengying; Ding Xuantong; Wang Quanming


    Line shape spectroscopy is a valuable tool both for diagnostic, and for understanding the basic atomic processes in the boundary region of magnetically confined fusion plasmas. The D α line profiles are modeled with genetic algorithm. The modeling profiles are in good agreement with the line profiles obtained in experiment. The results of this analysis suggest that there are one population of hydrogen and three populations of deuterium with different temperatures and population ratios. (authors)

  19. Experimental grounds for nuclear shape isomerism

    International Nuclear Information System (INIS)

    Makarenko, V.E.


    Experimental data on fission isomeric states of actinide nuclei - half lives, energies, quantum numbers, decay branches and spectroscopic properties - are discussed. Quite a few results find their explanation in the framework of nuclear shape isomerism hypothesis being the in-thing for about thirty years. Others seem to be the hints to the quasiparticle nature of fission isomers. The problem could be solved by direct measurement of nuclear spin for isomeric states. (author). 44 refs, 1 tab

  20. EVo: Net Shape RTM Production Line

    Directory of Open Access Journals (Sweden)

    Sven Torstrick


    Full Text Available EVo research platform is operated by the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade. Its objective is technology demonstration of a fully automated RTM (Resin Transfer Molding production line for composite parts in large quantities. Process steps include cutting and ply handling, draping, stacking, hot-forming, preform-trimming to net shape, resin injection, curing and demolding.

  1. [Egg-shaped macro-lithiasis]. (United States)

    Richard, T; Hauzeur, C; Vanhaeverbeek, M


    We report a 76 years-old female patient who consults for left flank pain and inflammatory biology, due to the presence of an egg-shaped 5 cm diameter macro-lithiasis. Because of the presence of a Proteus bacteriuria, the patient receives a 7 days levofloxacin treatment, before a laparoscopic resection of the kidney stone is performed. The analysis reveals a struvite lithiasis with a disorganized radial-section nuclear structure (type IVc).

  2. Signature for the shape of the universe

    International Nuclear Information System (INIS)

    Gomero, G.I.; Reboucas, M.J.; Teixeira, A.F.F.


    If the universe has a nontrival shape (topology) the sky may show multiple correlated images of cosmic objects. These correlations can be counched in terms of distance correlations. We propose a statistical quantity which can be used to reveal the topological signature of any Roberston-Walker (RW) spacetime with nontrivial topology. We also show through computer-aided simulations how one can extract the topological signatures of flat elliptic and hyperbolic RW universes with nontrivial topology. (author)

  3. Novel polymerizable bent-shaped monomeric molecules

    Czech Academy of Sciences Publication Activity Database

    Kozmik, V.; Kovářová, A.; Kuchař, M.; Svoboda, Jiří; Novotná, Vladimíra; Glogarová, Milada; Kroupa, Jan


    Roč. 33, č. 1 (2006), s. 41-56 ISSN 0267-8292 R&D Projects: GA ČR(CZ) GA202/05/0431; GA MŠk(CZ) OC D14.50 Institutional research plan: CEZ:AV0Z10100520 Keywords : mesogens * polymerizable * bent-shaped molecules * liquid crystals * ferroelectricity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.417, year: 2006

  4. Shape Perception and Navigation in Blind Adults. (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara


    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development.

  5. Dwelling within the shape of things


    Cooper, Philip John


    In conceiving and making the forms we move amongst and the spaces we inhabit, we give definition to ourselves. In a broad cultural context we define and are defined by our environments through both invention and an inherited attitude to material, shape, form, colour and texture. The making of our physical environments draw on systems of perception, fabrication, language, knowledge and sense of place, providing us with an image of our world. It’s the contention of this research,...

  6. Shape Perception and Navigation in Blind Adults (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara


    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  7. Shape-Controlled Gold Nanoparticle Synthesis (United States)


    Shankar, S. S.; Bhargava, S.; Sastry, M. Synthesis of Gold Nanospheres and Nanotriangles by the Turkevich Approach. Journal of Nanoscience and...Accounts of Chemical Research 2008, 41, 1587–1595. 22. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold And Silver Nanoparticles. Science...N.; Griep, M. H.; and Karna, S. P. Chemical vs. Sonochemical Synthesis and Characterization of Silver , Gold, and Hybrid Nanoparticles; ARL-TR-5764

  8. New organic crystals for pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Hull, G; Zaitseva, N; Cherepy, N; Newby, J; Stoeffl, W; Payne, S


    Efficient, readily-available, low-cost, high-energy neutron detectors can play a central role in detecting illicit nuclear weapons since neutrons are a strong indication for the presence of fissile material such as Plutonium and Highly-Enriched Uranium. The main challenge in detecting fast neutrons consists in the discrimination of the signal from the gamma radiation background. At present, the only well-investigated organic crystal scintillator for fast neutron detection, in a n/{gamma} mixed field, is stilbene, which while offering good pulse shape discrimination, is not widely used because of its limited availability and high cost. In this work we report the results of our studies made with a number of new organic crystals, which exhibit pulse shape discrimination for detection of fast neutrons. In particular 1,1,4,4-tetraphenyl-1,3-butadiene features a light yield higher than anthracene and a Figure of Merit (FOM) for the pulse shape discrimination better than stilbene. New crystals are good candidates for the low-cost solution growth method, thus representing promising organic scintillators for widespread deployment for high-energy neutron detection.

  9. Optimal stimulus shapes for neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Daniel B Forger


    Full Text Available An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1 spike generation in a neuron can be highly discriminatory for stimulus shape and 2 the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks.

  10. Abstraction of man-made shapes

    KAUST Repository

    Mehra, Ravish


    Man-made objects are ubiquitous in the real world and in virtual environments. While such objects can be very detailed, capturing every small feature, they are often identified and characterized by a small set of defining curves. Compact, abstracted shape descriptions based on such curves are often visually more appealing than the original models, which can appear to be visually cluttered. We introduce a novel algorithm for abstracting three-dimensional geometric models using characteristic curves or contours as building blocks for the abstraction. Our method robustly handles models with poor connectivity, including the extreme cases of polygon soups, common in models of man-made objects taken from online repositories. In our algorithm, we use a two-step procedure that first approximates the input model using a manifold, closed envelope surface and then extracts from it a hierarchical abstraction curve network along with suitable normal information. The constructed curve networks form a compact, yet powerful, representation for the input shapes, retaining their key shape characteristics while discarding minor details and irregularities. © 2009 ACM.

  11. Programmable and Shape-Memorizing Information Carriers. (United States)

    Li, Wenbing; Liu, Yanju; Leng, Jinsong


    Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe 3 O 4 (SMEP-Fe 3 O 4 ), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography. Then, we aimed to reprogram the initially raised code patterns into temporary flat patterns using programming mold that, when triggered by a preset stimulus process such as an alternating magnetic field, radiofrequency field, 365 nm UV, and direct heating, could transform these language codes into the information passed by the customer. The concept introduced here will be applied to other available SMPs and provide a practical method to realize the information delivery.

  12. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng


    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  13. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van


    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  14. The shape dependence of chameleon screening (United States)

    Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A.


    Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3.

  15. Reconfigurable assemblies of shape-changing nanorods. (United States)

    Nguyen, Trung Dac; Glotzer, Sharon C


    Reconfigurable nanostructures represent an exciting new direction for materials. Applications of reversible transformations between nanostructures induced by molecular conformations under external fields can be found in a broad range of advanced technologies including smart materials, electromagnetic sensors, and drug delivery. With recent breakthroughs in synthesis and fabrication techniques, shape-changing nanoparticles are now possible. Such novel building blocks provide a conceptually new and exciting approach to self-assembly and phase transformations by providing tunable parameters fundamentally different from the usual thermodynamic parameters. Here we investigate via molecular simulation a transformation between two thermodynamically stable structures self-assembled by laterally tethered nanorods whose rod length is switched between two values. Building blocks with longer rods assemble into a square grid structure, while those with short rods form bilayer sheets with internal smectic A ordering at the same thermodynamic conditions. By shortening or lengthening the rods over a short time scale relative to the system equilibration time, we observe a transformation from the square grid structure into bilayer sheets, and vice versa. We also observe honeycomb grid and pentagonal grid structures for intermediate rod lengths. The reconfiguration between morphologically distinct nanostructures induced by dynamically switching the building block shape serves to motivate the fabrication of shape-changing nanoscale building blocks as a new approach to the self-assembly of reconfigurable materials.

  16. Shapes of agglomerates in plasma etching reactors

    International Nuclear Information System (INIS)

    Huang, F.Y.; Kushner, M.J.


    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller (<100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. copyright 1997 American Institute of Physics

  17. Shape Statistics for Random Domains and Particles (United States)

    Stoyan, Dietrich; Davtyan, Ashot; Turetayev, Daulet

    This paper surveys ideas of statistical analysis of planar images of particles such as powder particles or sand grains, domains such as monolayer domains on water or water droplets on planar surfaces and biological cells or vesicles. For a simple and fast discrimination between collectives of particles, shape ratios or indices such as `area:perimeter' ratio are powerful tools. A more detailed description is possible by means of various functions such as radius-vector function, tangent-angle function and erosion function. A deeper understanding of particle shape and size is possible by studying the relevant physical processes which generate them, such as fracture, abrasion and growth by aggregation. The second part of the paper discusses a particular stochastic model, called Gibbs pixel-particle. It produces two-dimensional connected lattice figures, often called lattice animals, the distribution of which depends on an energy function which is controled by particle area and boundary length and roughness. These pixel-particles vary in a broad spectrum of possible shapes and sizes.

  18. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane


    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  19. True versus apparent shapes of bow shocks (United States)

    Tarango-Yong, Jorge A.; Henney, William J.


    Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20%.

  20. Meniscus Shapes in Detached Bridgman Growth (United States)

    Volz, M. P.; Mazuruk, K


    In detached Bridgman crystal growth, most of the melt is in contact with the ampoule wall, but the crystal is separated from the wall by a small gap, typically 1-100 micrometers. A liquid free surface, or meniscus, bridges across this gap at the position of the melt-crystal interface. Meniscus shapes have been calculated for the case of detached Bridgman growth in cylindrical ampoules by solving the Young-Laplace equation. Key parameters affecting meniscus shapes are the growth angle, contact angle of the meniscus to the ampoule wall, the pressure differential across the meniscus, and the Bond number, a measure of the ratio of gravitational to capillary forces. In general, for specified values of growth and contact angles, solutions exist only over a finite range of pressure differentials. For intermediate values of the Bond number, there are multiple solutions to the Young-Laplace equations. There are also cases where, as a function of pressure differential, existence intervals alternate with intervals where no solutions exist. The implications of the meniscus shape calculations on meniscus stability are discussed.

  1. A water-responsive shape memory ionomer with permanent shape reconfiguration ability (United States)

    Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin


    In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.

  2. Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites

    Directory of Open Access Journals (Sweden)


    Full Text Available A shape memory polymer (SMP can be deformed from a permanent to a temporary shape above their transformation temperature. Upon reheating, the SMP spontaneously returns to the permanent shape. SMP’s show high deformability, but the recovery stresses are very low, thus limiting the size of the components. This paper presents the first results of an ongoing research to develop large sized components based on SMP. To achieve higher recovery stresses, asymmetric fibre reinforced shape memory composites were produced (SMPC using resin transfer moulding. The results show a 30-fold increase in recovery stress, compared to the neat SMP resin. The recovery stress is independent of the deformation temperature, but is strongly affected by the degree of deformation. At higher deformation levels, crazing occurs. Even though the visible effects of the crazing disappear during reheating, it does influence the recovery stress. This indicates that the ability to recover the permanent shape might change in cyclic loading. All composites tested show complete recovery upon reheating. The rate of shape recovery is higher when the fibre reinforcement is loaded in compression.

  3. The shape of supertrees to come: tree shape related properties of fourteen supertree methods. (United States)

    Wilkinson, Mark; Cotton, James A; Creevey, Chris; Eulenstein, Oliver; Harris, Simon R; Lapointe, Francois-Joseph; Levasseur, Claudine; McInerney, James O; Pisani, Davide; Thorley, Joseph L


    Using a simple example and simulations, we explore the impact of input tree shape upon a broad range of supertree methods. We find that input tree shape can affect how conflict is resolved by several supertree methods and that input tree shape effects may be substantial. Standard and irreversible matrix representation with parsimony (MRP), MinFlip, duplication-only Gene Tree Parsimony (GTP), and an implementation of the average consensus method have a tendency to resolve conflict in favor of relationships in unbalanced trees. Purvis MRP and the average dendrogram method appear to have an opposite tendency. Biases with respect to tree shape are correlated with objective functions that are based upon unusual asymmetric tree-to-tree distance or fit measures. Split, quartet, and triplet fit, most similar supertree, and MinCut methods (provided the latter are interpreted as Adams consensus-like supertrees) are not revealed to have any bias with respect to tree shape by our example, but whether this holds more generally is an open problem. Future development and evaluation of supertree methods should consider explicitly the undesirable biases and other properties that we highlight. In the meantime, use of a single, arbitrarily chosen supertree method is discouraged. Use of multiple methods and/or weighting schemes may allow practical assessment of the extent to which inferences from real data depend upon methodological biases with respect to input tree shape or size.

  4. Prolate non-collective shape- a rare shape phase around Z = 50

    International Nuclear Information System (INIS)

    Aggarwal, Mamta


    The search for rare shape-phase transition in hot and rotating nuclei is one of the very active field in nuclear physics research. According to universally known features of the evolution of equilibrium shapes with temperature and spin, heating a deformed nonrotating nucleus leads to a shape transition from deformed to spherical at a certain temperature. At high temperatures T≅ 2 MeV, the shell effects melt and the nucleus resembles a classical liquid drop. Rotation of the hot nucleus generates an oblate shape rotating noncollectively. But it has been shown by A. Goodman that nuclei with two critical temperatures can rotate with a rare non-collective prolate shape phase which has been caused directly by rotation at angular momentum values around (5-30h) which creates a residual quantum shell effect as shown by A. L. Goodman. Search for such exotic shape-phase around Z = 50 region is the aim of present work. We consider N = 60 isotones 108 Cd, 109 In, 110 Sn

  5. Real-time shape-based particle separation and detailed in situ particle shape characterization. (United States)

    Beranek, Josef; Imre, Dan; Zelenyuk, Alla


    Particle shape is an important attribute in determining particle properties and behavior, but it is difficult to control and characterize. We present a new portable system that offers, for the first time, the ability to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in situ, and in real-time. The system uses an aerosol particle mass analyzer (APM) to classify particles of one mass-to-charge ratio, transporting them to a differential mobility analyzer (DMA) that is tuned to select particles of one charge, mobility diameter, and for particles with one density, one shape. These uniform particles are then ready for use and/or characterization by any application or analytical tool. We combine the APM and DMA with our single-particle mass spectrometer, SPLAT II, to form the ADS and demonstrate its utility to measure individual particle compositions, vacuum aerodynamic diameters, and particle DSFs in two flow regimes for each selected shape. We applied the ADS to the characterization of aspherical ammonium sulfate and NaCl particles, demonstrating that both have a wide distribution of particle shapes with DSFs from approximately 1 to 1.5. © 2012 American Chemical Society

  6. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.


    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  7. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng


    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  8. DSP: a protein shape string and its profile prediction server. (United States)

    Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Cong, Peisheng; Li, Tonghua


    Many studies have demonstrated that shape string is an extremely important structure representation, since it is more complete than the classical secondary structure. The shape string provides detailed information also in the regions denoted random coil. But few services are provided for systematic analysis of protein shape string. To fill this gap, we have developed an accurate shape string predictor based on two innovative technologies: a knowledge-driven sequence alignment and a sequence shape string profile method. The performance on blind test data demonstrates that the proposed method can be used for accurate prediction of protein shape string. The DSP server provides both predicted shape string and sequence shape string profile for each query sequence. Using this information, the users can compare protein structure or display protein evolution in shape string space. The DSP server is available at both and its main mirror

  9. Joint modeling of cell and nuclear shape variation (United States)

    Johnson, Gregory R.; Buck, Taraz E.; Sullivan, Devin P.; Rohde, Gustavo K.; Murphy, Robert F.


    Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization. PMID:26354424

  10. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks


    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  11. Shape prior modeling using sparse representation and online dictionary learning. (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N


    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  12. The Effect of Shape Memory on Red Blood Cell Motions (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland


    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  13. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J


    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  14. PubChem3D: Shape compatibility filtering using molecular shape quadrupoles

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan


    Full Text Available Abstract Background PubChem provides a 3-D neighboring relationship, which involves finding the maximal shape overlap between two static compound 3-D conformations, a computationally intensive step. It is highly desirable to avoid this overlap computation, especially if it can be determined with certainty that a conformer pair cannot meet the criteria to be a 3-D neighbor. As such, PubChem employs a series of pre-filters, based on the concept of volume, to remove approximately 65% of all conformer neighbor pairs prior to shape overlap optimization. Given that molecular volume, a somewhat vague concept, is rather effective, it leads one to wonder: can the existing PubChem 3-D neighboring relationship, which consists of billions of shape similar conformer pairs from tens of millions of unique small molecules, be used to identify additional shape descriptor relationships? Or, put more specifically, can one place an upper bound on shape similarity using other "fuzzy" shape-like concepts like length, width, and height? Results Using a basis set of 4.18 billion 3-D neighbor pairs identified from single conformer per compound neighboring of 17.1 million molecules, shape descriptors were computed for all conformers. These steric shape descriptors included several forms of molecular volume and shape quadrupoles, which essentially embody the length, width, and height of a conformer. For a given 3-D neighbor conformer pair, the volume and each quadrupole component (Qx, Qy, and Qz were binned and their frequency of occurrence was examined. Per molecular volume type, this effectively produced three different maps, one per quadrupole component (Qx, Qy, and Qz, of allowed values for the similarity metric, shape Tanimoto (ST ≥ 0.8. The efficiency of these relationships (in terms of true positive, true negative, false positive and false negative as a function of ST threshold was determined in a test run of 13.2 billion conformer pairs not previously considered

  15. Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? (United States)

    Bacchetta, Renato; Santo, Nadia; Valenti, Irene; Maggioni, Daniela; Longhi, Mariangela; Tremolada, Paolo


    The acute toxicity of three differently shaped carbon nanomaterials (CNMs) was studied on Daphnia magna, comparing the induced effects and looking for the toxic mechanisms. We used carbon nano-powder (CNP), with almost spherical primary particle morphology, multi-walled carbon nanotubes (CNTs), tubes of multi-graphitic sheets, and cubic-shaped carbon nanoparticles (CNCs), for which no ecotoxicological data are available so far. Daphnids were exposed to six suspensions (1, 2, 5, 10, 20 and 50 mg L -1 ) of each CNM, and then microscopically analyzed. Ultrastructural analyses evidenced cellular uptake of nanoparticle in CNP and CNT exposed groups, but not in samples exposed to CNCs. Despite this difference, very similar effects were observed in tissues exposed to the three used CNMs: empty spaces between cells, cell detachment from the basal lamina, many lamellar bodies and autophagy vacuoles. These pathological figures were qualitatively similar among the three groups, but they differed in frequency and severity. CNCs caused the most severe effects, such as partial or complete dissolution of the brush border and thinning of the digestive epithelium. Being the cubic shape not allowed to be internalized into cells, but more effective than others in determining physical damages, we can conclude that shape is an important factor for driving nanoparticle uptake by cells and for determining the acute toxicological endpoints. Shape also plays a key role in determining the kind and the severity of pathologies, which are linked to the physical interactions of CNMs with the exposed tissues.

  16. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability. (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng


    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  17. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  18. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals. (United States)

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J


    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  19. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.


    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  20. Fast neutron spectrometer with pulse shape discrimination

    International Nuclear Information System (INIS)

    Verbitsky, S.S.


    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  1. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars


    ). Accordingly, damage is localized when the vibration signature induced by the shaped inputs in the damaged state corresponds to that in the reference state, hereby implying that the approach does not point directly to damage. Instead, it operates with interrogation based on postulated damage patterns......, resulting in a system identification-free procedure whose primary merits, besides avoiding the typical bottleneck of system identification, include a low demand on output sensors, robustness towards noise, and conceptual simplicity. The price paid for these merits is reliance on a relatively accurate model...... of the structure in its reference state and the need for multiple controllable inputs....

  2. Shaping and authorising a public health profession

    Directory of Open Access Journals (Sweden)

    Katarzyna Czabanowska


    doctors, nurses, lawyers, and architects can enjoy the benefits of the 2005/36/EC Directive amended by 2013/55/EU Directive on the recognition of professional qualifications, public health professionals are left out from these influential (elite professions. Firstly, we use the profession traits theory as a framework in arguing whether public health can be a legitimate profession in itself; secondly, we explain who public health professionals are and what usually is required for shaping the public health profession; and thirdly, we attempt to sketch the road to the authorisation or licensing of public health professionals. Finally, we propose some recommendations.

  3. What shapes the anatomy of inventors?

    DEFF Research Database (Denmark)

    Skytt-Larsen, Christine Benna


    which they themselves believe have formed their inventive capacities. The main findings of the article are that the sociocultural milieus of early childhood, especially the educational backgrounds or skills of parents and grandparents, play an important role in shaping the anatomy of inventors. Further......, the social milieu of an inventor’s final education, whether elementary school or university, is a seminal factor in the development of inventive creativity, given the importance of dedicated teachers, co-students and supervisors. Finally, egalitarian organizational structures in the workplace and a solid...

  4. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.


    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  5. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)


    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  6. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars


    localization method is cast, which operates on the premise of shaping inputs—whose spatial distribution is fixed—by use of a theoretical model such that these inputs, in one structural subdomain at the time, suppress certain steady-state vibration quantities (depending on the type of damage one seeks...... patterns, which results in a system identification-free procedure whose primary merits, besides avoiding the typical bottleneck of system identification, include a low demand on output sensors, robustness towards noise, and conceptual simplicity. The applicability of the method is verified in the context...

  7. Casting of particle-based hollow shapes (United States)

    Menchhofer, Paul


    A method for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product.

  8. Fabrication of longitudinally arbitrary shaped fiber tapers (United States)

    Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.


    We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.

  9. Terahertz substance imaging by waveform shaping. (United States)

    Yi, Minwoo; Kim, Hyosub; Jin, Kyong Hwan; Ye, Jong Chul; Ahn, Jaewook


    Terahertz pulse shaping technique is used to adaptively design terahertz waveforms of enhanced spectral correlation to particular materials among a given set of materials. In a proof-of-principle experiment performed with a two-dimensional image target consisted of meta-materials of distinctive resonance frequencies, the as-designed waveforms are used to demonstrate terahertz substance imaging. It is hoped that this material-specific terahertz waveforms may enable single- or few-shot terahertz material classification when being used in conjunction with terahertz power measurement.

  10. Do endothelial cells dream of eclectic shape? (United States)

    Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet


    Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A social shaping perspective on nanotechnologies

    DEFF Research Database (Denmark)

    Clausen, Christian; Jørgensen, Michael Søgaard


    in areas where visions are manifold and applications and markets are non-existing or unclear. The emerging idea of 'nanotechnologies' is an example of this kind, where techno-economic networks are unstable or under construction and consequences are difficult, if not impossible to evaluate. The paper...... explores the potential of a social shaping of technology approach in the area of emerging nano-technologies and debate the methodological aspects based on an ongoing Danish foresight project concerned with environmental risks and opportunities in nanotechnologies. The focus is on the identification...

  12. bipolar versus unipolar shaping of MDT signals

    CERN Document Server

    Riegler, W


    The MDT frontend electronics scheme, as presented in the TDR, was optimized for fast liner gases like Ar/N2/CH4 91/4/5, but since these gases contain hydrocarbons which seem to be responsible for aging problems, the current baseline gas is Ar/CO2 93/7 which shows nice aging properties but is slower and very nonlinear. The different pulse shapes as well as the fact that trailing edge information and double track separation information were not found to be very useful made a complete review of the frontend electronics specification necessary.

  13. Electrode shapes for spherical Pierce flow

    International Nuclear Information System (INIS)

    Mueller, D.W.


    The problem of obtaining the electrode shapes to produce a conically converging proton beam that has constant current density over each spherical surface of convergence is treated in spherical coordinates. A cone is taken from the Langmuir and Blodgett solution for the region within, and at the edge of, the conically converging beam. A solution for the LaPlace equation, required for the region outside the beam, is in terms of a power series in r and the Legendre polynomials of cos phi

  14. Shaping the manufacturing industry performance: MIDAS approach

    International Nuclear Information System (INIS)

    Turhan, Ibrahim M.; Sensoy, Ahmet; Hacihasanoglu, Erk


    We aim to find out whether the exchange rate (against US dollar) or the interest rate (in local currency) is a better variable in predicting the capacity utilization rate of manufacturing industry (CUR) of Turkey after the 2008 global financial crisis. In that manner, we implement dynamic mixed data sampling (MIDAS) regression model to forecast monthly changes in CUR by using daily changes in the exchange rate and the interest rate separately. The results show that exchange rate has a better forecast performance suggesting that it is a stronger determinant in shaping the manufacturing industry

  15. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti


    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  16. Stresses related to the shape memory effect in Fe-Mn-Si-based shape memory alloys

    International Nuclear Information System (INIS)

    Caenegem, N. van; Duprez, L.; Verbeken, K.; Segers, D.; Houbaert, Y.


    The shape memory behaviour of two Fe-Mn-Si-based alloys has been investigated. Two compositions were studied, i.e. Fe29Mn7Si and Fe29Mn7Si5Cr (numbers indicate mass%). Characterizations of the martensitic transformation and the different structural constituents were performed using optical microscopy and X-ray diffraction methods. Transformation temperatures were determined by thermodilatometry on undeformed and deformed samples. The shape recovery was quantified by means of bending tests and dilatometry experiments on compressed samples. A procedure was designed to measure the recovery stresses caused by the dimensional changes of the sample due to the shape memory effect. The recovery stress is defined as the stress that is generated when the recovery of deformation is impeded under constraint. The mechanical results are discussed on the basis of the underlying transformation and deformation processes

  17. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos


    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  18. Shape Memory Effect Actuators from Chlorides, Phase I (United States)

    National Aeronautics and Space Administration — Shape Change Technologies is developing a radical new technique for the fabrication of Shape Memory alloys, such as TiNi and its ternary alloys of Hf, Zr, and Cu....

  19. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    National Research Council Canada - National Science Library

    Crone, Wendy C; Ellis, Arthur B; Perepezko, John H


    .... Both SMA-polymer and SMA-metal composites were created, as well as new fabrication strategies for producing NiTi and CuAlNi shape memory alloy particles with refined size which still display shape...

  20. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology (United States)

    National Aeronautics and Space Administration — The objective of the Advanced Near Net Shape Technology (ANNST) project is to radically improve near net shape manufacturing methods from the current...

  1. Method for Parametric Design of Three-Dimensional Shapes

    National Research Council Canada - National Science Library

    Dick, James L


    The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...

  2. Net Shape Rapid Manufacturing Using Nano Encapsulated Powders, Phase II (United States)

    National Aeronautics and Space Administration — This Phase II program is developing NET Shape components from Encapsulated Powders. Significant advances in Phase I for various materials and in net shape processing...

  3. Capacity and Shaping in Coherent Fiber-Optic Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso


    Over view of the concepts and latest progress of capacity and constellation shaping incoherent optical links.......Over view of the concepts and latest progress of capacity and constellation shaping incoherent optical links....

  4. Tunable and processable shape memory composites based on degradable polymers

    NARCIS (Netherlands)

    Zhang, Xi; Geven, Mike A.; Grijpma, Dirk W.; Peijs, Ton; Gautrot, Julien E.


    Biodegradable shape memory polymers are attractive materials for the design of biomedical scaffolds as they allow deploying implants remotely with minimal intervention, whilst allowing degradation and tissue repair. However, shape memory properties are difficult to design from common degradable

  5. The shape of natural draft cooling towers

    International Nuclear Information System (INIS)

    Grange, J.L.


    The shape of cooling towers is more often designed empirically. There, it is considered from a theoretical point of view. The analysis of dynamic of natural draft and of the air flow in a cooling tower shell is presented. It is shown, that although it is convergent, a tower works like a diffuser for pressure recovery. And it is turbulence that produces a transfer of kinetic energy and allows a good operation of the diffusor. The equations permit to define a shell profile which depends upon the operating conditions of the cooling tower. In the same way, a stability criteria for natural draft depending upon operating conditions is established. A heating model of one meter diameter has been built in a thermal similitude. The turbulence rate has been measured with a hot wire anemometer at the tower exit and visualizations have also been made. Natural draft stability has been studied by these means for four different shell shapes and a wide range of operating conditions. Experimental and theoretical results agree satisfactorily and experiments can be considered as a validation of theory

  6. Coordinated Morphogenetic Mechanisms Shape the Vertebrate Eye

    Directory of Open Access Journals (Sweden)

    Juan-Ramon Martinez-Morales


    Full Text Available The molecular bases of vertebrate eye formation have been extensively investigated during the past 20 years. This has resulted in the definition of the backbone of the gene regulatory networks controlling the different steps of eye development and has further highlighted a substantial conservation of these networks among vertebrates. Yet, the precise morphogenetic events allowing the formation of the optic cup from a small group of cells within the anterior neural plate are still poorly understood. It is also unclear if the morphogenetic events leading to eyes of very similar shape are indeed comparable among all vertebrates or if there are any species-specific peculiarities. Improved imaging techniques have enabled to follow how the eye forms in living embryos of a few vertebrate models, whereas the development of organoid cultures has provided fascinating tools to recapitulate tissue morphogenesis of other less accessible species. Here, we will discuss what these advances have taught us about eye morphogenesis, underscoring possible similarities and differences among vertebrates. We will also discuss the contribution of cell shape changes to this process and how morphogenetic and patterning mechanisms integrate to assemble the final architecture of the eye.

  7. Membrane Shape Instability Induced by Protein Crowding. (United States)

    Chen, Zhiming; Atefi, Ehsan; Baumgart, Tobias


    Peripheral proteins can bend membranes through several different mechanisms, including scaffolding, wedging, oligomerization, and crowding. The crowding effect in particular has received considerable attention recently, in part because it is a colligative mechanism-implying that it could, in principle, be explored by any peripheral protein. Here we sought to clarify to what extent this mechanism is exploited by endocytic accessory proteins. We quantitatively investigate membrane curvature generation by means of a GUV shape stability assay. We found that the amount of crowding required to induce membrane curvature is correlated with membrane tension. Importantly, we also revealed that at the same membrane tension, the crowding mechanism requires far higher protein coverage to induce curvature changes compared to those observed for the endophilin BAR domain, serving here as an example of an endocytic accessory protein. Our results are important for the design of membrane-targeted biosensors as well as the understanding of mechanisms of biological membrane shaping. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. High-order epistasis shapes evolutionary trajectories. (United States)

    Sailer, Zachary R; Harms, Michael J


    High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epistasis from experimental genotype-fitness maps containing all binary combinations of five mutations. We then compared trajectories through maps both with and without high-order epistasis. We found that high-order epistasis strongly shapes the accessibility and probability of evolutionary trajectories. A closer analysis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary trajectories. We further find that high-order epistasis makes it impossible to predict evolutionary trajectories from the individual and paired effects of mutations. We therefore conclude that high-order epistasis profoundly shapes evolutionary trajectories through genotype-fitness maps.

  9. Controlling nanopore size, shape and stability

    International Nuclear Information System (INIS)

    Van den Hout, Michiel; Hall, Adam R; Wu Mengyue; Zandbergen, Henny W; Dekker, Cees; Dekker, Nynke H


    Solid-state nanopores are considered a promising tool for the study of biological polymers such as DNA and RNA, due largely to their flexibility in size, potential in device integration and robustness. Here, we show that the precise shape of small nanopores (∼5 nm diameter in 20 nm SiN membranes) can be controlled by using transmission electron microscope (TEM) beams of different sizes. However, when some of these small nanopores are immersed in an aqueous solution, their resistance is observed to decrease over time. By comparing nanopores of different shapes using (scanning) TEM both before and after immersion in aqueous solution, we demonstrate that the stability of small nanopores is related to their three-dimensional geometry, which depends on the TEM beam size employed during pore fabrication. Optimal stability is obtained using a TEM beam size of approximately the same size as the intended nanopore diameter. In addition, we show that thermal oxidation can serve as a means to independently control nanopore size following TEM fabrication. These observations provide key guidelines for the fabrication of stable solid-state nanopores on the scale of nucleic acids and small proteins.

  10. The Many Colors and Shapes of Cloud (United States)

    Yeh, James T.

    While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.

  11. Constructal tree-shaped flow structures

    International Nuclear Information System (INIS)

    Bejan, A.; Lorente, S.


    This paper is an introduction to a new trend in the conceptual design of energy systems: the generation of flow configuration based on the 'constructal' principle that the global performance is maximized by balancing and arranging the various flow resistances (the irreversibilities) in a flow system that is free to morph. The paper focuses on distribution and collection, which are flows that connect one point (source, or sink) with an infinity of points (volume, area, curve). The flow configurations that emerge from this principle are tree-shaped, and the systems that employ them are 'vascularized'. The paper traces the most recent progress made on constructal vascularization. The direction is from large-scale applications toward microscales. The large-scale tree-shaped designs of electric power distribution systems and networks for natural gas and water are now invading small-scale designs such as fuel cells, heat exchangers and cooled packages of electronics. These flow configurations have several properties in common: freedom to morph, multiple scales, hierarchy, nonuniform (optimal) distribution of scales through the available volume, compactness and finite complexity

  12. Multicriteria shape design of an aerosol can

    Directory of Open Access Journals (Sweden)

    Benki Aalae


    Full Text Available One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection – NBI – algorithm with Radial Basis Function – RBF – metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai–Smorodinsky equilibria.

  13. The shape of the oceanic nitracline

    Directory of Open Access Journals (Sweden)

    M. M. Omand


    Full Text Available In most regions of the ocean, nitrate is depleted near the surface by phytoplankton consumption and increases with depth, exhibiting a strong vertical gradient in the pycnocline (here referred to as the nitracline. The vertical supply of nutrients to the surface euphotic zone is influenced by the vertical gradient (slope of the nitracline and by the vertical separation (depth of the nitracline from the sunlit surface layer. Hence it is important to understand the shape (slope and curvature and depth of the oceanic nitracline. By using density coordinates to analyze nitrate profiles from autonomous Autonomous Profiling EXplorer floats with In-Situ Ultraviolet Spectrophotometers (APEX-ISUS and ship-based platforms (World Ocean Atlas – WOA09; Hawaii Ocean Time-series – HOT; Bermuda Atlantic Time-series Study – BATS; and California Cooperative Oceanic Fisheries Investigations – CalCOFI, we are able to eliminate much of the spatial and temporal variability in the profiles and derive robust relationships between nitrate and density. This allows us to characterize the depth, slope and curvature of the nitracline in different regions of the world's oceans. The analysis reveals distinguishing patterns in the nitracline between subtropical gyres, upwelling regions and subpolar gyres. We propose a one-dimensional, mechanistic model that relates the shape of the nitracline to the relative depths of the surface mixed layer and euphotic layer. Though heuristic, the model accounts for some of the seasonal patterns and regional differences in the nitrate–density relationships seen in the data.

  14. Culture shapes efficiency of facial age judgments.

    Directory of Open Access Journals (Sweden)

    Gizelle Anzures


    Full Text Available Cultural differences in socialization can lead to characteristic differences in how we perceive the world. Consistent with this influence of differential experience, our perception of faces (e.g., preference, recognition ability is shaped by our previous experience with different groups of individuals.Here, we examined whether cultural differences in social practices influence our perception of faces. Japanese, Chinese, and Asian-Canadian young adults made relative age judgments (i.e., which of these two faces is older? for East Asian faces. Cross-cultural differences in the emphasis on respect for older individuals was reflected in participants' latency in facial age judgments for middle-age adult faces--with the Japanese young adults performing the fastest, followed by the Chinese, then the Asian-Canadians. In addition, consistent with the differential behavioural and linguistic markers used in the Japanese culture when interacting with individuals younger than oneself, only the Japanese young adults showed an advantage in judging the relative age of children's faces.Our results show that different sociocultural practices shape our efficiency in processing facial age information. The impact of culture may potentially calibrate other aspects of face processing.

  15. Modeling shape selection of buckled dielectric elastomers (United States)

    Langham, Jacob; Bense, Hadrien; Barkley, Dwight


    A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.

  16. Pulse Shape Discrimination in the MAJORANA DEMONSTRATOR (United States)

    Haufe, Christopher; Majorana Collaboration


    The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-type point contact detectors totaling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. A large effort is underway to analyze the data currently being taken by the DEMONSTRATOR. Key components of this effort are analysis tools that allow for pulse shape discrimination-techniques that significantly reduce background levels in the neutrinoless double-beta decay region of interest. These tools are able to identify and reject multi-site events from Compton scattering as well as events from alpha particle interactions. This work serves as an overview for these analysis tools and highlights the unique advantages that the HPGe p-type point contact detector provides to pulse shape discrimination. This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  17. Recurring part arrangements in shape collections

    KAUST Repository

    Zheng, Youyi


    Extracting semantically related parts across models remains challenging, especially without supervision. The common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric features that can directly identify related parts. In the presence of large shape variations, common geometric features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach, where instead of part geometry, part arrangements extracted from each model are compared. The key observation is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level structures, remain consistent, and hence can be used to discover latent commonalities among semantically related shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets and report advantages over geometric similarity-based bottom-up co-segmentation algorithms. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  18. Shape-based assessment of vertebral fracture risk in postmenopausal women using discriminative shape alignment

    DEFF Research Database (Denmark)

    Crimi, Alessandro; Loog, Marco; de Bruijne, Marleen


    but the result of a decaying process. To evaluate fracture risk, a shape-based classifier, identifying possible small prefracture deformities, may be constructed. MATERIALS AND METHODS: During a longitudinal case-control study, a large population of postmenopausal women, fracture free at baseline, were followed...... independently performed manual annotations of the vertebrae, and fracture prediction using shape features extracted from the baseline annotations was performed. This was implemented using posterior probabilities from a standard linear classifier. RESULTS: The classifier tested on the study population quantified...

  19. Supported Single-Site Ti(IV) on a Metal–Organic Framework for the Hydroboration of Carbonyl Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiyuan [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Liu, Dong [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Camacho-Bunquin, Jeffrey [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Zhang, Guanghui [Department; Yang, Dali [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; López-Encarnación, Juan M. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Department; Xu, Yunjie [Department; Ferrandon, Magali S. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Niklas, Jens [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Poluektov, Oleg G. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Jellinek, Julius [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Lei, Aiwen [College; amp, Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan 430072, PR China; Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Bunel, Emilio E. [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States; Delferro, Massimiliano [Chemical; amp, Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States


    ABSTRACT: A stable and structurally well-defined titanium alkoxide catalyst supported on a metal-organic-framework (MOF) of UiO-67 topology (ANL1-Ti(OiPr)2) was synthesized and fully characterized by a variety of analytical and spectroscopic techniques, including BET, TGA, PXRD, XAS, DRIFT, SEM, and DFT computations. The Ti-functionalized MOF was demonstrated active for the catalytic hydroboration of a wide range of aldehydes and ketones with HBpin as the boron source. Compared to traditional homogeneous and supported hydroboration catalysts, ANL1-Ti(OiPr)2 is completely recyclable and reusable, making it a promising hydroboration catalyst alternative for green and sustainable chemical synthesis. DFT calculations suggest that the catalytic hydroboration proceeds via a (1) hydride transfer between the active Ti-hydride species and a carbonyl moiety (rate determining step), and (2) alkoxide transfer (intramolecular σ-bond metathesis) to generate the boronate ester product.

  20. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems (United States)

    Gielis, Johan; Caratelli, Diego; Fougerolle, Yohan; Ricci, Paolo Emilio; Tavkelidze, Ilia; Gerats, Tom


    Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way. PMID:23028417

  1. Shape-induced frustration of hexagonal order in polyhedral colloids

    NARCIS (Netherlands)

    Dullens, Roel P.A.; Mourad, Maurice C.D.; Aarts, Dirk G.A.L.; Hoogenboom, Jacob; Hoogenboom, J.P.; Kegel, Willem K.


    The effect of a nonspherical particle shape and shape polydispersity on the structure of densely packed hard colloidal particles was studied in real space by confocal microscopy. We show that the first layer at the wall of concentrated size-monodisperse but shape-polydisperse polyhedral colloids

  2. Reconstruction and Analysis of Shapes from 3D Scans

    NARCIS (Netherlands)

    Haar, F.B. ter


    In this thesis, we measure 3D shapes with the use of 3D laser technology, a recent technology that combines physics, mathematics, and computer science to acquire the surface geometry of 3D shapes in the computer. We use this surface geometry to fully reconstruct real world shapes as computer models,

  3. Type 1 neovascularization with polypoidal lesions complicating dome shaped macula


    Naysan, Jonathan; Dansingani, Kunal K; Balaratnasingam, Chandrakumar; Freund, K Bailey


    Dome-shaped macula is described as an inward bulge of the macula within a posterior staphyloma in highly myopic eyes. Choroidal neovascularization is a known complication that can cause visual loss in dome-shaped macula. Herein, we describe a patient who presented with features of polypoidal choroidal neovascularization that developed on a background of high myopia with dome-shaped macula.

  4. The Shape of Utility Functions and Organizational Behavior

    NARCIS (Netherlands)

    J.M.E. Pennings; A. Smidts (Ale)


    textabstractBased on measurements with 332 owner-managers, the global shape of the utility function (i.e., S-shaped versus concave or convex over the total range of outcomes) appears to discriminate organizational behavior. Whereas the degree of risk aversion, based on the local shape of the utility

  5. Which shape factor(s) best describe granules?

    NARCIS (Netherlands)

    Bouwman, Anneke M.; Bosma, Jaap C.; Vonk, Pieter; Wesselingh, J.A.; Frijlink, Henderik W.


    This study evaluates methods used for granule shape characterization. The aim is to identify an optimal combination of shape factors to measure granule shape and roughness. Granules were prepared from microcrystalline cellulose (MCC), alpha-lactose, microfine cellulose (MFC), and dextrin, using a

  6. Freeform feature recognition and manipulation to support shape design

    NARCIS (Netherlands)

    Langerak, T.R.


    Freeform features are parameterizable shape parts that are used in the design of industrial products. The parametric nature of the feature allows a designer to quickly manipulate shape without having to precisely configure the geometry of the shape. However, in many cases, designers want to use

  7. Short communication: Gender related patterns in the shape and ...

    African Journals Online (AJOL)

    The shape of the foramen magnum was oval, circular and polygonal in 13%, 24% and 63% of the cases respectively. The foramen magnum does not show sexual dimorphism in shape among Africans. The shape of foramen magnum cannot be used in solitude to ascertain the gender of skulls. Keywords: Foramen magnum ...

  8. Adding Curvature to Minimum Description Length Shape Models

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Ólafsdóttir, Hildur


    The Minimum Description Length (MDL) approach to shape modelling seeks a compact description of a set of shapes in terms of the coordinates of marks on the shapes. It has been shown that the mark positions resulting from this optimisation to a large extent solve the so-called point correspondence...

  9. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O


    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  10. Butterfly Learning and the Diversification of Plant Leaf Shape

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell'aglio


    Full Text Available Visual cues are important for insects to find flowers and host plants. It has been proposed that the diversity of leaf shape in Passiflora vines could be a result of negative frequency dependent selection driven by visual searching behavior among their butterfly herbivores. Here we tested the hypothesis that Heliconius butterflies use leaf shape as a cue to initiate approach towards a host plant. We first tested for the ability to recognize shapes using a food reward conditioning experiment. Butterflies showed an innate preference for flowers with three and five petals. However, they could be trained to increase the frequency of visits to a non-preferred flower with two petals, indicating an ability to learn to associate shape with a reward. Next we investigated shape learning specifically in the context of oviposition by conditioning females to lay eggs on two shoots associated with different artificial leaf shapes: their own host plant, Passiflora biflora, and a lanceolate non-biflora leaf shape. The conditioning treatment had a significant effect on the approach of butterflies to the two leaf shapes, consistent with a role for shape learning in oviposition behavior. This study is the first to show that Heliconius butterflies use shape as a cue for feeding and oviposition, and can learn shape preference for both flowers and leaves. This demonstrates the potential for Heliconius to drive negative frequency dependent selection on the leaf shape of their Passiflora host plants.

  11. Saddle-shaped reticulate Nummulites from Early Oligocene rocks of ...

    Indian Academy of Sciences (India)

    shaped reticulate Nummulites from Early Oligocene ... Saddle-shaped reticulate Nummulites from the Early Oligocene rocks of Khari area, SW Kutch, India is reported here for the first time. Unusual shape of this Nummulites is due to the curved ...

  12. 78 FR 3449 - Silica Bricks and Shapes From China (United States)


    ... COMMISSION Silica Bricks and Shapes From China Determination On the basis of the record \\1\\ developed in the... China of silica bricks and shapes, provided for in subheading 6902.20.10 of the Harmonized Tariff... injury by reason of LTFV imports of silica bricks and shapes from China. Accordingly, effective November...

  13. Orbital maneuvers around irregular shaped bodies (United States)

    Venditti, Flaviane; Rocco, E. M.; Almeida Prado, A. B.


    Abstract (2,250 Maximum Characters): In the solar system there are many small bodies called asteroids. The large majority of these bodies are located in the asteroid belt, between the orbits of the planets Mars and Jupiter. The Near- Earth Objects, or NEOs, are objects with perihelion below 1.3AU, which include comets and asteroids. The NEOs are considered to have orbits passing close to the Earth’s orbit and, in the case of asteroids, are called Near-Earth Asteroids (NEAs). Among the NEAs there are bodies considered potentially hazardous asteroids (PHAs), whose minimum orbit intersection distance with Earth is 0.05AU and that have absolute magnitude (H) of 22, which would mean an asteroid of at least 110-240 meters, depending on its albedo. One of the major characteristic of the asteroids is the irregular shape, causing the dynamics of orbits around these bodies to be different from a spherical shaped one. The fact that an object is not spherical generates a perturbation on the gravitational field. The disturbing force can be determined considering the shape of the specific body. A satellite orbiting this body would suffer the effects of this perturbation, but knowing the disturbing force, it’s possible to correct and control the orbit according to the desired mission. The polyhedron method is a traditional way to model an asteroid by dividing the object into smaller parts. The data used on this work are composed by a combination of triangular faces. The total disturbing force is a sum of the force on each piece of the model. Therefore, after the simulations are obtained, it’s possible to apply the desired corrections of the perturbation using continuous low thrust in closed loop, making it possible to perform maneuvers near these bodies. One of the important applications of the study shown above is in the ASTER mission, that is under study by INPE and several other Brazilian academic institutions, which goal is to send a spacecraft to an asteroid and then

  14. Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory (United States)

    Zhang, W.; Niu, Y. F.


    The shape evolutions of the pear-shaped nuclei 224Ra and even-even Ba-154144 with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. The free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum are studied. For 224Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at N =136 and Z =88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at T ˜0.5 MeV and shape transitions at T =0.5 -2.2 MeV are found for even-even Ba-154144. The transition temperatures are roughly proportional to the corresponding deformations at the ground states.

  15. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models

    NARCIS (Netherlands)

    Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick; Saradha, A.; Abdi, Hervé; Abdulkadir, Ahmed; Acharya, Deepa; Achuthan, Anusha; Adluru, Nagesh; Aghajanian, Jania; Agrusti, Antonella; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Aisen, Paul; Akhondi-Asl, Alireza; Aksu, Yaman; Alberca, Roman; Alcauter, Sarael; Alexander, Daniel; Alin, Aylin; Almeida, Fabio; Alvarez-Lineara, Juan; Amlien, Inge; Anand, Shyam; Anderson, Dallas; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Aoyama, Eiji; Appannah, Arti; Arfanakis, Konstantinos; Armor, Tom; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Le Page, Aurelie; Avants, Brian; Aviv, Richard; Awasthi, Sukrati; Ayache, Nicholas; Ayan-Oshodi, Mosun; Ayhan, Murat; Sumana, B. V.; Babic, Tomislav; Baek, Young; Bagepally, Bhavani; Baird, Geoffrey; Baker, John; Baker, Suzanne; Bakker, Arnold; Barbash, Shahar; Bard, Jonathan; Barker, Warren; Bartlett, Jonathan; Baruchin, Andrea; Battaglini, Iacopo; Bauer, Corinna; Bayley, Peter; Beck, Irene; Becker, James; Becker, J. Alex; Beckett, Laurel; Bednar, Martin; Bedner, Arkadiusz; Beg, Mirza Faisal; Bekris, Lynn; Belaroussi, Boubakeur; Belloch, Vicente; Belmokhtar, Nabil; Ben Ahmed, Olfa; Bender, J. Dennis; Benois-Pineau, Jenny; Bhaskar, Uday; Bienkowska, Katarzyna; Biffi, Alessandro; Bigler, Erin; Bilgic, Basar; Bishop, Courtney; Bittner, Daniel; Black, Sandra; Bloss, Cinnamon; Bocti, Christian; Bohorquez, Adriana; Bokde, Arun; Boone, John; Boppana, Madhu; Borrie, Michael; Bouttout, Haroune; Bowes, Mike; Bowman, DuBois; Bowman, Gene; Bracard, Serge; Braskie, Meredith; Braunewell, Karl; Breitner, Joihn; Bresell, Anders; Brewer, James; Brickhouse, Michael; Brickman, Adam; Britschgi, Markus; Broadbent, Steve; Brogren, Jacob; Brunton, Simon; Buchsbaum, Monte; Buckley, Chris; Buerger, Katharina; Bunce, David; Burnham, Samantha; Burns, Jeffrey; Burton, David; Burzykowski, Tomasz; Butler, Tracy; Cabeza, Rafael; Caffery, Terrell; Cairns, Nigel; Callhoff, Johanna; Calvini, Piero; Carbotti, Angela; Carle, Adam; Carmasin, Jeremy; Carmichael, Owen; Carvalho, Janessa; Casabianca, Jodi; Casanova, Ramon; Casey, Anne; Cash, David; Cataldo, Rosella; Cedarbaum, Jesse; Cella, Massimo; Celsis, Pierre; Chakravarty, Mallar; Chang, Ih; Chao, Linda; Charil, Arnaud; Chang, Che-Wei; Chemali, Zeina; Chen, Kewei; Chen, Shuzhong; Chen, Rong; Chen, Qiang; Chen, Jung-Tai; Chen, Gang; Chen, Jake; Chen, Wei; Cheng, Wei-Chen; Cheng, Xi; Cherkas, Yauheniya; Chertkow, Howard; Cheung, Vinci; Cheung, Charlton; Chiang, Gloria; Chiao, Ping; chibane, Mouatez Billah; Chida, Noriko; Chin, Simon; Ching, Christopher; Chisholm, Jane; Cho, Claire; Cho, Youngsang; Choe, John; Choubey, Suresh; Chowbina, Sudhir; Christensen, Anette Luther; Ciocia, Gianluigi; Clark, David; Clark, Chris; Clarkson, Matt; Clerc, Stephanie; Clunie, David; Coen, Michael; Ciombra, Alexandre; Compton, David; Coppola, Giovanni; Coubard, Olivier; Coulin, Samuel; Cover, Keith S.; Crane, Paul; Crans, Gerald; Croop, Robert; Crowther, Daniel; Crum, William; Cui, Yue; Curry, Charles; Cutter, Gary; Da, Long; Daliri, Mohammad Reza; Damato, Vito Domenico; Darby, Eveleen; Darkner, Sune; Davatzikos, Christos; DavidPrakash, Bhaskaran; Davidson, Christopher; Davis, Melissa; de Bruijne, Marleen; de Meyer, Geert; de Nunzio, Giorgio; Decarli, Charles; Dechairo, Bryan; DeDuck, Kristina; Dehghan, Hossein; Delfino, Manuel; Della Rosa, Pasquale Anthony; Dellavedova, Luca; Delpassand, Ebrahim; Delrieu, Julien; DeOrchis, Vincent; Dépy Carron, Delphine; Desjardins, Benoit; deToledo-Morrell, Leyla; Devanand, Davangere; Devanarayan, Viswanath; Devier, Deidre; DeVous, Michael; Dgetluck, Nancy; Di, Jianing; Di, Xin; Diaz-Arrastia, Ramon; Dickerson, Bradford; Dickie, David Alexander; Dill, Vanderson; Ding, Xiaobo; Dinov, Ivo; Dobosh, Brian; Dobson, Howard; Dodge, Hiroko; Dolman, Andrew; Dolmo, Bess-Carolina; Donohue, Michael; Dore, Vincent; Dorflinger, Ernest; Dowling, Maritza; Dragicevic, Natasa; Dubal, Dena; Duchesne, Simon; Duff, Kevin; Dukart, Jürgen; Durazzo, Timothy; Dutta, Joyita; DWors, Robert; Earl, Nancy; Edula, Goutham; Elcoroaristizabal, Xabier; Emahazion, Tesfai; Endres, Christopher; Epstein, Noam; Ereshefsky, Larry; Eskildsen, Simon; Espinosa, Ana; Esposito, Mario; Ewers, Michael; Falcone, Guido; Fan, Yong; Fan, Jing; Fan, Lingzhong; Farahibozorg, Seyedehrezvan; Farb, Norman; Fardo, David; Farias, Sarah; Farnum, Michael; Farrer, Lindsay; Fatke, Bastian; Faux, Noel; Feldman, Howard; Feldman, Susan; Feldman, Betsy; Félix, Zandra; Fennema-Notestine, Christine; Fernandes, Michel; Fernandez, Elsa; Ferreira, Manuel Joao; Ferrer, Eugene; Fetterman, Bob; Figurski, Michal; Fillit, Howard; Finch, Stephen; Fiot, Jean-Baptiste; Flenniken, Derek; Fletcher, Evan; Flores, Christopher; Longmire, Crystal Flynn; Focke, Niels; Forman, Mark; Forsythe, Alan; Fox, Steven; Fox-Bosetti, Sabrina; Foxhall, Suzanne; Franko, Edit; Freeman, Roderick; Friedrich, Christoph M.; Friesenhahn, Michel; Frisoni, Giovanni; Fritzsche, Klaus; Fujimoto, Yoko; Fujiwara, Ken; Fullerton, Terence; Gaffour, Yacine; Galvin, Ben; Gamst, Anthony; Gao, Sujuan; Garg, Gaurav; Gaser, Christian; Gastineau, Edward; Gattaz, Wagner; Gaubert, Malo; Gauthier, Serge; Gavett, Brandon; Ge, Tian; Gemme, Gianluca; Geraci, Joseph; Gholipour, Farhad; Ghosh, Debashis; Ghosh, Satrajit; Gieschke, Ronald; Gill, Ryan; Gillespie, William; Gitelman, Darren; Gkontra, Xenia; Gleason, Carey; Glymour, M. Maria; Godbey, Michael; Gold, Brian; Goldberg, Terry; Goldman, Jennifer; Gonzalez-Beltran, Alejandra; Goodro, Robert; Gore, Chris; Gorriz, Juan Manuel; Goto, Masami; Grachev, Igor; Gradkowski, Wojciech; Grandey, Emily; Grasela, Thaddeus; Gray, Katherine; Greenberg, Barry; Greicius, Michael; Grill, Joshua; Gross, Alden; Gross, Alan; Grydeland, Håkon; Guignot, Isabelle; Guo, Qimiao; Guo, Liang-Hao; Guo, Hongbin; Gupta, Vinay; Guyot, Jennifer; Habeck, Christian; Habte, Frezghi; Haight, Thaddeus; Hajaj, Chen; Hajiesmaeili, Maryam; Hajjar, Ihab; Hammarstrom, Per; Hampel, Harald; Han, Duke; Han, Jian; Han, Zhaoying; Hanna, Yousef; Hao, Yongfu; Hardy, Peter; Harvey, Danielle; Hasan, Md Kamrul; Hayashi, Toshihiro; Haynes, John-Dylan; He, Huiguang; He, Yong; Head, Denise; Heckemann, Rolf; Heegaard, Niels; Heidebrink, Judith; Hellyer, Peter; Helwig, Michael; Henderson, David; Herholz, Karl; Herskovits, A. Zara; Hess, Christopher; Hildenbrand, Maike; Ming, Au Yeung Ho; Hobart, Jeremy; Hochstetler, Helen; Hofer, Scott; Hoffman, John; Holder, Daniel; Hollingworth, Paul; Holmes, Robin; Hong, Quan; Honigberg, Lee; Hope, Thomas; Hoppin, Jack; Hot, Pascal; Hou, Yangyang; Hsieh, Helen; Hsu, Ailing; Hu, Xiaochen; Hu, Mingxing; Hu, William; Hua, Wen-Yu; Huang, Shuai; Huang, Fude; Huang, Zihan; Huang, Chun-Jung; Huang, Chien-Chih; Huang, Juebin; Hubbard, Rebecca; Huentelman, Matthew; Huppertz, Hans-Jürgen; Hurko, Orest; Hurt, Stephen; Hutchins, Jim; Hwang, Scott; Hyun, JungMoon; Ifeachor, Emmanuel; Iglesias, Martina; Ikari, Yasuhiko; Ikonomidou, Vasiliki; Iman, Adjoudj; Imani, Farzin; Immermann, Fred; Inlow, Mark; Inoue, Lurdes; Insel, Philip; Irizarry, Michael; Ishibashi, Taro; Ishii, Kenji; Ismail, Sara; Ito, Kaori; Iturria-Medina, Yasser; Iwatsubo, Takeshi; Jacks, Adam; Jacobson, Mark; Jacqmin, Philippe; Jaffe, Carl; Jagust, William; Janousova, Eva; Jara, Hernan; Jasperse, Bas; Jedynak, Bruno; Jefferson, Angela; Jennings, J. Richard; Jenq, John; Jessen, Walter; Jia, Fucang; Jiang, Tianzi; Jiao, Yun; Jing, Huang; Johnson, Kent; Johnson, Sterling; Johnson, David K.; Johnson, Julene; Jones, Gareth; Jones, Mark; Jones, Richard; Joshi, Shantanu; Jouvent, Eric; Juengling, Freimut; Julin, Per; Junjie, Zhuo; Kabilan, Meena; Kadish, Bill; Kairui, Zhang; Kam, Hye Jin; Kamboh, M. Ilyas; Kamer, Angela; Kanakaraj, Sithara; Kanchev, Vladimir; Kaneko, Tomoki; Kaneta, Tomohiro; Kang, Hyunseok; Kang, Ju Hee; Kang, Jian; Karageorgiou, Elissaios; Karantzoulis, Stella; Karlawish, Jason; Katz, Elyse; Kaushik, Sandeep S.; Kauwe, John; Kawakami, Hirofumi; Kawashima, Shoji; Kaye, Edward; Kazemi, Samaneh; Ke, Han; Kelleher, Thomas; Kennedy, Richard; Keogh, Bart; Kerchner, Geoffrey; Kerr, Daniel; Keshava, Nirmal; Khalil, Iya; Khalil, Andre; Khondker, Zakaria; Kihara, Takeshi; Killeen, Neil; Killiany, Ron; Kim, Dajung; Kim, Hyoungkyu; Kim, Seongkyun; Kim, Jong Hun; Kim, Ana; Kim, Jung-Hyun; Kimberg, Daniel; Kimura, Tokunori; King, Richard; Kirby, Justin; Kirsch, Wolff; Klimas, Michael; Kline, Richard; Kling, Mitchel; Klopfenstein, Erin; Koen, Joshua; Koikkalainen, Juha; Kokomoor, Anders; Kong, Xiangnan; Koppel, Jeremy; Korolev, Igor; Kotran, Nickolas; Kowalczyk, Adam; Krahnke, Tillmann; Krams, Michael; Kuceyeski, Amy; Kuhl, Donald; Kumar, Vinod; Roy, P. Kumar; Kuo, Julie; Labrish, Catherine; Lai, Song; Lakatos, Anita; Lalonde, François; Lam, On Ki; Lampron, Antoine; Landau, Susan; Lane, Richard; Lane, Barton; Langbaum, Jessica; Langford, Dianne; Lanius, Vivian; Latella, Marco; Leahy, Richard; an Lee, Jong; Lee, Dongsoo; Lee, Noah; Lee, Sei; Lee, Doheon; Lee, Grace; Lefkimmiatis, Stamatis; Lemaitre, Herve; Lenfant, Pierre; Lenz, Robert; Leong, Josiah; Leoutsakos, Jeannie-Marie; Leung, Yuk Yee; Levey, Alan; Li, Rui; Li, Xiaodong; Li, Weidong; Li, Xiaobo; Li, Ming; Li, Lexin; Li, Jun; Li, Gang; Li, Quanzheng; Li, Yi; Li, Junning; Li, Jie; Li, Yue; Li, Shanshan; Liang, Kelvin; Liang, Kuchang; Liang, Peipeng; Liang, Lichen; Liao, Weiqi; Liaquat, Saad; Liberman, Gilad; Lin, Lan; Lin, Ai-Ling; Lin, Frank; Liu, Tao; Liu, Dazhong; Liu, Li; Liu, Honggang; Liu, Sidong; Liu, Tianming; Liu, Xiuwen; Liu, Sophia; Liu, Linda; Liu, Wei; Liu, Guodong; Liu, Yangping; Liu, Collins; Lo, Raymond; Lobanov, Victor; Lockhart, Andrew; Loewenstein, David; Logovinsky, Veronika; Long, Miaomiao; Long, Ziyi; Long, Xiaojing; Looi, Jeffrey; Lu, Huanxiang; Lu, Po-Haong; Lucena, Nathaniel; Lukas, Carsten; Lukic, Ana; Luo, Lei; Luo, Xiongjian; Luo, Xi; Lynch, John; Ma, Shen-Ming; Mackin, Scott; Mada, Marius; Madabhushi, Anant; Maglio, Silvio; Mahanta, Mohammad Shahin; Maikusa, Norihide; Maldjian, Joseph; Mandal, Indrajit; Manjon, Jose; Mantri, Ninad; Manzour, Amir; Marchewka, Artur; Marcus, Daniel; Margolin, Richard; Marrett, Sean; Marshall, Gad; Gonzalez, Alberto Martinez; Torteya, Antonio Martinez; Mather, Mara; Mathis, Chester; Mattei, Peter; Matthews, Dawn; McArdle, John; McCarroll, Steven; McEvoy, Linda; McGeown, William; McGinnis, Scott; McGonigle, John; McIntyre, John; McLaren, Donald; McQuail, Joseph; Meadowcroft, Mark; Meda, Shashwath; Melie-Garcia, Lester; Melrose, Rebecca; Mendelson, Alexander; Mendez, Mario; Menendez, Enrique; Meng, Meng; Meredith, Jere; Metti, Andrea; Meyer, Carsten; Mez, Jesse; Mickael, Guedj; Miftahof, Roustem; Mikula, Margit; Miller, Michael; Millikin, Colleen; Mintun, Mark; Mirza, Mubeena; Mistridis, Panagiota; Mitchell, Meghan; Mitsis, Effie; Mon, Anderson; Moore, Dana; Morabito, Francesco C.; Birgani, Parmida Moradi; Moratal, David; Morimoto, Bruce; Mormino, Elizabeth; Morris, Jill; Mortamet, Bénédicte; Moscato, Pablo; Mueller, Kathyrne; Mueller, Susanne; Mukherjee, Shubhabrata; Mulder, Emma; Mungas, Dan; Munir, Kamran; Murayama, Shigeo; Murphy, Michael; Myers, Amanda; Sairam, N.; Nagata, Ken; Nair, Anil; Nativio, Raffaella; Nazarparvar, Babak; Nazeri, Arash; Nejad, Leila; Nekooei, Sirous; Nettiksimmons, Jasmine; Neu, Scott; Ng, Yen-Bee; Nguyen, Nghi; Nichols, Thomas; Nicodemus, Kristin; Niecko, Timothy; Nielsen, Casper; Nishio, Tomoyuki; Nordstrom, Matthew; Noshad, Sina; Notomi, Keiji; Novak, Nic; Nutakki, Gopi Chand; O'Bryant, Sid; Obisesan, Thomas; Oh, Joonmi; Okonkwo, Ozioma; Olde Rikkert, Marcel; Oliveira, Ailton; Oliveira, João; Oliver, Ruth; Olmos, Salvador; Oltra, Javier; Ortner, Marion; Osadebey, Michael; Ostrowitzki, Susanne; Overholser, Rosanna; Anishiya, P.; Chitra, P. K. A.; Pa, Judy; Palanisamy, Preethi; Pan, Sarah; Pan, Zhifang; Pande, Yogesh; Pardo, Jose; Pardoe, Heath; Park, Sang hyun; Park, Sujin; Park, Lovingly; Park, Hyunjin; Park, Moon Ho; Parker, Christopher; Patel, Yogen; Patil, Amol; Patil, Manasi; Pawlak, Mikolaj; Payoux, Pierre; Pearson, Jim; Pell, Gaby; Peng, Yahong; Pennec, Xavier; Pepin, Jean louis; Pereira, Francisco; Perneczky, Robert; Petitti, Diana; Petrella, Jeffrey; Peyrat, Jean-Marc; Ngoc, Phuong Trinh Pham; Phillips, Justin; Phillips, Nicole; Pian, Wen-ting; Pierson, Ronald; Piovezan, Mauro; Pipitone, Jon; Pirraglia, Elizabeth; Planes, Xavi; Podhorski, Adam; Pollari, Mika; Pomara, Nunzio; Pontecorvo, Michael; Popov, Veljko; Poppenk, Jordan; Posner, Holly; Potkin, Steven; Potter, Guy; Potter, Elizabeth; Poulin, Stephane; Prastawa, Marcel; Prince, Jerry; Priya, Anandh; Pruessner, Jens; Qiu, Wendy; Qu, Annie; Qualls, Constance Dean; Quarg, Peter; Quinlan, Judith; Rabbia, Michael; Rajagovindan, Rajasimhan; Rajeesh, Rajeesh; Rallabandi, V. P. Subramanyam; Ramadubramani, Vanamamalai; Ramage, Amy; Ramirez, Alfredo; Randolph, Chrstopher; Rao, Anil; Rao, Hengyi; Rao, Divya; Raubertas, Richard; Ray, Debashis; Razak, Hana; Reed, Bruce; Reid, Andrew; Reihac, Anthonin; Reiner, Peggy; Reinsberger, Claus; Restrepo, Lucas; Retico, Alessandra; Rhatigan, Lewis; Rhinn, Herve; Rhoades, Earl; Ribbens, Annemie; Richard, Edo; Richards, John; Richter, Mirco; Riddle, William; Ridgway, Gerard; Ries, Michele; Ringman, John; Rischall, Matt; Rizk-Jackson, Angela; Rizzi, Massimo; Robieson, Weining; Rodriguez, Laura; Rodriguez-Vieitez, Elena; Rogalski, Emily; Rogers, Elizabeth; Balderrama, Javier Rojas; Rokicki, Jaroslav; Romero, Klaus; Rorden, Chris; Rosand, Jonathan; Rosen, Ori; Rosenberg, Paul; Roubini, Eli; Rousseau, François; Rowe, Christopher; Rubin, Daniel; Rubright, Jonathan; Rucinski, Marek; Ruiz, Agustin; Rulseh, Aaron; Rusinek, Henry; Ryan, Laurie; Saad, Ahmed; Sabuncu, Mert; Sahuquillo, Juan; Said, Yasmine; Saito, Naomi; Sakata, Muneyuki; Salama, Mahetab; Salazar, Diego; Salter, Hugh; Saman, Sudad; Sanchez, Luciano; Sanders, Elizabeth; Sankar, Tejas; Santhamma, Sindhumol; Sarnel, Haldun; Sasaki, Toshiaki; Sasaya, Tenta; Sato, Hajime; Sattlecker, Martina; Saumier, Daniel; Savio, Alexandre; Saykin, Andrew; Scanlon, Blake; Scharre, Douglas; Schegerin, Marc; Schmand, Ben; Schmansky, Nick; Schmidt-Wilcke, Tobias; Schramm, Hauke; Schuerch, Markus; Schwartz, Craig; Schwartz, Eben; Schwarz, Adam; Schwarz, John; Selnes, Per; Sembritzki, Klaus; Senjem, Matthew; Sevigny, Jeffrey; Sfikas, Giorgos; Sghedoni, Roberto; Shah, Said Khalid; Shahbaba, Babak; Shams, Soheil; Shankle, William; Shattuck, David; Shaw, Leslie; Sheela, Jaba; Shen, Jie; Shen, Qi; Shen, Weijia; Shen, Qian; Shera, David; Sherman, John; Sherva, Richard; Shi, Jie; Shi, Yonggang; Shi, Feng; Shokouhi, Sepideh; Shukla, Vinay; Shulman, Joshua; Sideris, Konstantinos; Siegel, Rene; Silveira, Margarida; Silverman, Daniel; Sim, Ida; Simak, Alex; Simmons, Andy; Simoes, Rita; Simon, Adam; Simon, Melvin; Simpson, Ivor; Singh, Nikhil; Singh, Simer Preet; Sinha, Neelam; Siuciak, Judy; Sjögren, Niclas; Skinner, Jeannine; Smith, Michael; Smith, Charles; Smyth, Timothy; Snow, Sarah; Snyder, Peter; Soares, Holly; Soldan, Anja; Soldea, Octavian; Solomon, Alan; Solomon, Paul; Som, Subhojit; Song, Zhuang; Song, Shide; Sosova, Iveta; Soydemir, Melih; Spampinato, Maria Vittoria; Speier, William; Sperling, Reisa; Renãâ, Spiegel; Spies, Lothar; Springate, Beth; Staff, Roger; Steffener, Jason; Stern, Yaakov; Stokman, Harro; Straw, Jack; Stricker, Nikki; Stühler, Elisabeth; Styren, Scot; Subramanian, Vijayalakshmi; Suen, Summit; Sugishita, Morihiro; Sukkar, Rafid; Sun, Ying; Sun, Jia; Sun, Yu; Sundell, Karen; Suzuki, Akiyuki; Svetnik, Vladimir; Swan, Melanie; Symons, Sean; Szigeti, Kinga; Szoeke, Cassandra; Sørensen, Lauge; Genish, T.; Takahasi, Tetsuhiko; Takeuchi, Tomoko; Tanaka, Shoji; Tanaka, Rie; Tanchi, Chaturaphat; Tancredi, Daniel; Tang, Qi; Tarnow, Eugen; Tartaglia, Maria Carmela; Tarver, Erika; Tassy, Dominique; Tauber, Clovis; Taylor-Reinwald, Lisa; Teipel, Stefan; Teng, Edmond; Terriza, Felipe; Thambisetty, Madhav; Thames, April; Thatavarti, Raja Sekhar; Thiele, Frank; Thomas, Charlene; Thomas, Ronald; Thomas, Benjamin; Thompson, Paul; Thompson, Wesley; Thornton-Wells, Tricia; Thorvaldsson, Valgeir; Thurfjell, Lennart; Tokuda, Takahiko; Toledo, Juan B.; Tölli, Tuomas; Toma, Ahmed; Tomita, Naoki; Toro, Roberto; Torrealdea, Patxi; Tosto, Giuseppe; Tosun, Duygu; Tousian, Mona; Toussaint, Paule; Toyoshiba, Hiroyoshi; Tractenberg, Rochelle E.; Triggs, Tyler; Trittschuh, Emily; Trojanowski, John; Trotta, Gabriele; Huu, Tram Truong; Truran, Diana; Tsanas, Athanasios; Tsang, Candy; Tufail, Ahsan; Tung, Joyce; Turken, And; Ueda, Yoji; Uematsu, Daisuke; Ullrich, Lauren; Venkataraju, Kannan Umadevi; Umar, Nisser; Ungar, Leo; Uzunbas, Gokhan; van de Nes, Joseph; van der Brug, Marcel; van der Lijn, Fedde; van Hecke, Wim; van Horn, John; van Leemput, Koen; van Train, Kenneth; Varkuti, Balint; Vasanawala, Minal; Veeraraghavan, Harini; Vemuri, Prashanthi; Verma, Manish; Videbaek, Charlotte; Vidoni, Eric; Villanueva-Meyer, Javier; Vinyes, Georgina; Visser, Pieter Jelle; Vitek, Michael; Vogel, Simon; Voineskos, Aristotle; Vos, Stephanie; Vounou, Maria; Wade, Sara; Walsh, Alexander; Wan, Hong; Wang, Tianyao; Wang, Yongmei Michelle; Wang, Wei; Wang, Angela; Wang, Song; Wang, Lubin; Wang, Li; Wang, Yaping; Wang, Li-San; Wang, Lei; Wang, Alex; Wang, Yue; Wang, Xu; Wang, Ze; Wang, Tiger; Ward, Michael; Ward, Andrew; Watanabe, Toshiyuki; Watson, David; Webb, David; Wefel, Jeffrey; Weiner, Michael; Westlye, Lars T.; Wheland, David; Whitcher, Brandon; White, Brooke; Whitlow, Christopher; Wilhelmsen, Kirk; Wilmot, Beth; Wilson, Lorraine; Wimsatt, Matt; Wingo, Thomas; Wirth, Miranka; Wishart, Heather; Wiste, Heather; Wolf, Henrike; Wolke, Ira; Wolz, Robin; Wong, Koon; Woo, Jongwook; Woo, Ellen; Woods, Lynn; Worth, Andrew; Wu, Yanjun; Wu, Liang; Wu, Ellen; Wyman, Bradley; Xiao, Guanghua; Xie, Sharon; Xu, Ye; Xu, Yi-Zheng; Xu, Guofan; Xu, Steven; Xu, Shunbin; Xu, Jun; Yamada, Tomoko; Yamashita, Fumio; Yan, Yunyi; Yan, Pingkun; Yang, Chung-Yi; Yang, Zijiang; Yang, Edward; Yang, Guang; Yang, Wenlu; Yang, Eric; Yank, Hyun Duk; Yang, Jinzhong; Yassa, Michael; Yavorsky, Christian; Ye, Byoung Seok; Ye, Liang; Ye, Jong; Yee, Laura; Ying, Song; Yokoyama, Takao; Young, Stewart; Young, Jonathan; Younhyun, Jung; Yu, Dongchuan; Yu, Shiwei; Yu, C. Q.; Yu, Peng; Yuan, Ying; Yuan, Kai; Yuan, Guihong; Yuen, Bob; Yushkevich, Paul; Zaborszky, Laszlo; Zagorodnov, Vitali; Zagorski, Michael; Zahodne, Laura; Zarei, Mojtaba; Zawadzki, Rezi; Zeitzer, Jamie; Zelinski, Elizabeth; Zeskind, Benjamin; Zhan, Shu; Zhang, Jing; Zhang, Lijun; Zhang, Zhiguo; Zhang, Linda; Zhang, Zhe; Zhang, Daoqiang; Zhang, Huixiong; Zhang, Xin; Zhang, Tianhao; Zhang, Ping; Zhao, Jim; Zhao, Qinying; Zhao, Peng; Zhen, Xiantong; Zhijun, Yao; Zhou, Luping; Zhou, Bin; Zhou, Yongxia; Zhou, Sheng; Zhu, Hongtu; Zhu, Wen; Zhu, Wanlin; Zhu, Xuyan; Ziegler, Gabriel; Zilka, Samantha; Zisserman, Andrew; Zito, Giancarlo; Zu, Chen; Zulfigar, Annam


    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually

  16. HEp-2 Cell Classification Using Shape Index Histograms With Donut-Shaped Spatial Pooling

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Vestergaard, Jacob Schack; Larsen, Rasmus


    introduce a spatial decomposition scheme which is radially symmetric and suitable for cell images. The spatial decomposition is performed using donut-shaped pooling regions of varying sizes when gathering histogram contributions. We evaluate our method using both the ICIP 2013 and the ICPR 2012 competition...

  17. Shape coexistence and shape transition in self-conjugate nucleus 72Kr and the tensor force (United States)

    Kaneko, K.; Sun, Y.; Wadsworth, R.


    Oblate-prolate shape-coexistence is well-known in the N = Z nucleus 72Kr. Furthermore, recent experimental data implies that there is a rapid shape transition at very low spins in this nucleus. We reinvestigate this problem by using large-scale shell-model calculations with the monopole interactions derived from the monopole-based universal force that contains the tensor force in the Hamiltonian. We show that in 72Kr, states with nucleon-quartet excitation from the pf shell to the {g}9/2–{d}5/2 orbits, which favor large prolate deformation, compete with those having the pf shell as the main configuration with oblate deformation. These shapes can coexist if the two types of states reside closely in excitation energy. In 72Kr the tensor force is found to provide precisely such a coexistence condition near the ground state. As the tensor effect changes dynamically with orbital occupation when the nucleus rotates, a rapid shape transition can occur.

  18. Multivariate constrained shape optimization: Application to extrusion bell shape for pasta production (United States)

    Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco


    Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.

  19. Multi-shape active composites by 3D printing of digital shape memory polymers. (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry


    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  20. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie


    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  1. Morphing-Based Shape Optimization in Computational Fluid Dynamics (United States)

    Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki

    In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.

  2. Exploring the Design Space of Shape-Changing Objects

    DEFF Research Database (Denmark)

    Merritt, Timothy; Petersen, Marianne Graves; Nørgaard, Mie


    -changing interfaces is a growing area in HCI design research and that authors often shy away from articulating the special qualities brought to a design by using changing shape to communicate information, we set out to explore shape changing interfaces through a series of sketching experiments through the support...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call “Imagined Physics.” This concept is described along with additional insights into the qualities of shape...

  3. The Interpretive Shaping of Music Performance Research

    Directory of Open Access Journals (Sweden)

    John Rink


    Full Text Available In their study of nine pianists Buck, MacRitchie and Bailey observe a universal embodiment of phrasing structure and other higher-level structural features of the music, the physical makeup of which is nevertheless particular to both the individual performers and the pieces they are performing. Such a conclusion invites renewed consideration of assumptions in the literature on musical performance about the nature and role of structure and about performers' 'interpretations' thereof. The findings also raise interesting questions about the musical viability of empirical research on performance and its capacity to shed light on how performers shape the music they play, their motivations in doing so, and how those listening to them might in turn be affected by this.

  4. Improved peak shape fitting in alpha spectra. (United States)

    Pommé, S; Caro Marroyo, B


    Peak overlap is a recurrent issue in alpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown for a few challenging spectra with high statistical precision. The algorithm outperforms the best available routines for high-resolution spectrometry, which may facilitate a more reliable determination of alpha emission probabilities in the future. It is also applicable to alpha spectra with inferior energy resolution. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Robust and Low-Cost Light Shaping

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper


    Phase-only spatial light modulation is used to shape light in microscopy,micromanipulation, microfabrication and biophotonics. One application of phasemodulation is the creation of dynamic optical traps for directly controlling themotion of microscopic particles by using programmable spatial light...... modulators(SLMs). Similarly, light can be phase-sculpted to match and target biologicalmaterial or trigger localized biochemical reactions. Despite its versatility,phase-only spatial light modulation requires pricey SLMs, which limit its use inphotonics research. However, consumer projectors are much more...... affordable.Researchers have started to explore using projectors based onliquid-crystal-onsilicon (LCoS) as binary-only phase modulators by replacing theincoherent light source with a laser of appropriate polarization....

  6. From correlation functions to event shapes

    CERN Document Server

    Belitsky, A V; Korchemsky, G P; Sokatchev, E; Zhiboedov, A


    We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a non-trivial analytic continuation which, in the framework of CFT, can elegantly be performed in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results...

  7. Shape Descriptors for Scanning Probe Recognition Microscopy (United States)

    Chen, Qian; Ayres, Virginia; Udpa, Lalita


    Direct investigation of, and interaction with, biological objects at the macromolecular level will provide insight into multiple physical regulatory processes. Scanning probe microscopy (SPM) techniques have the potential to provide a direct interaction with living specimens at the macromolecular scale. A key enabling capability is to replace the current x-y raster scan with site-specific direct investigation. In the present research we will discuss the site-specific recognition techniques that are appropriate for tubular and globular biological features. The SPM image will be input to an image segmentation and boundary detection algorithm to extract closed boundaries of features in the image. The boundary information will be parameterized using Fourier descriptors, which are rotation invariant descriptors to be used for recognizing the segmented shape.

  8. Design of an ogive-shaped beamstop

    International Nuclear Information System (INIS)

    Hagan, T.H. van; Doll, D.W.; Schneider, J.D.; Spinos, F.R.


    This paper addresses the evolution, design, and development of a novel approach for topping cw (continuous-wave), non-rastered proton beams. Capturing the beam in vacuo within a long, axisymmetric surface of revolution has the advantages of spreading the deposited energy over a large area while minimizing prompt neutron backstreaming and reducing shield size and mass. Evolving from a cylinder/cone concept, the ogive shape avoids abrupt changes in geometry that produce sharp thermal transitions, allowing the beam energy to be deposited gracefully along its surface. Thermal management at modest temperature levels is provided with a simple, one-pass countercurrent forced-convection water passage outside the ogive. Hydrophone boiling sensors provide overtemperature protection. The concept has been demonstrated under beam conditions in the CRITS (Chalk River Injector Test Stand) facility

  9. Shape optimization: Good looks and acoustics too! (United States)

    D'Antonio, Peter; Cox, Trevor J.; Haas, Steve


    One of the challenges in the architectural acoustic design of museums and other public spaces is to develop contemporary scattering surfaces that complement contemporary architecture in the way that statuary, coffered ceilings, columns, and relief ornamentation complemented classic architecture. Often acoustic surfaces satisfy the acoustics, but may or may not satisfy the aesthetics. One approach that has been successful employs a combination of boundary element and multidimensional optimization techniques. The architect supplies the desired shape motif and the acoustician supplies the acoustical performance requirements. The optimization program then provides an Arcousthetic surface, which simultaneously satisfies the architecture, the acoustics, and the aesthetics. The program can be used with diffusive or diffsorptive surfaces. Photos of installations using these acoustic tools and a description of the design of the National Museum of the American Indian will also be presented to illustrate the usefulness of these devices and their impact on architectural acoustics.

  10. How Cultural Knowledge Shapes Core Design Thinking

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Ranjan, Apara; Bødker, Mads


    The growing trend of co-creation and co-design in cross-cultural design teams presents challenges for the design thinking process. We integrate two frameworks, one on reasoning patterns in design thinking, the other on the dynamic constructivist theory of culture, to propose a situation specific...... framework for the empirical analysis of design thinking in cross-cultural teams. We illustrate the framework with a qualitative analysis of 16 episodes of design related conversations, which are part of a design case study. The results show that cultural knowledge, either as shared by the cross......-cultural team or group specific knowledge of some team members, shape the reasoning patterns in the design thinking process across all the 16 episodes. Most of the design discussions were approached by the designers as problem situations that were formulated in a backward direction, where the value to create...

  11. Lingering Cognitive States Shape Fundamental Mnemonic Abilities. (United States)

    Patil, Anuya; Duncan, Katherine


    Why are people sometimes able to recall associations in exquisite detail while at other times left frustrated by the deficiencies of memory? Although this apparent fickleness of memory has been extensively studied by investigating factors that build strong memory traces, researchers know less about whether memory success also depends on cognitive states that are in place when a cue is encountered. Motivating this possibility, neurocomputational models propose that the hippocampus's capacity to support associative recollection (pattern completion) is biased by persistent neurochemical states, which can be elicited by exposure to familiarity and novelty. We investigated these models' behavioral implications by assessing how recent familiarity influences different memory-retrieval processes. We found that recent familiarity selectively benefitted associative memory (Experiment 1) and that this effect decayed over seconds (Experiment 2), consistent with the timescale of hippocampal neuromodulation. Thus, we show that basic memory computations can be shaped by a subtle, biologically motivated manipulation.

  12. RNA SHAPE chemistry with aromatic acylating reagents. (United States)

    Nodin, Laura; Noël, Olivier; Chaminade, Françoise; Maskri, Ouerdia; Barbier, Vincent; David, Olivier; Fossé, Philippe; Xie, Juan


    As chemical methods for RNA secondary structure determination, SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature. In order to improve the specificity of acylating reagents towards unpaired nucleotides, we have explored the reactivity of symmetric anhydrides, acyl fluorides, active esters like succinimidyl ester and cyanomethyl esters for 2'-O-acylation reaction. Among the tested compounds, only the acyl fluoride 4 showed a low reactivity (compared to NMIA). However, this study is the first to show that nucleophilic catalysts like DMAP greatly improved the selective 2'-hydroxyl acylation by symmetric anhydrides, acyl fluorides and succinimidyl ester, with the 2-fluorobenzoic anhydride 5 being the most reactive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Shaping accountabilities for erroneously enacted environmental evidence

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    , in the enactment of such erroneous environmental evidence by and in heterogeneous collectives. To explore these enactments I experiment with contrasting analyses of these practices as ontological (Mol) or ontic (Verran) politics whilst focusing on how these politics shape and distribute the (im...... of accountability: first, the company was performing itself as a socially and environmentally accountable and responsible "corporate citizen"; second, the company was inhabiting a discourse of evidence-based decision-making, requiring the evidence to be produced accountably. I analyse a limited set of ethnographic...... vignettes of situated work practice that (con)figured the company's accounting for their carbon emissions. Common to all these situations was that the environmental realities enacted have been categorised by some members as erroneous or as not good enough. In this paper I am interested, thence...

  14. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed


    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  15. Coupled Shape Model Segmentation in Pig Carcasses

    DEFF Research Database (Denmark)

    Hansen, Mads Fogtmann; Larsen, Rasmus; Ersbøll, Bjarne Kjær


    In this paper we are concerned with multi-object segmentation. For each object we will train a level set function based shape prior from a sample set of outlines. The outlines are aligned in a multi-resolution scheme wrt. an Euclidean similarity transformation in order to maximize the overlap...... levels inside the outline as well as in a narrow band outside the outline. The maximum a posteriori estimate of the outline is found by gradient descent optimization. In order to segment a group of mutually dependent objects we propose 2 procedures, 1) the objects are found sequentially by conditioning...... the initialization of the next search from already found objects; 2) all objects are found simultaneously and a repelling force is introduced in order to avoid overlap between outlines in the solution. The methods are applied to segmentation of cross sections of muscles in slices of CT scans of pig backs for quality...

  16. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun


    of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used......This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  17. Shape transitions in anisotropic multicomponent lipid tubules

    Directory of Open Access Journals (Sweden)

    Tim eAtherton


    Full Text Available Abstract Ternary mixtures of saturated and unsaturated lipids together with cholesterol can be induced to phase separate by photo-peroxidation into lipid-ordered Lo and lipid-disordered Ld domains. Because these have different mechanical properties, the phase separation is accompanied by dramatic changes in morphology. This work considers a tubule composed of Ld phase with Lo phase inclusions that possess greater rigidity; this system has been shown experimentally by Yuan and coworkers to spontaneously adopt either banded or disc configurations following phase separation. The static behaviour of inter-domain interactions is analyzed in each of these geometries by solving the linearized shape equations. These calculations suggest a possible mechanism by which the two structures form.

  18. [Psychoanalysis, individualistic value shaping, and social ethics]. (United States)

    Tenorio, F


    Refuting the view now prevailing in social anthropology, the article seeks to offer a new outlook on relations between psychoanalysis and the individualistic shaping of values that characterizes modern Western society. According to current social anthropology, psychoanalysis embodies the promise of recouping a wholeness lost as a result of the world's process of de-sanctification. The self is seen as constituting this new wholeness value, while psychoanalysis, insofar as it proposes redemption through the self, is viewed as a modern religion with individualistic effects. In questioning this vision, the article offers as a counterpoint the idea that the Lacanian formalization of the subconscious through symbolic structure overcomes the dichotomy between subject and society. This leads Lacan to assert that analysis should lead the subject to dedicate his or herself to guaranteeing the workings of the great Other, which is understood to mean that psychoanalysis should lead the subject to assume his or her responsibility for the workings of the symbolic structure.

  19. How Politics Shapes the Growth of Rules

    DEFF Research Database (Denmark)

    Jakobsen, Mads Leth Felsager; Mortensen, Peter Bjerre


    when, why, and how political factors shape changes in the stock of rules. Furthermore, we test these hypotheses on a unique, new data set based on all Danish primary legislation and administrative rules from 1989 to 2011 categorized into 20 different policy domains. The analysis shows......This article examines the impact of politics on governmental rule production. Traditionally, explanations of rule dynamics have focused on nonpolitical factors such as the self-evolvement of rules, environmental factors, and decision maker attributes. This article develops a set of hypotheses about...... that the traditional Weberian “rules breed rules” explanations must be supplemented with political explanations that take party ideology and changes in the political agenda into account. Moreover, the effect of political factors is indistinguishable across changes in primary laws and changes in administrative rules...

  20. Cusp-Shaped Elastic Creases and Furrows (United States)

    Karpitschka, S.; Eggers, J.; Pandey, A.; Snoeijer, J. H.


    The surfaces of growing biological tissues, swelling gels, and compressed rubbers do not remain smooth, but frequently exhibit highly localized inward folds. We reveal the morphology of this surface folding in a novel experimental setup, which permits us to deform the surface of a soft gel in a controlled fashion. The interface first forms a sharp furrow, whose tip size decreases rapidly with deformation. Above a critical deformation, the furrow bifurcates to an inward folded crease of vanishing tip size. We show experimentally and numerically that both creases and furrows exhibit a universal cusp shape, whose width scales like y3 /2 at a distance y from the tip. We provide a similarity theory that captures the singular profiles before and after the self-folding bifurcation, and derive the length of the fold from finite deformation elasticity.