WorldWideScience

Sample records for shallow lakes implications

  1. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.

    Science.gov (United States)

    Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro

    2018-08-01

    Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Fine sediment dynamics in a shallow lake and implication for design of hydraulic works

    NARCIS (Netherlands)

    Vijverberg, T.; Winterwerp, J.C.; Aarninkhof, S.G.J.; Drost, H.

    2010-01-01

    Lake Markermeer is a large (680 km2), shallow body of water in the middle of the Netherlands, with a mean water depth of 3.6 m. One of the major problems in the lake is its decreasing ecological value which is, among other reasons, caused by a gradual increase of suspended sediment concentration and

  3. Remote sensing of macrophyte morphological traits: Implications for the management of shallow lakes

    Directory of Open Access Journals (Sweden)

    Paolo Villa

    2017-03-01

    Full Text Available Macrophytes are important elements of freshwater ecosystems, fulfilling a pivotal role in biogeochemical cycles. The synoptic capabilities provided by remote sensing make it a powerful tool for monitoring aquatic vegetation characteristics and the functional status of shallow lake systems in which they occur. The latest generation of airborne and spaceborne imaging sensors can be effectively exploited for mapping morphologically – and physiologically – relevant vegetation features based on their canopy spectral response. The objectives of this study were to calibrate semi-empirical models for mapping macrophyte morphological traits (i.e., fractional cover, leaf area index and above-water biomass from hyperspectral data, and to investigate the capabilities of remote sensing in supporting macrophyte monitoring and management. We calibrated spectral models using in situ reflectance and morphological trait measures and applied them to airborne hyperspectral imaging data, acquired over two shallow European water bodies (Lake Hídvégi, in Hungary, and Mantua lakes system, in Italy in two key phenological phases. Maps of morphological traits were produced covering a broad range of aquatic plant types (submerged, floating, and emergent, common to temperate and continental regions, with an error level of 5.4% for fractional cover, 0.10 m2 m-2 for leaf area index, and 0.06 kg m-2 for above-water biomass. Based on these maps, we discuss how remote sensing could support monitoring strategies and shallow lake management with reference to our two case studies: i.e., by providing insight into spatial and species-wise variability, by assessing nutrient uptake by aquatic plants, and by identifying hotspot areas where invasive species could become a threat to ecosystem functioning and service provision.

  4. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  5. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    Science.gov (United States)

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  6. The legacy of large regime shifts in shallow lakes.

    Science.gov (United States)

    Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B

    2016-12-01

    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.

  7. Regime shifts in shallow lakes: the importance of seasonal fish migration

    DEFF Research Database (Denmark)

    Brönmark, Christer; Brodersen, Jakob; Chapman, Ben B.

    2010-01-01

    . Our earlier research shows that a large proportion of zooplanktivorous fish populations in shallow lakes undertake seasonal migrations where they leave the lake during winter and migrate back to the lake in spring. Based on our past research, we propose a number of scenarios of how feedback processes...... properties, including piscivore abundance and zooplankton productivity, affect the individual state of zooplanktivorous fish, such as growth rate or condition. Individual state, in turn, affects the relative proportion and timing of migrating zooplanktivorous fish. This change, in turn, may stabilize states...... between the individual and ecosystem levels may affect stability of alternative stable states in shallow lakes when mediated by fish migration. Migration effects on shallow lakes result from processes at different scales, from the individual to the ecosystem. Our earlier research has shown that ecosystem...

  8. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  9. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.

    Science.gov (United States)

    Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John

    2018-03-01

    Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon

  10. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay)

    NARCIS (Netherlands)

    Kruk, C.; Rodriguez-Gallego, L.; Meerhoff, M.; Quintans, F.; Lacerot, G.; Mazzeo, N.; Scasso, F.; Paggi, J.C.; Peeters, E.; Marten, S.

    2009-01-01

    P> Shallow lakes and ponds contribute disproportionally to species richness relative to other aquatic ecosystems. In-lake conditions (e.g. presence of submerged plants) seem to play a key role in determining diversity, as has been demonstrated for temperate lakes. When water quality deteriorates

  11. Clearing lakes : an ecosystem approach to the restoration and management of shallow lakes in the Netherlands

    NARCIS (Netherlands)

    Hosper, H.

    1997-01-01

    In the 1950 s and 1960 s, most shallow lakes in the Netherlands shifted from macrophyte-dominated clear water lakes, towards algae-dominated turbid water lakes. Eutrophication, i.e. increased nutrient loading, is the main cause of the deterioration

  12. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  13. Ecological regime shifts and changes of lake ecosystem service in a shallow Yangtze lake (Taibai Lake, China) over the past 150 years

    Science.gov (United States)

    Dong, X.; Xu, M.; Yang, X.

    2017-12-01

    Shallow lakes provide a range of ecosystem services such as water supply, biodiversity, aquaculture, tourism, shipping and flood regulation. Over recent decades, many lakes have become severely deteriorated due to a coupled natural and human disturbance. Given the limited monitoring records, however, we still have little knowledge on how, when and why those lake experienced ecological status shifts, and how the lake ecosystem service changed. Paleolimnological techniques were widely used in understanding the historical environmental and ecological changes. Here, we chose a typical eutrophic shallow lake, Taibai Lake, and acquired geochemistry proxies, grain size, diatom, cladocera and chironomid from a 210Pb and 137Cs dated sediment core. Document records and monitoring data are also included as important marks of social and environmental change. A T-test based algorithm of STARS reveal at least two ecological shifts, respectively in the 1960s and the 1990s. The sudden shift in the 1960s is supposed to be influenced by a dam and sluice construction in the 1950s and another shift in the 1990s should be a critical transition due to the alternation of ecosystem structure for higher fishery production. Correspondingly, lake ecosystem service (LES) also experienced significant changes. Prior to 1930s, different types of LES kept relatively stable with low values. With the dam construction in the 1960s, the changed hydrological condition led to gradual increases in both regulation and provision service. However, with much effort on fishery and reclamation, the regulation service of the lake decreased, exhibiting a tradeoff among LES. After 1990s, with intense aquaculture, most types of LSE suffered a further decrease. The long-term records exhibited that ecosystem services in primary productivity and biodiversity maintenance increased (synergies) whereas services in water-purification and climate regulating decreased significantly (tradeoffs) since 1950s, when local

  14. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M.; Bakker, Elisabeth S.; Blindow, Irmgard; Davidson, Thomas A.; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H.; Janssen, Annette B. G.; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L.; Mooij, Wolf M.; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D.

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  15. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes.

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  16. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.

    Science.gov (United States)

    Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj

    2017-09-13

    A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).

  17. Epiphytic Diatoms along Environmental Gradients in Western European Shallow Lakes

    NARCIS (Netherlands)

    Blanco, Saul; Cejudo-Figueiras, Cristina; Alvarez-Blanco, Irene; van Donk, Ellen|info:eu-repo/dai/nl/069838593; Gross, Elisabeth M.; Hansson, Lars-Anders; Irvine, Kenneth; Jeppesen, Erik; Kairesalo, Timo; Moss, Brian; Noges, Tiina; Becares, Eloy

    Diatom-based assays have been successfully associated worldwide with the tropic status of lakes. Several studies have demonstrated a correlation between epiphytic diatoms and nutrient load in shallow lakes and wetlands. We examine the relative importance of environmental factors in explaining the

  18. Small-scale distribution and diel vertical migration of zooplankton in a shallow lake (Lake Naardermeer, the Netherlands)

    NARCIS (Netherlands)

    Cerbin, S.; Balayla, D.; Van de Bund, W.J.

    2003-01-01

    Small scale distribution and diurnal migration of zooplankton were investigated in lake Naardermeer, a shallow lake largely covered by uniform Chara beds. For sampling, pattern samplers with a number of inverted funnels facing towards the lake bottom and held in a frame were used. Samplers were

  19. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    Science.gov (United States)

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  20. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China.

    Science.gov (United States)

    Kong, Xiangzhen; Liu, Wenxiu; He, Wei; Xu, Fuliu; Koelmans, Albert A; Mooij, Wolf M

    2018-06-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health. Understanding the environmental behavior of these contaminants in shallow freshwater lake environments using a modeling approach is therefore critical. Here, we characterize the fate, transport and transformation of both PFOA and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-year period (2013-2015) using a fugacity-based multimedia fate model. A reasonable agreement between the measured and modeled concentrations in various compartments confirms the model's reliability. The model successfully quantifies the environmental processes and identifies the major sources and input pathways of PFOA and PFOS to the Chaohu water body. Sensitivity analysis reveals the critical role of nonlinear Freundlich sorption, which contributes to a variable fraction of the model true uncertainty in different compartments (8.1%-93.6%). Through additional model scenario analyses, we further elucidate the importance of nonlinear Freundlich sorption that is essential for the reliable model performance. We also reveal the distinct composition of emission sources for the two contaminants, as the major sources are indirect soil volatilization and direct release from human activities for PFOA and PFOS, respectively. The present study is expected to provide implications for local management of PFASs pollution in Lake Chaohu and to contribute to developing a general model framework for the evaluation of PFASs in shallow lakes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Climate-related differences in the dominance of submerged macrophytes in shallow lakes

    NARCIS (Netherlands)

    Kosten, S.; Kamarainen, A.; Jeppesen, E.; Nes, van E.H.; Peeters, E.T.H.M.; Lacerot, G.; Scheffer, M.

    2009-01-01

    It has been suggested that shallow lakes in warm climates have a higher probability of being turbid, rather than macrophyte dominated, compared with lakes in cooler climates, but little field evidence exists to evaluate this hypothesis. We analyzed data from 782 lake years in different climate zones

  2. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies

    NARCIS (Netherlands)

    Meijer, M.L.; Boois, de I.; Scheffer, M.; Portielje, R.; Hosper, H.

    1999-01-01

    Eighteen shallow lakes in The Netherlands were subjected to biomanipulation, i.e. drastic reduction of the fish stock, for the purpose of lake restoration. The morphology and the nutrient level of the lakes differed, as did the measures applied. In some lakes biomanipulation was accompanied by

  3. The distribution of chydorids (Branchiopoda, Anomopoda)in European shallow lakes and its application to ecological quality monitoring

    NARCIS (Netherlands)

    Eyto, de E.; Irvine, K.; Garcia-Criado, F.; Gyllström, M.; Jeppesen, E.; Kornijow, R.; Miracle, M.R.; Nykänen, M.; Bareiss, C.; Cerbin, S.; Salujoe, J.; Franken, R.J.M.; Stephens, D.; Moss, B.

    2003-01-01

    This study describes the chydorid (Branchiopoda, Anomopoda) assemblages from 66 European shallow lakes, and presents data relating the assemblages to lake type and ecological quality
    This study describes the chydorid (Branchiopoda, Anomopoda) assemblages from 66 European shallow lakes, and

  4. Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake

    International Nuclear Information System (INIS)

    Yang Zhifeng; Zhao Ying; Xia Xinghui

    2012-01-01

    Nitrous oxide (N 2 O) emissions from Phragmites australis (reed) – dominated zones in Baiyangdian Lake, the largest shallow lake of Northern China, were investigated under different hydrological conditions with mesocosm experiments during the growing season of reeds. The daily and monthly N 2 O emissions were positively correlated with air temperature and the variation of aboveground biomass of reeds (p 2 O emissions from reeds were about 45.8–52.8% of that from the sediments. In terms of the effect of hydrological conditions, N 2 O emissions from the aquatic-terrestrial ecotone were 9.4–26.1% higher than the submerged zone, inferring that the variation of water level would increase N 2 O emissions. The annual N 2 O emission from Baiyangdian Lake was estimated to be about 114.2 t. This study suggested that N 2 O emissions from shallow lakes might be accelerated by the climate change as it has increased air temperature and changed precipitation, causing the variation of water level. - Highlights: ► The daily N 2 O emissions were significant positively correlated with air temperature. ► The monthly N 2 O emissions positively correlated with reed aboveground biomass variations. ► The N 2 O emissions from reeds contributed to 45.8–52.8% of that from the sediment. ► N 2 O emissions from the aquatic-terrestrial ecotone were 9.4–26.1% higher than the submerged zone. ► N 2 O emissions from shallow lakes might be accelerated by the climate change. - The increase of air temperature and water level variation would increase N 2 O emissions, suggesting N 2 O emissions from shallow lakes might be accelerated by climate change.

  5. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study.

    Science.gov (United States)

    Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H

    2013-08-01

    The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

  6. Improving Multi-Objective Management of Water Quality Tipping Points: Revisiting the Classical Shallow Lake Problem

    Science.gov (United States)

    Quinn, J. D.; Reed, P. M.; Keller, K.

    2015-12-01

    Recent multi-objective extensions of the classical shallow lake problem are useful for exploring the conceptual and computational challenges that emerge when managing irreversible water quality tipping points. Building on this work, we explore a four objective version of the lake problem where a hypothetical town derives economic benefits from polluting a nearby lake, but at the risk of irreversibly tipping the lake into a permanently polluted state. The trophic state of the lake exhibits non-linear threshold dynamics; below some critical phosphorus (P) threshold it is healthy and oligotrophic, but above this threshold it is irreversibly eutrophic. The town must decide how much P to discharge each year, a decision complicated by uncertainty in the natural P inflow to the lake. The shallow lake problem provides a conceptually rich set of dynamics, low computational demands, and a high level of mathematical difficulty. These properties maximize its value for benchmarking the relative merits and limitations of emerging decision support frameworks, such as Direct Policy Search (DPS). Here, we explore the use of DPS as a formal means of developing robust environmental pollution control rules that effectively account for deeply uncertain system states and conflicting objectives. The DPS reformulation of the shallow lake problem shows promise in formalizing pollution control triggers and signposts, while dramatically reducing the computational complexity of the multi-objective pollution control problem. More broadly, the insights from the DPS variant of the shallow lake problem formulated in this study bridge emerging work related to socio-ecological systems management, tipping points, robust decision making, and robust control.

  7. Evaporite deposition in a shallow perennial lake, Qaidam basin, western China

    Energy Technology Data Exchange (ETDEWEB)

    Schubel, K.A.; Lowenstein, T.K. (SUNY, Binghampton, NY (United States)); Spencer, R.J. (Univ. of Calgary, Alberta (Canada)); Pengxi, Z. (Institute of Salt Lakes, Xining (China))

    1991-03-01

    Evaporites accumulate in ephemeral saline-pans, shallow perennial lakes or lagoons, and deep perennial systems. Continuous brine trench exposures of Holocene evaporites from the Qaidam basin provide criteria for the recognition of shallow perennial lake sediments. Based on Landsat photographs, lateral extent of beds (at least 7 km), and sequence thicknesses (maximum 2.5 m), the paleolake is interpreted to have been less than 2.5 m deep and at least 120 km{sup 2} in area. Sediments consist of laminated siliciclastic mud overlain by mud-halite couplets (mm- to cm-scale layers), which represent one vertical shallowing- and concentrating-upwards sequence. The basal laminite marks the onset of deposition in this shallow perennial paleolake. Syndepositional halite textures and fabrics in the overlying mud-halite couplets include cumulates, rafts, and chevrons, draped by mud laminae, and halite layers truncated by horizontal dissolution surfaces (increasing in frequency upwards). Paleolake brines, determined from fluid inclusion melting temperatures, are Na-Mg-Cl-rich and evolve from 0.84 m Mg{sup 2} to 1.52 m Mg{sup 2+} (near the surface). Combinations of the following criteria may be used for the recognition of shallow, nonstratified, perennial lake sediments: lateral continuity of layers; muds undisrupted by subaerial exposure; vertical bottom-growth of halite; halite layers conformably overlain by mud; halite layers truncated by nonuniformly spaced horizontal dissolution surfaces; erosional scours and channels filled with cross-laminated gypsum, halite, and siliciclastic sand and mud; and salinity fluctuations over small stratigraphic intervals within an overall concentrating-upwards sequence.

  8. Circulation induced by diffused aeration in a shallow lake | Toné ...

    African Journals Online (AJOL)

    Field surveys were carried out to investigate the surface jet flows and the resulting circulation patterns generated by diffused aeration in a shallow lake. In conrast to previous studies, the experimental conditions included point-source bubble plumes with very high air flow rates (100–400 L/min) relative to the shallow water ...

  9. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  10. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  11. Utilization of satellite images to understand the dynamics of Pampas shallow lakes

    Directory of Open Access Journals (Sweden)

    V. S. Aliaga

    2016-06-01

    Full Text Available The aim of this study was to analyze satellite images of different spatial resolutions to interpret the morphometric behavior of six shallow lakes of the Pampas, Argentina. These are characterized by having different rainfall regimes. Morphometric response considering each location, site conditions and dry and wet extreme events is analyzed. Standardized Precipitation Index (IEP for determination of wet, dry and normal years was used. This analysis showed that the Pampas shallow lakes do not behave in the same way to the rainfall events. Its origin, socio-economic use and rainfall patterns affect their spatiotemporal variation and morphometric.

  12. Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe

    NARCIS (Netherlands)

    Nõges, P.; Nõges, T.; Tuvikene, L.; Smal, H.; Ligeza, S.; Kornijów, R.; Peczula, W.; Bécares, E.; Garcia-Criado, F.; Alvarez-Carrera, C.; Fernandez-Alaez, C.; Ferriol, C.; Miracle, R.M.; Vicente, E.; Romo, S.; Van Donk, E.; Van de Bund, W.J.; Jensen, J.P.; Gross, E.M.; Hansson, L-A.; Gyllström, M.; Nykänen, M.; De Eyto, E.; Irvine, K.; Stephen, D.; Collings, S.E.; Moss, B.

    2003-01-01

    In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27 000 ha and mean depth of 0.4–5.6 m located in

  13. Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake (Lake Monte Alegre, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    LM. Rangel

    Full Text Available Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo were investigated in two climatological periods: July 2001 (cool-dry season and March 2002 (warm-rainy season. Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2 and functional groups typical of shallow eutrophic environments (J, X1 and Sn were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.

  14. Multivariate-Analysis of Phytoplankton and Related Environmental-Factors, in a Shallow Hypertrophic Lake

    NARCIS (Netherlands)

    Romo, S.; Van Tongeren, O.F.R.

    1995-01-01

    Data on some relevant environmental variables and phytoplankton species composition, collected from the hypertrophic shallow lake Albufera of Valencia (Spain) during 1980-88, were examined using Redundancy Analysis (RDA). The hydrological cycle of the lake is manipulated for rice cultivation in the

  15. Temporal-spatial variations and influencing factors of nitrogen in the shallow groundwater of the nearshore vegetable field of Erhai Lake, China.

    Science.gov (United States)

    Chen, Anqiang; Lei, Baokun; Hu, Wanli; Wang, Hongyuan; Zhai, Limei; Mao, Yanting; Fu, Bin; Zhang, Dan

    2018-02-01

    Nitrogen export from the nearshore vegetable field of Erhai Lake seriously threatens the water quality of Erhai Lake, which is the second largest highland freshwater lake in Yunnan Province, China. Among the nitrogen flows into Erhai Lake, shallow groundwater migration is a major pathway. The nitrogen variation and influencing factors in the shallow groundwater of the nearshore vegetable field of Erhai Lake are not well documented. A 2-year field experiment was conducted to determine the concentrations of nitrogen species in the shallow groundwater and their influencing factors in the nearshore vegetable field of Erhai Lake. The results showed that concentrations of TN, NO 3 - -N, and NO 2 - -N gradually increased with increasing elevation and distance from Erhai Lake, but the opposite was observed for NH 4 + -N in the shallow groundwater. The concentrations of nitrogen species in the rainy season were greater than those in the dry season. NO 3 - -N accounted for more than 79% of total nitrogen in shallow groundwater. Redundancy analysis showed that more than 70% of the temporal and spatial variations of nitrogen concentrations in the shallow groundwater were explained by shallow groundwater depth, and only approximately 10% of variation was explained by the factors of soil porosity, silt clay content of soil, and NH 4 + -N and NO 3 - -N concentrations of soil (p shallow groundwater depth had more notable effects on nitrogen concentrations in the shallow groundwater than other factors. This result will strongly support the need for further research regarding the management practices for reducing nitrogen concentrations in shallow groundwater.

  16. Effects of Exposed Artificial Substrate on the Competition between Phytoplankton and Benthic Algae: Implications for Shallow Lake Restoration

    OpenAIRE

    Hu He; Xuguang Luo; Hui Jin; Jiao Gu; Erik Jeppesen; Zhengwen Liu; Kuanyi Li

    2017-01-01

    Phytoplankton and benthic algae coexist in shallow lakes and the outcome of the competition between these two photoautotrophs can markedly influence water clarity. It is well established that exposed artificial substrate in eutrophic waters can remove nutrients and fine particles from the water column via the attached periphyton canopy. However, the effects of the introduction of artificial substrate on the competition between planktonic and benthic primary producers remain to be elucidated. ...

  17. Geophysical problems of radiocesium removal from running shallow lakes

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Spirkauskaite, N.; Gvozdaite, R. and others

    2002-01-01

    Natural processes of radiocesium removal from three selected running shallow (mean depth -0.7-4.2 m) lakes (Zuvintas, Asavas-Asavelis, Juodis) in Lithuania during 1999-2001 are studied. Lake sediments are of a sapropelic and peat type, rich in organics (47-68 %). 137 Cs activity concentrations in surface sediments varied in the range 100-360 Bq kg -1 . A sum of exchangeable and potentially mobile fractions of 137 Cs activity concentrations in lake sediments is assessed to vary in the range 10-34 %. The 137 CS enrichment coefficient defined as a ratio of annual sums of seasonal values of water-soluble 137 Cs activity concentrations in rivers outflowing from and in flowing to lakes was assessed to be equal for selected lakes from 1.4 to 2.5. A course of seasonal data demonstrates the efficiency of lake self cleaning from radiocesium to be minimum in winter owing to the priority of lake surface flows and the temperature stratification, suppressing the water column vertical mixing. It is suggested that elevated radiocesium activity concentrations in the outflowing rivers during a winter-spring transitional period are due to the presence of lake bottom flows. Lake isothermal stratification, inducing the water column vertical mixing during warm seasons, reinforces lake self cleaning processes. Considerations on the seasonal variations of the depth of the anoxic level in sediments, as well as on the vertical mixing of the surface sediments owing to the methane production, are discussed. (author)

  18. Sediment characteristics and wind-induced sediment dynamics in shallow Lake Markermeer, the Netherlands

    NARCIS (Netherlands)

    Kelderman, P.; Ang'weya, R.O.; De Rozari, P.; Vijverberg, T.

    2012-01-01

    In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern,

  19. Extreme Weather Events and Climate Variability Provide a Lens to How Shallow Lakes May Respond to Climate Change

    Directory of Open Access Journals (Sweden)

    Karl Havens

    2016-05-01

    Full Text Available Shallow lakes, particularly those in low-lying areas of the subtropics, are highly vulnerable to changes in climate associated with global warming. Many of these lakes are in tropical cyclone strike zones and they experience high inter-seasonal and inter-annual variation in rainfall and runoff. Both of those factors strongly modulate sediment–water column interactions, which play a critical role in shallow lake nutrient cycling, water column irradiance characteristics and cyanobacterial harmful algal bloom (CyanoHAB dynamics. We illustrate this with three examples, using long-term (15–25 years datasets on water quality and plankton from three shallow lakes: Lakes Okeechobee and George (Florida, USA and Lake Taihu (China. Okeechobee and Taihu have been impacted repeatedly by tropical cyclones that have resulted in large amounts of runoff and sediment resuspension, and resultant increases in dissolved nutrients in the water column. In both cases, when turbidity declined, major blooms of the toxic CyanoHAB Microcystis aeruginosa occurred over large areas of the lakes. In Lake George, periods of high rainfall resulted in high dissolved color, reduced irradiance, and increased water turnover rates which suppress blooms, whereas in dry periods with lower water color and water turnover rates there were dense cyanobacteria blooms. We identify a suite of factors which, from our experience, will determine how a particular shallow lake will respond to a future with global warming, flashier rainfall, prolonged droughts and stronger tropical cyclones.

  20. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  1. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  2. Bifurcations of optimal vector fields in the shallow lake model

    NARCIS (Netherlands)

    Kiseleva, T.; Wagener, F.O.O.

    2010-01-01

    The solution structure of the set of optimal solutions of the shallow lake problem, a problem of optimal pollution management, is studied as we vary the values of the system parameters: the natural resilience, the relative importance of the resource for social welfare and the future discount rate.

  3. Bifurcations of optimal vector fields in the shallow lake model

    NARCIS (Netherlands)

    Kiseleva, T.; Wagener, F.

    2009-01-01

    The solution structure of the set of optimal solutions of the shallow lake problem, a problem of optimal pollution management, is studied as we vary the values of the system parameters: the natural resilience, the relative importance of the resource for social welfare and the future discount rate.

  4. Effects of Exposed Artificial Substrate on the Competition between Phytoplankton and Benthic Algae: Implications for Shallow Lake Restoration

    Directory of Open Access Journals (Sweden)

    Hu He

    2017-01-01

    Full Text Available Phytoplankton and benthic algae coexist in shallow lakes and the outcome of the competition between these two photoautotrophs can markedly influence water clarity. It is well established that exposed artificial substrate in eutrophic waters can remove nutrients and fine particles from the water column via the attached periphyton canopy. However, the effects of the introduction of artificial substrate on the competition between planktonic and benthic primary producers remain to be elucidated. We conducted a short-term outdoor mesocosm experiment to test the hypothesis that the nutrient and light changes induced by exposed artificial substrate (polythene nets would benefit the benthic algae. Artificial substrate significantly reduced total nitrogen and phosphorus concentrations and water clarity improved, the latter due to the substrate-induced reduction of both organic and inorganic suspended solids. Consequently, as judged from changes in chlorophyll a (Chl-a concentrations in water and sediment, respectively, exposed artificial substrate significantly reduced the phytoplankton biomass, while benthic algae biomass increased. Our results thus indicate that exposed artificial substrate may be used as a tool to re-establish benthic primary production in eutrophic shallow lakes after an external nutrient loading reduction, paving the way for a benthic- or a macrophyte-dominated system. Longer term and larger scale experiments are, however, needed before any firm conclusions can be drawn on this.

  5. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau.

    Science.gov (United States)

    Zhu, Dan; Wu, Yan; Chen, Huai; He, Yixin; Wu, Ning

    2016-01-15

    Methane fluxes from a shallow peatland lake (3450 m a.s.l., 1.6 km(2) in area, maximum depth peatlands to the lake. The shallowness of the water column could be another important favorable factor for methane-containing bubble formation in the sediment and their transportation to the atmosphere. The methane ebullition must have been enhanced by the low atmospheric pressure (ca. 672 hPa) in the high-altitude environment. For a better understanding on the mechanism of methane emission from alpine lakes, more lakes on the Tibetan Plateau should be studied in the future for their methane ebullition. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes

    Science.gov (United States)

    Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie

    2018-03-01

    We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.

  7. Salinity shapes food webs in shallow lakes: implications for increasing aridity with climate change

    DEFF Research Database (Denmark)

    Vidal, Nicolas; Yu, Jinlei; Gutierrez, Maria Florencia

    2015-01-01

    on community and food web structure in 24 lakes along a wide salinity gradient, from freshwater (0.5 g L-1) to hypersaline lakes (115 g L-1), in a semiarid region in North West China. Fish, zooplankton and macroinvertebrate communities were sampled during July 2014 for determination of taxonomy and size......A reduction in runoff and higher evaporation rates are expected to occur towards 2050 in arid and semiarid regions of the world, resulting in a reduction of water level and salinization of inland waters. Besides the natural process of catchment erosion, human activities such as irrigation of crops...... may also increase salinization. Reduced biodiversity in freshwater systems is the most commonly reported effect of salinization, which may have implications for food web structure and likely for ecosystem functioning as well. The objective of the study was to analyze the effects of salinity...

  8. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    Science.gov (United States)

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  9. Macrophyte Species Drive the Variation of Bacterioplankton Community Composition in a Shallow Freshwater Lake

    Science.gov (United States)

    Zeng, Jin; Bian, Yuanqi; Xing, Peng

    2012-01-01

    Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance. PMID:22038598

  10. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis

    International Nuclear Information System (INIS)

    Zhu Mengyuan; Zhu Guangwei; Li Wei; Zhang Yunlin; Zhao Linlin; Gu Zhao

    2013-01-01

    Because large, shallow lakes are heavily influenced by wind–wave disturbance, it is difficult to estimate internal phosphorus load using traditional methods. To estimate the potential contribution of phosphorus from sediment to overlying water in eutrophic Lake Taihu, phosphorus fractions of surface and deep layer sediments were quantified and analyzed for algal bloom potential using a Standard Measurements and Testing (SMT) sequential extraction method and incubation experiments. Phosphorus bound to Fe, Al and Mn oxides and hydroxides (Fe–P) and organic phosphorus (OP) were to be found bioactive. The difference in Fe–P and OP contents between surface and deep layers equates to the sediment pool of potentially algal-available phosphorus. This pool was estimated at 5168 tons for the entire lake and was closely related to pollution input and algal blooms. Profiled SMT fractionation analysis is thus a potentially useful tool for estimating internal phosphorus loading in large, shallow lakes. - Highlights: ► We used profiled sediment P activity by SMT fractionation to evaluate the P release potential in large and shallow lakes. ► We built the relationship between sediment SMT fractionations of P and the P release by algal bloom degradation process. ► We discussed the supporting mechanism of sediment P release to Microcystis algal bloom in a large and shallow lake. ► We discussed the nutrient control strategy of algal bloom in shallow lakes in highly human activities disturbance catchment. - Profiled SMT fractional analysis of internal phosphorus pool in large, shallow lake.

  11. Evaluating stocking of YOY pike Esox lucius as a tool in the restoration of shallow lakes

    DEFF Research Database (Denmark)

    Skov, Christian; Nilsson, P.A.

    2007-01-01

    from field surveys in eight study lakes stocked with YOY pike as well as from the literature. 3. Our model showed that all parameters studied were important for predicting the effects of pike stocking on cyprinids. In particular, body size at stocking, cyprinid production and pike survival were good...... as an appropriate and reliable tool for restoration programmes in shallow lakes, and indicate that when used efforts should be made to optimize the timing of stocking in relation to YOY cyprinid production and to increase the stocking body size of the pike.......1. Stocking of piscivores in shallow, eutrophicated lakes to reduce cyprinid densities is a common approach in lake restorations. Young-of-the-year (YOY) pike Esox lucius are frequently used to reduce cyprinid densities, but their effectiveness is equivocal. This study uses a simple model to assess...

  12. Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty

    NARCIS (Netherlands)

    Janse, J.H.; Scheffer, M.; Lijklema, L.; Liere, van L.; Sloot, J.S.; Mooij, W.M.

    2010-01-01

    There is avast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a 'clear' state with submerged macrophytes or a 'turbid' state

  13. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu)

    International Nuclear Information System (INIS)

    Zhang Tingxi; Wang Xiaorong; Jin Xiangcan

    2007-01-01

    The distribution of alkaline phosphatase activity (APA) and P fractions in sediment cores and the relationship between them were studied in a shallow Chinese freshwater lake (Lake Taihu). Sediment cores were collected from four sites, characterized by different degrees of eutrophication in June 2004. Sediment P was fractionated into Fe/Al-P, Ca-P, organic P (OP), inorganic P (IP) and total P (TP). The former two species made the largest contribution to the sediment P pool. Results show that trophic status and hydrological conditions have great impact on the APA of the sediments. The order of the APA in sediments was conjectured to be: macrophyte dominated lake > transitional lake > algal dominated lake. APA profiles follow a similar downcore decreasing trend. There was a positive relationship between the APA and the TP, IP. The multiple linear regression equation of the APA and P fractions is: APA = -97 + 0.768TP - 0.985Fe/Al-P. - Characteristics of the alkaline phosphatase activity and P fractions in sediments of different trophic status lake were studied in Lake Taihu

  14. The structuring role of submerged macrophytes in a large subtropical shallow lake

    NARCIS (Netherlands)

    Finkler Ferreira, Tiago; Crossetti, Luciane O.; Motta Marques, David M.L.; Cardoso, Luciana; Fragoso, Carlos Ruberto; Nes, van Egbert H.

    2018-01-01

    It is well known that submerged macrophytes exert positive feedback effects that enhance the water transparency, stabilizing the clear-water state in shallow temperate lakes. However, the structuring effect of macrophytes on the food web of subtropical and tropical ecosystems is still poorly

  15. Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty

    NARCIS (Netherlands)

    Janse, J.H.; Scheffer, M.; Lijklema, L.; Van Liere, L.; Sloot, J.S.; Mooij, W.M.

    2010-01-01

    There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’

  16. Could artificial plant beds favour microcrustaceans during biomanipulation of eutrophic shallow lakes?

    DEFF Research Database (Denmark)

    Balayla, David; Boll, Thomas; Trochine, Carolina

    2017-01-01

    Introduction of artificial plants may facilitate the transition from a turbid to a clear-water state in shallow lakes, particularly when plant establishment is delayed. We investigated the usefulness of artificial plants as a restoration tool in an experimental setup mimicking open submerged plant...

  17. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M

    2017-02-01

    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  18. Dynamics of particulate phosphorus in a shallow eutrophic lake

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Ryuichiro, E-mail: r-shino@nies.go.jp [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Imai, Akio; Kohzu, Ayato; Tomioka, Noriko [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Furusato, Eiichi [Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570 (Japan); Satou, Takayuki; Sano, Tomoharu; Komatsu, Kazuhiro; Miura, Shingo; Shimotori, Koichi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2016-09-01

    We tested the hypothesis that in shallow, eutrophic Lake Kasumigaura, the concentration of particulate phosphorus (PP) is controlled by biogenic P (P in living or dead phytoplankton and bacterial cells), rather than by resuspension of inorganic P in sediment. Increases in wind velocity and turbidity were associated with bottom shear stress exceeding the critical value for the lake (τ{sub c} = 0.15 N m{sup −2}); this increased turbidity was due to sediment resuspension. However, concentrations of PP; HCl-extractable, reactive P in PP (P-rP); and HCl-extractable, non-reactive P in PP (P-nrP) were not correlated with wind velocity (PP vs. wind velocity: r = 0.40, p > 0.05). Rather, the P-nrP concentration accounted for approximately 79% of PP, and the concentrations of PP, P-rP, and P-nrP were correlated with the particulate organic carbon (POC) concentration (POC vs. PP: r = 0.90, p < 0.01; POC vs. P-rP: r = 0.82, p < 0.01; POC vs. P-nrP: r = 0.86, p < 0.01). In our {sup 31}P nuclear magnetic resonance spectroscopy results, mononucleotides accounted for the largest proportion among the detected P compound classes. In addition, concentrations of mononucleotides, orthophosphate, and pyrophosphate were significantly higher in samples with high POC concentrations, whereas the DNA-P concentration was not. These results suggest that biogenic P affects PP concentrations more strongly than does sediment resuspension, and the production of biogenic P creates a pool of mononucleotides, a class of easily degradable P, even in shallow, eutrophic Lake Kasumigaura. - Highlights: • Biogenic P affected the PP concentration more than did sediment resuspension. • PP correlated with particulate organic carbon concentration but not wind velocity. • Mononucleotides accounted for the largest P compound class of organic P in PP.

  19. Restoring lakes by using artificial plant beds: habitat selection of zooplankton in a clear and a turbid shallow lake

    DEFF Research Database (Denmark)

    Schou, Majbritt Overgård; Risholt, Casper; Lauridsen, Torben L.

    2009-01-01

    1. Return of large-bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear-water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large...... zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear-water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB...... in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake...

  20. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  1. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  2. The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium

    Science.gov (United States)

    Guerra, Lucía; Piovano, Eduardo L.; Córdoba, Francisco E.; Sylvestre, Florence; Damatto, Sandra

    2015-10-01

    Lake Melincué, located in the central Pampean Plains of Argentina, is a shallow (∼4 m), subsaline lake (TDS > 2000 ppm), highly sensitive to hydrological changes. The modern shallow lake system is composed of: (a) a supralittoral area, which includes a narrow mudflat, a vegetated mudflat and wetlands subenvironments; and (b) the main water body, comprising lacustrine marginal and inner areas. The development and extension of these subenvironments are strongly conditioned upon lake surface fluctuations. Past environmental changes were reconstructed through sedimentological, physical and geochemical proxy analyses of two short sedimentary cores (∼127 cm). Well-constrained 210Pb ages profiles were modeled and radiocarbon chronologies were determined, covering a period from ∼AD 800 to the present. The analyzed sedimentary cores from Lake Melincué allowed for the reconstruction of past hydrological scenarios and associated environmental variability, ranging from extremely low lake levels during dry phases to pronounced highstands at wet periods. The paleohydrological reconstruction revealed very shallow conditions in the period between AD 806 and AD 1880, which was registered by massive deposits with low organic matter. Relatively wetter phases disrupting this dry period were represented by organic matter increases. A major wet phase was registered by AD 1454, after the end of the Medieval Climate Anomaly. A subsequent abrupt shift from this wet phase to drier conditions could be matching the transition between the end of the Medieval Climatic Anomaly and the beginning of the Little Ice Age. The occurrence of sedimentary hiatuses between AD 1492 and AD 1880 in Melincué sequence could correspond to intensive droughts during the Little Ice Age. After AD 1880, banded and laminated, autochthonous, organic matter-rich sediments registered an important lacustrine transgression and the onset of a permanent shallow lake, corresponding to the beginning of the current

  3. The altered ecology of Lake Christina: A record of regime shifts, land-use change, and management from a temperate shallow lake

    International Nuclear Information System (INIS)

    Theissen, Kevin M.; Hobbs, William O.; Hobbs, Joy M. Ramstack; Zimmer, Kyle D.; Domine, Leah M.; Cotner, James B.; Sugita, Shinya

    2012-01-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3–4 times pre-settlement rates) and long-term trends in δ 13 C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ 15 N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ 13 C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts. -- Highlights: ► We explore the sediment geochemistry from Lake Christina's two distinct sub-basins. ► Our geochemical data show

  4. NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations

    Science.gov (United States)

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.

    2004-01-01

    Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.

  5. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China

    NARCIS (Netherlands)

    de Kluijver, A.; Ning, J.; Liu, Z.; Jeppesen, E.; Gulati, R.D.; Middelburg, J.J.

    The subsidy of carbon derived from macrophytes and associated periphyton to bacterioplankton and zooplankton in subtropical shallow eutrophic Huizhou West Lake in China was analyzed using carbon stable isotope signatures. A restored part of the lake dominated by macrophytes was compared with an

  6. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China

    NARCIS (Netherlands)

    de Kluijver, A.; Ning, J.; Liu, Z.; Jeppesen, E.; Gulati, R.D.; Middelburg, J.J.

    2015-01-01

    The subsidy of carbon derived from macrophytes and associated periphyton to bacterioplankton and zooplankton in subtropical shallow eutrophic Huizhou West Lake in China was analyzed using carbon stable isotope signatures. A restored part of the lake dominated by macrophytes was compared with an

  7. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.

    Science.gov (United States)

    Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong

    2018-05-31

    Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.

  8. Chemical composition and trophic state of shallow saline steppe lakes in central Asia (North Kazakhstan).

    Science.gov (United States)

    Boros, Emil; Jurecska, Laura; Tatár, Enikő; Vörös, Lajos; Kolpakova, Marina

    2017-10-09

    The purpose of this study was to identify the prevailing chemical composition and trophic state of the shallow saline steppe lakes of North Kazakhstan along a wide size range (SO 4 and Na-Cl (n = 16; 64%); the Ca, Mg, HCO 3 , and SO 4 ions precipitate with increasing salinity (2-322 g L -1 ); and ion composition shifts from Na>Mg-Cl>SO 4 to Na-Cl. The most of the chemical variables positively, but chlorophyll a negatively, correlated with total dissolved solids, and the total phosphorus had no significant correlation with any variables. The trophic state of these lakes in most cases exceeded the hypertrophic level. The increase in salinity causes change in chemical composition and effects on the phytoplankton development independently from the size of water surface, and the human disturbances had negligible effect on the trophic state of shallow saline lakes in this region of Kazakhstan.

  9. Factors affecting assemblage attributes of freshwater Oligochaeta in Neotropical shallow floodplain lakes

    Directory of Open Access Journals (Sweden)

    Vanessa Ernandes de Amo

    2017-12-01

    Full Text Available Abstract Aim: Identify the effects of sediment composition and water conditions on diversity, richness, evenness, density and composition of freshwater Oligochaeta in shallow floodplain lakes. Methods We sampled 13 shallow floodplain lakes quarterly during the year 2010 in the Upper Paraná River floodplain. In each lake, four sediment samples were taken from the shore and central regions, three of them were used for biological analysis, and one for granulometric analysis. Concomitantly, temperature, dissolved oxygen, pH, conductivity, alkalinity, turbidity and chlorophyll-a were also measured. Initially, the biological samples were analyzed by a stereoscopic microscope. Oligochaeta individuals were identified under optical microscope at the lowest possible taxonomic level. For data analysis, we quantified density, richness, evenness and diversity index of freshwater Oligochaeta. In order to show differences between the months and the analyzed lakes, in relation to the percentages of coarse and fine organic material, the nonparametric Kruskal Wallis test was used. We also calculated the sediment granulometric diversity using the Shannon-Wienner index, using a simple regression analysis. We correlated assemblage attributes of Oligochaeta with sediment diversity and the assemblage species with the limnological variables using the Spearman correlation. Results A total of 2,090 individuals were found distributed among 27 species. From the total individuals number, 57% were Pristina americana, followed by Dero (Dero righii with 13%. Assemblage attributes were not significantly correlated with sediment diversity, and 7 of the 27 species recorded showed significant correlations with at least some of the abiotic variables. Conclusions We verified that the abiotic variables of the water present greater influence on the attributes of the assemblage of freshwater Oligochaeta, when compared with sediment influences. Although we found low local diversity of

  10. Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict

    NARCIS (Netherlands)

    Wagener, F.

    2009-01-01

    Outcomes of the shallow lake interest conflict are presented in a number of different contexts: quasi-static and dynamic social planning, and quasi-static one-shot and repeated non-cooperative play. As the underlying dynamics are non-convex, the analysis uses geometrical-numerical methods: the

  11. The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China)

    Science.gov (United States)

    Zhu, Mengyuan; Zhu, Guangwei; Nurminen, Leena; Wu, Tingfeng; Deng, Jianming; Zhang, Yunlin; Qin, Boqiang; Ventelä, Anne-Mari

    2015-01-01

    A yearlong campaign to examine sediment resuspension was conducted in large, shallow and eutrophic Lake Taihu, China, to investigate the influence of vegetation on sediment resuspension and its nutrient effects. The study was conducted at 6 sites located in both phytoplankton-dominated zone and macrophyte-dominated zone of the lake, lasting for a total of 13 months, with collections made at two-week intervals. Sediment resuspension in Taihu, with a two-week high average rate of 1771 g·m-2·d-1 and a yearly average rate of 377 g·m-2·d-1, is much stronger than in many other lakes worldwide, as Taihu is quite shallow and contains a long fetch. The occurrence of macrophytes, however, provided quite strong abatement of sediment resuspension, which may reduce the sediment resuspension rate up to 29-fold. The contribution of nitrogen and phosphorus to the water column from sediment resuspension was estimated as 0.34 mg·L-1 and 0.051 mg·L-1 in the phytoplankton-dominated zone. Sediment resuspension also largely reduced transparency and then stimulated phytoplankton growth. Therefore, sediment resuspension may be one of the most important factors delaying the recovery of eutrophic Lake Taihu, and the influence of sediment resuspension on water quality must also be taken into account by the lake managers when they determine the restoration target. PMID:26030094

  12. Integrated ecological and chemical food web accumulation modeling explains PAH temporal trends during regime shifts in a shallow lake.

    Science.gov (United States)

    Kong, Xiangzhen; He, Wei; Qin, Ning; Liu, Wenxiu; Yang, Bin; Yang, Chen; Xu, Fuliu; Mooij, Wolf M; Koelmans, Albert A

    2017-08-01

    Shallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce. We developed a contaminant fate model which is linked to an ecosystem model (PCLake) for shallow lakes. This integrated model was successful in simulating long-term dynamics (1953-2012) of representative polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic components in a large shallow lake (Chaohu in China), which has undergone regime shifts in this period. Historical records from sediment cores were used to evaluate the model. The model revealed that regime shifts in shallow lakes had a strong impact on the fate of less hydrophobic compounds due to the large storage capacity of macrophytes, which accumulated up to 55.6% of phenanthrene in the clear state. The abrupt disappearance of macrophytes after the regime shift resulted in a sudden change in phenanthrene distribution, as the sediment became the major sink. For more hydrophobic compounds such as benzo(a)pyrene, the modeled impact of the regime shift was negligible for the whole environment, yet large for biotic compartments. This study is the first to provide a full mechanistic analysis of the impact of regime shifts on the fate of PAHs in a real lake ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Shallow lake economics run deep: Nonlinear aspects of an economic-ecological interest conflict

    NARCIS (Netherlands)

    Wagener, F.

    2013-01-01

    Outcomes of the shallow lake long-term interest conflict in a number of different settings are presented, in particular in the contexts of quasi-static and dynamic social planning and of quasi-static non-cooperative play. Also the effect of trigger strategies in repeated quasi-static play is

  14. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?

    Science.gov (United States)

    Kuiper, Jan J.; Verhofstad, Michiel J. J. M.; Louwers, Evelien L. M.; Bakker, Elisabeth S.; Brederveld, Robert J.; van Gerven, Luuk P. A.; Janssen, Annette B. G.; de Klein, Jeroen J. M.; Mooij, Wolf M.

    2017-04-01

    Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.

  15. Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes

    Directory of Open Access Journals (Sweden)

    Tomasz Mieczan

    2015-12-01

    Full Text Available Complex interactions between zooplankton and microbial food webs are vital to the ecosystem ecology of shallow lakes. However, little is known about how horizontal changes in environmental conditions may influence microbial and metazoan communities in shallow lakes. The specific goals of the study were i to describe environmental variables responsible for the distribution of bacteria, flagellates, ciliates and crustaceans in an adjacent canal, ecotone and reservoir (littoral-pelagic zone in two different types of lakes (Ceratophyllum-dominated and Potamogeton-dominated lakes; ii to determine whether the contact zone waters differ in hydrochemical and biological terms from the waters of the canal and the open water zone; iii and to evaluate the influence of particular macro-habitats (canal, canal/reservoir, littoral and pelagic zone on the interactions between components of the planktonic food web. We studied four shallow, eutrophic lakes in Polesie Lubelskie (eastern Poland. The highest diversity and abundance of microorganisms and crustaceans were observed in the canal-reservoir contact zone, while the lowest values were noted in the pelagic zone. Hence, the contact zone in the investigated lakes could fulfil the function of an ecotone, distinguished by a significant increase in biodiversity, abundance, and species specificity of micro- and macroorganisms. Weak relations between food web components were found in the Ceratophyllum-dominated lakes, where environmental variables explained the bulk of the total variance in plankton abundance, whereas in the Potamogeton-dominated lakes, where environmental variables had a minor role in the total variance in plankton abundance, strong predator-prey relations were noted. Spatial structure of habitats proved to be another important factor for relationships between food web components, as our study indicated that habitat complexity can reduce negative correlations between food web components. Our study

  16. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment

    NARCIS (Netherlands)

    Moss, B.; Stephen, D.; Balayla, D.; Bécares, E.; Collings, S.E.; Fernández-Aláez, C.; Fernández-Aláez, M.; Ferriol, C.; García, P.; Gomá, J.; Gyllström, M.; Hansson, L-A.; Hietala, J.; Kairesalo, T.; Rosa Miracle, M.; Romo, S.; Rueda, J.; Russell, V.; Ståhl-Delbanco, A.; Svensson, M.; Vakkilainen, K.; Valentín, M.; van de Bund, W.; Van Donk, E.; Vicente, E.; Villena, M.J.

    2004-01-01

    1. Results are analysed from 11 experiments in which effects of fish addition and nutrient loading on shallow lakes were studied in mesocosms. The experiments, five in 1998, six in 1999, were carried out in six lakes, distributed from Finland to southern Spain, according to a standard protocol. 2.

  17. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake.

    Science.gov (United States)

    Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B

    2015-01-01

    Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.

  18. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin

    2017-04-01

    Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow

  19. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark

    DEFF Research Database (Denmark)

    Jeppesen, E.; Søndergaard, M.; Søndergaard, M.

    2002-01-01

    The importance of grazer versus resource control has been extensively studied in the pelagic zone of lakes. In contrast, comparatively little is known about trophic interactions within the littoral zone. We conducted an experiment in the littoral zone of a eutrophic shallow lake using six 20 m2......, zooplankton grazing was equivalent to production in M+, but amounted to littoral zones do not alone feed on particles produced in the water, but also exploit alternative sources such as periphyton...... hypothesize that the strong cascading effects of zooplankton on chlorophyll-a and microorganisms in the littoral zone at natural fish densities are restricted to eutrophic lakes with high plant densities....

  20. Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Külli Kangur

    2013-06-01

    Full Text Available The fish kill in lake Peipsi (Estonia/Russia during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, Osmerus eperlanus eperlanus m. spirinchus (Pallas, the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva. Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, e.g. smelt and vendace Coregonus albula (L., the abundance of bottom-dwelling fishes such as ruffe Gymnocephalus cernuus (L. and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication.

  1. Influence of a carp invasion on the zooplankton community in Laguna Medina, a Mediterranean shallow lake

    OpenAIRE

    Norbert, Florian; López-Luque, raquel; Ospina-Álvarez, Natalia; Hufnagel, Levente; Green, Andy J.

    2016-01-01

    The common carp (Cyprinus carpio) is a highly invasive species and an ecological engineer. It has been repeatedly shown to increase nutrient concentrations and phytoplankton biomass while destroying submerged macrophytes, although there are few studies from the Mediterranean region. We studied its impact on the zooplankton community in Laguna de Medina lake, a shallow lake in Jerez de la Frontera, south-west Spain. Carp were removed with rotenone in 2007 but returned in 2010-2011. ...

  2. Three Dimensional Seismic Tomography of the Shallow Subsurface Structure Under the Meihua Lake in Ilan, Northeastern Taiwan

    Science.gov (United States)

    Shih, R.

    2008-12-01

    The island of Taiwan is located at an ongoing collision boundary between two plates. The Philippine Sea plate and the Eurasian plate collided at the Longitudinal Valley of eastern Taiwan, and the Philippine Sea plate subducted northward beneath the Eurasian plate along the Ryukyu trench in eastern Taiwan at the Hualien area. Further northward in the island, the opening Okinawa trough ended at the Ilan area in northeastern Taiwan. The Ilan area is over populated and potentially able to produce large earthquake; however, since that are is densely covered with forests, due to lack of geologic and geomorphologic evidences, known active faults are still unclear. Recently, a series of topographic offsets of several meters distributed in a zone were found by using the LiDAR DTM data, indicating active normal faulting was activated in the past. Besides, several small sag ponds were mapped to support the active normal faulting activities. Later on, core borings in one of the small ponds (the Meihua Lake, diameter of about 700m) were conducted and the records showed obvious difference of depths in the adjacent boreholes at a very short distance. In order to realize the variation of the distribution of sediments under the Meihua Lake, we conducted a 3d seismic tomography survey at the lake, hopefully to help to verify the faults. In this paper, we will show results of using a 120-channel shallow seismic recording system for mapping the shallow subsurface structure of sediments under the Meihua Lake. During the experiment, we deployed the geophone groups of three geophones at every 6m along the bank of the lake and fired the shots at every 80m around the lake. An impactor of energy 2200 joule per shot was used as a seismic source. We stacked the energy at each shot point around 60 times for receiving clear signals. Since the total extension of recording system is 720m, about one third of the perimeter around the lake, 2,200m, we moved the geophone deployments 3 times to

  3. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  4. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  5. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    OpenAIRE

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen ...

  6. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  7. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China

    NARCIS (Netherlands)

    Kong, X.; Liu, W.; He, W.; Xu, F.; Koelmans, Albert A; Mooij, W.M.

    2018-01-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS),

  8. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    Science.gov (United States)

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  9. Distribution of metals in fauna, flora and sediments of wet detention ponds and natural shallow lakes

    DEFF Research Database (Denmark)

    Stephansen, D.A.; Nielsen, A.H.; Hvitved-Jacobsen, T.

    2014-01-01

    Fauna, flora, and sediment were collected from 9 wet detention ponds receiving stormwater runoff and 11 small natural shallow lakes. The fauna and flora samples were sorted into species or groups of species and, together with sediments, analyzed for aluminum, copper, iron, zinc, arsenic, cadmium,...

  10. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    Science.gov (United States)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  11. Enhanced Input of Terrestrial Particulate Organic Matter Reduces the Resilience of the Clear-Water State of Shallow Lakes: A Model Study

    NARCIS (Netherlands)

    Lischke, B.; Hilt, S.; Janse, J.H.; Kuiper, J.J.; Mehner, T.; Mooij, W.M.; Gaedke, U.

    2014-01-01

    The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a

  12. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study.

    Science.gov (United States)

    Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh D; Liu, Zhengwen

    2015-03-01

    Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.

  13. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO 3 - , with the concentration varying from 0.1mg/L to 206mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh (shallow groundwater of the Poyang Lake basin has Eh>100mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ 15 N and δ 18 О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ 18 О values from -4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15 N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Response of Zooplankton to Climate Variability: Droughts Create a Perfect Storm for Cladocerans in Shallow Eutrophic Lakes

    Directory of Open Access Journals (Sweden)

    Gaohua Ji

    2017-10-01

    Full Text Available A major attribute of the Earth’s climate that may be affected by global warming is the amplitude of variability in teleconnections. These global-scale processes involve links between oceanic conditions in one locale and weather in another, often distant, locale. An example is the El Niño Southern Oscillation (ENSO, which can affect rainfall and then the properties of lakes in Europe, Africa, North and South America. It affects rainfall, droughts and the depth of lakes in Florida, USA. It is predicted that the amplitude of variation in the ENSO will increase with global warming and, therefore, droughts will become more severe and periods of rain more intense. We investigated possible effects of climate on the zooplankton in shallow subtropical lakes by studying 16 years of monthly data from six shallow eutrophic lakes located north of Orlando, Florida. Results indicate that water depth and lake volume are tightly coupled with rainfall, as expected. During droughts, when lake depth and volume were greatly reduced, there were intensified cyanobacterial blooms, and the zooplankton shifted towards greater relative biomass of copepods compared to cladocerans. The change of zooplankton was likely due to the intensified selective fish predation in the reduced water volume, and/or selective adverse effects of cyanobacteria on cladocerans. The greatly reduced volume might lead to a ‘perfect storm’ of top-down and bottom-up factors that favor copepods over cladocerans. The mechanism needs further study. Regardless, this study documents a direct link between climate variability and zooplankton composition, and suggests how future changes in climate might affect plankton communities.

  15. The origin of shallow lakes in the Khorezm Province, Uzbekistan, and the history of pesticide use around these lakes

    Science.gov (United States)

    Rosen, Michael R.; Crootof, Arica; Reidy, Liam; Saito, Laurel; Nishonov, Bakhriddin; Scott, Julian A.

    2018-01-01

    The economy of the Khorezm Province in Uzbekistan relies on the large-scale agricultural production of cotton. To sustain their staple crop, water from the Amu Darya is diverted for irrigation through canal systems constructed during the early to mid-twentieth century when this region was part of the Soviet Union. These diversions severely reduce river flow to the Aral Sea. The Province has >400 small shallow (data indicate that the majority of the lakes investigated are less than 150 years old, which supports a recent origin of the lakes. The thickness of lacustrine sediments in the cores analyzed ranged from 20 to 60 cm in all but two of the lakes, indicating a relatively slow sedimentation rate and a relatively short-term history for the lakes. Hydrologic changes in the lakes are evident from loss on ignition and pollen analyses of a subset of the lake cores. The data indicate that the lakes have transitioned from a dry, saline, arid landscape during pre-lake conditions (low organic carbon content) and low pollen concentrations (in the basal sediments) to the current freshwater lakes (high organic content), with abundant freshwater pollen taxa over the last 50–70 years. Sediments at the base of the cores contain pollen taxa dominated by Chenopodiaceae and Tamarix, indicating that the vegetation growing nearby was tolerant to arid saline conditions. The near surface sediments of the cores are dominated by Typha/Sparganium, which indicate freshwater conditions. Increases in pollen of weeds and crop plants indicate an intensification of agricultural activities since the 1950s in the watersheds of the lakes analyzed. Pesticide profiles of DDT (dichlorodiphenyltrichloroethane) and its degradates and γ-HCH (gamma-hexachlorocyclohexane), which were used during the Soviet era, show peak concentrations in the top 10 cm of some of the cores, where estimated ages of the sediments (1950–1990) are associated with peak pesticide use during the Soviet era. These data

  16. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment

    NARCIS (Netherlands)

    van de Bund, W.; Romo, S.; Villena, M.J.; Valentín, M.; Van Donk, E.; Vicente, E.; Vakkilainen, K.; Svensson, M.; Stephen, D.; Ståhl-Delbanco, A.; Rueda, J.; Moss, B.; Rosa Miracle, M.; Kairesalo, T.; Hansson, L-A.; Hietala, J.; Gyllström, M.; Goma, J.; García, P.; Fernández-Aláez, M.; Fernández-Aláez, C.; Ferriol, C.; Collings, S.E.; Bécares, E.; Balayla, D.; Alfonso, T.

    2004-01-01

    1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte-dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of

  17. Spatial and temporal variability of greenhouse gas emissions from a small and shallow temperate lake

    Science.gov (United States)

    Praetzel, Leandra; Schmiedeskamp, Marcel; Broder, Tanja; Hüttemann, Caroline; Jansen, Laura; Metzelder, Ulrike; Wallis, Ronya; Knorr, Klaus-Holger; Blodau, Christian

    2017-04-01

    Small inland waters (spots" and "hot moments" that could contribute significantly to total emissions. To address this knowledge gap, we determined CO2 and CH4 emissions and dynamics to identify their controlling environmental factors in a polymictic small (1.4 ha) and shallow (max. depth approx. 1.5 m) crater lake ("Windsborn") in the Eifel uplands in south-west Germany. As Lake Windsborn has a small catchment area (8 ha) and no surficial inflows, it serves well as a model system for the identification of factors and processes controlling emissions. In 2015, 2016 and 2017 we measured CO2 and CH4 gas fluxes with different techniques across the sediment/water and water/atmosphere interface. Atmospheric exchange was measured using mini-chambers equipped with CO2 sensors and with an infra-red greenhouse gas analyzer for high temporal resolution flux measurements. Ebullition of CH4 was quantified with funnel traps. Sediment properties were examined using pore-water peepers. All measurements were carried out along a transect covering both littoral and central parts of the lake. Moreover, a weather station on a floating platform in the center of the lake recorded meteorological data as well as CO2 concentration in different depths of the water column. So far, Lake Windsborn seems to be a source for both CO2 and CH4 on an annual scale. CO2 emissions generally increased from spring to summer. Even though CO2 uptake could be observed during some periods in spring and fall, CO2 emissions in the summer exceeded the uptake. CO2 and CH4 emissions also appeared to be spatially variable between littoral areas and the inner lake. Shallow areas turned out to be "hot spots" of CO2 emissions whereas CH4 emissions were - against our expectations - highest in the center of the lake. Moreover, CH4 ebullition contributed substantially to total CH4 emissions. Our results show the importance of spatially and temporally highly resolved long-term measurements of greenhouse gas emissions and

  18. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia)

    OpenAIRE

    Tammeorg, Olga; Möls, Tonu; Kangur, Külli

    2014-01-01

    The impact of water temperature (T), water level (L), photosynthetically active radiation (PAR), and wind speed (V) on the total phosphorus concentration (TP) in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010) of TP concentrations and weather factors. A Thin Plate Spline (TPS) model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (resi...

  19. Sustainable fisheries in shallow lakes: an independent empirical test of the Chinese mitten crab yield model

    Science.gov (United States)

    Wang, Haijun; Liang, Xiaomin; Wang, Hongzhu

    2017-07-01

    Next to excessive nutrient loading, intensive aquaculture is one of the major anthropogenic impacts threatening lake ecosystems. In China, particularly in the shallow lakes of mid-lower Changjiang (Yangtze) River, continuous overstocking of the Chinese mitten crab ( Eriocheir sinensis) could deteriorate water quality and exhaust natural resources. A series of crab yield models and a general optimum-stocking rate model have been established, which seek to benefit both crab culture and the environment. In this research, independent investigations were carried out to evaluate the crab yield models and modify the optimum-stocking model. Low percentage errors (average 47%, median 36%) between observed and calculated crab yields were obtained. Specific values were defined for adult crab body mass (135 g/ind.) and recapture rate (18% and 30% in lakes with submerged macrophyte biomass above and below 1 000 g/m2) to modify the optimum-stocking model. Analysis based on the modified optimum-stocking model indicated that the actual stocking rates in most lakes were much higher than the calculated optimum-stocking rates. This implies that, for most lakes, the current stocking rates should be greatly reduced to maintain healthy lake ecosystems.

  20. Replicated mesocosm study on the role of natural ultraviolet radiation in high CDOM, shallow lakes.

    Science.gov (United States)

    Pérez, A Patricia; Diaz, Mónica M; Ferraro, Marcela A; Cusminsky, Gabriela C; Zagarese, Horacio E

    2003-02-01

    The role of ultraviolet radiation on shallow, high CDOM (colored dissolved organic matter) lakes was investigated during two consecutive summers (1999 and 2000) in replicated mesocosms (rectangular fiberglass tanks). Each tank (volume: 300 L; depth: 40 cm) was covered with a layer (approximately 3 cm) of sediment from lake El Toro (40 degrees 14' S; 70 degrees 22' W) and filled with filtered water. The experimental design consisted of two treatments: full natural radiation (UV-exposed) and natural radiation without ultraviolet radiation (UV-shielded). UV-exposed and UV-shielded treatments differed in most studied variables as revealed by repeated measures ANOVA. UV-exposed tanks displayed lower CDOM levels (dissolved absorbance) of lower average molecular size (absorbance ratio between 250 and 365 nm), higher bacterial biomass, and lower chlorophyll a concentration. The effect on consumers (rotifers and crustaceans) was less noticeable. The results are consistent with UV stimulation of bacteria production mediated by higher rates of CDOM photobleaching, and the photoinhibition of planktonic algae. Thus, a major effect of UVR in shallow, high CDOM ecosystems appears to be the stimulation of heterotrophic pathways and a simultaneous inhibition of photoautotrophs.

  1. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks.

    Science.gov (United States)

    Dan Liu; Wu, Shengmin; Xu, Huaizhou; Zhang, Qin; Zhang, Shenghu; Shi, Lili; Yao, Cheng; Liu, Yanhua; Cheng, Jie

    2017-06-01

    The occurrence, distribution and bioaccumulation of six endocrine disrupting compounds (EDCs) were investigated in water, sediment and biota samples from Luoma Lake, a shallow Chinese freshwater lake. Total concentrations of ∑phenolic EDCs were much higher than ∑estrogens EDCs in both waters and sediments. There were not obvious differences on the concentrations of target compounds [except nonylphenol (NP)] in upstream, lake and downstream locations, these may be suggested that they were mainly affected by non-point discharges in this area. However, the high concentration of NP in water may be associated with the discharge of rural domestic wastewater without thorough treatment. Furthermore, concentrations of NP were about 2-3 order magnitude higher than those of OP in both water and sediment compartments. Relatively higher bioaccumulation factors (BAF) were obtained for DES and EE2. Ecological risk assessment revealed greater risk of NP in surface water, which may pose a serious threat to aquatic ecosystems. The estrogen equivalent concentration (EEQ) of male were higher than those in female, and occurred in the order of city >rural-urban>countryside. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study : Environmental Science and Pollution Research

    NARCIS (Netherlands)

    Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh; Liu, Zhengwen

    2015-01-01

    Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined

  3. Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment

    NARCIS (Netherlands)

    Stephen, D.; Balayla, D.; Bécares, E.; Collings, S.E.; Fernández-Aláez, C.; Fernández-Aláez, M.; Ferriol, C.; García, P.; Gomá, J.; Gyllström, M.; Hansson, L-A.; Hietala, J.; Kairesalo, T.; Rosa Miracle, M.; Romo, S.; Rueda, J.; Ståhl-Delbanco, A.; Svensson, M.; Vakkilainen, K.; Valentín, M.; van de Bund, W.; Van Donk, E.; Vicente, E.; Villena, M.J.; Moss, B.

    2004-01-01

    1. Shallow lake ecosystems are normally dominated by submerged and emergent plants. Biological stabilising mechanisms help preserve this dominance. The systems may switch to dominance by phytoplankton, however, with loss of submerged plants. This process usually takes place against a background of

  4. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    Science.gov (United States)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its

  5. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment

    OpenAIRE

    Mei, Xueying; Zhang, Xiufeng; Kassam, Sinan-Saleh; Rudstam, Lars G.

    2016-01-01

    Zebra mussels (Dreissena polymorpha) are known to increase water clarity and affect ecosystem processes in invaded lakes. During the last decade, the conspecific quagga mussels (D. rostriformis bugensis) have displaced zebra mussels in many ecosystems including shallow lakes such as Oneida Lake, New York. In this study, an eight-week mesocosm experiment was conducted to test the hypothesis that the displacement of zebra mussels by quagga mussels leads to further decreases in phytoplankton and...

  6. Long-term Simulation Study about the Impact of submerse Macrophytes on thermal Stratification Dynamics and Transport Processes in an extreme shallow water lake - Lake Federsee

    Science.gov (United States)

    Wolf, Thomas; Pöschke, Franziska; Pflugbeil, Thomas

    2017-04-01

    Lake Federsee is formed primarily by ice age processes and was subjected to strong siltation processes in post-glacial times, while in the last two centuries anthropogenic impact due to amelioration projects became more important and determined it's morphometry. Lake Federsee has a maximum length of 2.4 km, a maximum width of 1.1 km and an area of approx. 1.4 km2. With respect to it's area Lake Federsee is the third largest lake in the federal state of Baden-Wuerttemberg situated in the south of Germany. It is characterized by its very flat bathymetry with a maximum depth of about 3.15 m and an average depth of about 1 m. In recent years Lake Federsee has undergone a strong reduction of the nutrient content, thus developing from hypertrophic states in the years 1980ies to eutrophic conditions in the years 2000ies. Since 2005 this development is accompanied by a change of the general habitus of the lake converting from a lake dominated by algae to a lake dominated by macrophytes. Changing successions of aquatic plants have been observed in the lake with strong seasonal variations in the composition and density of the vegetation cover, however forming often an almost complete coverage of the lake. In the present study the implementation of the hydrodynamic, three-dimensional model DELFT3D - FLOW for this extreme shallow water lake will be presented. The impact of some numerical parameters will be investigated in a sensitivity study, which is aiming to set up the hydrodynamic model in an optimal way. This 3-dim hydrodynamic model is used to simulate the 3-dim flow field and to investigate the thermal stratification as well as the mixing processes taking place in this lake. The model is run for the simulation time period 2000 - 2016 having a horizontal resolution of dx=dy=50 m and 10 or 20 equidistantly spaced fixed vertical layers giving a vertical resolution of 0.32 or 0.16 m respectively. The timestep is choosen to be dt = 10 s. Analysis of the simulated vertical

  7. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    Science.gov (United States)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-01-01

    implications for comparative biogeochemistry and its characteristics should aid in identification of other hitherto unknown heliothermal lakes.

  8. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  9. The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Oliveira Crossetti

    2014-06-01

    Full Text Available AIM: The uneven distribution of organisms in aquatic ecosystems is generally attributed to environmental heterogeneity in both space and time, reflecting the occurrence of appropriate environmental conditions and the availability of resources to biological communities. The aim of this study was to understand how the dissimilarity of the phytoplankton community in a large subtropical shallow lake is related to environmental dissimilarities. METHODS: Biotic and environmental data were gathered at 19 sites along the 90-km length of Lake Mangueira. Sampling was carried out quarterly during 2010 and 2011, totaling 152 sampling units. The relationship between phytoplankton dissimilarity and the dissimilarity of environmental variables was assessed by the BioEnv analysis. MAJOR RESULTS: There is a significant relationship between phytoplankton dissimilarity and environmental dissimilarity. The model that best explained the dissimilarity of phytoplankton among the sampling units included pH, turbidity and nitrate. CONCLUSIONS: The dissimilarity of phytoplankton was related to the dissimilarity, which were directly associated to the variability of conditions and resources in space and time in Lake Mangueira.

  10. Size-dependent responses of zooplankton to submerged macrophyte restoration in a subtropical shallow lake

    Science.gov (United States)

    Zeng, Lei; He, Feng; Zhang, Yi; Liu, Biyun; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin

    2018-03-01

    To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant sizedependent responses to macrophyte restoration. Specially, rotifers sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl- a, but negative correlations between macrophytes and COD or Chl- a, and between crustaceans and Chl- a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.

  11. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence

    NARCIS (Netherlands)

    Zhang, Y.; Van Dijk, M.A.; Liu, M.; Zhu, G.; Qin, B.

    2009-01-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM

  12. Geographical information systems as a tool in limnological studies An applied case study in a shallow .lake of a plain area, Buenos Aires province, Argentina

    International Nuclear Information System (INIS)

    Quiroz, Orlando; Romanelli, Asuncion; Martinez, Daniel

    2009-01-01

    The understanding of the hydrological functioning and the interaction among the different water bodies in an area is essential when a sustainable use of the hydric resources is considered. The aim of the present paper is to assess both hydrological-limnological methods and GIS as an integrated methodology applied to the study of shallow lakes, and the hydrological behavior of shallow wetlands in plain areas. La Salada is an areic permanent shallow lake with an area of 5,78 km 2 located near La Dulce town (SE of Buenos Aires Province, Argentina). In this paper we applied methods and tools of the Geographical information Systems in order to assess both, the evolution and state of the wetland. Topographic profiles, showing the relationship among the lake and the other aquatic systems, and also a multi temporal assessment of the morphometric parameters were performed by using a Digital Terrain Model of the area. A sample grid was designed to obtain bathymetric, hydrogeochemical and isotopic data. The chemical water composition is homogeneous in area and depth. changes in the conductivity values along depth, the isotopic contents and the Gibbs diagram showed that the evaporation is the main process controlling the water chemistry. Physical-chemical parameters established water quality and uses of the lake.

  13. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Jensen, C.

    2003-01-01

    is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations......%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality...

  14. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Olga Tammeorg

    2014-01-01

    Full Text Available The impact of water temperature (T, water level (L, photosynthetically active radiation (PAR, and wind speed (V on the total phosphorus concentration (TP in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010 of TP concentrations and weather factors. A Thin Plate Spline (TPS model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (residuals, or TP anomalies were related to the weather variables to clarify how the weather anomalies in a year might correlate with the observed fluctuations in TP dynamics. Notable seasonal variations in TP, typical for many shallow lake systems, were found: TP was two to three times higher during late summer-early autumn than during winter. Patterns of TP variability were well predicted by using geographical coordinates, year and day of the year (R2=0.69; P<0.0001. However, TP anomalies were ascribed to the effects of T, L, PAR, and V, which were proved to play a significant additional role in TP dynamics. Moreover, L had consistently negative effects over the year, whereas the effects of T and PAR on TP change were seen to be dependent on the season. TP anomalies in lake Peipsi were most sensitive to wind anomalies. V was associated with frequent switches between increasing and decreasing TP values, though it appeared mainly as a negative driver of TP anomalies in the season prior to the 180th day, and as a positive driver in the subsequent season.

  15. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    Science.gov (United States)

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  16. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina.

    Science.gov (United States)

    Castro Berman, M; Marino, D J G; Quiroga, María Victoria; Zagarese, Horacio

    2018-06-01

    Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l -1 for surface water; 0.10 (0.13) μg l -1 for SPM and 10.47 (20.34) μg kg -1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l -1 for surface water; 0.07 (0.07) μg l -1 for SPM; and 22.53 (32.89) μg kg -1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    Science.gov (United States)

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-04

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  18. Concentrations and potential health hazards of organochlorine pesticides in (shallow) groundwater of Taihu Lake region, China.

    Science.gov (United States)

    Wu, Chunfa; Luo, Yongming; Gui, Tong; Huang, Yujuan

    2014-02-01

    A total of 27 shallow groundwater samples were collected from the Taihu Lake region (TLR), to determine the concentrations of 14 organochlorine pesticide (OCP) species, identify their possible sources, and estimate health risk of drinking the shallow groundwater. All OCP species occurred in the shallow groundwater of TLR with high detection frequency except p, p'-dichlorodiphenyldichlorothane (p, p'-DDD) and p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT). DDTs and hexachlorocyclohexanes (HCHs) were the dominant OCP contaminants in the shallow groundwater of TLR, and they account for 44.2% total OCPs. The low α-HCH/γ-HCH ratio, high β-HCH/(α+γ)-HCH ratio and β-HCH being the dominant HCH isomers for the majority of samples suggest that the HCHs were mainly from the historical use of lindane after a period of degradation. p, p'-DDE being the dominant DDT metabolite for all the samples indicated that the DDTs were mainly from the historical residues. Compositional analysis also suggested that there were fresh input sources of heptachlors, aldrins and endrins in addition to the historical residues. Correlation analysis indicated the hexachlorobenzene (HCB) impurity in the shallow groundwater of TLR was likely from the historical application of lindane and technical HCH (a mixture of HCH isomers that is produced by photochlorination of benzene). Carcinogenic risk values for α-HCH, heptachlor, heptachlor epoxide, aldrins and dieldrin in the shallow groundwater in majority area of TLR were found to be >10(-6), posing a potentially serious cancer risk to those dependant on shallow groundwater for drinking water. © 2013.

  19. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds

    NARCIS (Netherlands)

    Scheffer, M.; Van Geest, G.J.; Zimmer, K.; Jeppesen, E.; Søndergaard, M.; Butler, M.G.; Hanson, M.A.; Declerck, S.A.J.; De Meester, L.

    2006-01-01

    Contemporary ecological landscape planning is often based on the assumption that small isolated habitat patches sustain relatively few species. Here, we suggest that for shallow lakes and ponds, the opposite can be true for some groups of organisms. Fish communities tend to be poor or even absent in

  20. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  1. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  2. Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S., the Governing Board of the South Florida Water Management District (SFWMD authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000 of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms. Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the

  3. Origin and hydrogeochemistry of a shallow flow-through lake on a Pleistocene piedmont, northern Spanish Meseta

    Directory of Open Access Journals (Sweden)

    Margarita Jambrina

    2013-06-01

    Full Text Available The Cristo lagoon, situated on Neogene deposits in the northern Spanish Meseta, occupies a shallow depression on a Pleistocene piedmont. The development of the lacustrine depression on the piedmont was favoured by the fault network, reinforced by substrateloss by weathering, probably during the late Quaternary. Even during the hot summer season, salinity is low, with concentrations of total dissolved solids (TDS being around 150 mg L–1. Only when the lagoon is almost dry do TDS concentrations exceed 500 mg L–1, sometimes rising as high as 1700 mg L–1. Whenthe lake level is high, lake chemistry is dominated by Na+, Ca2+, HCO3– and Cl–. During drier stages, there is a relative increase in Ca2+, Mg2+, Cl–, and SO42–, trending toward a calcium chloride-sulphate brine. Values of pH are above 9 during late spring and summer, resulting primarily from evaporative degassing favoured by the shallow depth of water, and secondarily from photosynthesis by the abundant submerged macrophytes. The infilling deposits, less than 0.5 m thick, are dark brown, massive, sandy muds consisting of quartz and clays (illite, kaolinite, smectite, all of which are allogenic in origin. The main source of dissolved sulphate was the oxidation of sulphides during weathering of lower Palaeozoic rocks in the catchment area. The 13C-depleted nature of dissolved inorganic carbon indicates an origin mostly by respiration and oxidation of organic matter. Geomorphology and hydrogeochemistry indicate a flow-through lake dominated essentially by groundwater flows. 

  4. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.

    Science.gov (United States)

    Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J

    2015-04-01

    The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  6. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  7. Drainage of the ice-dammed Lake Tinninilik, West Greenland; implication on bedrock uplift

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders Anker

    Drainage of ice-dammed lakes is regularly observed along the margin of the Greenland Ice Sheet. However, the speed of the drainage events and implications can vary depending on the size of the lakes and the local settings. Here, we assess the drainage pattern of Lake Tinninilik, dammed...

  8. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake

    NARCIS (Netherlands)

    Janse, J.H.; De Senerpont Domis, L.N.; Scheffer, M.; Lijklema, L.; Klinge, M.; Mooij, W.M.; Van Liere, L.

    2008-01-01

    Shallow lakes typically can be in one of two contrasting states: a clear state with submerged macrophytes or a turbid state dominated by phytoplankton. Eutrophication may cause a switch from the clear to the turbid state, if the phosphorus loading exceeds a critical value. Recovery of the clear

  9. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  10. Lithosphere-biosphere interaction at a shallow-sea hydrothermal vent site; Hot Lake, Panarea, Italy

    Science.gov (United States)

    Huang, Chia-I.; Amann, Rudolf; Amend, Jan P.; Bach, Wolfgang; Brunner, Benjamin; Meyerdierks, Anke; Price, Roy E.; Schubotz, Florence; Summons, Roger; Wenzhöfer, Frank

    2010-05-01

    Deep-Sea hydrothermal systems are unique habitats for microbial life with primary production based on chemosynthesis and are considered to be windows to the subsurface biosphere. It is often overlooked, however, that their far more accessible shallow-sea counterparts are also valuable targets to study the effects of hydrothermal activity on geology, seawater chemistry and finally, on microbial life. Such an area of shallow marine hydrothermal venting is observed approximately 2.5 km east of Panarea Island (Sicily, Italy). This system is characterized by fluid temperatures of up to 135° C, gas emissions dominated by CO2 and precipitation of elemental sulfur on the seafloor. In an interdisciplinary project to investigate the influence of geofuels on marine microbiota, sediment cores and pore fluids were sampled for geological and geochemical analyses. An attempt was made to link these geochemical data with a characterization of the microbial community. One of the investigated sites (Lago Caldo, Hot Lake) is an oval-shaped (~10 by 6 meters) shallow (~2.5 m deep) depression covered by elemental sulfur. The sediments in this depression are strongly affected by hydrothermal activity: the pH of pore fluids is in a range between 5 and 6; the salinity is approximately two times higher than seawater. In situ temperatures of 36° C and 74° C (10 cm sediment depth) at two different locations within Hot Lake indicate variability in hydrothermal flux. The sediment surface layer is anoxic, and with increasing depth from the sediment-water interface, sulfate concentrations decrease from ~30 mM to less than 10 mM, whereas sulfide concentrations increase from less than 50 μm to ~1000 μm at 25 cm sediment depth, thus suggesting a higher potential for energy gain based on sulfur disequilibrium. As indicated by the variability in the sediment temperatures at 10 cm, fluid fluxes and mixing with seawater is not found to be uniform at Hot Lake. This is reflected in variability of the

  11. Food-web stability signals critical transitions in temperate shallow lakes.

    Science.gov (United States)

    Kuiper, Jan J; van Altena, Cassandra; de Ruiter, Peter C; van Gerven, Luuk P A; Janse, Jan H; Mooij, Wolf M

    2015-07-15

    A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience.

  12. Assessing Potential Algal Blooms in a Shallow Fluvial Lake by Combining Hydrodynamic Modelling and Remote-Sensed Images

    Directory of Open Access Journals (Sweden)

    Monica Pinardi

    2015-04-01

    Full Text Available Shallow fluvial lakes are dynamic ecosystems shaped by physical and biological factors and characterized by the coexistence of phytoplankton and macrophytes. Due to multiple interplaying factors, understanding the distribution of phytoplankton in fluvial lakes is a complex but fundamental issue, in the context of increasing eutrophication, climate change, and multiple water uses. We analyze the distribution of phytoplankton by combining remotely sensed maps of chlorophyll-a with a hydrodynamic model in a dammed fluvial lake (Mantua Superior Lake, Northern Italy. The numerical simulation of different conditions shows that the main hydrodynamic effects which influence algal distribution are related to the combined effect of advection due to wind forces and local currents, as well as to the presence of large gyres which induce recirculation and stagnation regions, favoring phytoplankton accumulation. Therefore, the general characters of the phytoplankton horizontal patchiness can be inferred from the results of the hydrodynamic model. Conversely, hyperspectral remote-sensing products can be used to validate this model, as they provide chlorophyll-a distribution maps. The integration of ecological, hydraulic, and remote-sensing techniques may therefore help the monitoring and protection of inland water quality, with important improvements in management actions by policy makers.

  13. How well suited are maar lakes of Madagascar for palaeoenvironmental multi-proxy reconstructions? - First results from shallow seismic, sedimentological and hydrological investigations in Central and Northwest Madagascar.

    Science.gov (United States)

    Daut, Gerhard; Jasmin Krahn, Kim; Rabhobisoa, Jean-Jacques; Ornella Moanazafy, Sergénie; Haberzettl, Torsten; Kasper, Thomas; Mäusbacher, Roland; Schwalb, Antje

    2017-04-01

    Madagascar is well known for its unique flora and fauna which are frequently in the focus of scientific investigations. However, studies on environmental changes in Madagascar linked to Quaternary climatic and/or anthropogenic impact are scarce. The aim of this initial study is to evaluate the potential of maar lakes, situated in different climatic zones of Madagascar, for paleoenvironmental studies and to identify promising coring sites with continuous sediment sequences reaching far back in time. Therefore, in November 2016, a shallow seismic profiling campaign, combined with surface sediment, short gravity core (max. 1.8 m), water and plankton sampling was performed on three target sites. These were two deep maar lakes, i.e., Andraikiba (Central Madagascar, 50m waterdepth) as well as Amparahibe (46,5m waterdepth) and Andampy Ambatoloaka, a shallow (5m waterdepth during low tide) former maar lake now connected to the Ocean (both NW-Madagascar. Vertical water parameter measurements in Lake Amparahibe confirm anoxic bottom conditions, while dissolved oxygen values at the water surface are about 7.9 mg/L (103%). Temperature decreases with depth from 29.3 °C to 27.2 °C, and the lake is slightly alkaline with an electrical conductivity of around 245 µS/cm. Since Andampy Ambatoloaka is connected to the ocean, it shows slightly alkaline conditions as well, electrical conductivity is high ( 57.8 mS/cm) and dissolved oxygen and temperature values are relatively stable at about 8.2 mg/L (104%) and 28.1 °C, respectively. The shallow seismic survey shows an infill with layered sediments of >50 m thickness in Lake Andraikiba. In Lake Amparahibe natural gas in the sediment prevented deeper penetration, however the record shows 10 m of undisturbed, layered sediments in the uppermost part. Sediment cores obtained from both lakes consist of dark brownish to blackish, clayey to silty and partly laminated sediments. High values of magnetic susceptibilities (>1800*10-6 SI) and

  14. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    Science.gov (United States)

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal

  15. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    Science.gov (United States)

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  16. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  17. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake.

    Science.gov (United States)

    Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin

    2016-05-01

    The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.

  18. Sources and behaviour of nitrogen compounds in the shallow groundwater of agricultural areas (Poyang Lake basin, China)

    Science.gov (United States)

    Soldatova, Evgeniya; Guseva, Natalia; Sun, Zhanxue; Bychinsky, Valeriy; Boeckx, Pascal; Gao, Bai

    2017-07-01

    Nitrogen contamination of natural water is a typical problem for various territories throughout the world. One of the regions exposed to nitrogen pollution is located in the Poyang Lake basin. As a result of agricultural activity and dense population, the shallow groundwater of this area is characterised by a high concentration of nitrogen compounds, primarily NO3-, with the concentration varying from 0.1 mg/L to 206 mg/L. Locally, high ammonium content occurs in the shallow groundwater with low reduction potential Eh ( 100 mV. To identify sources of nitrogen species and the factors that determine their behaviour, the dual stable isotope approach (δ15N and δ18О) and physical-chemical modelling were applied. Actual data were collected by sampling shallow groundwater from domestic water supply wells around the lake. The δ18О values from - 4.1‰ to 13.9‰ with an average value of 5.3 permille indicate a significant influence of nitrification on nitrogen balance. The enrichment of nitrate with the 15N isotope indicates that manure and domestic sewage are the principal sources of nitrogen compounds. Inorganic nitrogen speciation and thermodynamic calculations demonstrate the high stability of nitrate in the studied groundwater. Computer simulation and field observations indicate the reducing conditions formed under joint effects of anthropogenic factors and appropriate natural conditions, such as the low-level topography in which decreased water exchange rate can occur. The simulation also demonstrates the growth in pH of the groundwater as a consequence of fertilisation, which, in turn, conduced to the clay mineral formation at lower concentrations of aqueous clay-forming components than the ones under the natural conditions.

  19. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  20. Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France)

    Science.gov (United States)

    Lettéron, Alexandre; Fournier, François; Hamon, Youri; Villier, Loïc; Margerel, Jean-Pierre; Bouche, Alexandre; Feist, Monique; Joseph, Philippe

    2017-08-01

    A 200-m thick carbonate succession has been deposited in shallow-water, saline lake environments during the Priabonian-Rupelian in the Issirac Basin (South-East France). The palaeoenvironmental and palaeogeographic significance of such saline lake carbonates has been characterized on the basis of a multi-proxy analysis including 1) depositional and diagenetic features, 2) biological components (molluscs, ostracods, benthic foraminifers, characean) and 3) carbon, oxygen and strontium stable isotopes. Biological associations are indicative of dominantly shallow (climate (dry versus humid) are the three key factors controlling the water composition, carbonate production and depositional environments in the Issirac lake. Although the ASCI (Alès-Issirac-Saint-Chaptes) lacustrine system likely represents an athalassic (inland) lake system evolving through times, the stable isotope composition (C, O and Sr) of carbonates strongly suggests the occurrence of transient connections of the ASCI lake water with water bodies influenced by seawater and/or fed with sulfates deriving from Triassic evaporites. The Issirac Basin may be therefore interpreted as a sill area connecting the ASCI lacustrine system with the Rhône valley (Mormoiron and Valence) saline lake systems during maximum flooding periods. Finally, changes in depositional features, biota and stable isotope composition of carbonates in unit U3 suggest a transition from relatively dry to more humid climate during the uppermost Priabonian or earliest Rupelian.

  1. Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China.

    Science.gov (United States)

    Wang, Shaofeng; Li, Biao; Zhang, Mingmei; Xing, Denghua; Jia, Yonfeng; Wei, Chaoyang

    2011-08-01

    Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption. Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), δ(13)C and δ(15)N in the samples were measured. The signature for δ(15)N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the δ(13)C and δ(15)N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ∼3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g(-1)) and MeHg (66 ng g(-1)), however, were lower than the guideline of 200 ng g(-1) of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day(-1) kg(-1) body weight, respectively, was generally lower than the tolerable intake of 230 ng day(-1) kg(-1) body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the δ(15)N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems. Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in

  2. The influence of nutrient loading, climate and water depth on nitrogen and phosphorus loss in shallow lakes: a pan-European mesocosm experiment.

    Czech Academy of Sciences Publication Activity Database

    Coppens, J.; Hejzlar, Josef; Šorf, Michal; Jeppesen, E.; Erdogan, S.; Scharfenberger, U.; Mahdy, A.; Noges, P.; Tuvikene, A.; Blaho, D.L.; Trigal, C.; Papastergiadou, E.; Stefanidis, K.; Olsen, S.; Beklioglu, M.

    2016-01-01

    Roč. 778, č. 1 (2016), s. 13-32 ISSN 0018-8158 EU Projects: European Commission(XE) 244121 - REFRESH Institutional support: RVO:60077344 Keywords : nutrient retention * nutrient budget * shallow lake * organic matter * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.056, year: 2016

  3. Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage

    Science.gov (United States)

    Breeggemann, Jason J.; Kaemingk, Mark A.; DeBates, T.J.; Paukert, Craig P.; Krause, J.; Letvin, Alexander P.; Stevens, Tanner M.; Willis, David W.; Chipps, Steven R.

    2015-01-01

    Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (−3 to −45% change) compared to largemouth bass that experienced subtle changes (4 to −6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.

  4. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    Science.gov (United States)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  5. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk.

    Science.gov (United States)

    Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu

    2017-10-01

    Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t  < 1.0, and EEQ t  < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss

    Directory of Open Access Journals (Sweden)

    Maria P. Vilas

    2017-12-01

    Full Text Available Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia. Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98, and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times. As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we

  7. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss.

    Science.gov (United States)

    Vilas, Maria P; Marti, Clelia L; Adams, Matthew P; Oldham, Carolyn E; Hipsey, Matthew R

    2017-01-01

    Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time ( r 2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season ( r 2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized

  8. Shallow groundwater quality and associated non-cancer health risk in agricultural areas (Poyang Lake basin, China).

    Science.gov (United States)

    Soldatova, Evgeniya; Sun, Zhanxue; Maier, Sofya; Drebot, Valeriia; Gao, Bai

    2018-03-24

    Owing to their accessibility, shallow groundwater is an essential source of drinking water in rural areas while usually being used without control by authorities. At the same time, this type of water resource is one of the most vulnerable to pollution, especially in regions with extensive agricultural activity. These factors increase the probability of adverse health effects in the population as a result of the consumption of shallow groundwater. In the present research, shallow groundwater quality in the agricultural areas of Poyang Lake basin was assessed according to world and national standards for drinking water quality. To evaluate non-cancer health risk from drinking groundwater, the hazard quotient from exposure to individual chemicals and hazard index from exposure to multiple chemicals were applied. It was found that, in shallow groundwater, the concentrations of 11 components (NO 3 - , NH 4 + , Fe, Mn, As, Al, rare NO 2 - , Se, Hg, Tl and Pb) exceed the limits referenced in the standards for drinking water. According to the health risk assessment, only five components (NO 3 - , Fe, As, rare NO 2 - and Mn) likely provoke non-cancer effects. The attempt to evaluate the spatial distribution of human health risk from exposure to multiple chemicals shows that the most vulnerable area is associated with territory characterised by low altitude where reducing or near-neutral conditions are formed (lower reaches of Xiushui and Ganjiang Rivers). The largest health risk is associated with the immune system and adverse dermal effects.

  9. Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China.

    Science.gov (United States)

    Su, Haojie; Wu, Yao; Xie, Ping; Chen, Jun; Cao, Te; Xia, Wulai

    2016-11-01

    Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.

  10. Activity and food choice of piscivorous perch ( Perca fluviatilis ) in a eutrophic shallow lake: a radio-telemetry study

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Berg, Søren; Broberg, M.

    2002-01-01

    in midsummer. The general lack of activity at night supports the idea that perch is a visually oriented forager. 4. There was no significant relationship between daytime activity during the year and temperature or day length, but nighttime activity was correlated with temperature. In contrast with previous......+ planktivorous fish in lakes and has potential implications for pelagic food web structure and lake management by biomanipulation...

  11. Monitoring a newly re-born patient: water quality and cyanotoxin occurrence in a reconstructed shallow Mediterranean lake

    Directory of Open Access Journals (Sweden)

    Spyros Gkelis

    2017-05-01

    Full Text Available Lake Karla (Central Greece is a unique example - at European scale - of a shallow lake ecosystem that was dried in the 1960s and in 2009 started to be restored. The lake is listed in the network of the Greek protected areas as it is considered a vital aquatic ecosystem, in terms of biodiversity. It has, however, already been adversely affected by both agricultural and industrial land uses in the surrounding area, leading to eutrophication and shifting algal community towards bloom-forming toxic cyanobacterial species. After repeated heavy-blooms, cyanotoxin occurrence and mass fish kills, the local ecosystem management authority has implemented a water quality monitoring program (July 2013 - July 2015 to assess environmental pressures and the response of aquatic biota in the lake. Microscopic, immunological, and molecular techniques combined with physico-chemical parameters, complemented by liquid chromatography tandem mass spectrometry (LC-MS/MS, were used to monitor cyanobacteria blooms and the associated cyanotoxin production from three different sites in Lake Karla and from the adjacent Kalamaki Reservoir. Water quality was also assessed by the structure of benthic invertebrate community on the sediment. Cyanobacteria were the main phytoplankton component, representing more than 70% of the total phytoplankton abundance; dominant taxa belonged to Cylindrospermopsis raciborskii, Limnothrix redekei, Anabaenopsis elenkinii, and Microcystis spp. Euglenophytes (Euglena, diatoms (Nitzschia, and chlorophytes (Scenedesmus were also important phytoplankton constituents. LC-MS/MS confirmed the co-occurrence of microcystins, cylindrospermopsin, saxitoxin, neo-saxitoxin and anatoxin-a. The occurrence of cyanotoxins in relation to the persistent and dominant cyanobacteria and the impact of cyanobacterial harmful algal blooms on the newly constructed lake along with the land uses and the emergent mitigation measures are discussed.

  12. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  13. Application of the Local Grid Refinement package to an inset model simulating the interactions of lakes, wells, and shallow groundwater, northwestern Waukesha County, Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Dunning, C.P.; Juckem, P.F.; Hunt, R.J.

    2010-01-01

    Groundwater use from shallow, high-capacity wells is expected to increase across southeastern Wisconsin in the next decade (2010-2020), owing to residential and business growth and the need for shallow water to be blended with deeper water of lesser quality, containing, for example, excessive levels of radium. However, this increased pumping has the potential to affect surface-water features. A previously developed regional groundwater-flow model for southeastern Wisconsin was used as the starting point for a new model to characterize the hydrology of part of northwestern Waukesha County, with a particular focus on the relation between the shallow aquifer and several area lakes. An inset MODFLOW model was embedded in an updated version of the original regional model. Modifications made within the inset model domain include finer grid resolution; representation of Beaver, Pine, and North Lakes by use of the LAK3 package in MODFLOW; and representation of selected stream reaches with the SFR package. Additionally, the inset model is actively linked to the regional model by use of the recently released Local Grid Refinement package for MODFLOW-2005, which allows changes at the regional scale to propagate to the local scale and vice versa. The calibrated inset model was used to simulate the hydrologic system in the Chenequa area under various weather and pumping conditions. The simulated model results for base conditions show that groundwater is the largest inflow component for Beaver Lake (equal to 59 percent of total inflow). For Pine and North Lakes, it is still an important component (equal, respectively, to 16 and 5 percent of total inflow), but for both lakes it is less than the contribution from precipitation and surface water. Severe drought conditions (simulated in a rough way by reducing both precipitation and recharge rates for 5 years to two-thirds of base values) cause correspondingly severe reductions in lake stage and flows. The addition of a test well

  14. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    Science.gov (United States)

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  15. Functional implications of changes in seagrass species composition in two shallow coastal lagoons

    Science.gov (United States)

    While the consequences of losing seagrass meadows are well known, there is less information on the functional implications of changes in seagrass species composition. In this study, we use data from a long-term monitoring project in shallow lagoons on the Florida Gulf Coast to as...

  16. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  17. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  18. Primary production in a shallow water lake with special reference to a reed swamp

    International Nuclear Information System (INIS)

    Andersen, F.Oe.

    1976-01-01

    Phytoplankton gross primary production ( 14 C method) in the shallow, eutrophic Danish Lake Arresoe in 1973 was 980 g C m -2 . Calculated net primary production was near zero. Macrophyte net primary production was measured by harvesting the maximum biomass, and above ground values were between 420 and 1325 g ash free dry wt m -2 , while below ground values were between 2480 and 8570 g ash free dry wt m -2 . The reed swamps were mapped on aerial photographs, and the composition of the macrophyte vegetation was determined. A comparison of macrophyte vegetation in 1944 and 1972 showed a reduction in species diversity, especially of submerged species. The seasonal variations in physical and chemical data indicated strong eutrophication in Arresoe. (author)

  19. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  20. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China.

    Science.gov (United States)

    Tang, Xiangming; Li, Linlin; Shao, Keqiang; Wang, Boweng; Cai, Xianlei; Zhang, Lei; Chao, Jianying; Gao, Guang

    2015-01-01

    To elucidate the relationship between particle-attached (PA, ≥ 5.0 μm) and free-living (FL, 0.2-5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37,985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes.

  1. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  2. Possible Sediment Mixing and the Disparity between Field Measurements and Paleolimnological Inferences in Shallow Iowa Lakes in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Roger W. Bachmann

    2018-01-01

    Full Text Available Field measurements of water quality in Iowa lakes contradict paleolimnological studies that used 210Pb dating techniques in 33 lakes to infer accelerating eutrophication and sediment accumulation in recent decades. We tested this hypothesis by analyzing a series of water quality measurements taken in 24 of these lakes during the period 1972–2010. There was little change in the trophic state variables. Total phosphorus and algal chlorophylls did not increase, and Secchi depths did not decrease with no evidence that the lakes had become more eutrophic. Changes in daily sediment loads in the Raccoon River also did not match the paleolimnological inferred rates of soil erosion for the period 1905–2005, and an independent estimate of soil erosion rates showed a decline of 40% in the 1977 to 2012 period rather than an increase. We hypothesized that sediment mixing by benthivorous fish could be responsible for violating the basic assumption of 210Pb sediment dating that the sediments are not disturbed once they are laid down. We developed a mathematical model that demonstrated that sediment mixing could lead to false inferences about sediment dates and sediment burial rates. This study raises the possibility that sediment mixing in Iowa lakes and similar shallow, eutrophic lakes with benthivorous fish may cause significant sediment mixing that can compromise dating using 210Pb dating of sediment cores.

  3. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  4. The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor.

    Science.gov (United States)

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-06-30

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r(2) = 0.80, p CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r(2) = 0.68, p CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r(2) = 0.83, p CDOM fluorescence sensor.

  5. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  6. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  7. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu).

    Science.gov (United States)

    Yiyong, Zhou; Jianqiu, Li; Min, Zhang

    2002-04-01

    Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the

  8. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    Science.gov (United States)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  9. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    Science.gov (United States)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  10. Persistent organic pollutants (POPs) in fish with different feeding habits inhabiting a shallow lake ecosystem.

    Science.gov (United States)

    Barni, María F Silva; Ondarza, Paola M; Gonzalez, Mariana; Da Cuña, Rodrigo; Meijide, Fernando; Grosman, Fabián; Sanzano, Pablo; Lo Nostro, Fabiana L; Miglioranza, Karina S B

    2016-04-15

    The occurrence of persistent organic pollutants (POPs) in the environment can affect organisms inhabiting aquatic systems, in particular shallow lakes that are vulnerable to environmental stressors. This study aimed to assess POPs accumulation and changes at histological and physiological levels in tissues of three fish species with different trophic habits. Gills, brain, muscle, liver and gonads of Odontesthes bonariensis, Oligosarcus jenynsii and Cyphocharax voga were collected from the shallow lake La Peregrina, located in an agricultural area from Argentina. In addition, contaminant levels in surface water (SW), suspended particulate matter (SPM) and bottom sediments (BS) were assessed. Histological lesions were evaluated in fish tissues and levels of vitellogenin (VTG) were assessed in plasma of male fish in order to correlate these alterations with the presence of POPs in the environment. Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were determined by GC-ECD. Biotic and abiotic samples showed the same POPs distribution pattern: OCPs>PCBs>PBDEs. Although tissue distribution of OCPs was species-specific, muscle showed the lowest levels in all species. The most abundant contaminants were endosulfans, suggesting their widespread use in the area. O. bonariensis showed the highest endosulfans levels in liver (184.2-219ngg(-1)wet w), which was associated with the high SPM levels considering this species is a filter feeder. The occurrence of PCBs and PBDEs shows the ubiquity of these pollutants in the area. Histological lesions in gills and liver of O. bonariensis and O. jenynsii, might be related with the high levels of endosulfans in these organs. The detection of VTG in males warns about a possible exposure to estrogenic compounds in the environment. In conclusion, the simultaneous exposure of fish to multiple environmental pollutants leads to different alterations, so measures should be taken in

  11. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake

    Science.gov (United States)

    Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew

    2017-03-01

    The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.

  12. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    Science.gov (United States)

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r2 = 0.80, p CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r2 = 0.68, p CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r2 = 0.83, p CDOM fluorescence sensor. PMID:24984060

  13. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    Science.gov (United States)

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  14. Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.H., E-mail: chv@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham, NG12 5GG (United Kingdom); Kim, A.W. [British Geological Survey, Keyworth, Nottingham, NG12 5GG (United Kingdom); McGowan, S. [School of Geography, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Leng, M.J.; Heaton, T.H.E.; Kendrick, C.P. [NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG (United Kingdom); Coombs, P. [British Geological Survey, Keyworth, Nottingham, NG12 5GG (United Kingdom); Yang, H. [Environmental Change Research Centre, University College London, WC1 6BT (United Kingdom); Swann, G.E.A. [NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG (United Kingdom)

    2010-12-15

    Sewage contamination in shallow lake sediments is of concern because the pathogens, organic matter and nutrients contribute to the deterioration of the water-bodies' health and ecology. Sediment cores from three shallow lakes (Coneries, Church and Clifton Ponds) within Attenborough nature reserve located downstream of sewage treatment works were analysed for TOC, C/N, {delta}{sup 13}C, {delta}{sup 15}N, bacterial coliforms and faecal sterols. {sup 210}Pb and {sup 137}Cs activities were used to date the sediments. Elemental analysis suggests that the source of organic matter was algal and down profile changes in {delta}{sup 13}C indicate a possible decrease in productivity with time which could be due to improvements in sewage treatment. {delta}{sup 15}N for Coneries Pond are slightly higher than those observed in Church or Clifton and are consistent with a sewage-derived nitrate source which has been diluted by non-sewage sources of N. The similarity in {delta}{sup 15}N values (+ 12 per mille to + 10 per mille ) indicates that the three ponds were not entirely hydrologically isolated. Analysis by gas chromatography/mass spectrometry (GC/MS) reveals that Coneries Pond had sterol concentrations in the range 20 to 30 {mu}g/g (dry wt.), whereas, those from Clifton and Church Ponds were lower. The highest concentrations of the human-sourced sewage marker 5{beta}-coprostanol were observed in the top 40 cm of Coneries Pond with values up to 2.2 {mu}g/g. In contrast, Church and Clifton Pond sediments contain only trace amounts throughout. Down-profile comparison of 5{beta}-coprostanol/cholesterol, 5{beta}-coprostanol/(5{beta}-coprostanol + 5{alpha}-cholestanol) and 5{beta}-epicoprostanol/coprostanol as well as 5{alpha}-cholestanol/cholesterol suggests that Coneries Pond has received appreciable amounts of faecal contamination. Examination of 5{beta}-stigmastanol (marker for herbivorous/ruminant animals) down core concentrations suggests a recent decrease in manure

  15. Water and chemical budgets of gravel pit lakes : Case studies of fluvial gravel pit lakes along the Meuse River (The Netherlands) and coastal gravel pit lakes along the Adriatic Sea (Ravenna, Italy)

    NARCIS (Netherlands)

    Mollema, P.N.

    2016-01-01

    Gravel pit lakes form when gravel is excavated from below the water table of a phreatic or shallow confined aquifer. Typically many of these lakes are concentrated along naturally occurring sedimentary gravel deposits in areas where gravel is needed for construction. Most gravel pit lakes are

  16. Sedimentation influx and volcanic interactions in the Fuji Five Lakes: implications for paleoseismological records

    Science.gov (United States)

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Garrett, Ed; Shishikura, Masanobu; Schmidt, Sabine; Boes, Evelien; Obrochta, Stephen; Nakamura, Atsunori; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.

    2017-04-01

    The Fuji Fives Lakes are located at the foot of Mount Fuji volcano close to the triple junction, where the North American Plate, the Eurasian plate and the Philippine Sea Plate meet. These lakes are ideally situated to study Mount Fuji volcanism and the interaction between volcanism, changes in lake sedimentation rates and the ability of lakes to record paleoearthquakes. Here, we present newly acquired geological data of Lake Yamanaka and Lake Motosu, including seismic reflection profiles, gravity and piston cores. These two lakes and their respective watersheds were affected by several eruptions of Mount Fuji. Lake Yamanaka, a very shallow lake (max. depth 14 m), was heavily impacted by the scoria fall-out of the A.D. 1707 Hoei eruption of Mount Fuji. A detailed investigation of the effect of the Hoei eruption was conducted on short gravity cores, using high resolution XRD, C/N and 210Pb/137Cs analyses. The preliminary results suggest that the sedimentation rate of Lake Yamanaka drastically reduced after the Hoei eruption, followed by an increase until the present day. Similarly, lacustrine sedimentation in Lake Motosu (max. depth 122 m) was disturbed by Mount Fuji volcanism at a larger scale. The watershed of Lake Motosu was impacted by several lava flows and scoria cones. For example, the Omuro scoria cone reduced the catchment size of Lake Motosu and modified its physiography. The related scoria fall out covered an extensive part of the lake catchment and reduced terrigenous sedimentary influx to Lake Motosu. Within the deep basin of Lake Motosu, seismic reflection data shows two different periods that are distinguished by a major change in the dominant sedimentary processes. During the first period, sublacustrine landslides and turbidity currents were the dominant sedimentation processes. During the second one, the seismic stratigraphy evidences only deposition of numerous turbidites interrupting the hemipelagic sedimentation. Changes in sedimentary processes

  17. Long-term moderate wind induced sediment resuspension meeting phosphorus demand of phytoplankton in the large shallow eutrophic Lake Taihu.

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chao

    Full Text Available The objective of this study was to investigate the impact of sediment resuspension and phosphorus (P release on phytoplankton growth under different kinds of wind-wave disturbance conditions in the large and shallow eutrophic Lake Taihu in China. Short-term strong wind (STSW conditions, long-term moderate wind (LTMW conditions, and static/calm conditions were investigated. To address this objective, we (1 monitored changes in surface water P composition during field-based sediment resuspension caused by STSW conditions in Lake Taihu, and also conducted (2 a series of laboratory-based sediment resuspension experiments to simulate LTMW and calm conditions. The results showed that under both strong and moderate wind-wave conditions, suspended solids (SS and total phosphorus (TP in the water column increased significantly, but total dissolved phosphorus (TDP and soluble reactive phosphorus (SRP remained low throughout the experiments, indicating that the P released from sediments mainly existed in particulate forms. In STSW conditions, alkaline phosphatase activity (APA and enzymatically hydrolysable phosphorus (EHP increased rapidly, with the peak value occurring following the peak value of wind speed for 1-2 days, and then rapidly decreased after the wind stopped. Under LTMW conditions, APA and EHP increased steadily, and by the end of the laboratory experiments, APA increased by 11 times and EHP increased by 5 times. Chlorophyll a (Chl-a in LTMW conditions increased significantly, but remained low under STSW conditions, demonstrating that the former type of sediment P release promoted phytoplankton growth more effectively, and the latter type did not. Despite the fact that STSW conditions resulted in the release of more TP, TP settled to the bottom rapidly with SS after the wind stopped, and did not promote algal growth. Under LTMW conditions, suspended particulate P was hydrolyzed to SRP by phosphatase and promoted algae growth. Algal growth in

  18. Mapping of reed in shallow bays. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten; Lindgren, Fredrik (Umeaa Univ. (Sweden))

    2011-03-15

    The regolith-lake development model (RLDM) describes the development of shallow bays to lakes and the infilling of lakes in the Forsmark area during an interglacial. The sensitivity analysis has shown the need for an update of the infill procedure in the RLDM. Data from the mapping of reed in shallow bays in the Forsmark area will be used to improve the infill procedure of an updated RLDM. The field work was performed in August 26-31, 2010. The mapping of reed was done in 124 points. In these points, coordinates and water depth were mapped using an echo sounder and a DGPS. Quaternary deposits and the thickness of soft sediments were mapped using an earth probe. Measurement points were delivered in ESRI shape format with coordinates in RT90 2.5 gon W and altitudes in the RHB70 system for storage in SKB's GIS data base

  19. Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring

    Directory of Open Access Journals (Sweden)

    Martin Søndergaard

    2017-01-01

    Full Text Available Biomanipulation by fish removal has been used in many shallow lakes as a method to improve lake water quality. Here, we present and analyse 30 years of chemical and biological data from the shallow and 16 ha large Lake Væng, Denmark, which has been biomanipulated twice with a 20-year interval by removing roach (Rutilus rutilus and bream (Abramis brama. After both biomanipulations, Lake Væng shifted from a turbid, phytoplankton-dominated state to a clear, water macrophyte-dominated state. Chlorophyll a was reduced from 60–80 μg·L−1 to 10–30 μg·L−1 and the coverage of submerged macrophytes, dominated by Elodea canadensis, increased from <0.1% to 70%–80%. Mean summer total phosphorus was reduced from about 0.12 to 0.07 mg·L−1 and total nitrogen decreased from 1.0 to 0.4 mg·L−1. On a seasonal scale, phosphorus and chlorophyll concentrations changed from a summer maximum during turbid conditions to a winter maximum under clear conditions. The future of Lake Væng is uncertain and a relatively high phosphorus loading via the groundwater, and the accumulation of a mobile P pool in the sediment make it likely that the lake eventually will return to turbid conditions. Repeated fish removals might be a relevant management strategy to apply in shallow lakes with a relatively high external nutrient loading.

  20. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    Science.gov (United States)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  1. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  2. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  3. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  4. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    and they probably reduced the effect of high concentrations of these metals on the lake ... 31° 07' E. It's a shallow brackish lake connected with the sea by a ... The concentration of heavy metals in water (µg/l) at 15 stations at Lake Burullus.

  5. Molecular characterization of macrophyte-derived dissolved organic matters and their implications for lakes

    Science.gov (United States)

    Chemical properties of whole organic matter (OM) and its dissolved organic matter (DOM) fraction from six dominant macrophytes in Lake Dianchi were comparatively characterized, and their environmental implications were discussed. Significant differences in chemical composition of the OM samples were...

  6. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    Science.gov (United States)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  7. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, Ch.

    1983-01-01

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  9. Wind-driven Water Bodies : a new paradigm for lake geology

    Science.gov (United States)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  10. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes.

    Science.gov (United States)

    He, Yuhong; Song, Na; Jiang, He-Long

    2018-04-01

    In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.

  11. Lake eutrophication and its implications for organic carbon sequestration in Europe.

    Science.gov (United States)

    Anderson, N J; Bennion, H; Lotter, A F

    2014-09-01

    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 μg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 μg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. © 2014 John Wiley & Sons Ltd.

  12. MODELING WAVE-INDUCED ENTRAINMENT OF MUD IN NEWNANS LAKE, FLORIDA

    Science.gov (United States)

    Many shallow lakes in the southeastern US are eutrophic, and as such, the water quality in these lakes is of concern to state and federal environmental regulatory agencies. Some of these lakes have been classified as impaired with one or more nutrients being the stressor. For the...

  13. Greenhouse gas fluxes of a shallow lake in south-central North Dakota, USA

    Science.gov (United States)

    Tangen, Brian; Finocchiaro, Raymond; Gleason, Robert A.; Dahl, Charles F.

    2016-01-01

    Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O fromLong Lakewere low, particularly when compared to the well-studied prairie pothole wetlands of the region. Similarly, cumulative seasonal CH4 fluxes, which ranged from 2.68–7.58 g CH4 m−2, were relatively low compared to other wetland systems of North America. The observed variability among aquatic ecosystems underscores the need for further research.

  14. Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.

    Science.gov (United States)

    Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian

    2017-10-01

    Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.

  15. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence.

    Science.gov (United States)

    Zhang, Yunlin; van Dijk, Mark A; Liu, Mingliang; Zhu, Guangwei; Qin, Boqiang

    2009-10-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM absorption coefficient at 355 nm [a(CDOM)(355)], normalized fluorescence emission (QSU) at 450 nm from excitation at 355 nm [F(n)(355)], and the chlorophyll a (Chla) concentration for all eight field campaigns, which indicates that the decomposition and degradation of phytoplankton is an important source of CDOM. In the degradation experiment, the CDOM absorption coefficient increased as phytoplankton broke down during the first 12 days, showing the production of CDOM from phytoplankton. After 12 days, a(CDOM)(355) had increased from the initial value 0.41+/-0.03 m(-1) to 1.37+/-0.03 m(-1) (a 234% increase), and the Chla concentration decreased from the initial value of 349.1+/-11.2 microg/L to 30.4+/-13.2 microg/L (a 91.3% decrease). The mean daily production rate of CDOM from phytoplankton was 0.08 m(-1) for a(CDOM)(355). Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra, and four components were identified: a terrestrial-like humic component, two marine-like humic components, and a protein-like component. The rapid increase in marine-like humic fluorophores (C3 and C4) during the degradation experiment suggests that in situ production of CDOM plays an important role in the dynamics of CDOM. The field campaigns and experimental data in the present study show that phytoplankton can be one of the important CDOM producers in eutrophic shallow lakes.

  16. THE OXYGEN REGIME OF A SHALLOW LAKE

    Directory of Open Access Journals (Sweden)

    Galina Zdorovennova

    2016-01-01

    Full Text Available The year-round measurement data of water temperature and dissolved oxygen content in a small boreal Lake Vendyurskoe in 2007–2013 were used to explore the hydrophysical prerequisits of anoxia and accumulation and emission of greenhouse gases. Typically, anoxia appears in the bottom layers of lakes in mid-winter and during the summer  stagnation. The thickness of the benthic anaerobic zone (dissolved oxygen concentration <2 mg·l–1 reached one meter in the end of the winter and at the peak of the summer stratification, except for the extremely hot summer of 2010, when it reached five meters. Synoptic conditions had a crucial influence on the formation and destruction of the benthic anaerobic zones in summer. The most favorable oxygen dynamics was observed during the cold summers of 2008, 2009, and 2012, when the repeated full mixings of the water column occurred under conditions of the cyclonic weather. In the winter periods, the early dates of ice season resulted in the most pronounced deficiency of oxygen.

  17. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  18. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  19. Lake Tana's piscivorous Barbus (Cyprinidae, Ethiopia) ecology - evolution - exploitation

    NARCIS (Netherlands)

    Graaf, de M.

    2003-01-01

    The 15 Barbus species of Lake Tana, a large shallow lake located at an altitude of 1830 m in the north-western highlands of Ethiopia, form the only remaining intact species flock of large (max. 100cm) cyprinid fishes. Lake Tana is the source of the Blue Nile and high waterfalls (40 m) at

  20. Visual observations of historical lake trout spawning grounds in western Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  1. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10 -8  m 2  s -3 , 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10 -5  m 2  s -3 , 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10 -4  m 2  s -3 , 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  2. A synthesis of the Green Bay (Lake Michigan) mass balance project: Implications for environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, W.; Endicott, D.; Kreis, R. [Environmental Protection Agency, Grosse Ile, MI (United States). Large Lakes Research Station

    1995-12-31

    The questions confronting environmental managers responsible for the Great Lakes are complex and regulatory action (or inaction) have major social, environmental and economical consequences. It has become evident that rational approaches must be found to address the issues, more clearly identify and quantitate problems, locate and quantitate sources of important chemicals, and arrive at optimal remedial programs. A scientifically based management framework has been implemented and prototyped within the Great Lakes community of mangers and scientists referred to as the Mass Balance Approach. The US Environmental Protection Agency, led by the Great Lakes National Program Office (GLNPO) in cooperation with Office of Research and Development (ORD) and other state and academic organizations, has completed an intensive study of Green Bay (Lake Michigan) to test the feasibility of using the mass balance approach for managing toxic substances in the Great Lakes. This presentation will provide an overview of the project and the results. Conclusions and recommendations will be reviewed and implications for future policy based, scientific studies will be explored.

  3. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    Science.gov (United States)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  4. Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai ...

    African Journals Online (AJOL)

    Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai, Egypt. H Touliabah, HM Safik, MM Gab-Allah, WD Taylor. Abstract. El-Bardawil Lake is a large coastal lagoon on the Mediterranean coast of Sinai, Egypt. Although it is shallow and oligotrophic, it is one of the most important lakes in Egypt as a source of ...

  5. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    Science.gov (United States)

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    Science.gov (United States)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  8. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    Science.gov (United States)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  9. Expanding models of lake trophic state to predict cyanobacteria in lakes

    Science.gov (United States)

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chlor...

  10. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  11. Phosphorus limitation in Daphnia: Evidence from a long term study of three hypereutrophic Dutch lakes

    NARCIS (Netherlands)

    DeMott, W.R.; Gulati, R.D.

    1999-01-01

    The Loosdrecht lakes comprise three shallow, interconnected hypereutrophic lakes in The Netherlands. A lake restoration project conducted during the 1980s resulted in reduced phosphorus loading. However, no changes in phytoplankton abundance or species composition were noted, although seston

  12. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    Directory of Open Access Journals (Sweden)

    Cheng Niu

    2014-06-01

    Full Text Available This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China using an in situ chromophoric dissolved organic matter (CDOM fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC, chemical oxygen demand (COD and total phosphorus (TP concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r2 = 0.80, p < 0.001, fluorescence intensities (Ex./Em. 370/460 nm (r2 = 0.91, p < 0.001, the fluorescence index (r2 = 0.88, p < 0.001 and the humification index (r2 = 0.78, p < 0.001, suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r2 = 0.68, p < 0.001, indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r2 = 0.83, p < 0.001, TP (r2 = 0.82, p < 0.001 concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor.

  13. Assessing the role of bed sediments in the persistence of red mud pollution in a shallow lake (Kinghorn Loch, UK).

    Science.gov (United States)

    Olszewska, Justyna P; Heal, Kate V; Winfield, Ian J; Eades, Lorna J; Spears, Bryan M

    2017-10-15

    Red mud is a by-product of alumina production. Little is known about the long-term fate of red mud constituents in fresh waters or of the processes regulating recovery of fresh waters following pollution control. In 1983, red mud leachate was diverted away from Kinghorn Loch, UK, after many years of polluting this shallow and monomictic lake. We hypothesised that the redox-sensitive constituents of red mud leachate, phosphorus (P), arsenic (As) and vanadium (V), would persist in the Kinghorn Loch for many years following pollution control as a result of cycling between the lake bed sediment and the overlying water column. To test this hypothesis, we conducted a 12-month field campaign in Kinghorn Loch between May 2012 and April 2013 to quantify the seasonal cycling of P, As, and V in relation to environmental conditions (e.g., dissolved oxygen (DO) concentration, pH, redox chemistry and temperature) in the lake surface and bottom waters. To confirm the mechanisms for P, As and V release, a sediment core incubation experiment was conducted using lake sediment sampled in July 2012, in which DO concentrations were manipulated to create either oxic or anoxic conditions similar to the bed conditions found in the lake. The effects on P, As, and V concentrations and species in the water column were measured daily over an eight-day incubation period. Phosphate (PO 4 -P) and dissolved As concentrations were significantly higher in the bottom waters (75.9 ± 30.2 μg L -1 and 23.5 ± 1.83 μg L -1 , respectively) than in the surface waters (12.9 ± 1.50 μg L -1 and 14.1 ± 2.20 μg L -1 , respectively) in Kinghorn Loch. Sediment release of As and P under anoxic conditions was confirmed by the incubation experiment and by the significant negative correlations between DO and P and As concentrations in the bottom waters of the lake. In contrast, the highest dissolved V concentrations occurred in the bottom waters of Kinghorn Loch under oxic conditions (15.0

  14. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Line Hermannsen

    Full Text Available Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3 at six ranges (6, 120, 200, 400, 800 and 1300 m in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration, and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  15. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Science.gov (United States)

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  16. The evolution of a mining lake - From acidity to natural neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, Elwira, E-mail: esienkie@twarda.pan.pl; Gąsiorowski, Michał, E-mail: mgasior@twarda.pan.pl

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed “an anthropogenic lake district”. This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ{sup 13}C, δ{sup 15}N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23 years. - Highlights: • Originally acid water lake had poor phyto- and zooplankton populations. • Process of natural neutralization lasted approximately 23 years. • Presently, lake's ecosystem is similar to other shallow lakes in the region. • Changes in the lake are representative for other mine lakes.

  17. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    Science.gov (United States)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  18. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake

    DEFF Research Database (Denmark)

    Skov, Christian; Perrow, M.R.; Berg, Søren

    2002-01-01

    evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm......1. Piscivores (annual stocking of 1000 individuals ha(-1) of 0+ pike and a single stocking of 30 kg ha(-1) of large 20-30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food-web structure by reducing...... zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were...

  19. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    Science.gov (United States)

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  20. Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake.

    Directory of Open Access Journals (Sweden)

    T E Arnold

    Full Text Available We carried out geochemical analyses on a sediment core from Lake Harris, Florida (USA to identify sources of organic matter to the sediment throughout the Holocene, and relate changes in those sources to shifts in past climate and environmental conditions. We hypothesized that the sources of organic matter changed in response to regional hydrologic shifts following de-glaciation, and to human population expansion in the state during the 20th century. Hydroclimate shifts in Florida were related to: 1 a steady rise in relative sea level and the fresh water table that began in the early Holocene, 2 wetland formation and expansion ca. 5,000 cal yrs BP, and 3 the onset of the modern El Niño (ENSO cycle ~3,000 cal yrs BP. Stratigraphic changes in sediment variables from Lake Harris reflect each of these hydroclimate periods. Early in the Holocene, Lake Harris was a marsh-like system in a relatively dry, open-prairie environment. Organic sediments deposited at that time were derived largely from terrestrial sources, as inferred from high TOC/TN ratios, a dominance of longer-chain of n-alkanes (n-C29-31, relatively negative organic carbon isotope values (δ13CTOC, and low biogenic silica concentrations. In the middle Holocene, a positive shift in δ13CTOC coincided with the onset of wetter conditions in Florida. Submerged macrophyte biomarkers (n-C21-23 dominated, and during that period bulk organic carbon isotope values were most similar to δ13C values of mid-chain-length n-alkanes. In the late Holocene, δ13CTOC values declined, CaCO3 levels decreased to trace amounts, organic carbon concentrations increased and diatom biogenic silica concentrations increased from 10 to 120 mg g-1. Around 2,900 cal yrs BP, the effects of ENSO intensified and many Florida lakes deepened to their current limnetic state. Concentrations of algal and cyanobacterial biomarkers in the Lake Harris core increased by orders of magnitude after about AD 1940, in response to

  1. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    Science.gov (United States)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  2. Changes in lake level and trophy at Lake Vrana, a large karstic lake on the Island of Cres (Croatia, with respect to palaeoclimate and anthropogenic impacts during the last approx. 16,000 years

    Directory of Open Access Journals (Sweden)

    Ante BARIĆ

    2000-08-01

    Full Text Available A multi-proxy approach study (cladocerans, diatoms, geochemistry, plant macrofossils, pollen, was performed on a sediment core from Lake Vrana (Vransko Jezero, a large and deep karstic lake on the northern Adriatic island of Cres, Croatia. Considerable lake-level changes occurred during the last approx. 16,000 years. The stratigraphic evidence suggests that periods of enhanced precipitation and the post-LGM rise in sea level were the main driving forces. The lake records indicate early human impacts. Sediment echo-sounding indicated that >25 m of lake sediments lies within the site, from which 5 m have been cored. Shallow lake stages occurred from 14.4 14C ky BP to early Holocene. Prior to Alleröd, interglacial sediments were redeposited, reflecting the influences of rising sea-level (forming a local groundwater barrier, a temporary increase in precipitation, and lake-level changes. There appears to be a hiatus in the sequence, for no sediments assignable to the Alleröd chronozone could be found. A discordance in the echo profile at the appropriate horizon in the sequence supports this interpretation. Groundwater level increased again at 10.6 ky BP (during Younger Dryas chronozone, a swamp vegetation formed, which gave way to a shallow lake. During the Preboreal chronozone, this freshwater lake persisted with fluctuating levels. The establishment and subsequent persistence of the present deep water lake at about 8.5 ky BP, correspond with findings of a pluvial period at the Dalmatian coast, which lasted from 8.4 to 6 ky BP. First human catchment disturbances were related to settlements of Neolithic or Bronze Age. The increase in summer drought, coupled with forest clearance during Illyrian times, are assumed to be responsible for the change towards present evergreen oak vegetation in the lake catchment. The intensification in land-use during Roman and post-Roman settlements caused a slight increase in the lake trophic level.

  3. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?

    Science.gov (United States)

    Cha, Yoonkyung; Stow, Craig A; Nalepa, Thomas F; Reckhow, Kenneth H

    2011-09-01

    Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production.

  4. Uranium Geochemistry in Hypersaline Soda Lakes in Eastern Mongolia

    Science.gov (United States)

    Linhoff, B. S.; Bennett, P.; Puntsag, T.

    2007-12-01

    Extremely high concentrations of uranium were discovered in water samples from hypersaline soda lakes in eastern Mongolia. The origin and fate of uranium in these lakes was examined using geochemical analyses and modeling, using samples collected from five lakes, six wells and one stream. Samples were analyzed for strontium and uranium isotopes, cations and trace metals, anions, alkalinity, and unstable field parameters. The lakes are small, shallow (chlorine to bromine ratios implying groundwater discharges to lake water and is subsequently evaporated. Evaporation is intense with lake waters having average chlorine concentrations 300 times that of well waters. Uranium in well samples is higher than typical for shallow groundwaters (7-101ppb) suggesting discharging groundwater as a probable source of uranium in lake water. Concentrations of uranium in lake water ranges from 57-14,900ppb making these lakes possibly the highest naturally occurring uranium concentration reported. Lake water alkalinity is strongly correlated to uranium abundance suggesting uranium is complexed with carbonate as the aqueous species UO2CO3. Consequently, the extremely high alkalinity of the most alkaline lake (pH = 9.8, 1288.8 meq alk/L) also has the highest uranium concentrations. Stable strontium isotopes were used to assess the degree of water rock interactions and the presence of 90Sr was checked for to test the possibility of input of nuclear fallout. 90Sr was not detected in lake water samples suggesting the high uranium is of natural origins. A large difference in the 87Sr/86Sr ratio was found between groundwater and lake water samples. Groundwater samples displayed large variation in the 87Sr/86Sr ratio (0.70612-0.709776) whereas lake water samples averaged a high radiogenic ratio (0.709432). The large variation in the strontium isotopes in groundwater samples suggests varying degrees of water rock interactions, however the least radiogenic samples likely are derived from

  5. Remote Sensing and Shallow Geophysical Investigations on Moghra Lake in Northeastern Qattarra Depression, Western Desert, Egypt

    Science.gov (United States)

    Khan, S. D.; Fathy, M. S.; Azeem, M. A.

    2012-12-01

    covered by about 2 m of lacustrine sediments of post-Miocene age in the east side and by recent eolian dunes in the west. These sediments are characterized by shallowing upward, horizontal to cross-bedded with an unconformity in between. The eastern end of the paleochannel surveyed by GPR is covered by recent sand dunes followed by an ephemeral stream that feeds the current lake. Field observations suggest that the movement of sand dunes in the northeast direction may have blocked the paleo-channel. A two meters deep trench was dug to confirm the GPR findings. Regional gravity mapping of this area also shows major gravity anomalies. More work is planned to carry out additional high resolution potential field surveys in conjunction with remote sensing and GPR studies to understand the paleo-drainage of this area. Identifying the exact track of the paleo-channels will help reconstructing of paleo drainage of this region and may help in mapping groundwater, this will be very important for the development of this rapidly expanding desert area.

  6. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system: Chapter 11

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael; Johnson, Jessica H.; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Episodic variations in magma pressures and flow rates at Kīlauea Volcano, defined by a characteristic temporal evolution and termed deflation-inflation (DI) events, have been observed since at least the 1990s. DI events consist of transient, days-long deflations and subsequent reinflations of the summit region, accompanied since 2008 by fluctuations in the surface height of Kīlauea's summit lava lake. After a delay of minutes to hours, these events also often appear along the volcano's East Rift Zone in ground deformation data and as temporary reductions in eruption rate (sometimes followed by brief surges). Notable pauses in DI activity have preceded many eruptive events at Kīlauea. We analyzed more than 500 DI events recorded by borehole tiltmeters at the summit during 2000–2013. Inverse modeling suggests that DI-related ground deformation at the summit is generated by pressure transients in a shallow magma reservoir located beneath the east margin of Halema‘uma‘u Crater and that this reservoir has remained remarkably stable for more than a decade. Utilizing tilt data and variation in the level of the summit lava lake during a large DI event, we estimate a reservoir volume of approximately 1 km3 (0.2–5.5 km3 at 95% confidence).

  7. Evidence for a Drought-driven (pre-industrial) Regime Shift in an Australian Shallow Lake

    Science.gov (United States)

    Mills, K.; Gell, P.; Doan, P.; Kershaw, P.; McKenzie, M.; Lewis, T.; Tyler, J. J.

    2015-12-01

    We present a 750-year record of ecosystem response to long-term drought history from Lake Colac, Victoria. Using multiple lines of evidence, we test the sensitivity and resilience of Lake Colac to independently reconstructed drought history. The sedimentary archive shows that Lake Colac appears to be sensitive to periods of drought. Following drought conditions c. CE 1390, the lake ecosystem indicates signs of recovery. A succession of droughts in the early 1500s initiates a change in the diatom flora, with freshwater species declining and replaced by saline tolerant species, though there is little interpretable change in aquatic palynomorphs. An inferred drought, around CE 1720 appears to precede a major switch in the lake's ecosystem. The lake became increasingly turbid and saline and there is a distinct switch from a macrophyte-dominated system to an algal-dominated system. The arrival of Europeans in Victoria (CE1840) appears to have little effect on the lake's ecosystem, but the terrestrial vegetation indicates regionally established changes including declines in native trees, especially Casuarina, and arrival and expansion of exotic shade or plantation trees Pinus and Cupressus as well as native and introduced weeds. As European impact in the catchment increases, nutrients appear to play a role in the modification of the lake's ecosystem. A long-term drying trend from c. CE 1975 is evident, culminating in the Millennium Drought, which suggests unprecedented conditions in the ecological history of the Lake.

  8. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  9. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: cherrera@ucn.cl [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Chong, Guillermo [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Lambán, Luis Javier [Geological Institute of Spain (IGME), Zaragoza (Spain); Riquelme, Rodrigo; Wilke, Hans [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Jódar, Jorge [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Urrutia, Javier; Urqueta, Harry [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Sarmiento, Alvaro [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); and others

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ{sup 18}O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  10. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    International Nuclear Information System (INIS)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro

    2016-01-01

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ"1"8O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  11. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei; Qin, Ning; Kong, Xiangzhen; Liu, Wenxiu; He, Qishuang; Ouyang, Huiling; Yang, Chen; Jiang, Yujiao; Wang, Qingmei; Yang, Bin; Xu, Fuliu, E-mail: xufl@urban.pku.edu.cn

    2013-09-01

    The spatio-temporal distributions and the ecological and health risks of PAEs in surface water of Lake Chaohu, the fifth largest lake in China, were studied based on the monthly monitoring of six PAE congeners from May 2010 to April 2011. The annual total concentration of the six PAE congeners (Σ{sub 6}PAE) in the surface water ranged from 0.467 to 17.953 μg L{sup −1}, with the average value of 4.042 ± 3.929 μg L{sup −1}. The di-n-butyl phthalate (DnBP) that dominated the Σ{sub 6}PAE at 65.8% was found at its highest and lowest levels in the western lake (TX) and eastern drinking water source area (JC), respectively. The temporal distributions of Σ{sub 6}PAE showed that the highest and lowest levels were observed in September 2010 and June 2010, respectively. The different relationships between the runoff and the PAEs with low and high levels of carbon might suggest their different sources. The DnBP had much greater ecological risks than the other studied PAE congeners as indicated by its potential affected fractions (PAFs) and the margin of safety (MOS10). The PAE congeners studied posed little health risk to the nearby male and female citizens. - Highlights: • Monthly variation in PAEs was first investigated in a large Chinese shallow lake. • Ecological and health risks with uncertainty were determined. • PAEs with low and high level of carbon would be from different sources. • DnBP predominated within PAE congeners and posed a much greater ecological risks. • The studied PAE congeners posed little health risks to the nearby citizens.

  12. Spatial and temporal variability in midge (Nematocera) assemblages in shallow Finnish lakes (60-70 deg N) : community-based modelling of past environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Luoto, T.

    2010-07-01

    Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature

  13. Establishment of two invasive crustaceans (Copepoda: Harpacticoida) on the nearshore sands of Lake Michigan

    Science.gov (United States)

    Horvath, Thomas G.; Whitman, Richard L.; Last, Laurel L.

    2001-01-01

    Benthic copepods (Copepoda: Harpacticoida) in the nearshore sediments of southern Lake Michigan appear to be dominated by two new invasive species. We report the first occurrence in North America of Schizopera borutzkyi Montschenko, a native to the Danube River delta, and Heteropsyllus nr. nunni, likely a new species that is morphologically similar to the marine species Heteropsyllus nunni and represents the first occurrence of this genus in freshwater. Schizopera borutzkyi is a euryhaline species occurring in shallow sands in its native habitat and in deeper sands (6-15 m) in southern Lake Michigan. Based on the absence of these species from previous studies, we suggest that they are recent introductions. Heteropsyllus nr. nunni dominated (55-100%) the harpacticoid abundance to depths of 9 m, but S. borutzkyi comprised 75% of the harpacticoid abundance at 15 m. Native harpacticoids were always greatly outnumbered by invasive harpacticoids in our samples, which suggests that the natives are being replaced rapidly or that the invasive species are finding unused resources. The ecological implications of these introductions are not known, but these invasions may represent continued 'invasional meltdown' in Lake Michigan.

  14. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    Science.gov (United States)

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    Bear Lake in North Muskegon, Michigan, is listed as part of the Muskegon Lake area of concern as designated by the U.S. Environmental Protection Agency. This area of concern was designated as a result of eutrophication and beneficial use impairments. On the northeast end of Bear Lake, two man-made retention ponds (Willbrandt Pond East and Willbrandt Pond West), formerly used for celery farming, may contribute nutrients to Bear Lake. Willbrandt Ponds (East and West) were previously muck fields that were actively used for celery farming from the early 1900s until 2002. The restoration and reconnection of the Willbrandt Ponds into Bear Lake prompted concerns of groundwater nutrient loading into Bear Lake. Studies done by the State of Michigan and Grand Valley State University revised initial internal phosphorus load estimates and indicated an imbalance in the phosphorus budget in Bear Lake. From June through November 2015, the U.S. Geological Survey (USGS) did an investigative study to quantify the load of nutrients from shallow groundwater around the Willbrandt Ponds in an effort to update the phosphorus budget to Bear Lake. Seven sampling locations were established, including five shallow groundwater wells and two surface-water sites, in the Willbrandt pond study area and Bear Lake. A total of 12 nutrient samples and discrete water-level measurements were collected from each site from June through November 2015. Continuous water-level data were recorded for both surface-water monitoring locations for the entire sampling period.Water-level data indicated that Willbrandt Pond West had the highest average water-level elevation of all sites monitored, which indicated the general direction of flux is from Willbrandt Pond West to Bear Lake. Nutrient and chloride loading from Willbrandt Pond West to Bear Lake was calculated using two distinct methods: Dupuit and direct seepage methods. Shallow groundwater loading calculations were determined by using groundwater levels to

  15. Investigation of Temperature Dynamics in Small and Shallow Reservoirs, Case Study: Lake Binaba, Upper East Region of Ghana

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2016-03-01

    Full Text Available An unsteady fully three-dimensional model of Lake Binaba (a shallow small reservoir in semi-arid Upper East Region of Ghana has been developed to simulate its temperature dynamics. The model developed is built on the Reynolds Averaged Navier–Stokes (RANS equations, utilizing the Boussinesq approach. As the results of the model are significantly affected by the physical conditions on the boundaries, allocating appropriate boundary conditions, particularly over a water surface, is essential in simulating the lake’s thermal structure. The thermal effects of incoming short-wave radiation implemented as a heat source term in the temperature equation, while the heat fluxes at the free water surface, which depend on wind speed, air temperature, and atmospheric stability conditions are considered as temperature boundary condition. The model equations were solved using OpenFOAM CFD toolbox. As the flow is completely turbulent, which is affected by the complex boundary conditions, a new heat transfer solver and turbulence model were developed to investigate the spatial and temporal distribution of temperature in small and shallow inland water bodies using improved time-dependent boundary conditions. The computed temperature values were compared with four days of observed field data. Simulated and observed temperature profiles show reasonable agreement where the root mean square error (RMSE over the simulation period ranges from 0.11 to 0.44 °C in temporal temperature profiles with an average value of 0.33 °C. Results indicate that the model is able to simulate the flow variables and the temperature distribution in small inland water bodies with complex bathymetry.

  16. Widespread Lake Highstands in the Southernmost Andean Altiplano during Heinrich Event 1: Implications for the South American Summer Monsoon

    Science.gov (United States)

    Chen, C. Y.; McGee, D.; Quade, J.

    2014-12-01

    Speleothem-based oxygen isotope records provide strong evidence of anti-phased behavior of the northern and southern hemisphere summer monsoons during Heinrich events, but we lack rigorous constraints on the amount of wetting or drying occurring in monsoon regions. Studies centered on shoreline deposits of closed-basin lakes are well suited for establishing such quantitative controls on water balance changes by providing unequivocal evidence of lake volume variations. Here we present new dating constraints on the highstands of several high-altitude (3800-4350 m) paleolakes in the southern Andean Altiplano, an outlying arid region of the Atacama Desert stretching across the Chilean-Bolivian-Argentinian border east of the Andes (20-25°S). These lakes once occupied the closed basins where only phreatic playas, dry salars, and shallow ponds exist today. Initial U-Th dating of massive shoreline tufas reveals that these deposits are dateable to within ±150 to 300 yrs due to high U concentrations and low initial Th content (as indicated by high 230Th/232Th). Our U-Th and 14C dates show that lake highstands predominantly occur between 18.5 and 14.5 kyrs BP, coinciding with Heinrich Event 1 (HE1) and the expansion of other nearby lakes, such as Lake Titicaca. Because of their (1) location at the modern-day southwestern edge of the summer monsoon, (2) intact shoreline preservation, and (3) precise age control, these lakes may uniquely enable us to reconstruct the evolution of water balance (P-E) changes associated with HE1. Hydrologic modeling constrained by temperature estimates provided by local glacial records is used to provide bounds for past precipitation changes. We also examine North Atlantic cooling as the mechanism for these changes by comparing a compilation of S. American lake level records with various hosing experiments and transient climate simulations at HE1. Our results lend us confidence in expanding our U-Th work to other shoreline tufas in the

  17. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  18. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes.

    Science.gov (United States)

    Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A

    2018-03-15

    Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.

  19. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    Science.gov (United States)

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  20. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment.

    Directory of Open Access Journals (Sweden)

    Xueying Mei

    Full Text Available Zebra mussels (Dreissena polymorpha are known to increase water clarity and affect ecosystem processes in invaded lakes. During the last decade, the conspecific quagga mussels (D. rostriformis bugensis have displaced zebra mussels in many ecosystems including shallow lakes such as Oneida Lake, New York. In this study, an eight-week mesocosm experiment was conducted to test the hypothesis that the displacement of zebra mussels by quagga mussels leads to further decreases in phytoplankton and increases in water clarity resulting in increases in benthic algae. We found that the presence of zebra mussels alone (ZM, quagga mussels alone (QM, or an equal number of both species (ZQ reduced total phosphorus (TP and phytoplankton Chl a. Total suspended solids (TSS was reduced in ZM and ZQ treatments. Light intensity at the sediment surface was higher in all three mussel treatments than in the no-mussel controls but there was no difference among the mussel treatments. There was no increase in benthic algae biomass in the mussel treatments compared with the no-mussel controls. Importantly, there was no significant difference in nutrient (TP, soluble reactive phosphorus and NO3- levels, TSS, phytoplankton Chl a, benthic algal Chl a, or light intensity on the sediment surface between ZM, QM and ZQ treatments. These results confirm the strong effect of both mussel species on water clarity and indicate that the displacement of zebra mussel by an equivalent biomass of quagga mussel is not likely to lead to further increases in water clarity, at least for the limnological conditions, including summer temperature, tested in this experiment.

  1. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment.

    Science.gov (United States)

    Mei, Xueying; Zhang, Xiufeng; Kassam, Sinan-Saleh; Rudstam, Lars G

    2016-01-01

    Zebra mussels (Dreissena polymorpha) are known to increase water clarity and affect ecosystem processes in invaded lakes. During the last decade, the conspecific quagga mussels (D. rostriformis bugensis) have displaced zebra mussels in many ecosystems including shallow lakes such as Oneida Lake, New York. In this study, an eight-week mesocosm experiment was conducted to test the hypothesis that the displacement of zebra mussels by quagga mussels leads to further decreases in phytoplankton and increases in water clarity resulting in increases in benthic algae. We found that the presence of zebra mussels alone (ZM), quagga mussels alone (QM), or an equal number of both species (ZQ) reduced total phosphorus (TP) and phytoplankton Chl a. Total suspended solids (TSS) was reduced in ZM and ZQ treatments. Light intensity at the sediment surface was higher in all three mussel treatments than in the no-mussel controls but there was no difference among the mussel treatments. There was no increase in benthic algae biomass in the mussel treatments compared with the no-mussel controls. Importantly, there was no significant difference in nutrient (TP, soluble reactive phosphorus and NO3-) levels, TSS, phytoplankton Chl a, benthic algal Chl a, or light intensity on the sediment surface between ZM, QM and ZQ treatments. These results confirm the strong effect of both mussel species on water clarity and indicate that the displacement of zebra mussel by an equivalent biomass of quagga mussel is not likely to lead to further increases in water clarity, at least for the limnological conditions, including summer temperature, tested in this experiment.

  2. Wapan Sakahikan : the making of a lake

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2009-08-15

    This article discussed an ecosystem project built on reclaimed oil sands lands. The oil sands mine originally required the removal of sections of the Tar and Calumet rivers, tributaries of the Athabasca River. A 76.7 hectare lake was constructed in order to salvage over 100,000 fish. The reclamation included the development of a traditional gathering area for local First Nations and Metis. The lake included a variety of fish habitats and was supported by 5 years of monitoring. The lake will be home to 8 fish species and is 23 meters in depth with shallow areas of 5 meters. Biologists helped to build the habitats, which include deep channels with varying depth and widths; shoals; overhead vegetation; and a rearing habitat area. The lake's littoral zone is approximately 30 per cent of the lake's total area. The involvement of First Nations and Metis included a traditional ceremony on the empty lake bottom. 1 fig.

  3. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  4. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  5. Lake Erie and Lake Michigan zebra mussel settlement monitoring and implications for chlorination treatment

    International Nuclear Information System (INIS)

    Demoss, D.; Mendelsberg, J.I.

    1992-01-01

    This paper reports on the 1991 zebra mussel veliger settlement monitoring program undertaken to record and evaluate zebra mussel veliger settlement in Lake Erie and Lake Michigan. Studies by Dr. Gerald Mackie of Canada in 1990 indicated veliger settlement may be occurring primarily during short time periods every season corresponding with warmer water temperatures. Veliger settlement monitoring was performed using a plexiglass sampler apparatus. The samplers were simple in design and consisted of a 20-inch-square plexiglass base panel with thirty-six 1 inch x 3 inch clear plexiglass microscope slides attached. The results of the monitoring program indicate the existence of preferential settlement periods for veligers correlating with sustained lake water temperatures above 70 degrees F. Veliger settlement concentrations in the south basin of Lake Michigan appear to be similar to those in western Lake Erie

  6. Review of fish diversity in the Lake Huron basin

    Science.gov (United States)

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  7. Holocene climate on the Modoc Plateau, northern California, USA: The view from Medicine Lake

    Science.gov (United States)

    Starratt, Scott W.

    2009-01-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), intermediate elevation (2,036 m) lake located within the summit caldera of Medicine Lake volcano, Siskiyou County, California, USA. Sediment cores and high-resolution bathymetric and seismic reflection data were collected from the lake during the fall of 1999 and 2000. Sediments were analyzed for diatoms, pollen, density, grain size (sand/mud ratio), total organic carbon (TOC), and micro-scale fabric analysis. Using both 14C (AMS) dating and tephrochronology, the basal sediments were estimated to have been deposited about 11,400 cal year BP, thus yielding an estimated average sedimentation rate of about 20.66 cm/1,000 year. The lowermost part of the core (11,400–10,300 cal year BP) contains the transition from glacial to interglacial conditions. From about 11,000–5,500 cal year BP, Medicine Lake consisted of two small, steep-sided lakes or one lake with two steep-sided basins connected by a shallow shelf. During this time, both the pollen (Abies/Artemisia ratio) and the diatom (Cyclotella/Navicula ratio) evidences indicate that the effective moisture increased, leading to a deeper lake. Over the past 5,500 years, the pollen record shows that effective moisture continued to increase, and the diatom record indicates fluctuations in the lake level. The change in the lake level pattern from one of the increasing depths prior to about 6,000 cal year BP to one of the variable depths may be related to changes in the morphology of the Medicine Lake caldera associated with the movement of magma and the eruption of the Medicine Lake Glass Flow about 5,120 cal year BP. These changes in basin morphology caused Medicine Lake to flood the shallow shelf which surrounds the deeper part of the lake. During this period, the Cyclotella/Navicula ratio and the percent abundance of Isoetes vary, suggesting that the level of the lake fluctuated, resulting in changes in the shelf area

  8. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    Science.gov (United States)

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  9. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  10. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    Science.gov (United States)

    Swancar, Amy

    2015-09-25

    Evaporation from April 2005 through October 2007 at two central Florida lakes, one close to the Gulf of Mexico and one in the center of the peninsula, was 4.043 and 4.111 meters (m), respectively; evaporation for 2006 was 1.534 and 1.538 m, respectively. Although annual evaporation rates at the two lakes were similar, there were monthly differences between the two lakes because of changes in stored heat; the shallower Lake Calm (mean depth 3 m) stored less heat and exchanged heat more rapidly than the deeper Lake Starr (mean depth 5 m).

  11. Past climate changes and permafrost depth at the Lake El'gygytgyn site: implications from data and thermal modeling

    Directory of Open Access Journals (Sweden)

    D. Mottaghy

    2013-01-01

    Full Text Available This study focuses on the temperature field observed in boreholes drilled as part of interdisciplinary scientific campaign targeting the El'gygytgyn Crater Lake in NE Russia. Temperature data are available from two sites: the lake borehole 5011-1 located near the center of the lake reaching 400 m depth, and the land borehole 5011-3 at the rim of the lake, with a depth of 140 m. Constraints on permafrost depth and past climate changes are derived from numerical simulation of the thermal regime associated with the lake-related talik structure. The thermal properties of the subsurface needed for these simulations are based on laboratory measurements of representative cores from the quaternary sediments and the underlying impact-affected rock, complemented by further information from geophysical logs and data from published literature. The temperature observations in the lake borehole 5011-1 are dominated by thermal perturbations related to the drilling process, and thus only give reliable values for the lowermost value in the borehole. Undisturbed temperature data recorded over more than two years are available in the 140 m deep land-based borehole 5011-3. The analysis of these observations allows determination of not only the recent mean annual ground surface temperature, but also the ground surface temperature history, though with large uncertainties. Although the depth of this borehole is by far too insufficient for a complete reconstruction of past temperatures back to the Last Glacial Maximum, it still affects the thermal regime, and thus permafrost depth. This effect is constrained by numerical modeling: assuming that the lake borehole observations are hardly influenced by the past changes in surface air temperature, an estimate of steady-state conditions is possible, leading to a meaningful value of 14 ± 5 K for the post-glacial warming. The strong curvature of the temperature data in shallower depths around 60 m can be explained by a

  12. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake

    Directory of Open Access Journals (Sweden)

    Tomasz Mieczan

    2012-07-01

    Full Text Available We studied the role of natural (common reed and artificial substrata (bamboo in structuring the abundance and taxonomic composition of periphyton assemblages. Investigations were conducted in a shallow, hypertrophic lake situated in the area of Polesie Lubelskie (Eastern Poland. Periphyton communities (algae, ciliates, small metazoa and chironomids on both types of substratum were sampled monthly, from May to November of 2007. Water samples for chemical analysis were collected together with biological samples. We selected the group of ten environmental variables which are the most important in determining the habitat conditions in highly eutrophic lakes: temperature, Secchi disc visibility, conductivity, dissolved oxygen, periphytic chlorophyll-a, N-NO3, N-NH4, TP, P-PO4 and total organic carbon (TOC. The abundances of periphytic algae, ciliates, metazoa and chironomids were significantly affected by season and substrate. On natural substrata, in all studied months, periphyton communities showed higher abundances. The results of PCA analysis confirmed the distinction between periphyton communities on natural and artificial substrata. The Monte Carlo permutation test showed that the periphyton communities on common reed were the most significantly affected by temperature, N-NO3, Secchi disc visibility and TOC. The communities on artificial substrata were significantly influenced by temperature, P-PO4 and TOC. On natural substrata biomass of periphytic algae was significantly negatively correlated with abundances of all groups of potential grazers (ciliates, metazoa, chironomids. On artificial substrata the relations between components of periphytic food web were stronger; correlation coefficients between algae, protists and chironomids were significant at P<0.01. The results of analysis indicate that periphytic algae can play an important role as food source for higher trophic levels. These interactions are less significant on natural (reed

  13. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China.

    Science.gov (United States)

    Tian, Chang; Pei, Haiyan; Hu, Wenrong; Hao, Daping; Doblin, Martina A; Ren, Ying; Wei, Jielin; Feng, Yawei

    2015-11-01

    Hongze Lake is a large, shallow, polymictic, eutrophic lake in the eastern China. Phytoplankton functional groups in this lake were investigated from March 2011 to February 2013, and a comparison was made between the eastern, western, and northern regions. The lake shows strong fluctuations in water level caused by monsoon rains and regular hydraulic controls. By application of the phytoplankton functional group approach, this study aims to investigate the spatial and temporal dynamics and analyze their influencing factors. Altogether, 18 functional groups of phytoplankton were identified, encompassing 187 species. In order to seek the best variable describing the phytoplankton functional group distribution, 14 of the groups were analyzed in detail using redundancy analysis. Due to the turbid condition of the lake, the dominant functional groups were those tolerant of low light. The predominant functional groups in the annual succession were D (Cyclotella spp. and Synedra acus), T (Planctonema lauterbornii), P (Fragilaria crotonensis), X1 (Chlorella vulgaris and Chlorella pyrenoidosa), C (Cyclotella meneghiniana and Cyclotella ocellata), and Y (Cryptomonas erosa). An opposite relationship between water level and the biomass of predominant groups was observed in the present study. Water level fluctuations, caused by monsoonal climate and artificial drawdown, were significant factors influencing phytoplankton succession in Hongze Lake, since they alter the hydrological conditions and influence light and nutrient availability. The clearly demonstrated factors, which significantly influence phytoplankton dynamics in Hongze Lake, will help government manage the large shallow lakes with frequent water level fluctuations.

  14. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  15. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    Science.gov (United States)

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  16. Characterization of Phosphate Solubilizing Bacteria in Sediments from a Shallow Eutrophic Lake and a Wetland: Isolation, Molecular Identification and Phosphorus Release Ability Determination

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2010-11-01

    Full Text Available The transformation of phosphorus (P is a major factor of lake eutrophication, and phosphate releasing bacteria play an important role in the release process. Experiments were conducted to investigate P content and characterize phosphate solubilizing bacterial composition at the molecular level in a shallow eutrophic lake and a wetland. Results showed that P concentrations were relatively high and derived from agricultural runoff and domestic or industrial pollution. Enumeration and molecular identification of these strains indicated that these bacterial groups were abundant in the ecosystem and various kinds of bacteria participated in the phosphorus release process. Twelve phosphate solubilizing bacteria, including eight organic P-solubilizing bacteria (OPBs and four inorganic P-solubilizing bacteria (IPBs, which belonged to three different families, were isolated and identified. Cupriavidus basilensis was found for the first time to have the ability to mineralize organic P (OP. Laboratory tests on P release ability revealed that IPBs were more effective at releasing P than OPBs. The most efficient IPB strain could accumulate over 170 mg·L-1 orthophosphate, while the equivalent OPB strain only liberated less than 4 mg·L-1 orthophosphate in liquid culture. The results obtained from this investigation should help clarify the roles of microorganisms in aquatic systems and the mechanisms of eutrophication.

  17. The comparative limnology of Lakes Nyos and Monoun, Cameroon

    Science.gov (United States)

    Kling, George; Evans, William C; Tanyileke, Gregory

    2015-01-01

    Lakes Nyos and Monoun are known for the dangerous accumulation of CO2 dissolved in stagnant bottom water, but the shallow waters that conceal this hazard are dilute and undergo seasonal changes similar to other deep crater lakes in the tropics. Here we discuss these changes with reference to climatic and water-column data collected at both lakes during the years following the gas release disasters in the mid-1980s. The small annual range in mean daily air temperatures leads to an equally small annual range of surface water temperatures (ΔT ~6–7 °C), reducing deep convective mixing of the water column. Weak mixing aids the establishment of meromixis, a requisite condition for the gradual buildup of CO2 in bottom waters and perhaps the unusual condition that most explains the rarity of such lakes. Within the mixolimnion, a seasonal thermocline forms each spring and shallow diel thermoclines may be sufficiently strong to isolate surface water and allow primary production to reduce PCO2 below 300 μatm, inducing a net influx of CO2 from the atmosphere. Surface water O2 and pH typically reach maxima at this time, with occasional O2 oversaturation. Mixing to the chemocline occurs in both lakes during the winter dry season, primarily due to low humidity and cool night time air temperature. An additional period of variable mixing, occasionally reaching the chemocline in Lake Monoun, occurs during the summer monsoon season in response to increased frequency of major storms. The mixolimnion encompassed the upper ~40–50 m of Lake Nyos and upper ~15–20 m of Lake Monoun prior to the installation of degassing pipes in 2001 and 2003, respectively. Degassing caused chemoclines to deepen rapidly. Piping of anoxic, high-TDS bottom water to the lake surface has had a complex effect on the mixolimnion. Algal growth stimulated by increased nutrients (N and P) initially stimulated photosynthesis and raised surface water O2 in Lake Nyos, but O2 removal through oxidation of iron

  18. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  19. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    Science.gov (United States)

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon

  20. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  1. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  2. Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study

    Directory of Open Access Journals (Sweden)

    Liudmila Shirokova

    2016-07-01

    Full Text Available Small aquatic ecosystems of the boreal zone are known to be most sensitive indicators of on-going environmental change as well as local anthropogenic pressure, while being highly vulnerable to external impacts. Compared to rather detailed knowledge of the evolution of large and small lakes in Scandinavia and Canada, and large lakes in Eurasia, highly abundant small boreal lakes of northwest Russia have received very little attention, although they may become important centers of attraction of growing rural population in the near future. Here we present the results of a multidisciplinary, multi-annual study of a small boreal humic lake of NW Russia. A shallow (3 m and a deep (16 m site of this lake were regularly sampled for a range of chemical and biological parameters. Average multi-daily, summer-time values of the epilimnion (upper oxygenated layer of the lake provided indications of possible trends in temperature, nutrients, and bacterio-plankton concentration that revealed the local pollution impact in the shallow zone and overall environmental trend in the deep sampling point of the lake. Organic phosphorus, nitrate, and lead were found to be most efficient tracers of local anthropogenic pollution, especially visible in the surface layer of the shallow site of the lake. Cycling of trace elements between the epilimnion and hypolimnion is tightly linked to dissolved organic matter speciation and size fractionation due to the dominance of organic and organo-ferric colloids. The capacity of lake self-purification depends on the ratio of primary productivity to mineralization of organic matter. This ratio remained >1 both during winter and summer periods, which suggests a high potential of lake recovery from the input of allochthonous dissolved organic matter and local anthropogenic pollution.

  3. Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa

    Science.gov (United States)

    Ellis, Geoffrey S.; Barry J. Katz,; Christopher A. Scholz,; Peter K. Swart,

    2015-01-01

    This study examines the relationship between depositional environment and sedimentary organic geochemistry in Lake Malawi, East Africa, and evaluates the relative significance of the various processes that control sedimentary organic matter (OM) in lacustrine systems. Total organic carbon (TOC) concentrations in recent sediments from Lake Malawi range from 0.01 to 8.80 wt% and average 2.83 wt% for surface sediments and 2.35 wt% for shallow core sediments. Hydrogen index (HI) values as determined by Rock-Eval pyrolysis range from 0 to 756 mg HC g−1 TOC and average 205 mg HC g−1 TOC for surface sediments and 228 mg HC g−1 TOC for shallow core samples. On average, variations in primary productivity throughout the lake may account for ~33% of the TOC content in Lake Malawi sediments (as much as 1 wt% TOC), and have little or no impact on sedimentary HI values. Similarly, ~33% to 66% of the variation in TOC content in Lake Malawi sediments appears to be controlled by anoxic preservation of OM (~1–2 wt% TOC), although some component of the water depth–TOC relationship may be due to physical sediment transport processes. Furthermore, anoxic preservation has a minimal effect on HI values in Lake Malawi sediments. Dilution of OM by inorganic sediment may account for ~16% of variability in TOC content in Lake Malawi sediments (~0.5 wt% TOC). The effect of inputs of terrestrial sediment on the organic character of surface sediments in these lakes is highly variable, and appears to be more closely related to the local depositional environment than the regional flux of terrestrial OM. Total nitrogen and TOC content in surface sediments collected throughout the lake are found to be highly correlated (r2 = 0.95), indicating a well-homogenized source of OM to the lake bottom. The recurring suspension and deposition of terrestrial sediment may account for significant amounts of OM deposited in offshore regions of the lake. This process effectively separates denser

  4. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  5. Utilization of bathymetry data to examine lead sediment contamination distributions in Lake Ontario

    Directory of Open Access Journals (Sweden)

    Chris H. Marvin

    2016-06-01

    Full Text Available Bathymetry data offer interesting opportunities for the analysis of contaminant distribution patterns. This research utilized lead surficial sediment sample data from Lake Ontario that were collected by the Canada Centre for Inland Waters in 1968 and 1998. Traditionally, two-dimensional analyses such as dot maps or proportional circle representation have been utilized to examine pollutant levels. Generating area estimates allows for expanded spatial analysis of contaminant distribution patterns. Lake-wide surfaces were derived using the ordinary kriging technique. These were then layered on bathymetry data to examine three-dimensional relationships between observed pollution patterns and lake-bottom features. Spatial variability was observed in both the 1968 and 1998 datasets. Contamination levels in 1998 dropped substantially, especially in areas that were previously the most heavily polluted and above the Probable Effect Level (4660.23 km2 or 26.72% of the common analysis area lake-bottom in 1998 versus 6189.07 km2 or 62.00% in 1968. Conversely, areas below the Threshold Effect Level increased from 922.09 km2 (5.29% in 1968 to 3484.22 km2 (19.98% in 1998. In both years, shallow and sill/ridge areas tended to have lower levels of contamination than deeper lake basins or contaminant inflow areas. The 1968 dataset likely provides a more detailed estimation surface as there were more points available for interpolation procedures. The kriging surfaces when combined with bathymetry, sedimentology information, and knowledge of physical processes provide a comprehensive illustration of the contaminant distributions whether they are high (1968 or when loadings are significantly reduced (1998. The results have implications for future sediment assessment programs and survey design on a lake-wide basis. The bathymetry data allowed for enhanced interpretation and an improved understanding of observed lead pollution patterns.

  6. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.

  7. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region.

    Science.gov (United States)

    Silva, Marcio S DA; Guimarães, José T F; Souza Filho, Pedro W M; Nascimento Júnior, Wilson; Sahoo, Prafulla K; Costa, Francisco R DA; Silva Júnior, Renato O; Rodrigues, Tarcísio M; Costa, Marlene F DA

    2018-05-17

    High-resolution satellite images, digital elevation models, bathymetric and sedimentological surveys coupled with statistical analysis were used to understand the physical environment and discuss their influence on water quality of the five upland lakes of Serra Sul dos Carajás, southeast Amazonia. The lakes have mid-altitude ranges (elevation), very small (catchment) and shallow to very shallow (central basins). Based on the length, area and volume, Violão and TI (Três Irmãs)-3 lakes may present large vertical movements of the water due to wind action and weakly stratified waters. Trophic conditions based on depth and shore development (Ld) parameters must be used with caution, since Amendoim Lake is relatively deep, but it is oligotrophic to ultra-oligotrophic. Ld values suggest that the lakes are circular to subcircular and are likely formed by solution process, as also suggested by volume development. TI-2 Lake is only presenting convex central basin and has highest dynamic ratio (DR), thus it may have high sedimentation and erosion rates. Based on the relationship between studied parameters, morphometric index and DR likely influence temperature and dissolved oxygen of waters of TI-2 Lake due to its depth profile and wind-induced surface mixing. Nevertheless, water quality parameters are controlled by catchment characteristics of the lakes.

  8. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted...

  9. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  10. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted such a ...

  11. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  12. Patterns of microbial activity in the shallow bottom sediments of Lake ...

    African Journals Online (AJOL)

    FDA), was investigated in two sediment cores collected from Manzala Lake during November 2011. FDA hydrolysis positively correlated with total bacterial counts, bacterial biomass and chlorophyll a in both cores. The 10–20 cm subsurface layer ...

  13. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  14. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica - Implications for local climatic change

    Science.gov (United States)

    Wharton, Robert A., Jr.; Mckay, Christopher P.; Clow, Gary D.; Andersen, Dale T.; Simmons, George M., Jr.; Love, F. G.

    1992-01-01

    Results are reported from 10 years of ice-thickness measurements at perennially ice-covered Lake Hoare in southern Victoria Land, Antarctica. The ice cover of this lake had been thinning steadily at a rate exceeding 20 cm/yr during the last decade but seems to have recently stabilized at a thickness of 3.3 m. Data concerning lake level and degree-days above freezing are presented to show the relationship between peak summer temperatures and the volume of glacier-derived meltwater entering Lake Hoare each summer. From these latter data it is inferred that peak summer temperatures have been above 0 C for a progressively longer period of time each year since 1972. Possible explanations for the thinning of the lake ice are considered. The thickness of the ice cover is determined by the balance between freezing during the winter and ablation that occurs all year but maximizes in summer. It is suggested that the term most likely responsible for the change in the ice cover thickness at Lake Hoare is the extent of summer melting, consistent with the rising lake levels.

  15. Phytoplankton variability in Lake Fraijanes, Costa Rica, in response to local weather variation

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2014-08-01

    Full Text Available Phytoplankton species show a variety in morphology which is the result of adaptations to pelagic life including responses to fluctuations in water column dynamics driven by weather conditions. This has been reported in the oceans and in Northern temperate lakes. In order to observe whether tropical freshwater phytoplankton responds to seasonal variation in weather, the weekly variation in temperature of the water column and phytoplankton composition was studied in Lake Fraijanes, Costa Rica, a shallow (6.2m lake at 1 640m above sea level. A chain of data loggers for temperature was placed in the deepest point in the lake to register temperature every hour at four different depths, and phytoplankton samples were retrieved every week for a year. Additional monthly samples for nutrients were taken at two depths. Notwithstanding its shallowness, the lake developed a thermal gradient which kept the water column stratified for several months during dry season. Whole lake overturns occurred during cold spells with intense precipitation. Phytoplankton changed throughout the year mainly through a shift in dominant taxa. From September to February the lake was frequently mixed by rain storms and windy weather. At this time, phytoplankton was dominated by Chlorococcal green algae. From March to June, the lake was stratified and warmer. Phytoplankton became dominated by Cyanobateria, mainly colonial Chroococcales. The rainy season started again in May 2009. During June and July the lake started to mix intermittently during rain events and phytoplankton showed a brief increase in the contribution of Chlorococcales. These changes fitted well to a general model of phytoplankton succession based on functional groups identified according to their morphology and adaptations.

  16. Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, X.; Yu, Q.; You, Y.

    2014-12-01

    Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.

  17. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  18. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  19. A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2004-05-01

    A mathematical model for simulation of lake basin filling processes in areas with positive shore displacement was constructed. The model was calibrated using sediment and catchments data from eight existing lake basins situated in the northern coastal area of the province of Uppland, Sweden. The lake basin filling processes were separated into three phases: basin filling with wave-washed material (silt, silty sand or sand), filling with fine-grained material during the shallow gulf and lake stages, respectively, and filling with vegetation during the lake stage. The basin filling rates for wave-washed material were generally low but varied considerably both between and within lakes. The mean basin filling rate of wave-washed material was 4.1%. The volume of inorganic sediments produced, and basin filling rates during the shallow gulf and lake phases were determined for all the eight lakes. The relationship between basin filling rate and parameters describing the catchments, the former postglacial basins and the lakes, respectively, was determined using multiple regression analysis. The basin filling rate with inorganic sediments was best described by parameters related to former postglacial basin morphometry and current lake morphometry, e.g. basin volume, lake volume, and lake area. The goodness of fit turned out to be 0.99 for a simple regression with basin volume as the sole independent variable. The basin filling with vegetation (Phragmites australis followed by Sphagnum spp.) was treated as a 2-dimensional process. A dataset with 84 bogs was selected from a digital soil map. The ages of the bogs were calculated using a digital elevation map and an equation for shore displacement. The choke-up rate was then calculated by dividing the area of the bogs with their age. A strong exponential relationship exists between areas of the bogs and choke-up rat, and this relationship was then used in the model. The resulting model starts by filling the former coastal basin

  20. A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2004-05-01

    A mathematical model for simulation of lake basin filling processes in areas with positive shore displacement was constructed. The model was calibrated using sediment and catchments data from eight existing lake basins situated in the northern coastal area of the province of Uppland, Sweden. The lake basin filling processes were separated into three phases: basin filling with wave-washed material (silt, silty sand or sand), filling with fine-grained material during the shallow gulf and lake stages, respectively, and filling with vegetation during the lake stage. The basin filling rates for wave-washed material were generally low but varied considerably both between and within lakes. The mean basin filling rate of wave-washed material was 4.1%. The volume of inorganic sediments produced, and basin filling rates during the shallow gulf and lake phases were determined for all the eight lakes. The relationship between basin filling rate and parameters describing the catchments, the former postglacial basins and the lakes, respectively, was determined using multiple regression analysis. The basin filling rate with inorganic sediments was best described by parameters related to former postglacial basin morphometry and current lake morphometry, e.g. basin volume, lake volume, and lake area. The goodness of fit turned out to be 0.99 for a simple regression with basin volume as the sole independent variable. The basin filling with vegetation (Phragmites australis followed by Sphagnum spp.) was treated as a 2-dimensional process. A dataset with 84 bogs was selected from a digital soil map. The ages of the bogs were calculated using a digital elevation map and an equation for shore displacement. The choke-up rate was then calculated by dividing the area of the bogs with their age. A strong exponential relationship exists between areas of the bogs and choke-up rat, and this relationship was then used in the model. The resulting model starts by filling the former coastal basin

  1. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    Science.gov (United States)

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline

  2. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    Science.gov (United States)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  3. BIOGEOCHEMICAL CONTROLS ON REACTION OF SEDIMENTARY ORGANIC MATTER AND AQUEOUS SULFIDES IN HOLOCENE SEDIMENTS OF MUD LAKE FLORIDA

    Science.gov (United States)

    The distribution and quantity of organic sulfur and iron sulfur species were determined in theHolocene sediments from Mud Lake, Florida. The sediments of this shallow, sinkhole lake are characterized by high sulfur and organic carbon contents as well as active sulfate reducti...

  4. Inter-annual variations in water yield to lakes in northeastern Alberta: implications for estimating critical loads of acidity

    Directory of Open Access Journals (Sweden)

    Roderick HAZEWINKEL

    2010-08-01

    Full Text Available Stable isotopes of water were applied to estimate water yield to fifty lakes in northeastern Alberta as part of an acid sensitivity study underway since 2002 in the Athabasca Oil Sands Region (AOSR. Herein, we apply site-specific water yields for each lake to calculate critical loads of acidity using water chemistry data and a steady-state water chemistry model. The main goal of this research was to improve site-specific critical load estimates and to understand the sensitivity to hydrologic variability across a Boreal Plains region under significant oil sands development pressure. Overall, catchment water yields were found to vary significantly over the seven year monitoring period, with distinct variations among lakes and between different regions, overprinted by inter-annual climate-driven shifts. Analysis of critical load estimates based on site-specific water yields suggests that caution must be applied to establish hydrologic conditions and define extremes at specific sites in order to protect more sensitive ecosystems. In general, lakes with low (high water yield tended to be more (less acid sensitive but were typically less (more affected by interannual hydrological variations. While it has been customary to use long-term water yields to define a static critical load for lakes, we find that spatial and temporal variability in water yield may limit effectiveness of this type of assessment in areas of the Boreal Plain characterized by heterogeneous runoff and without a long-term lake-gauging network. Implications for predicting acidification risk are discussed for the AOSR.

  5. Fishing for compliments : man-made lake exceeds expectations

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2010-10-15

    This article discussed the unexpected benefits of the first man-made lake created to compensate for loss of habitat resulting from the construction of an oilsands mine. Wapan Sakahikan Lake appears to be diverting birds from a tailings pond in the vicinity, and more fish species than expected are showing up in the lake. Canadian Natural Resources Limited diverted and dammed the Tar River to make way for an oilsands mine. About 30 people were involved in the design and construction of the lake, which encompasses 80 hectares and is 19 feet deep, with shallower areas to facilitate spawning and the maturation of juvenile fish. Small islands, gravel beds, and an underwater trench for small fish to take shelter were also constructed. Special culverts help keep fish in the lake. A metre-deep layer of clay lines the lake to help prevent mercury contamination. With the aid of the spring melt, it took only three days to fill the lake. Nearby First Nations were consulted regarding the location and fish species to stock. Other oilsands companies are now creating compensation lakes, and what was learned in the creation of Wapan Sakahikan will be shared via the Regional Aquatic Monitoring Program. 1 ref., 1 fig.

  6. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    Directory of Open Access Journals (Sweden)

    A. F. Sabrekov

    2017-08-01

    Full Text Available Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July–August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m−2 h−1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m−2 h−1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  7. Simulation and Validation of Cisco Lethal Conditions in Minnesota Lakes under Past and Future Climate Scenarios Using Constant Survival Limits

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2016-07-01

    Full Text Available Fish habitat in lakes is strongly constrained by water temperature (T and available dissolved oxygen (DO that are changed under climate warming. A one dimensional, dynamic water quality model MINLAKE2012 was used for T and DO simulation over 48 years. A fish habitat model FishHabitat2013 using simulated T and DO profiles as input was developed to determine lethal conditions of cisco Corgenous artedi in Minnesota lakes. Twenty-three lakes that had observations of cisco mortality or survival in the unusually warm summer of 2006 were used for model validation. The cisco habitat model used a lethal temperature of 22.1 °C and DO survival limit of 3 mg/L determined through model validation and sensitivity analysis. Cisco lethal conditions in 12 shallow, 16 medium-depth, and 30 deep virtual lakes were then simulated. Isopleths of total number of years with cisco kill and average cisco kill days for the years with kills under past (1961–2008 and future climate were generated to understand/extrapolate climate impacts on cisco in 620 Minnesota lakes. Shallow and medium-depth lakes are projected to not be good candidates for cisco refuge lakes, but deep lakes are possible cisco refuge lakes based on lethal condition projection under future warmer climate.

  8. Phytoplankton response to fish-induced environmental changes in a temperate shallow pond-type lake

    Directory of Open Access Journals (Sweden)

    Napiórkowska-Krzebietke Agnieszka

    2017-12-01

    Full Text Available Since 1967, the temperate, shallow, pond-type Lake Warniak has been subjected to different biomanipulation methods including the introduction of common carp, Cyprinus carpio L., grass carp, Ctenopharyngodon idella (Val., silver carp, Hypophthalmichthys molitrix (Val., and bighead carp, Hypophthalmichthys nobilis (Richardson and then their removal in an effort to control macrophytes and phytoplankton. Recently, pilot stocking with predatory fish, particularly pike, Esox lucius L., has also been conducted. Hence, an examination of the long-term response patterns of phytoplankton to multiple fish-induced stressors was undertaken. In recent years, Chara domination (2000-2004 has helped to stabilize a clear-water state, high/good ecological status, and meso-eutrophic conditions. After the disappearance of Charales in 2004, the rapid, unstable changes in phytoplankton biomass, structure, and biodiversity suggested a shift toward a turbid-water state. As a result, the phytoplankton assemblages changed from those dominated by cryptophytes Y+X2+X1+LO (2000-2004 through those dominated by cyanobacteria K (2005-2008, dinoflagellates LO+Y (2009-2011, and cryptophytes Y+LO+F+X2 (2012, to those dominated by diatoms D+K+P+A (2013-2014 with representative taxa that occur in nutrient-rich and/or nutrient-poor water bodies. The 1967-2014 changes indicated that four periods, two with clear-water state and two with turbid-water state, alternately, one after the other, resulted from different fish pressure. Higher autochthonous fish biomass was usually accompanied by lower phytoplankton biomass. In contrast, the introduction of Cyprinidae fish had a stimulating effect on summer phytoplankton dominated by cyanobateria. Among the nutrients, only phosphorus played an important role.

  9. Local fish extinction in a small tropical lake in Brazil

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    Full Text Available Lagoa Santa is a shallow permanent lake, located in Belo Horizonte metropolitan region, Brazil. In this study, the loss in fish diversity of the lake over the past 150 years is evaluated. Local extinction of almost 70% of the original fish fauna is described. Probably, the main causes of this richness loss were: obstruction of natural communication with rio das Velhas, non-native species introduction, change in the water level, organic pollution, and elimination of littoral and submerged vegetation.

  10. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  11. The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake

    Directory of Open Access Journals (Sweden)

    B. M. Bontes

    2006-01-01

    Full Text Available In this study we investigated the effects of experimental biomanipulation on community structure, ecosystem metabolism, carbon biogeochemistry and stable isotope composition of a shallow eutrophic lake in the Netherlands. Three different biomanipulation treatments were applied. In two parts of the lake, isolated from the rest, fish was removed and one part was used as a reference treatment in which no biomanipulation was applied. Stable isotopes have proved useful to trace trophic interactions at higher food web levels but until now methodological limitations have restricted species specific isotope analysis in the plankton community. We applied a new approach based on the combination of fluorescence activated cell sorting (FACS and isotope ratio mass spectrometry (IRMS to trace carbon flow through the planktonic food web. With this method we aimed at obtaining group specific δ13C signatures of phytoplankton and to trace possible shifts in δ13C resulting from fish removal. Biomanipulation led to an increase in transparency and macrophyte biomass and decrease in phytoplankton abundance, but zooplankton numbers did not increase. Fish removal also resulted in high pH, high O2, low CO2 and more negative δ13CDIC values than expected, which is attributed to chemical enhanced diffusion with large negative fractionation. Despite high temporal variation we detected differences between the isotopic signatures of the primary producers and between the different treatments. The fractionation values of green algae (~21 and diatoms (~23 were similar and independent of treatment, while fractionation factors of filamentous cyanobacteria were variable between the treatments that differed in CO2 availability. 13C-labeling of the phytoplankton groups showed that biomanipulation led to increased growth rates of green algae and diatoms at the expense of cyanobacteria. Finally, consumers seemed generalists to the available food sources.

  12. The interaction of large amplitude internal seiches with a shallow sloping lakebed: observations of benthic turbulence in Lake Simcoe, Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Remo Cossu

    Full Text Available Observations of the interactions of large amplitude internal seiches with the sloping boundary of Lake Simcoe, Canada show a pronounced asymmetry between up- and downwelling. Data were obtained during a 42-day period in late summer with an ADCP and an array of four thermistor chains located in a 5 km line at the depths where the thermocline intersects the shallow slope of the lakebed. The thermocline is located at depths of 12-14 m during the strongly stratified period of late summer. During periods of strong westerly winds the thermocline is deflected as much as 8 m vertically and interacts directly with the lakebed at depth between 14-18 m. When the thermocline was rising at the boundary, the stratification resembles a turbulent bore that propagates up the sloping lakebed with a speed of 0.05-0.15 m s(-1 and a Froude number close to unity. There were strong temperature overturns associated with the abrupt changes in temperature across the bore. Based on the size of overturns in the near bed stratification, we show that the inferred turbulent diffusivity varies by up to two orders of magnitude between up- and downwellings. When the thermocline was rising, estimates of turbulent diffusivity were high with KZ ∼10(-4 m(2s(-1, whereas during downwelling events the near-bed stratification was greatly increased and the turbulence was reduced. This asymmetry is consistent with previous field observations and underlines the importance of shear-induced convection in benthic bottom boundary layers of stratified lakes.

  13. Nitrogen removal by denitrification in the sediments of a shallow lake

    NARCIS (Netherlands)

    Luijn, van F.

    1997-01-01

    Most surface waters in the Netherlands are highly eutrophicated due to high loadings with the nutrients nitrogen (N) and phosphorus (P). To improve the water quality of lakes often the phosphorus loading is reduced. Due to phosphorus release from the sediments the success of the recovery of

  14. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    Science.gov (United States)

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to

  15. Large-Scale Mapping and Predictive Modeling of Submerged Aquatic Vegetation in a Shallow Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2002-01-01

    Full Text Available A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m, and variable sediment types. Based on sampling carried out in AugustœSeptember 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat. A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  16. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.

    Science.gov (United States)

    Havens, Karl E; Harwell, Matthew C; Brady, Mark A; Sharfstein, Bruce; East, Therese L; Rodusky, Andrew J; Anson, Daniel; Maki, Ryan P

    2002-04-09

    A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV) over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS) technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m), and variable sediment types. Based on sampling carried out in August-September 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat). A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  17. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy

    Directory of Open Access Journals (Sweden)

    Claire Archer

    2016-12-01

    Full Text Available Lake Lungo and Lake Ripasottile are two shallow (4-5 m lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate composition.  Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition (δ34S=15.2 ‰ and δ18O=10‰. Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰ and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively, attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that

  18. Ice formation in subglacial Lake Vostok, Central Antarctica

    Science.gov (United States)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  19. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  20. Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Gazulha

    2011-08-01

    Full Text Available The aim of this study was to test the effects of natural free-floating plants on zooplankton distribution in a shallow subtropical lake. First, the hypothesis that free-floating plants have an effect on physico-chemicals, leading to a decrease on nutrient availability and influencing the phytoplankton biomass and zooplankton community was tested. Second, the hypothesis that free-floating plants act as a refuge for zooplankton was tested. Three microhabitats were selected: free-floating plants, littoral area and open water. Results demonstrated that the effects of different microhabitats on phytoplankton biomass and physico-chemicals were not significant, indicating a weak influence of the plants. Zooplankton densities were higher in free-floating plants and littoral area, although the effect of microhabitats was weak for most of the predominant genera. The absence of free-floating plant effects on phytoplankton and physico-chemicals showed that it was not a factor influencing the microcrustacean distribution in the microhabitats. Low differences in densities of zooplankton among microhabitats and low abundance of large-bodied cladocerans led to reject the hypothesis that free-floating plants act as a refuge for zooplankton.

  1. Year-Round Carbon Fluxes in a Subarctic Landscape Show the Importance of Lake Emissions According to Season

    Science.gov (United States)

    Jammet, M.; Crill, P. M.; Friborg, T.

    2014-12-01

    Lakes are increasingly recognized as important components of the global terrestrial carbon budget. Northern lakes are especially of interest due to a high density of open-water ecosystems in Northern latitudes and a potential increase in lake areal extent where permafrost is thawing. A better understanding of lake-atmosphere interactions requires long-term and direct measurement of surface fluxes. This is rarely achieved in Northern landscapes where seasonally ice-covered lakes are mostly studied during the open water season, and measurement methods do not always allow an integration of all gas transport pathways to the atmosphere. We present here ecosystem-scale data from Stordalen (68°20'N, 19°03'E), a thawing permafrost peatland in subarctic Sweden, where an eddy covariance system is used in an innovative way to quantify the importance of methane (CH4) emissions from a shallow lake. After more than a year of surface flux monitoring, it is found that spring is a crucial season for lake-atmosphere CH4 exchange. Despite its shallow depth, more than half of annual CH4 emissions from the lake were recorded at ice-out, suggesting significant winter CH4 production in lake sediments. Lake water dynamics seemed to drive the observed spring release rates. In contrast, summer methane emissions in Stordalen were dominated by the minerotrophic fens. This underlines the importance of considering the full annual budget when assessing the carbon source strength of seasonally ice-covered lakes. Carbon dioxide fluxes were also monitored and will be briefly discussed, as well as the significance of northern lakes spring burst for global atmospheric CH4 budget.

  2. If Arctic charr Salvelinus alpinus is “the most diverse vertebrate,” what is the lake charr Salvelinus namaycush?

    Science.gov (United States)

    Muir, Andrew M.; Hansen, Michael J.; Bronte, Charles R.; Krueger, Charles C.

    2016-01-01

    Teleost fishes are prominent vertebrate models of evolution, illustrated among old-world radiations by the Cichlidae of East African Great Lakes and new-world radiations by the circumpolar Arctic charr Salvelinus alpinus. Herein, we describe variation in lake charr S. namaycush morphology, life history, physiology, and ecology, as another example of radiation. The lake charr is restricted to northern North America, where it originated from glacial refugia and diversified in large lakes. Shallow and deepwater morphs arose in multiple lakes, with a large-bodied shallow-water ‘lean’ morph in shallow inshore depths, a small-bodied mid-water ‘humper’ morph on offshore shoals or banks, and a large-bodied deep-water ‘siscowet’ morph at depths > 100 m. Eye position, gape size, and gillraker length and spacing adapted for feeding on different-sized prey, with piscivorous morphs (leans and siscowets) reaching larger asymptotic size than invertivorous morphs (humpers). Lean morphs are light in color, whereas deepwater morphs are drab and dark, although the pattern is reversed in dark tannic lakes. Morphs shift from benthic to pelagic feeding at a length of 400–490-mm. Phenotypic differences in locomotion, buoyancy, and lipid metabolism evolved into different mechanisms for buoyancy regulation, with lean morphs relying on hydrodynamic lift and siscowet morphs relying on hydrostatic lift. We suggest that the Salvelinus genus, rather than the species S. alpinus, is a diverse genus that should be the subject of comparative studies of processes causing divergence and adaptation among member species that may lead to a more complete evolutionary conceptual model.

  3. Invasive crayfish threaten the development of submerged macrophytes in lake restoration.

    Science.gov (United States)

    van der Wal, Jessica E M; Dorenbosch, Martijn; Immers, Anne K; Vidal Forteza, Constanza; Geurts, Jeroen J M; Peeters, Edwin T H M; Koese, Bram; Bakker, Elisabeth S

    2013-01-01

    Submerged macrophytes enhance water transparency and aquatic biodiversity in shallow water ecosystems. Therefore, the return of submerged macrophytes is the target of many lake restoration projects. However, at present, north-western European aquatic ecosystems are increasingly invaded by omnivorous exotic crayfish. We hypothesize that invasive crayfish pose a novel constraint on the regeneration of submerged macrophytes in restored lakes and may jeopardize restoration efforts. We experimentally investigated whether the invasive crayfish (Procambarus clarkii Girard) affects submerged macrophyte development in a Dutch peat lake where these crayfish are expanding rapidly. Seemingly favourable abiotic conditions for macrophyte growth existed in two 0.5 ha lake enclosures, which provided shelter and reduced turbidity, and in one lake enclosure iron was added to reduce internal nutrient loading, but macrophytes did not emerge. We transplanted three submerged macrophyte species in a full factorial exclosure experiment, where we separated the effect of crayfish from large vertebrates using different mesh sizes combined with a caging treatment stocked with crayfish only. The three transplanted macrophytes grew rapidly when protected from grazing in both lake enclosures, demonstrating that abiotic conditions for growth were suitable. Crayfish strongly reduced biomass and survival of all three macrophyte species while waterfowl and fish had no additive effects. Gut contents showed that crayfish were mostly carnivorous, but also consumed macrophytes. We show that P. clarkii strongly inhibit macrophyte development once favourable abiotic conditions for macrophyte growth are restored. Therefore, expansion of invasive crayfish poses a novel threat to the restoration of shallow water bodies in north-western Europe. Prevention of introduction and spread of crayfish is urgent, as management of invasive crayfish populations is very difficult.

  4. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  5. Assessment of multi-trophic changes in a shallow boreal lake simultaneously exposed to climate change and aerial deposition of contaminants from the Athabasca Oil Sands Region, Canada.

    Science.gov (United States)

    Summers, Jamie C; Kurek, Joshua; Rühland, Kathleen M; Neville, Erin E; Smol, John P

    2017-08-15

    The Athabasca Oil Sands Region (AOSR) has been intensely developed for industrial bitumen extraction and upgrading since the 1980s. A paucity of environmental monitoring prior to development raises questions about baseline conditions in freshwater systems in the region and ecological responses to industrial activities. Further, climatic changes prompt questions about the relative roles of climate and industry in shaping aquatic ecosystems through time. We use aquatic bioindicators from multiple trophic levels, concentrations of petrogenic contaminants (dibenzothiophenes), and spectrally-inferred chlorophyll-a preserved in well-dated sediments of a closed-basin, shallow lake ~50km away from the main area of industry, in conjunction with climate observations, to assess how the biotic assemblages of a typical AOSR lake have changed during the past ~75years. We examine the contributions of the area's stressors in structuring aquatic communities. Increases in sedimentary measures of petrogenic contaminants provide clear evidence of aerial contaminant deposition from local industry since its establishment, while climate records demonstrate consistent warming and a recent period of reduced precipitation. Quantitative comparisons of biological assemblages from before and after the establishment of regional industry find significant (pshallow systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain as function of environmental variables

    Directory of Open Access Journals (Sweden)

    Conde-Álvarez, Rafael M.

    2012-06-01

    Full Text Available Aquatic macrophyte biomass, diaspore bank distribution and their relationship to spatial variability of depth, nutrients (nitrite, nitrate, ammonium and soluble reactive phosphorus as well as sediment granulometry in an athalassohaline lake have been studied during one wet hydrological year. The results indicate that species growing in the lake show different spatial distribution patterns throughout the lake. Indirect gradient analysis (canonical analysis results showed a first axis defined as a function of Ulva flexuosa Wulfen biomass which is, in turn, positively correlated with interstitial ammonium and Soluble Reactive Phosphorus (SRP. The second axis was mainly established due to Lamprothamnium papulosum (Wallr. J. Groves biomass which correlated positively to depth and negatively to interstitial ammonium and SRP. These results revealed a NESW eutrophic gradient allowing the U. Flexuosa biomass proliferation. This phenomenon could increase the shadow effect over the rest of the macrophytes inhabiting this shallow lake. Moreover, the eutrophic harmful effect on the macrophyte physiology and over the diaspore bank could have important consequences in the survival of such important populations. The results reported in this study show the need for studies as the base to select sampling points for monitoring this wetland.

    La distribución de la biomasa de los macrófitos acuáticos y de su banco de semillas y oogonios ha sido investigada en relación a la profundidad, los nutrientes (nitrito, nitrato, amonio y fósforo soluble reactivo y la granulometría del sedimento durante un año hidrológico húmedo. Los resultados muestran patrones de distribución diferentes en las distintas especies. Los resultados del análisis canónico basado en análisis de gradiente indirecto muestran un primer eje definido en función de la biomasa de U. Flexuosa, Wulfen que, a su vez, está positivamente correlacionada con el

  7. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes - evidence from contemporary data and sediments

    DEFF Research Database (Denmark)

    Amsinck, S.L.; Strzelczak, A.; Bjerring, R.

    2006-01-01

    development was inferred by cladoceran-based paleolimnological investigations of a 14C-dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small-sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher...... depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication....

  8. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  9. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  10. The luminescence dating chronology of a deep core from Bosten Lake (NW China) in arid central Asia reveals lake evolution over the last 220 ka

    DEFF Research Database (Denmark)

    Li, Guoqiang; Duan, Yanwu; Huang, Xiaozhong

    2016-01-01

    The lacustrine deposits of lakes in arid central Asia (ACA) potentially record palaeoclimatic changes on orbital and suborbital time scales, but such changes are still poorly understood due to the lack of reliable chronologies. Bosten Lake, the largest freshwater inland lake in China, is located...... in the southern Tianshan Mountains in central ACA. A 51.6-m-deep lacustrine succession was retrieved from the lake and 30 samples from the succession were used for luminescence dating to establish a chronology based on multi-grain quartz OSL and K-feldspar post-IR IRSL (pIRIR290) dating. Quartz OSL ages were only....... A stable deep lake occurred at c. 220, 210–180, c. 165, 70–60, 40–30 and 20–5 ka, while shallow levels occurred at c. 215, 180–165, 100–70, 60–40 and 30–20 ka. Bosten Lake levels decreased by at least ~29 m and possibly the lake even dried up between c. 160 and c. 100 ka. We suggest that the water...

  11. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage

    International Nuclear Information System (INIS)

    Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.

    2006-01-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, originates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO 4 is in the lower portion of the water column, with concentrations up to 8500 mg L -1 Fe, 20,000 mg L -1 SO 4 , 30 mg L -1 Zn, 100 mg L -1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes

  12. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid heat

  13. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management

    DEFF Research Database (Denmark)

    Trolle, Dennis; Hamilton, David P.; Pilditch, Conrad A.

    2011-01-01

    To quantify the effects of a future climate on three morphologically different lakes that varied in trophic status from oligo-mesotrophic to highly eutrophic, we applied the one-dimensional lake ecosystem model DYRESM-CAEDYM to oligo-mesotrophic Lake Okareka, eutrophic Lake Rotoehu, both in the t....... Therefore, future climate effects should be taken into account in the long-term planning and implementation of lake management as strategies may need to be refined and adapted to preserve or improve the present-day lake water quality....

  14. [Composition and Environmental Effects of LFOM and HFOM in "Incense-Ash" Sediments of West Lake, Hangzhou, China].

    Science.gov (United States)

    Li, Jing; Zhu, Guang-wei; Zhu, Meng-yuan; Gong, Zhi-jun; Xu, Hai; Yang, Gui-jun

    2015-06-01

    To understand the organic matter pollution characteristic and its relationship with nitrogen, phosphorus and other nutrients in sediments of high organic matter type of urban shallow lakes, the organic matter content, light fraction organic matter (LFOM), heavy fraction organic matter (HFOM), and nitrogen and phosphorus contents were investigated in eight different regions of West Lake, Hangzhou. The results showed that, the organic matter content of the west lake sediment was 28-251 g x kg(-1), belonging to typical high organic matter sediment. The difference of organic matter content in different lake sediments was very big. The sediments located at the input site of water diversion engineering had significantly lower organic content than the rest regions. The LFOM content of West Lake sediment ranged 0.57-9.17 g x kg(-1), which averagely occupied 2.83% of the total organic matter, and the HFOM content ranged 5.35-347.41 g x kg(-1), which occupied more than 90% of the total organic matter. Compared to other shallow lakes located in China, sediments of West Lake had significantly high percentage of HFOM/LFOM ratio. But the HFOM content was obviously on the high side, reflecting the west lake as an urban lake with a long history, as well as high organic matter pollution load and sediment humification degree. Both the content and the ratio of LFOM/HFOM in sediment were related to nitrogen and phosphorus contents in sediment. This suggested that the composition of organic matter in West Lake sediments had potential control ability for the internal loading of N and P of the lake.

  15. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wissemann, Chris [Freshwater Wind I, LLC, Youngstown, OH (United States); White, Stanley M [Stanley White Engineering LLC, Noank, CT (United States)

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project; Developed a cost model and “baseline” LCOE; Documented Site Conditions within Lake Erie; Developed Fabrication, Installation and Foundations Innovative Concept Designs; Evaluated LCOE Impact of Innovations; Developed Assembly line “Rail System” for GBF Construction and Staging; Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System; Developed GBF with “Penetration Skirt”; Developed Integrated GBF with Turbine Tower; Developed Turbine, Plant Layout and O&M Strategies. The

  16. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans-Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  17. Toxic cyanobacteria in the lakes located in R- lga (the capital of ...

    African Journals Online (AJOL)

    the capital of Latvia) were investigated between 1998 and 2004. These lakes are shallow eutrophic water bodies with a high surface to depth ratio and are widely used for recreational and fishing activities. Intense cyanobacterial blooms were ...

  18. Geochronology and paleoenvironment of pluvial Harper Lake, Mojave Desert, California, USA

    Science.gov (United States)

    Garcia, Anna L.; Knott, Jeffrey R.; Mahan, Shannon; Bright, Jordan

    2014-01-01

    Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.

  19. An ecohydrological-based management of Lake Beratan in Bedugul, Bali

    Science.gov (United States)

    Atmaja, D. M.; Budiastuti, M. S.; Setyono, P.; Sunarto

    2018-04-01

    Lake Beratan is one of waterway ecosystems located in the upper land of Bedugul, Bali and has become a tourist object which is visited by many foreign as well as domestic tourists. This is supported by a sufficiently high economic growth which, without the community’s being aware of, has caused environmental problems such as the shallowing of the lake, erosion, and water pollution to such an extent that have resulted in the degradation of the function of the lake as the site of catchment. The degradation of the function of the lake can be overcome by ecohydrological-based management. This study was aimed at developing an integrated and long lasting Lake Beratan environment management concept. The study used a descriptive qualitative approach using a survey, by collecting primary and secondary data. On the basis of those data the mapping of the potentials of the lake and problems of the lake which were then integrated to formulate criteria for sustainable use of Lake Beratan waters environment resources. The determination of zonation of the lake was done based on those criteria and the community’s existence consideration as well as the exising system of the lake waterway environment use. Based on the study in the field, some recommendations could be made concerning Lake Beratan waterway sustainable and integrated management.

  20. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  1. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    Science.gov (United States)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  2. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    Science.gov (United States)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  3. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  4. AIRBORNE LASER BATHYMETRY FOR DOCUMENTATION OF SUBMERGED ARCHAEOLOGICAL SITES IN SHALLOW WATER

    Directory of Open Access Journals (Sweden)

    M. Doneus

    2015-04-01

    Full Text Available Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.

  5. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    CSIR Research Space (South Africa)

    Majozi, NP

    2014-05-01

    Full Text Available radiometric and limnological data collection was undertaken at Lake Naivasha. Atmospheric correction was done on the MERIS images using MERIS Neural Network algorithms, Case 2 Waters (C2R) and Eutrophic Lakes processors and the bright pixel atmospheric...

  6. H-O isotopic and chemical characteristics of a precipitation-lake water-groundwater system in a desert area

    Science.gov (United States)

    Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng

    2018-04-01

    The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.

  7. Role of a productive lake in carbon sequestration within a calcareous catchment.

    Science.gov (United States)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    Science.gov (United States)

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  9. The Ecology of Shallow Lakes - Trophic Interactions in the Pelagial

    DEFF Research Database (Denmark)

    Jeppesen, E.

    publications. The thesis was in June 1998 approved by The Faculty of Natural Sciences at the University of Copenhagen for defence for the doctor´s degree in Natural Sciences (D.sc). This thesis describes how biological interactions in the pelagial of lakes change across both nutrients and depth gradients......The defence took place on December 11, 1998 at The Freshwater Centre, Silkeborg, Denmark. Officiel opponents was Prof. Jürgen Benndorf, University of Technology, Dresden,Germany and Prof. Dag Hessen, University of Oslo, Norway . The defence was led by Lektor Leif Lau Jeppesen, Zoological Institute...

  10. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    Hugo, Minnesota. Water-quality analyses of pore water from nearshore lake-sediment and well-water samples, seepage-meter measurements, and hydraulic-head differences measured in White Bear Lake also indicated groundwater was potentially flowing into White Bear Lake from shallow glacial aquifers to the east and south. Negative temperature anomalies determined in shallow waters in the water-quality survey conducted in White Bear Lake indicated several shallow-water areas where groundwater may be flowing into the lake from glacial aquifers below the lake. Cool lake-sediment temperatures (less than 18 degrees Celsius) were measured in eight areas along the northeast, east, south, and southwest shores of White Bear Lake, indicating potential areas where groundwater may flow into the lake. Stable isotope analyses of well-water, precipitation, and lake-water samples indicated wells downgradient from White Bear Lake screened in the glacial buried aquifer or open to the Prairie du Chien-Jordan aquifer receive a mixture of surface water and groundwater; the largest surface-water contributions are in wells closer to White Bear Lake. A wide range in oxygen-18/oxygen-16 and deuterium/protium ratios was measured in well-water samples, indicating different sources of water are supplying water to the wells. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot close to the meteoric water line consisted mostly of groundwater because deuterium/protium ratios for most groundwater usually are similar to ratios for rainwater and snow, plotting close to meteoric water lines. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot between the meteoric water line and ratios for the surface-water samples from White Bear Lake consists of a mixture of surface water and groundwater; the percentage of each source varies relative to its ratios. White Bear Lake is the likely source of the surface water to the wells that have a mixture of surface water and

  11. Liver histological changes and lipid peroxidation in the amphibian Ambystoma mexicanum induced by sediment elutriates from the Lake Xochimilco.

    Science.gov (United States)

    Ortiz-Ordoñez, Esperanza; López-López, Eugenia; Sedeño-Díaz, Jacinto Elías; Uría, Esther; Morales, Ignacio Andrés; Pérez, María Estela; Shibayama, Mineko

    2016-08-01

    Lacustrine sediments accumulate pollutants that input from the lake watershed and can be released to the water column by sediment resuspension; thus, pollutants can change their bioavailability and exert adverse effects to aquatic biota. Shallow-urban lakes are particularly susceptible to receive pollutants from urban discharges and sediment resuspension. Lake Xochimilco, in Mexico City, an urban-shallow lake, faces multiple problems: urban sprawl, overexploitation of aquifers, drying of springs, discharge of wastewater from treatment plants, and sediment resuspension. The aquatic biota living in this ecosystem is continuously exposed to the release of pollutants from the sediments. We assessed the risk that pollutants released from sediments from Lake Xochimilco, Touristic (TZ) and Agriculture zone (AZ), can exert on a native amphibian species of the lake (Ambystoma mexicanum) through exposure bioassays to sediment elutriates. We evaluate alterations in the amphibian by three approaches: biochemical (level of lipid peroxidation, LPO), cellular (ultrastructure) and the liver histology of A. mexicanum and we compare them with a batch control. Additionally, we assessed heavy metals (Pb, Cd and Hg) in elutriates. Elutriates from TZ showed the highest concentrations of the metals assessed. Organisms exposed to sediment elutriates from either study sites showed higher LPO values than control organisms (pXochimilco. Copyright © 2016. Published by Elsevier B.V.

  12. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  13. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery.

    Science.gov (United States)

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.

  14. Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the ‘Small’ Lake Chad

    Science.gov (United States)

    Leblanc, M.; Lemoalle, J.; Bader, J.-C.; Tweed, S.; Mofor, L.

    2011-06-01

    SummaryLake Chad at the border of the Sahara desert in central Africa, is well known for its high sensitivity to hydroclimatic events. Gaps in in situ data have so far prevented a full assessment of the response of Lake Chad to the ongoing prolonged drought that started in the second half of the 20th century. Like many other wetlands and shallow lakes, the 'Small' Lake Chad includes large areas of water under aquatic vegetation which needs to be accounted for to obtain the total inundated area. In this paper, a methodology is proposed that uses Meteosat thermal maximum composite data (Tmax) to account for water covered by aquatic vegetation and provide a consistent monthly time series of total inundated area estimates for Lake Chad. Total inundation patterns in Lake Chad were reconstructed for a 15-yr period (1986-2001) which includes the peak of the drought (86-91) and therefore provides new observations on the hydrological functioning of the 'Small' Lake Chad. During the study period, Lake Chad remained below 16,400 km 2 (third quartile ˜8800 km 2). The variability of the inundated area observed in the northern pool (standard deviation σnorthern pool = 1980 km 2) is about 60% greater than that of the southern pool ( σsouthern pool = 1250 km 2). The same methodology could be applied to other large wetlands and shallow lakes in semi-arid or arid regions elsewehere using Meteosat (e.g. Niger Inland Delta, Sudd in Sudan, Okavango Delta) and other weather satellites (e.g., floodplains of the Lake Eyre Basin in Australia and Andean Altiplano Lakes in South America).

  15. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  16. Eutrophication of Lake Waters in China: Cost, Causes, and Control

    Science.gov (United States)

    Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B.

    2010-04-01

    Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.

  17. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  18. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  19. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006

    Science.gov (United States)

    Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.

    2008-01-01

    The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of

  20. Numerical simulation of impurity transport in Lake Baikal during the summer period

    Science.gov (United States)

    Tsydenov, Bair O.

    2017-11-01

    The distributions of impurities obtained as a result of numerical modeling on the Srednyaya arm (Selenga River mouth)- Cape Golyi cross-section of Lake Baikal, Siberia, Russia, are presented. The data on the air temperature, relative humidity, atmospheric pressure, humidity, and cloudiness from the Babushkin meteorological station from 01.06.2016 to 30.06.2016 are used as the weather condition in the mathematical model. The results of simulation have shown that the impurities dissolved in water reach the bottom of the Selenga shallow basin of Lake Baikal. As the heat accumulation increases and the river waters warm up, the maximum concentrations of suspended substances tend to remain in the upper layers of the lake.

  1. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    Science.gov (United States)

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  2. Making eco logic and models work : An integrative approach to lake ecosystem modelling

    NARCIS (Netherlands)

    Kuiper, Jan Jurjen

    2016-01-01

    Dynamical ecosystem models are important tools that can help ecologists understand complex systems, and turn understanding into predictions of how these systems respond to external changes. This thesis revolves around PCLake, an integrated ecosystem model of shallow lakes that is used by both

  3. Lake Victoria wetlands and the ecology of the Nile tilapia, Oreochromis niloticus Linne

    NARCIS (Netherlands)

    Balirwa, J.S.

    1998-01-01

    An ecological study of wetlands was undertaken in northern Lake Victoria (East Africa) between 1993 and 1996 with a major aim of characterising shallow vegetation-dominated interface habitats, and evaluating their importance for fish, in particular, for the stocked and socio-economically

  4. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation

    Science.gov (United States)

    Templin, Tomasz; Popielarczyk, Dariusz; Kosecki, Rafał

    2017-10-01

    One of the most important factors that influences the performance of geomorphologic parameters on urban lakes is the water level. It fluctuates periodically, causing shoreline changes. It is especially significant for typical environmental studies like bathymetric surveys, morphometric parameters calculation, sediment depth changes, thermal structure, water quality monitoring, etc. In most reservoirs, it can be obtained from digitized historical maps or plans or directly measured using the instruments such as: geodetic total station, GNSS receivers, UAV with different sensors, satellite and aerial photos, terrestrial and airborne light detection and ranging, or others. Today one of the most popular measuring platforms, increasingly applied in many applications is UAV. Unmanned aerial system can be a cheap, easy to use, on-demand technology for gathering remote sensing data. Our study presents a reliable methodology for shallow lake shoreline investigation with the use of a low-cost fixed-wing UAV system. The research was implemented on a small, eutrophic urban inland reservoir located in the northern part of Poland—Lake Suskie. The geodetic TS, and RTK/GNSS measurements, hydroacoustic soundings and experimental aerial mapping were conducted by the authors in 2012-2015. The article specifically describes the UAV system used for experimental measurements, the obtained results and the accuracy analysis. Final conclusions demonstrate that even a low-cost fixed-wing UAV can provide an excellent tool for accurately surveying a shallow lake shoreline and generate valuable geoinformation data collected definitely faster than when traditional geodetic methods are employed.

  5. Use of Landsat data to predict the trophic state of Minnesota lakes

    Science.gov (United States)

    Lillesand, T. M.; Johnson, W. L.; Deuell, R. L.; Lindstrom, O. M.; Meisner, D. E.

    1983-01-01

    Near-concurrent Landsat Multispectral Scanner (MSS) and ground data were obtained for 60 lakes distributed in two Landsat scene areas. The ground data included measurement of secchi disk depth, chlorophyll-a, total phosphorous, turbidity, color, and total nitrogen, as well as Carlson Trophic State Index (TSI) values derived from the first three parameters. The Landsat data best correlated with the TSI values. Prediction models were developed to classify some 100 'test' lakes appearing in the two analysis scenes on the basis of TSI estimates. Clouds, wind, poor image data, small lake size, and shallow lake depth caused some problems in lake TSI prediction. Overall, however, the Landsat-predicted TSI estimates were judged to be very reliable for the secchi-derived TSI estimation, moderately reliable for prediction of the chlorophyll-a TSI, and unreliable for the phosphorous value. Numerous Landsat data extraction procedures were compared, and the success of the Landsat TSI prediction models was a strong function of the procedure employed.

  6. A short-term look at potential changes in Lake Michigan slimy sculpin diets

    Science.gov (United States)

    French, John R. P.; Stickel, Richard G.; Stockdale, Beth A.; Black, M. Glen

    2010-01-01

    Diporeia hoyi and Mysis relicta are the most important prey items of slimy sculpins (Cottus cognatus) in the Great Lakes. Slimy sculpins were collected from dreissenid-infested bottoms off seven Lake Michigan ports at depths of 27–73 m in fall 2003 to study their lake-wide diets. Relatively large dreissenid biomass occurred at depths of 37- and 46-m. Quagga mussels (Dreissena bugnesis) composed at least 50% of dreissenid biomass at Manistique, Saugatuck, and Sturgeon Bay. Mysis accounted for 82% of the sculpin diet by dry weight at eastern Lake Michigan while Diporeia composed 54–69% of the diet at western Lake Michigan and dominated the diets of slimy sculpins at all sites deeper than 46 m. In northern Lake Michigan, this diet study in new sites showed that slimy sculpin consumed more prey with low energy contents, especially chironomids, than Mysis and Diporeia in shallow sites (depth diet studies on sedentary benthic fishes to be conducted along perimeters of the Great Lakes to observe changes in their diets that may be impacted by changing benthic macroinvertebrate communities.

  7. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhangdong [Chinese Academy of Sciences (CAS), Beijing (China); National Cheng Kung Univ., Tainan City (Taiwan); You, Chen-Feng [National Cheng Kung Univ., Tainan City (Taiwan); Wang, Yi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Yuewei [Bureau of Hydrology and Water Resources of Qinghai Province, Xining (China)

    2009-12-04

    Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca 2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 ± 0.5%). Wet atmospheric deposition contributes annually 7.4–44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl-, Mg 2+ , and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca 2+ into the bottom sediments of the lake, resulting in very low Ca 2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

  8. Contrasting the genetic patterns of microbial communities in Soda lakes with and without cyanobacterial bloom

    OpenAIRE

    Andreote, A. P. D.; Dini-Andreote, F.; Rigonato, J.; Machineski, G. S.; Souza, B. C. E.; Barbiéro, Laurent; Rezende, A. T.; Fiore, M. F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved...

  9. Confirmation of cisco spawning in Chaumont Bay, Lake Ontario using an egg pumping device

    Science.gov (United States)

    George, Ellen M.; Stott, Wendylee; Young, Brian; Karboski, Curtis T.; Crabtree, Darran L.; Roseman, Edward; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi, a historically abundant and commercially important fish in the Great Lakes, have declined drastically in the last century due to the impacts of invasive species, overfishing, and habitat degradation. Chaumont Bay, New York is believed to contain one of the last remaining spawning populations of cisco in Lake Ontario although direct evidence of spawning has remained elusive. We document cisco spawning in Chaumont Bay for the first time in decades through the use of an egg pumping device specifically developed to sample through lake ice. Forty-one eggs were identified as cisco using genetic barcoding of the mitochondrial cytochrome c oxidase I (COI) gene. Cisco eggs were associated with shallow, rocky shoals. Contemporary knowledge of spawning behavior is an important step toward the successful restoration of cisco in Lake Ontario and across the Great Lakes.

  10. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  11. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study

    NARCIS (Netherlands)

    Ibelings, B.W.; Portielje, R.; Lammens, E.H.R.R.; Meijer, M.L.; Noordhuis, R.; van den Berg, Marcel S.; Joosse, W.; Scheffer, M.

    2007-01-01

    In this paper we analyze a long-term dataset on the recovery from eutrophication of Lake Veluwe (The Netherlands). Clear hysteresis was observed in a number of ecosystem variables: the route to recovery differed significantly from the route that led to loss of clear water. The macrophyte dominated

  12. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  13. Bacterial and Archaeal Community Dynamics at CO2-RICH Shallow-Sea Hydrothermal Vents (panarea, Italy)

    Science.gov (United States)

    Schubotz, F.; Huang, C.; Meyerdierks, A.; Amend, J.; Price, R. E.; Amann, R.; Hinrichs, K.; Summons, R. E.

    2013-12-01

    Shallow marine hydrothermal vents are highly dynamic systems with unique habitats that can support both chemosynthetic and photosynthetic communities at steep temperature and geochemical gradients. Here, we present a combined organic geochemical and microbiological approach to describe the microbial community composition and their metabolism at the CO2-rich shallow hydrothermal vents off Panarea Island, in Sicily. We investigated two contrasting hydrothermal environments: Hot Lake, a depression filled with hydrothermal fluids diffusing gradually out of the seafloor, with temperatures ranging from 40 to 70°C, and Blackpoint, a site with vigorous venting of hydrothermal gasses and fluids with temperatures as high as 135°C. At Hot Lake, Bacteria dominate the microbial community composition in the sediments. 16S rRNA clone libraries revealed Bacteriodetes-, Epsilonproteobacteria- and Deltaproteobacteria-related sequences as the most abundant members. Bacterial intact polar membrane lipids (IPLs) were dominated by the non-phosphorous containing ornithine lipids throughout all depths, indicating an important role of this aminolipid at elevated temperatures and/or low pH. At Hot Lake, archaeal IPLs were comprised mainly of glycosidic tetraethers and increased up to 20% of total IPLs with increasing temperature and depth. At the same site, archaeal 16S rRNA clone libraries were mainly comprised of Euryarchaea-affiliated sequences; crenarchaeotal sequences were only found in deeper sediment layers with temperatures of ca. 70°C. In contrast to Hot Lake, Archaea dominated sediments at the much hotter site at Blackpoint. Here, novel methylated H-shaped archaeal tetraethers, with multiple sugars as head groups, were the most abundant membrane lipids. Reports on these lipids in cultures are very limited, but their abundant occurrence at elevated temperatures suggests an important role in membrane homeostastis in thermophilic Archaea. Stable carbon isotope values of -35‰ to

  14. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates

    Science.gov (United States)

    Berkman, P.A.; Garton, D.W.; Haltuch, M.A.; Kennedy, G.W.; Febo, L.R.

    2000-01-01

    Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20 m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75-100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size-frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.

  15. The Influence of Sampling Density on Bayesian Age-Depth Models and Paleoclimatic Reconstructions - Lessons Learned from Lake Titicaca - Bolivia/Peru

    Science.gov (United States)

    Salenbien, W.; Baker, P. A.; Fritz, S. C.; Guedron, S.

    2014-12-01

    Lake Titicaca is one of the most important archives of paleoclimate in tropical South America, and prior studies have elucidated patterns of climate variation at varied temporal scales over the past 0.5 Ma. Yet, slow sediment accumulation rates in the main deeper basin of the lake have precluded analysis of the lake's most recent history at high resolution. To obtain a paleoclimate record of the last few millennia at multi-decadal resolution, we obtained five short cores, ranging from 139 to 181 cm in length, from the shallower Wiñaymarka sub-basin of of Lake Titicaca, where sedimentation rates are higher than in the lake's main basin. Selected cores have been analyzed for their geochemical signature by scanning XRF, diatom stratigraphy, sedimentology, and for 14C age dating. A total of 72 samples were 14C-dated using a Gas Ion Source automated high-throughput method for carbonate samples (mainly Littoridina sp. and Taphius montanus gastropod shells) at NOSAMS (Woods Hole Oceanographic Institute) with an analytical precision higher than 2%. The method has lower analytical precision compared with traditional AMS radiocarbon dating, but the lower cost enables analysis of a larger number of samples, and the error associated with the lower precision is relatively small for younger samples (< ~8,000 years). A 172-cm-long core was divided into centimeter long sections, and 47 14C dates were obtained from 1-cm intervals, averaging one date every 3-4 cm. The other cores were radiocarbon dated with a sparser sampling density that focused on visual unconformities and shell beds. The high-resolution radiocarbon analysis reveals complex sedimentation patterns in visually continuous sections, with abundant indicators of bioturbated or reworked sediments and periods of very rapid sediment accumulation. These features are not evident in the sparser sampling strategy but have significant implications for reconstructing past lake level and paleoclimatic history.

  16. The 2014 Lake Askja rockslide tsunami - optimization of landslide parameters comparing numerical simulations with observed run-up

    Science.gov (United States)

    Sif Gylfadóttir, Sigríður; Kim, Jihwan; Kristinn Helgason, Jón; Brynjólfsson, Sveinn; Höskuldsson, Ármann; Jóhannesson, Tómas; Bonnevie Harbitz, Carl; Løvholt, Finn

    2016-04-01

    The Askja central volcano is located in the Northern Volcanic Zone of Iceland. Within the main caldera an inner caldera was formed in an eruption in 1875 and over the next 40 years it gradually subsided and filled up with water, forming Lake Askja. A large rockslide was released from the Southeast margin of the inner caldera into Lake Askja on 21 July 2014. The release zone was located from 150 m to 350 m above the water level and measured 800 m across. The volume of the rockslide is estimated to have been 15-30 million m3, of which 10.5 million m3 was deposited in the lake, raising the water level by almost a meter. The rockslide caused a large tsunami that traveled across the lake, and inundated the shores around the entire lake after 1-2 minutes. The vertical run-up varied typically between 10-40 m, but in some locations close to the impact area it ranged up to 70 m. Lake Askja is a popular destination visited by tens of thousands of tourists every year but as luck would have it, the event occurred near midnight when no one was in the area. Field surveys conducted in the months following the event resulted in an extensive dataset. The dataset contains e.g. maximum inundation, high-resolution digital elevation model of the entire inner caldera, as well as a high resolution bathymetry of the lake displaying the landslide deposits. Using these data, a numerical model of the Lake Askja landslide and tsunami was developed using GeoClaw, a software package for numerical analysis of geophysical flow problems. Both the shallow water version and an extension of GeoClaw that includes dispersion, was employed to simulate the wave generation, propagation, and run-up due to the rockslide plunging into the lake. The rockslide was modeled as a block that was allowed to stretch during run-out after entering the lake. An optimization approach was adopted to constrain the landslide parameters through inverse modeling by comparing the calculated inundation with the observed run

  17. The influence of climate change to European Lakes, with a special emphasis in the Balkan Region

    International Nuclear Information System (INIS)

    Kuusisto, Esko

    2004-01-01

    There are almost one and half million lakes in Europe, if small water bodies with an area down to 0.001 km 2 are included. The total area of lakes is over 200.000 km 2 , in addition the man-made reservoirs cover almost 100.000 km 2 . The largest lakes are located in the zone extending from southwestern Sweden through Finland to Russia, but there are many important lakes also in central and southern Europe. The Balkan countries have altogether about ten thousand lakes with a total area of over 4000 km 2 and total volume of almost loo km 3 . Over half of the total volume is in Lake Ohrid, which ranks the seventh in Europe both as to the volume and as to the maximum depth. However, there are around thirty lakes in Europe with their surface area larger than that of Lake Ohrid. In addition to the lakes, the Balkan countries also have thousands of reservoirs with a total water storage capacity of over 50 km 3 . The response of European lakes to climate change can be discussed by dividing the lakes into five categories: 1) deep temperate lakes, 2) shallow temperate lakes, 3) mountain lakes, 4) boreal lakes and 5) arctic lakes. The lakes in the Balkan region fall belong into the first three categories. Most of the deep temperate lakes are warm monomictic; convective overturn occurs in winter or early spring. The future climate change may suppress this overturn, giving these lakes the classification of oligomictic. This implies the enhancement of anoxic bottom conditions and an increased risk of eutrophication. The oxygen conditions can also be expected to deteriorate due to increased bacterial activity in deep waters and superficial bottom sediment. In shallow temperate lakes, higher water temperatures in the future will induce intensified primary production and bacterial decomposition. The probability of harmful extreme events, e.g. the mass production of algae, will increase. The impacts may extend to fishing and recreational use. In lakes with relatively long water

  18. Concentration dynamics in lakes and reservoirs, studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, C.

    1979-01-01

    The concentration dynamics in lakes and reservoirs through which water flows can be investigated by injecting a pulse of radioactive tracer and measuring the response at the outlet or any other point of interest inside the lake. The methodology developed for this Kind of investigation is presented. It was found that concentration dynamics in shallow reservoirs can be described by a model consisting of a time delay in series with one or two time constants. Procedures for the determination of the volumes of these regions are presented for reservoirs considered as either constant or variable parameter systems. The flow pattern in the reservoirs was investigated by measuring the response of the concentration through the lake and was analyzed in relation to the prevailing wind conditions. Wind induced currents have a dominant influence on the flow pattern. (Author) [pt

  19. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  20. climate change and lake water resourcesin sub-saharan africa: case ...

    African Journals Online (AJOL)

    user

    STUDY OF LAKE CHAD AND LAKE VICTORIA ... contribution to agriculture and socio-economic development of the region were ... many developing countries, current levels in water use .... 2050 and will become increasingly urban by implication. ... 4.1 Justification of Selected Case Studies ..... Orstom, Paris France. 1996.

  1. Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska

    Science.gov (United States)

    Richardson, Natura; Beaudreau, Anne H.; Wipfli, Mark S.; Finkle, Heather

    2017-01-01

    Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake-rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.

  2. Light attenuation in estuarine mangrove lakes

    Science.gov (United States)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  3. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  4. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  5. Carbon Metabolism in Lake Steinhuder Meer

    International Nuclear Information System (INIS)

    Ernst, D.

    1981-01-01

    Lake Steinhuder Meer is the largest lake in the Northern German plain. It is very shallow (average 1.35 m deep), highly productive and turbid due to a layer of loose sediments rich in organic matter (Ernst et al., 1980). It is an important recreational site, natural resort and still remarkable fishing area. It is fed by 2/3 from subsoil waters and by 1/3 by. rain. The response of the water body to increased nutrient load is investigated by enrichment experiments using plastic bags. Water in plastic bags is in contact with the atmosphere but is separated from the bottom sediment. Hence this technique may also give information about the roles of the sediment and the atmosphere in lake metabolism. Plasticisers may influence the experiment and mechanical damage may restrict the life-time of the facility. After several trials with polyethylene foils we now use a re-enforced PVC-foil. The material (Beneflex L) stands the wave movement for several weeks. Since Steinhuder Meer is not stratified we just pump the water into the bag. The water volume in the container is determined by a water clock

  6. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    Science.gov (United States)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  7. Global relationships between phosphorus and chlorophyll-a in oxbow lakes

    Science.gov (United States)

    Belcon, A. U.; Bernhardt, E. S.; Fritz, S. C.; Baker, P. A.

    2011-12-01

    Traditional limnological studies have focused on extant, large and deep bodies of fresh water. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established in temperate lakes with phosphorus generally viewed as the most limiting factor to productivity (Deevey 1940, Schindler 1977). Over the last few decades however, investigations have expanded to include the examination of shallow lakes, particularly in terms of water quality, nutrient content and regime shifts between stable alternate states. Most of these studies, however, have focused on northern, high latitude regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on oxbow lakes which are floodplain lakes and are semi or permanently connected to the river. Oxbow lakes have been shown to serve several important ecologic and economic functions including nurseries for young fish, feeding grounds for top aquatic predators and increasing the biodiversity of the landscape particularly in tropical regions of the world where high precipitation and large rivers have produced thousands of oxbow lakes. In many developing countries oxbow lakes are an important source of revenue through fishing. This study examined the relationship between nutrients and productivity in oxbow lakes globally through a wide-spread literature synthesis. Four hundred and twenty nine oxbow lakes were represented by 205 data points while 285 data points represented 156 non-floodplain lakes. Despite differences in latitude, lake size and climate we find that oxbow lakes globally have a significantly less steep slope in their TP/Chl relationship than non-floodplain lakes do indicating that the same amount of sestonic phosphorus results in lower productivity. Oxbow lakes (TP/Chl): r = 0.7676, slope = 0.7257, Non-floodplain lakes (TP/Chl): r = 0.8096, slope = 1.1309. We theorize that their connection to the

  8. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  9. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions.

    Science.gov (United States)

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang

    2016-03-01

    Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. Copyright © 2015. Published by Elsevier B.V.

  10. Geochemical Characteristics of Shallow Groundwater in Jiaoshiba Shale Gas Production Area: Implications for Environmental Concerns

    Directory of Open Access Journals (Sweden)

    Yiman Li

    2016-11-01

    Full Text Available The geochemical characteristics of shallow groundwater are essential for environmental impact studies in the shale gas production area. Jiaoshiba in the Sichuan basin is the first commercial-scale shale gas production area in China. This paper studied the geochemical and isotopic characteristics of the shallow groundwater of the area for future environmental concerns. Results show that the average pH of the shallow groundwater is 7.5 and the total dissolved solids (TDS vary from 150 mg/L to 350 mg/L. The main water types are HCO3-Ca and HCO3-Ca·Mg due to the carbonates dissolution equilibrium in karst aquifers. The concentrations of major ions and typical toxic elements including Mn, Cr, Cu, Zn, Ba, and Pb are below the drinking water standard of China and are safe for use as drinking water. The high nitrate content is inferred to be caused by agricultural pollution. The shallow groundwater is recharged by local precipitation and flows in the vertical circulation zone. Evidences from low TDS, water isotopes, and high 3H and 14C indicate that the circulation rate of shallow groundwater is rapid, and the lateral groundwater has strong renewability. Once groundwater pollution from deep shale gas production occurs, it will be recovered soon by enough precipitation.

  11. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  12. Modelling assessment of End Pit Lakes meromictic potential

    International Nuclear Information System (INIS)

    2006-11-01

    The use of End Pit Lakes have been proposed as a remediation solution for oil sands reclamation and operational waters. This report modelled the main factors controlling the occurrence of stratification in Pit Lakes in order to establish design and management guidelines for the Cumulative Environmental Management Association's End Pit Lake Sub-group. The study focused on End Pit Lake size, depth, starting lake salinity concentrations, inflow rates and inflow salinity flux, and investigated their influence on density gradients. One-dimensional modelling and limited 2-D modelling simulations were conducted to examine meromictic potential for a large range of End Pit Lake configurations and conditions. Modelling results showed that fall is the governing season for determining meromixis. The expelling of salt from saline water upon ice formation and its effect on stratification potential and the effect of fresh water loading on stratification potential during spring melt events were not observed to be dominant factors governing meromictic potential for the scenarios examined in the study. Results suggested that shallow End Pit Lakes showed a high turn-over rate with seasonal heating and cooling cycles. Moderately deep End Pit Lakes demonstrated a meromictic potential that was inversely proportional to lake size and require higher starting salinities. With a 2 or 10 million m 3 /yr inflow rate and a 5 parts per thousand starting salinity, a 50 m deep End Pit Lake achieved meromixis at all 3 size ranges considered in the study. Results also showed that the rate of influent salinity decrease was the least important of the parameters influencing meromixis. It was observed that meromixis was a temporary condition in all of the End Pit Lake scenarios envisioned due to the lack of a constant, positive salt replenishment over the long term. It was concluded that further 3-D modelling is required to represent littoral areas as well as to account for extreme winter conditions. A

  13. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  14. Impact of a glacial uranium deposit on the groundwater quality at Key Lake, Saskatchewan (Canada)

    International Nuclear Information System (INIS)

    Unland, W.

    1981-01-01

    Concentrations of radionuclides derived from uraniferous material embedded in a pervious unconsolidated aquifer have been determined at Key Lake. It is concluded that dispersion and retardation can provide safe storage of radioactive waste in shallow aquifers over a long term period. (Auth.)

  15. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    Science.gov (United States)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  16. Role of organic phosphorus in sediment in a shallow eutrophic lake

    Science.gov (United States)

    Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo

    2017-08-01

    We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.

  17. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China.

    Science.gov (United States)

    Fan, Zhou; Han, Rui-Ming; Ma, Jie; Wang, Guo-Xiang

    2016-07-01

    nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.

  18. Changes of the phytoplankton community as symptoms of deterioration of water quality in a shallow lake.

    Science.gov (United States)

    Dembowska, Ewa Anna; Mieszczankin, Tomasz; Napiórkowski, Paweł

    2018-01-25

    Covering more than 60% of the lake surface, macrophytes determined the taxonomic composition of phytoplankton. We have found numerous indications of ecological deterioration and an increased trophic level year to year: an increased total number of taxa; a significantly increased number of species of Chlorophyta, Bacillariophyceae and Cyanoprokaryota; a decreased number of Chrysophyceae; increased Nygaard index, and high diversity and variability of phytoplankton functional groups. Within 2 years (2002 and 2003) algal biomass doubled: from 3.616 to 7.968 mg l -1 . An increased contribution of Chlorococcales and Cyanoprokaryota indicates progressive eutrophication of the lake. The average size of planktonic algae increased, particularly Cyanoprokaryota, where small-celled decreased dramatically and were replaced by large colonies. Cyanoprokaryota remained the dominant group of phytoplankton after 10 years, and the ecosystem of the lake remained in the turbid state. This group of algae had the average biomass 9.734 mg l -1 , which constituted almost 92% of the total biomass.

  19. Scope of work-supplemental standards-related fieldwork - Salt Lake City UMTRA Project Site, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This scope of work governs the field effort to conduct transient in situ (hereafter referred to by the trademark name HydroPunch reg-sign) investigative subsurface logging and ground water sampling, and perform well point installation services at the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Salt Lake City, Utah. The HydroPunch reg-sign and well point services subcontractor (the Subcontractor) shall provide services as stated herein to be used to investigate the subsurface, collect and analyze ground water samples, and install shallow well points

  20. The paleolimnological development of the twin lakes Etujärvi and Takajärvi in Askola, southern Finland – implications for lake management

    Directory of Open Access Journals (Sweden)

    Samu E. Valpola

    2006-01-01

    Full Text Available The twin lakes Etujärvi and Takajärvi in Askola, southern Finland, are closely interconnected mesotrophic headwater lakes with a relatively small catchment area. Both of the lakes have suffered from eutrophication and its consequences. Remediation activities such as oxygenation and biomanipulation have not resolved the problems. In this study a large set of paleolimnological techniques (radiometric AMS dating, spherical carbonaceous particles analysis, sediment lithology, grain-size analysis, phosphorus fractionation, and diatom analysis were applied to put together the development of the basin and its water level fluctuations during the Holocene. The age for observed Trapa natans -horizons was determined, and lake management options were discussed. The studied lakes dried up after isolation from the Ancylus Lake at about 9500 cal. B.P. and remained at very low water level until ca. 8700–8500 cal. B.P. The mid-Holocene risein water level resulted in fluctuating water levels, and led to the most recent rise starting about 2500 cal. B.P. as wet and cool climate conditions prevailed. The pronounced water level fluctuations led to the extensive growth of peat deposits surrounding the lake andprobably also forced T. natans to disappear from lake flora. The unstable, erodable peat rims impact the lakes, causing heavy load of humic substances to the lake and presenting additional deterioration to their recreational value.

  1. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes.

    Directory of Open Access Journals (Sweden)

    Jari Syväranta

    Full Text Available Hydrogen stable isotopes (δ2H have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton, with the exception of aquatic vascular plants (23%, referred to as macrophytes. The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter, particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.

  2. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry season. This finding was further supported by an

  3. Role of a productive lake in carbon sequestration within a calcareous catchment

    International Nuclear Information System (INIS)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-01-01

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO_2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO_2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO_2_. • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ"1"3C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO_2 counteracts emissions from reversed weathering.

  4. Role of a productive lake in carbon sequestration within a calcareous catchment

    Energy Technology Data Exchange (ETDEWEB)

    Nõges, Peeter, E-mail: peeter.noges@emu.ee [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Cremona, Fabien; Laas, Alo [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Martma, Tõnu [Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Rõõm, Eva-Ingrid [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Toming, Kaire [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn (Estonia); Viik, Malle; Vilbaste, Sirje; Nõges, Tiina [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia)

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO{sub 2} and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO{sub 2} sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO{sub 2.} • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ{sup 13}C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO{sub 2} counteracts emissions from reversed weathering.

  5. Environmental and zooplankton parameter changes during the drying of a saline shallow temporary lake in central Argentina

    Directory of Open Access Journals (Sweden)

    Alicia María Vignatti

    2017-09-01

    Full Text Available Central Argentina has numerous saline lakes sustained by groundwater sources and rainfall. These lakes are temporary and experience significant changes in water level and salinity, depending on wet and dry climate cycles. This study aims to investigate the scarcely known dynamics of environmental and zooplankton parameters during the drying phase of one of these lakes. Monthly samples were taken from December 2 012 to July 2 013 in the Ojo de Agua Uriburu lake, previous to its drying. At the beginning of the study, the lake’s depth was 0.7 m and its salinity was 16.65 g L−1, later, in July, its depth decreased to 0.06 m and its salinity increased to 92.9 g L−1. Zooplankton species richness was low (three crustaceans and three rotifers, with Boeckella poopoensis and Moina eugeniae dominating in the system. Maximum density and biomass were attained by the two dominant species in April (318.5 i nd L−1 and 3 029.1 µg L−1 dry weight; and 242.4 i nd L −1 and 1 530.4 µg L−1 dry weight, for B. poopoensis and M. ugeniae, respectively, and no correlation was found between these parameters and salinity. Maximum average body lengths for both species were observed in the last months of sampling (M. eugeniae: 1 020 ± 84.2 µm and B. poopoensis: 1 348.8 ± 89.0 µm. At this point of the study, neither juvenile nor larval stages were found. The increase in average body size is, arguably, the result of increased salinity in the system through a negative effect on reproduction. Because this lake reached hypersalinity, its ecological dynamics are unique among those of other temporary, saline lakes that dried in central Argentina. Similar studies on other temporary ecosystems are needed to increase the information on these little known ecological aspects.

  6. Shallow-water, nearshore current dynamics in Algoa Bay, South ...

    African Journals Online (AJOL)

    Nearshore currents play a vital role in the transport of eggs and larval stages of fish. However, little is known about their complexity and the implications for dispersal of fish larvae. The study describes the complexity of the shallow nearshore environment in eastern Algoa Bay, on the south-east coast of South Africa, and its ...

  7. Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central and implication for natural hazards

    Directory of Open Access Journals (Sweden)

    E. Chapron

    2010-09-01

    Full Text Available Sedimentation processes occurring in the most recent maar lake of the French Massif Central (Lake Pavin are documented for the first time based on high resolution seismic reflection and multibeam bathymetric surveys and by piston coring and radiocarbon dating on a sediment depocentre developed on a narrow sub aquatic plateau. This new data set confirms the mid Holocene age of maar lake Pavin formation at 6970±60 yrs cal BP and highlights a wide range of gravity reworking phenomena affecting the basin. In particular, a slump deposit dated between AD 580–640 remoulded both mid-Holocene lacustrine sediments, terrestrial plant debris and some volcanic material from the northern crater inner walls. Between AD 1200 and AD 1300, a large slide scar mapped at 50 m depth also affected the southern edge of the sub aquatic plateau, suggesting that these gas-rich biogenic sediments (laminated diatomite are poorly stable. Although several triggering mechanisms can be proposed for these prehistoric sub-aquatic mass wasting deposits in Lake Pavin, we argue that such large remobilisation of gas-rich sediments may affect the gas stability in deep waters of meromictic maar lakes. This study highlights the need to further document mass wasting processes in maar lakes and their impacts on the generation of waves, favouring the development of dangerous (and potentially deadly limnic eruptions.

  8. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  9. Correction and validation of 14C chronologies in lake basins, with reference to modern hydrogeological and geochemical systems - examples

    International Nuclear Information System (INIS)

    Gibert, E.; Bergonzini, L.; Travi, Y.

    2004-01-01

    The primary question before establishing any accurate, confident timescale for palaeo-environmental reconstructions based on lacustrine sediments consists in the definition of the original signature of the TDIC (Total Dissolved Inorganic Carbon) of the lake water from which authigenic compounds are fog ned. This 'carbon' fingerprint of the TDIC may originate from: - The direct exchange with atmospheric CO 2 ; - The admixture of dead dissolved carbon (for example through the leaching of ancient carbonated rocks on the watershed brought to the lake via tributaries) implying the non-equilibrium, and then the ageing, of lake surface waters; - Hydrogeological features of the lake system, such as (i) the connection of the lake waters with extended, shallow aquifers in which the radioactive 14 C decay already occurs, or (ii) high hydraulic gradient (mountain landscape) precluding water-rock interaction at the basin scale; - Deep 14 C-free CO 2 rising along faults in volcanic/tectonic areas, labelled with specific, although wide, ranges of δ 13 C values from 0 to -9%o PDB. Previous and on-going works on lakes in key regions have highlighted that, although each lake constitute a specific case study, they can be gathered in groups representing typical cases of distortion of the 14 C cycle in lacustrine systems: - eg Lake Bangong (Western Tibet): deep CO 2 at the lake bottom, and corrections of the chronology based on the 13 C/ 14 C couple and on a regression equation defined on datings... - eg Lake Abiyata (East African Rift): ageing of the authigenic carbonates due to the mixing, at the water/sediment interface, of the lake water and the 14 C-depleted regional groundwater; - eg Lake Langano (East African Rift): deep CO 2 at the lake bottom and correction of the ageing of the lake surface water by a black-boxes model which provide a step-by-step calculation including the 14 C input of atmospheric nuclear weapon tests in the 1960's and the lake turn-over; - eg Lake Aibi

  10. A 27 ka paleoenvironmental lake sediment record from Taro Co, central Tibetan Plateau: implications for the interplay between monsoon and the Westerlies

    Science.gov (United States)

    Wang, J.; Ma, Q.; Huang, L.; Ju, J.; Guo, Y.; Lin, X.; Li, Y.; Zhu, L.

    2017-12-01

    The climate of Tibetan Plateau (TP) is mainly influenced by the Indian Ocean Summer Monsoon (IOSM) and the Westerlies. The interaction of these two air masses is therefore a crucial scientific issue to understand how they impact the climate in this area, especially in the geological times. However, constrained by the available archives, researches on this topic are still very few in the hinterland of the TP, especially covering the Last Glacial Maximum (LGM) period. Here we present a new lake sediment record retrieved from Taro Co covering the last 27 ka to elucidate how the IOSM and the Westerlies interact and the possible mechanisms. Taro Co (486 km2, Dmax: 132m, 4565 m a.s.l., currently closed), located on the central TP, is a fresh lake with the major supply from glaciers. Two parallel piston cores as well as several gravity cores were retrieved from the deepest parts. These cores were correlated based on high resolution XRF scanning and a continuous 1069 cm-long core was finally integrated. Chronology was determined by 210Pb, 137Cs and AMS 14C measurements. Multidiscipline analyses including grain size, total organic carbon (TOC), total nitrogen, diatom, ostracod, pollen and n-alkanes were accomplished to reconstruct paleoenvironmental changes. The lake level of Taro Co was low since 27 cal ka BP indicated by very coarse materials and diatom assemblages with gradually increased temperature and salinity (TOC and carbonate getting higher). The terrestrial water input decreased continuously reflected by such elements as Si, Ti, Fe, K. It is likely that there was a sedimentation gap between 961-954cm, corresponding to 23.4 to 18.6 cal ka BP probably demonstrated Taro Co was very shallow at that period. The first prominent abrupt change of most proxies was observed at 14.7 cal ka BP showing a great lake deepening which likely indicated an enhancement of IOSM. There were several spells with abrupt changes of cold/warm stages before the Holocene and the Younger Dryas

  11. BATHYMETRIC STUDY OF WADI EL-RAYAN LAKES, EGYPT

    Directory of Open Access Journals (Sweden)

    Radwan Gad Elrab ABD ELLAH

    2016-12-01

    Full Text Available Bathymetry is a technique of measuring depths to determine the morphometry of water bodies. The derivation of bathymetry from the surveys is one of the basic researches of the aquatic environment, which has several practical implications to on the lake environment and it's monitoring. Wadi El-Rayan, as Ramsar site, is a very important wetland, in Egypt, as a reservoir for agricultural drainage water, fisheries and tourism. The Lakes are man-made basins in the Fayoum depression. Wadi El-Rayan Lakes are two reservoirs (upper Lake and Lower Lake, at different elevations. The Upper Lake is classified as open basin, while the Lower Lake is a closed basin, with no significant obvious water outflow. During recent decades, human impact on Wadi El-Rayan Lakes has increased due to intensification of agriculture and fish farming. Analyses of bathyemtric plans from 1996, 2010 and 2016 showed, the differences between morphometric parameters of the Upper Lake were generally small, while the Lower Lake changes are obvious at the three periods. The small fluctuate, in the features of Upper Lake is due to the water balance between the water inflow and water. The Lower Lake has faced extreme water loss through last twenty years is due to the agricultural lands and fish farms extended in the depression. The Upper Lake is rich in Lakeshores macrophyets, while decline the water plants in the Lower Lake. With low water levels, in the Lower Lake, the future continuity of the Lake system is in jeopardy

  12. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    Science.gov (United States)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  13. Conservation implications of weed management of lake reservoirs ...

    African Journals Online (AJOL)

    Management of weeds around lake reservoirs is often implemented to reduce any possibility of siltation. However, machineries used in weed management have resulted in habitat degradation and geometrical multiplication of weeds by chopping rhizomes and scattering seeds. In general, the removal offers some feedbacks ...

  14. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

    NARCIS (Netherlands)

    Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, Steven A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; Conde-Porcuna, J-M.; Mazzeo, N.; Iglesias, C.; Reizenstein, M.; Malmquist, H.J.; Liu, Z.; Balayla, D.; Lazzaro, X.

    2010-01-01

    Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation

  15. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids

    DEFF Research Database (Denmark)

    Jeppesen, E.; Christoffersen, K.; Landkildehus, F.

    2001-01-01

    We studied the trophic structure in the pelagial and crustacean remains in the surface 1 cm of the sediment of 13 shallow, high arctic lakes in northeast Greenland (74 N). Seven lakes were fishless, while the remaining six hosted a dwarf form of Arctic charr (Salvelinus alpinus). In fishless lakes...... sp. in lakes with Lepidurus, while they were abundant in lakes with fish. The low abundance in fishless lakes could not be explained by damage of crustacean remains caused by Lepidurus feeding in the sediment, because remains of the more soft-shelled, pelagic-living Daphnia were abundant...... in the sediment of these lakes. No significant differences between lakes with and without fish were found in chlorophyll a, total phosphorus, total nitrogen, conductivity or temperature, suggesting that the observed link between Lepidurus arcticus and the benthic crustacean community is causal. Consequently...

  16. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    Science.gov (United States)

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  17. Hydrocarbon assessment summary report of Buffalo Lake area of interest

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, Y. [Northwest Territories Geoscience Office, Yellowknife, NT (Canada)

    2007-07-01

    The Northwest Territories (NWT) Protected Areas Strategy (PAS) is a process to identify the known cultural, ecological and economic values of areas in the NWT. This report presented a hydrocarbon resource potential assessment of Buffalo Lake area of interest located in the Great Slave Plain region. It covers an area greater than 2100 square km. The region is almost entirely covered by a thick mantle of glacial deposits. It is underlain by a southwest-dipping, relatively undisturbed succession dominated by Paleozoic carbonate rocks and Cretaceous clastic rocks. Six exploration wells have been drilled within, or near the outer limit of Buffalo Lake area of interest. Suitable source and reservoir rocks are present within Buffalo Lake area of interest, but the potential of significant petroleum discoveries is likely very low. Most of the prospective intervals are either shallow or exposed at surface. Other exploration risks, such as discontinuous distribution and isolation from source rocks, are also anticipated for some of the plays. 17 refs., 2 tabs., 6 figs.

  18. Long-term dynamics of a lake ecosystem and the implications for radiation exposure

    International Nuclear Information System (INIS)

    Sundblad, B.; Bergstroem, U.; Evan, S.; Puigdomenech, I.

    1988-09-01

    Long-term ageing and physical transformation of ecosystems may occur while a continuous leakage of radionuclides from a repository is going on. This will imply additional uncertainties as regards the consequences for exposure to man. The turnover of nuclides during the ageing of a lake ecosystem and its successive development into agricultural land is simulated using a multicompartment system. Parameters of a major importance for the distribution and reconcentration of radionuclides supplied into the lake as surface inflow are identified. Seven radioniclides occuring in high-level waste aer treated. These are I-129, Cs-135, Ra-226, Pa-231, U-234, Np-237 and Pu-239. The activity distribution is highly dependent on the sorption behaviour of the radionuclides. The major pools for radionuclide distribution are lake outflows 15-97% (Pu-239 - I-129) and deeo lake sediment 2-84% (I-129 - Pu-239). Performed dose calculations for different time periods of the lake evolution showed that the individual doses increase with a factor of hundred for Pu-239 during the life-time of the lake. For comparison doses have also been calculated for two differenct well scenarios in order to discuss the possibility of generic conversion factors from release to the biosphere and resulting individual doses. However, for all nuclides the obtained doses from exposure from a well situated in the discharge area to the lake were higher than for those obtained from the turnover of lake. For rough estimates the obtained doses can be used as standards when studying the impact on man from the turnover of long-lived radionuclides during the evolution of this type of ecosystem. (authors)

  19. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery

    OpenAIRE

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential cont...

  20. On the optimization of empirical data concerning radionuclides in water of Lake Juodis

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Koviazina, E.; Shliahtich, E.

    2004-01-01

    Quality of site-dependent water sampling for radionuclide analysis assessing their removal from the complicated aquatic system of eutrophic Lake Juodis is analyzed comparing time courses of site-specific data on standard variables (pH, temperature, redox potential, oxygen concentration, conductivity) in 2003-2004. Compared data were measured simultaneously: a) in the open bottom terrace of the lake adjoining its outflow; b) before the beaver dam bounding the lake rush grown area and c) at the site of the outflowing brook usually used for water sampling for radionuclide analysis. The rush grown area adjoining the outflowing brook is a natural filter for plutonium transport from the lake during warm season as well as for radiocesium activity fraction associated with the suspended matter. Using information on site-specific variations of vertical profiles of standard variables measured in the shallow bottom terrace of the lake, seasonal peculiarities of vertical radionuclide transport in the water column and their release from the sediments are discussed. In winter beaver activities in the lake as well as formation of the anaerobic zone in the rush grown area are considered as supplementary mechanisms facilitating vertical transport of radionuclides in the temperature stratificated water column and their removal from similar lakes. (author)

  1. Investigating Summer Thermal Stratification in Lake Ontario

    Science.gov (United States)

    James, S. C.; Arifin, R. R.; Craig, P. M.; Hamlet, A. F.

    2017-12-01

    Seasonal temperature variations establish strong vertical density gradients (thermoclines) between the epilimnion and hypolimnion. Accurate simulation of vertical mixing and seasonal stratification of large lakes is a crucial element of the thermodynamic coupling between lakes and the atmosphere in integrated models. Time-varying thermal stratification patterns can be accurately simulated with the versatile Environmental Fluid Dynamics Code (EFDC). Lake Ontario bathymetry was interpolated onto a 2-km-resolution curvilinear grid with vertical layering using a new approach in EFDC+, the so-called "sigma-zed" coordinate system which allows the number of vertical layers to be varied based on water depth. Inflow from the Niagara River and outflow to the St. Lawrence River in conjunction with hourly meteorological data from seven local weather stations plus three-hourly data from the North American Regional Reanalysis govern the hydrodynamic and thermodynamic responses of the Lake. EFDC+'s evaporation algorithm was updated to more accurately simulate net surface heat fluxes. A new vertical mixing scheme from Vinçon-Leite that implements different eddy diffusivity formulations above and below the thermocline was compared to results from the original Mellor-Yamada vertical mixing scheme. The model was calibrated by adjusting solar-radiation absorption coefficients in addition to background horizontal and vertical mixing parameters. Model skill was evaluated by comparing measured and simulated vertical temperature profiles at shallow (20 m) and deep (180 m) locations on the Lake. These model improvements, especially the new sigma-zed vertical discretization, accurately capture thermal-stratification patterns with low root-mean-squared errors when using the Vinçon-Leite vertical mixing scheme.

  2. Impact of global changes and biotic interactions on food webs in lakes

    DEFF Research Database (Denmark)

    Vidal, Nicolas

    for irrigation leads to enhanced salinisation in many aquatic systems. A consequent disappearance of higher trophic positions (mostly fish) resulted in reduced food web complexity (paper 2). Human direct and indirect modifications, in addition to climate change, may alter the current biogeographic distribution...... and the functioning of shallow lakes, with particular emphasis on enhanced air temperatures (objective 1), salinisation (objective 2) and species invasions (objective 3). A stable isotope approach and stomach content analyses of fish were used in order to characterise the food web structure, combined with structure......, accordingly, stronger cascading effects on the lower trophic levels could be traced in the Azorean lakes. However, in contrast to expectations, no effect on the trophic position of fish was found, but the shape of the food web structure was more triangular in the (cold) Faroese lakes that were also...

  3. Interactions between fishes and the structure of fish communities in Dutch shallow, eutrophic lakes

    NARCIS (Netherlands)

    Lammens, E.

    1986-01-01

    This thesis describes the structure of fish communities in Tjeukemeer (21 km 2) and some other surrounding very eutrophic lakes and emphasizes the interactions of the fishes with each other and their food organisms (predation and (exploitative) competition). It is a compilation of seven

  4. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    Science.gov (United States)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  5. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    Science.gov (United States)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  6. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    Science.gov (United States)

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  7. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    Science.gov (United States)

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  8. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  9. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  10. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  11. The Lake Petén Itzá Scientifi c Drilling Project

    Directory of Open Access Journals (Sweden)

    Daniel Ariztegui

    2006-09-01

    Full Text Available Polar ice cores provide us with high-resolution records of past climate change at high latitudes on both glacial-to-interglacial and millennial timescales. Paleoclimatologists and climate modelers have focused increasingly on the tropics, however, as a potentially important driver of global climate change because of the region’s role in controlling the Earth’s energy budget and in regulating the water vapor content of the atmosphere. Tropical climate change is often expressed most strongly as variations in precipitation, and closed-basin lakes are sensitive recorders of the balance between precipitation and evaporation. Recent advances in fl oating platformsand drilling technology now offer the paleolimnological community the opportunity to obtain long sediment records from lowland tropical lakes, as illustrated by the recent successful drilling of Lakes Bosumtwi and Malawi in Africa (Koeberl et al., 2005; Scholz et al., 2006. Tropical lakes suitable for paleoclimatic research were sought in Central America to complement the African lake drilling. Most lakes in the Neotropics are shallow, however, and these basins fell dry during the Late Glacial period because the climate in the region was more arid than today. The search for an appropriate lake to study succeeded in 1999 when a bathymetric survey of Lake Petén Itzá, northern Guatemala, revealed a maximum depth of 165 m, making itthe deepest lake in the lowlands of Central America (Fig. 1 .Although the lake was greatly reduced in volume during the Late Glacial period, the deep basin remained submerged and thus contains a continuous history of lacustrine sediment deposition. A subsequent seismic survey of Lake Petén Itzá in 2002 showed a thick sediment package overlying basement, with several subbasins containing up to 100 m of sediment (Anselmetti et al., 2006.

  12. Holocene Lake and Shallow Water Sediments at Mograt Island, Sudan

    Directory of Open Access Journals (Sweden)

    Dittrich Annett

    2017-06-01

    Full Text Available This paper presents the results of stratigraphic excavation and soil studies carried out at Mograt Island, the largest of the Nilotic islands in Sudan. Due to its restricted insular environments, Holocene alluvial deposits were observed to be interlocked with archaeological remains of different periods, allowing for a combined chronostratigraphic approach to study both cultural and climatic events. To better understand the environmental context through soil components and pedological features at a microscopic scale, soil block samples were accordingly collected and studied by the application of soil micromorphology. This approach provides insights into the history of Nile terrace aggradation through the suspension of Nile sediment loads under stillwater conditions as well as of the periodical establishment of shallow water pools at the islands′ plateaus by the surface run-off from local rains. Since these patterns vary significantly from the present situation, they offer a key to the scenario in which specific early agricultural and animal herding practices evolved.

  13. An approach to the coastal water circulation in the Piratuba Lake Biological Reservation, Northeast of Amapa State, Brazil

    Science.gov (United States)

    Takiyama, L. R.; Silveira, O. M.

    2007-05-01

    This study shows the pioneer results of the water quality characterization of a lake region, including the Piratuba lake (within the limits of the Piratuba Lake Biological Reservation) and the Sucuriju river, localized at the northeast portion of the Amapa State, Brazil, and left margin of the Amazon River mouth. Due to the influence of the Amazon river and another important river, the Araguari river, the northeast coast of Amapa State receive little impact of salty water from the Atlantic ocean. The highest salinity values detected on this coastal area is 20 psu. The Piratuba Lake region which can be described as an unique wetland system formed by recent geological processes (Quaternary), it constitutes a very fragile environment and possesses a number of shallow water lakes distributed into a mixed mangrove and "varzea" type of vegetation and it is considered very important looking at the biological point of view. The borderline between this lake system with the coastal waters is a narrow portion of mangrove containing species of Rizhophora and Avicennia parallel to the coast line. A preliminary water circulation could be accessed through the detection of variation in water quality parameters throughout three field studies conducted on March, 2004, June 2005 and November 2005. Surface water sampling points spatially distributed on the study area with distances less than 2 km were set, covering almost 800 square kilometers. Among the parameters studied (pH, electrical conductivity, turbidity, concentration of suspended solids, depth, temperature, chloride, dissolved oxygen, nitrate, nitrite and phosphate) the turbidity, electrical conductivity and pH were the most important for identifying the entering of coastal waters into the lake region. Mainly, three points of direct contact were identified; one of them is a manmade illegal entrance to the Biological Reservation. The seasonal variation was also very important factor and as expected, during the dry season

  14. Periodic outburst floods from an ice-dammed lake in East Greenland.

    Science.gov (United States)

    Grinsted, Aslak; Hvidberg, Christine S; Campos, Néstor; Dahl-Jensen, Dorthe

    2017-08-30

    We report evidence of four cycles of outburst floods from Catalina Lake, an ice-dammed lake in East Greenland, identified in satellite imagery between 1966-2016. The lake measures 20-25 km 2 , and lake level drops 130-150 m in each event, corresponding to a water volume of 2.6-3.4 Gt, and a release of potential energy of 10 16  J, among the largest outburst floods reported in historical times. The drainage cycle has shortened systematically, and the lake filling rate has increased over each cycle, suggesting that the drainage pattern is changing due to climate warming with possible implications for environmental conditions in Scoresbysund fjord.

  15. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  16. Unprecedented slow growth and mortality of the rare colonial cyanobacterium, Nostoc zetterstedtii, in oligotrophic lakes

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Møller, Claus Lindskov

    2011-01-01

    Centimeter-large colonies of Nostoc zetterstedtii from a Swedish oligotrophic lake had the lowest growth and mortality rates of any studied temperate macrophyte. Annual growth rates at two shallow sites averaged 0.57– 0.73 3 1023 d21, corresponding to doubling times of colony dry weight in 2...

  17. Coastal geology and recent origins for Sand Point, Lake Superior

    Science.gov (United States)

    Fisher, Timothy G.; Krantz, David E.; Castaneda, Mario R.; Loope, Walter L.; Jol, Harry M.; Goble, Ronald J.; Higley, Melinda C.; DeWald, Samantha; Hansen, Paul

    2014-01-01

    Sand Point is a small cuspate foreland located along the southeastern shore of Lake Superior within Pictured Rocks National Lakeshore near Munising, Michigan. Park managers’ concerns for the integrity of historic buildings at the northern periphery of the point during the rising lake levels in the mid-1980s greatly elevated the priority of research into the geomorphic history and age of Sand Point. To pursue this priority, we recovered sediment cores from four ponds on Sand Point, assessed subsurface stratigraphy onshore and offshore using geophysical techniques, and interpreted the chronology of events using radiocarbon and luminescence dating. Sand Point formed at the southwest edge of a subaqueous platform whose base is probably constructed of glacial diamicton and outwash. During the post-glacial Nipissing Transgression, the base was mantled with sand derived from erosion of adjacent sandstone cliffs. An aerial photograph time sequence, 1939–present, shows that the periphery of the platform has evolved considerably during historical time, infl uenced by transport of sediment into adjacent South Bay. Shallow seismic refl ections suggest slump blocks along the leading edge of the platform. Light detection and ranging (LiDAR) and shallow seismic refl ections to the northwest of the platform reveal large sand waves within a deep (12 m) channel produced by currents fl owing episodically to the northeast into Lake Superior. Ground-penetrating radar profi les show transport and deposition of sand across the upper surface of the platform. Basal radiocarbon dates from ponds between subaerial beach ridges range in age from 540 to 910 cal yr B.P., suggesting that Sand Point became emergent during the last ~1000 years, upon the separation of Lake Superior from Lakes Huron and Michigan. However, optically stimulated luminescence (OSL) ages from the beach ridges were two to three times as old as the radiocarbon ages, implying that emergence of Sand Point may have begun

  18. Cathodoluminescence and Raman Spectromicroscopy of Forsterite in Tagish Lake Meteorite: Implications for Astromineralogy

    Directory of Open Access Journals (Sweden)

    Arnold Gucsik

    2016-01-01

    Full Text Available The Tagish Lake meteorite is CI/CM2 chondrite, which fell by a fireball event in January 2000. This study emphasizes the cathodoluminescence (CL and Raman spectroscopical properties of the Tagish Lake meteorite in order to classify the meteoritic forsterite and its relation to the crystallization processes in a parent body. The CL-zoning of Tagish Lake meteorite records the thermal history of chondrules and terrestrial weathering. Only the unweathered olivine is forsterite, which is CL-active. The variation of luminescence in chondrules of Tagish Lake meteorite implies chemical inhomogeneity due to low-grade thermal metamorphism. The blue emission center in forsterite due to crystal lattice defect is proposed as being caused by rapid cooling during the primary crystallization and relatively low-temperature thermal metamorphism on the parent body of Tagish Lake meteorite. This is in a good agreement with the micro-Raman spectroscopical data. A combination of cathodoluminescence and micro-Raman spectroscopies shows some potentials in study of the asteroidal processes of parent bodies in solar system.

  19. Lake sediments as natural seismographs: Earthquake-related deformations (seismites) in central Canadian lakes

    Science.gov (United States)

    Doughty, M.; Eyles, N.; Eyles, C. H.; Wallace, K.; Boyce, J. I.

    2014-11-01

    Central Canada experiences numerous intraplate earthquakes but their recurrence and source areas remain obscure due to shortness of the instrumental and historic records. Unconsolidated fine-grained sediments in lake basins are 'natural seismographs' with the potential to record ancient earthquakes during the last 10,000 years since the retreat of the Laurentide Ice Sheet. Many lake basins are cut into bedrock and are structurally-controlled by the same Precambrian basement structures (shear zones, terrane boundaries and other lineaments) implicated as the source of ongoing mid-plate earthquake activity. A regional seismic sub-bottom profiling of lakes Gull, Muskoka, Joseph, Rousseau, Ontario, Wanapitei, Fairbanks, Vermilion, Nipissing, Georgian Bay, Mazinaw, Simcoe, Timiskaming, Kipawa, Parry Sound and Lake of Bays, encompassing a total of more than 2000 kilometres of high-resolution track line data supplemented by multibeam and sidescan sonar survey records show a consistent sub-bottom stratigraphy of relatively-thick lowermost lateglacial facies composed of interbedded semi-transparent mass flow facies (debrites, slumps) and rhythmically-laminated silty-clays. Mass flows together with cratered ('kettled') lake floors and associated deformations reflect a dynamic ice-contact glaciolacustrine environment. Exceptionally thick mass flow successions in Lake Timiskaming along the floor of the Timiskaming Graben within the seismically-active Western Quebec Seismic Zone (WQSZ), point to a higher frequency of earthquakes and slope failure during deglaciation and rapid glacio-isostatic rebound though faulting continues into the postglacial. Lateglacial faulting, diapiric deformation and slumping of coeval lateglacial sediments is observed in Parry Sound, Lake Muskoka and Lake Joseph, which are all located above prominent Precambrian terrane boundaries. Lateglacial sediments are sharply overlain by relatively-thin rhythmically-laminated and often semi

  20. Patterns and sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in surficial sediments of Lakes Erie and Ontario

    International Nuclear Information System (INIS)

    Shen Li; Gewurtz, Sarah B.; Reiner, Eric J.; MacPherson, Karen A.; Kolic, Terry M.; Helm, Paul A.; Brindle, Ian D.; Marvin, Chris H.

    2008-01-01

    This study determines spatial trends and congener patterns of 2378-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in surficial sediments of Lakes Erie and Ontario. Sediments are enriched in 2378-PCDFs in Lake Ontario, and the PCDD/F concentrations increased from shallow near-shore sediments towards deep-water depositional zone sediments. In Lake Erie, sediments were dominated by octachlorodibenzo-p-dioxin, and the highest PCDD/F concentrations were observed in the western basin and the southern shoreline of the central basin with a decrease towards the eastern basin and the northern shoreline of the central basin. Principal components analysis revealed that chemical manufacture and disposal of chemical waste along the Niagara River has been a major PCDD/F source to Lake Ontario; while PCDD/Fs in Lake Erie are from multiple sources including industrial sources along the Detroit River, major tributaries along the southern shoreline of the lake, and atmospherically-derived material from the upper lakes and connecting channels. - Lake-wide 2378-PCDD/F congener patterns are first reported in L. Erie and L. Ontario sediments

  1. Holocene evolution of Lake Shkodra: Multidisciplinary evidence for diachronic landscape change in northern Albania

    Science.gov (United States)

    Mazzini, Ilaria; Gliozzi, Elsa; Galaty, Michael; Bejko, Lorenc; Sadori, Laura; Soulié-Märsche, Ingeborg; Koçi, Rexhep; Van Welden, Aurelien; Bushati, Salvatore

    2016-03-01

    A multidisciplinary micro-paleontological study of a sediment core (SK19) drilled in the coastal area of Lake Shkodra, northern Albania, integrated with archaeological data from the Projekti Arkeologjikë i Shkodrës (PASH), provides compelling evidence for a long-term relationship between Shkodra's natural environment and its inhabitants. Charophyte and ostracod data recovered from SK19 combined with those already studied from the distal core SK13 (Mazzini et al., 2015), reveal important information concerning the changing characteristics of the water body through time. In particular, the ostracod fauna display a truly Balkanic character with eight taxa endemic to the area. Palaeoenvironmental analysis of the two cores indicates that a wide marshland extended towards the present eastern coast of the lake, fed discontinuously both by surface- and ground-water, beginning sometime before 12,140 cal yrs BP. For about 7000 years ostracods do not record any significant changes, whereas the Characeae record in the proximal zone displays important variations. Those variations do not match any of the climatic oscillations revealed in previous studies by δ18O or pollen data, thereby implicating human activities. Ostracods and charophytes indicate that permanent shallow waters occurred in the Shkodra basin only around 5800 cal yrs BP. Historical sources of the Roman Empire indicate a swamp (the Palus labeatis), crossed by the River Morača, which flowed into the River Buna. Evidence for local fires, whether natural or anthropogenic, is recorded in SK13, scattered between 4400 and 1200 yrs BP. From 4400 to 2000 yrs BP, during the Bronze and Iron Age, hill forts ringed the marsh and burial mounds marked its edges. But around 2000 cal yrs BP, a dramatic change in the water body occurred: the disappearance of Characeae. Possibly fires were used for the elimination of natural vegetation and the subsequent cultivation of olive and walnut trees, causing an increase on organic

  2. Structure, seasonal dynamics and distribution of zooplankton in lake Drukshiai in 1994

    International Nuclear Information System (INIS)

    Mazheikaite, S.; Pashkauskas, R.

    1995-01-01

    Investigations on the zooplankton of Lake Drukshiai were carried out in 1994. There were registered 62 taxons of protozoa and 50 taxons of metazoa, and compared with the data of 1979 - 1986 the diversity of species composition decreased 2.1 times. Eurytermic and stenothermic thermophylic species prevailed in the plankton biocenosis. In protozooplankton dominated ciliates of subclasses teolotricha and spirotricha, in metazooplankton -planctonic crustacea (Copopeda and Cladocera). Rotifers (Rotaria) were abundant only in the shallow and heated water outlet area. Seasonal dynamics of protozooplankton indicated one maximum in spring and metazooplankton - in summer. High diferentiation in quantity and biomass of zooplankton in the lake revealed different level of eutrophication of some areas. (author). 7 refs., 5 figs

  3. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  4. Tracking Organic Carbon Transport From the Stordalen Mire to Glacial Lake Tornetrask, Abisko, Sweden

    Science.gov (United States)

    Beck, M. A.; Hamilton, B. T.; Spry, E.; Johnson, J. E.; Palace, M. W.; McCalley, C. K.; Varner, R. K.; Bothner, W. A.

    2016-12-01

    In subarctic regions, labile organic carbon from thawing permafrost and productivity of terrestrial and aquatic vegetation are sources of carbon to lake sediments. Methane is produced in lake sediments from the decomposition of organic carbon at rates affected by vegetation presence and type as well as sediment temperature. Recent research in the Stordalen Mire in northern Sweden has suggested that labile organic carbon sources in young, shallow lake sediments yield the highest in situ sediment methane concentrations. Ebullition (or bubbling) of this methane is predominantly controlled by seasonal warming. In this project we sampled stream, glacial and post-glacial lake sediments along a drainage transect through the Stordalen Mire into the large glacial Lake Torneträsk. Our results indicate that the highest methane and total organic carbon (TOC) concentrations were observed in lake and stream sediments in the upper 25 centimeters, consistent with previous studies. C/N ratios range from 8 to 32, and suggest that a mix of aquatic and terrestrial vegetation sources dominate the sedimentary record. Although water transport occurs throughout the mire, major depositional centers for sediments and organic carbon occur within the lakes and prohibit young, labile TOC from entering the larger glacial Lake Torneträsk. The lack of an observed sediment fan at the outlet of the Mire to the lake is consistent with this observation. Our results suggest that carbon produced in the mire stays in the mire, allowing methane production to be greater in the mire bound lakes and streams than in the larger adjacent glacial lake.

  5. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    Science.gov (United States)

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  6. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    Science.gov (United States)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  7. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    Science.gov (United States)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  8. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  9. Legacy effects of nitrogen and phosphorus in a eutrophic lake catchment: Slapton Ley, SW England

    Science.gov (United States)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2017-12-01

    Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is a shallow lake (maximum depth 2.9 m). In the 1960s it became apparent that the Lower Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. Long-term monitoring data are also available for the catchment area including the lake from the Environment Agency.The nitrate issue has been of particular interest at Slapton; although many longer series exist for large river basins like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for a small rural basin. Recent declines in nitrate concentration may reflect less intensive agricultural activity, lower fertiliser inputs in particular, but there may also be a legacy effect in the shallow groundwater system. Phosphorus concentrations in stream and lake water have also shown declining concentrations but a phosphorus legacy in the surficial lake sediments means that algal blooms continue to develop in most summers, as indicated by a continued rise in summer pH levels. Further field observation at the sediment-water interface is needed to better understand the biogeochemical drivers and the balance between N and P limitation in the lake. Successful management of the Nature Reserve requires better understanding of the links between hydrological and biogeochemical processes operating

  10. Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia

    Directory of Open Access Journals (Sweden)

    Johanna Mård Karlsson

    2014-01-01

    Full Text Available Arctic warming alters regional hydrological systems, as permafrost thaw increases active layer thickness and in turn alters the pathways of water flow through the landscape. Further, permafrost thaw may change the connectivity between deeper and shallower groundwater and surface water altering the terrestrial water balance and distribution. Thermokarst lakes and wetlands in the Arctic offer a window into such changes as these landscape elements depend on permafrost and are some of the most dynamic and widespread features in Arctic lowland regions. In this study we used Landsat remotely sensed imagery to investigate potential shifts in thermokarst lake size-distributions, which may be brought about by permafrost thaw, over three distinct time periods (1973, 1987–1988, and 2007–2009 in three hydrological basins in northwestern Siberia. Results revealed fluctuations in total area and number of lakes over time, with both appearing and disappearing lakes alongside stable lakes. On the whole basin scales, there is no indication of any sustained long-term change in thermokarst lake area or lake size abundance over time. This statistical temporal consistency indicates that spatially variable change effects on local permafrost conditions have driven the individual lake changes that have indeed occurred over time. The results highlight the importance of using multi-temporal remote sensing data that can reveal complex spatiotemporal variations distinguishing fluctuations from sustained change trends, for accurate interpretation of thermokarst lake changes and their possible drivers in periods of climate and permafrost change.

  11. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  12. Long-term records and modelling of acidification, recovery and liming at Lake Hovvatn, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hindar, A. [Norwegian Inst. for Water Research, Grimstad (Norway); Wright, R.F. [Norwegian Inst. for Water Research, Oslo (Norway)

    2005-11-01

    Scenarios for acidification in Europe have shown that large parts of southern Norway will be negatively impacted by sulfur (S) and nitrogen (N) emissions in the future. Long-term data of acidification and recovery as well as the effects of a liming program at Lake Store Hovvatn were presented in this paper, along with data collected from Lake Lille Hovvatn as unlimed reference. Water samples from the lakes were collected 5 times annually from varying depths. Total organic carbon was measured after wet chemical oxidation by infrared detection. Acidification hindcasts and forecasts for the period 1870-2050 were conducted with the dynamic model MAGIC, which simulated soil solution and surface water chemistry to predict average concentrations of the major ions. The model showed good agreement with major changes in water chemistry observed over the past 30 years, as well simulating pH and concentrations of inorganic aluminium (Al). The data were evaluated in terms of the prospects for the re-establishment of a self-sustaining brown trout population. All liming efforts at Lake Store Hovvatn resulted in improvements in water quality. However, the stocked fish showed excellent survival and growth rates after liming but no natural recruitment, which suggested that fish eggs at shallow depths under ice cover are a sensitive biological indicator. Continuous records of pH revealed serious difficulties in maintaining adequate water quality at shallow depths in winter. While various liming techniques were discussed, it was concluded that the problem of surface water acidification in southern Norway is not solved, and a long-term strategy is called for. 45 refs., 5 tabs., 6 figs.

  13. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    Science.gov (United States)

    Carling, G. T.; Randall, M.; Nelson, S.; Rey, K.; Hansen, N.; Bickmore, B.; Miller, T.

    2017-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to anthropogenic nutrient inputs. Utah Lake is a unique eutrophic freshwater lake that is naturally shallow, turbid, and alkaline with high dissolved oxygen levels that has experienced severe algal blooms in recent years. Recently, the Utah Division of Water Quality has proposed a new limitation of phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study was to characterize the fate and mobility of P in Utah Lake sediments to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 15 locations across Utah Lake. P concentrations in sediment ranged from 615 to 1894 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Sequential leach tests indicate that 25-50% of P is associated with Ca (CaCO₃/ Ca10(PO4)6(OH,F,Cl)2 ≈ P) and 40-60% is associated with Fe (Fe(OOH) ≈ P). Ca-associated P was confirmed by SEM images, which showed the highest P concentrations correlating with Ca (carbonate minerals/apatite). The Ca-associated P fraction is likely immobile, but the Fe-bound P is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% removal over the range of 1-10 mg/L P. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be temporarily available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond decreasing external nutrient

  14. Radiocarbon Ages and Environments of Deposition of the Wono and Trego Hot Springs Tephra Layers in the Pyramid Lake Subbasin, Nevada

    Science.gov (United States)

    Benson, L.V.; Smoot, J.P.; Kashgarian, Michaele; Sarna-Wojcicki, A.; Burdett, J.W.

    1997-01-01

    Uncalibrated radiocarbon data from core PLC92B taken from Wizards Cove in the Pyramid Lake subbasin indicate that the Trego Hot Springs and Wono tephra layers were deposited 23,200 ?? 300 and 27,300 ??300 14C yr B.P. (uncorrected for reservoir effect). Sedimentological data from sites in the Pyramid Lake and Smoke Creek-Black Rock Desert subbasins indicate that the Trego Hot Springs tephra layer was deposited during a relatively dry period when Pyramid Lake was at or below its spill point (1177 m) to the Winnemucca Lake subbasin. The Wono tephra layer was deposited when lake depth was controlled by spill across Emerson Pass sill (1207 m) to the Smoke Creek-Black Rock Desert subbasin. 18O data from core PLC92B also support the concept that the Trego Hot Springs tephra fell into a relatively shallow Pyramid Lake and that the Wono tephra fell into a deeper spilling lake. ?? 1997 University of Washington.

  15. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  17. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution

    International Nuclear Information System (INIS)

    Havens, K.E.; James, R.T.; East, T.L.; Smith, V.H.

    2003-01-01

    Low ratios of N:P and low underwater irradiance control dominance of cyanobacteria in a subtropical lake. - A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N 2 -fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 μg l -1 in the mid-1970s to over 100 μg l -1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N 2 -fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N 2 -fixing Anabaena became

  18. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  19. THE MORPHOBATHYMETRIC FEATURES OF THE CUCIULAT LAKES (SĂLAJ COUNTY AND THEIR WATERS’ PHYSICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Csaba HORVATH

    2010-12-01

    Full Text Available The lake units analyzed in this study are located in the Purcăreţ-Boiu Mare plateau, specifically in the formerly Cuciulat quarry (Salaj County. To the origin of the two lake basins, have contributed mostly anthropogenic factors and to a smaller extent natural ones. The lakes formed next to the quarry are significantly influenced by the spoil bank: this can be seen in the lakes’ form, in their bathymetry and also in some of their physical characteristics. The identification of the lakes’ morphobathymetric features and of the waters’ physical characteristics relied on measurements taken in the summer of 2009 (August 17. In the field, we used a Hannah HI 9828 multiparameter instrument to measure the waters’ physical characteristics and a GPS to pinpoint the measurements’ position. Also for the depth measurements, because they are shallow lakes, besides the GPS, we used a Seechi disk. To capture the best possible spatial variation of the mentioned characteristics, we used interpolation as modeling method.

  20. Profundal sideritic mudstone from an Eocene lake in Alaska

    International Nuclear Information System (INIS)

    Dickinson, K.A.

    1987-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual iron-meromictic Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Upper Cretaceous Darby pluton and on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the valley of the ancestral Tubutulik River in early Eocene time. The lake sediments included a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital grains, mostly quartz and clay minerals. Both lacustrine facies contain turbidites. The lacustrine rocks graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake occupied a small, deep basin in a tectonically active area of high relief. Meromixis was apparently stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixis decreased as the lake became shallower from sediment filling. The source of the dissolved iron in the monoimolimnion was probably the Eocene basalt. Carbon isotope analysis of the siderite suggests that the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (δ 13 C = +16.9) consistent with residual carbonate formed during methanogenic fermentation

  1. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  2. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP).

    Science.gov (United States)

    Zhao, Dayong; Huang, Rui; Zeng, Jin; Yan, Wenming; Wang, Jianqun; Ma, Ting; Wang, Meng; Wu, Qinglong L

    2012-11-01

    Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7 % of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4 % of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.

  3. Preliminary study of Lake Pontchartrain and vicinity using remotely sensed data from the ERTS-A satellite

    Science.gov (United States)

    Hidalgo, J. U. (Principal Investigator); Smalley, A. E.; Faller, K. H.; Irvin, M. B.

    1973-01-01

    The author has identified the following significant results. During the summer of 1972, huge mats of duckweeds (Lemnaceae) appeared on Lake Pontchartrain, a shallow estuary in southeastern Louisiana. In color infrared photography, duckweeds show a characteristic light lavender color, unlike algal mats or water hyacinth, as observed in low level aerial photography. Although at least five species are present in the area, most water coverage is by Lemna minor and Spirodela oligorrhiza. ERTS-1 imagery shows many areas of bayous, swamps, and marginal waters of Lake Pontchartrain covered with duckweeds. Subsequent passes show a seasonal decreases in duckweeds.

  4. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  5. Electronic archival tags provide first glimpse of bathythermal habitat use by free-ranging adult lake sturgeon Acipenser fulvescens

    Science.gov (United States)

    Briggs, Andrew S.; Hondorp, Darryl W.; Quinlan, Henry R.; Boase, James C.; Mohr, Lloyd C.

    2016-01-01

    Information on lake sturgeon (Acipenser fulvescens) depth and thermal habitat use during non-spawning periods is unavailable due to the difficulty of observing lake sturgeon away from shallow water spawning sites. In 2002 and 2003, lake sturgeon captured in commercial trap nets near Sarnia, Ontario were implanted with archival tags and released back into southern Lake Huron. Five of the 40 tagged individuals were recaptured and were at large for 32, 57, 286, 301, and 880 days. Temperatures and depths recorded by archival tags ranged from 0 to 23.5 ºC and 0.1 to 42.4 m, respectively. For the three lake sturgeon that were at large for over 200 days, temperatures occupied emulated seasonal fluctuations. Two of these fish occupied deeper waters during winter than summer while the other occupied similar depths during non-spawning periods. This study provides important insight into depth and thermal habitat use of lake sturgeon throughout the calendar year along with exploring the feasibility of using archival tags to obtain important physical habitat attributes during non-spawning periods.

  6. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  7. A coupled regolith-lake development model applied to the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    processes. The major part of the study area was covered by postglacial clay shortly after the area was deglaciated. As the water got shallower following isostatic rebound, more postglacial clay resuspended and exposed the glacial sediments beneath. The minimum areal extension of the postglacial clay occurred about 2000 BC and was localized to a deep area west of the island Graesoe. Next, the area of postglacial clay increased again to reach a local maximum around 2500 AD, then successively decreased until the sea left the study area (about 11,500 AD), exposing the greater part of the postglacial clay found in the lakes. Most of the lakes are shallow and will infill completely in 2,000 to 6,000 years. Exceptions are the deep lakes situated along today's Graesoeraennan that will exist for about 25,000 years. The last lake will be totally infilled around 35,000 AD. Permafrost conditions will appear in the Forsmark area at around 9400 AD. At that time, 30 of the 42 modelled lakes are already completely infilled and sedimentation processes will not be affected by the changed conditions.

  8. A coupled regolith-lake development model applied to the Forsmark site

    International Nuclear Information System (INIS)

    Brydsten, Lars; Stroemgren, Maarten

    2010-11-01

    processes. The major part of the study area was covered by postglacial clay shortly after the area was deglaciated. As the water got shallower following isostatic rebound, more postglacial clay resuspended and exposed the glacial sediments beneath. The minimum areal extension of the postglacial clay occurred about 2000 BC and was localized to a deep area west of the island Graesoe. Next, the area of postglacial clay increased again to reach a local maximum around 2500 AD, then successively decreased until the sea left the study area (about 11,500 AD), exposing the greater part of the postglacial clay found in the lakes. Most of the lakes are shallow and will infill completely in 2,000 to 6,000 years. Exceptions are the deep lakes situated along today's Graesoeraennan that will exist for about 25,000 years. The last lake will be totally infilled around 35,000 AD. Permafrost conditions will appear in the Forsmark area at around 9400 AD. At that time, 30 of the 42 modelled lakes are already completely infilled and sedimentation processes will not be affected by the changed conditions.

  9. Seasonal variations in water quality of an oxbow lake in response to multiple short-time pulses of flooding (Jataí Ecological Station--Mogi-Guaçu River, Luiz Antonio, SP-Brazil).

    Science.gov (United States)

    Krusche, A V; Mozeto, A A

    1999-01-01

    Mogi-Guaçu River is a six-order floodplain river in the upper Paraná River Basin, Southern Brazil. Its yearly discharge varies from a minimum of 100 m3.s-1 to a maximum of 600 m3.s-1. Diogo Lake is a shallow lake located at its floodplain within the Jataí Ecological Station (Luiz Antonio, São Paulo State) and is connected throughout the year to the river through a narrow and shallow channel. The main finding of this study is that the river hidrology controls the annual variations in lake hydrochemistry through a series of hydraulic effects related to oscillations in river discharge. Lake water quality is a resultant of differential contribution from local and regional watersheds. During the low water period, lake water quality is determined by inputs from Cafundó Creek, which drains the local watershed into the lake. Raising the river level during the rain season results in the damming of lake and culminates with the entrance of river waters into the plain. The geochemistry of waters in this system is determined by weathering of sandstones with basalt intrusions. Waters are acidic (river pH = 6.00 to 7.02 and stream-lake pH = 5.15 to 6.7) and dominant cations are Na+ and K+. Major anions are almost exclusively represented by bicarbonate and an unknown concentration of organic acid anions. The overall ionic load of these soft waters in the system is therefore very low.

  10. Distribution, vertical position and ecological implications of shallow gas in Bahía Blanca estuary (Argentina)

    Science.gov (United States)

    Bravo, M. E.; Aliotta, S.; Fiori, S.; Ginsberg, S.

    2018-03-01

    There has been a growing interest in the study of shallow gas due its importance in relation to the marine environment, climate change and human activities. In Bahía Blanca estuary, Argentina, shallow gas has a wide distribution. Acoustic turbidity and blanking are the main seismic evidence for the presence of shallow gas in the estuary. The former prevails in the inner sector of the estuary where gas is either near or in contact with the seabed. Gas deposits are generally associated with paleochannels corresponding to the Holocene paleodeltaic environment. Distribution studies of shallow gas in this estuary are necessary because its presence implies not only a geological risk for harbor activities but also because it may have noxious effects on the marine ecosystem, mainly on benthic communities. The comparison of benthic communities at a gas site (GS) with those at a control site (CS) indicated that gas could generate impoverishment in terms of individuals' abundance (GS: N = 357; CS: N = 724). Also, diversity indices showed great differences in the community structure at each site. This indicates that methane gas may act as a natural disturbance agent in estuarine ecosystems. The presence of gas in seabed sediments must therefore be taken into account when distribution studies are conducted of estuarine benthic communities.

  11. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    Science.gov (United States)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  12. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.

    Science.gov (United States)

    Havens, Karl E; James, R Thomas; East, Therese L; Smith, Val H

    2003-01-01

    A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N2-fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 microg l-1 in the mid-1970s to over 100 microg l-1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N2-fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N2-fixing Anabaena became dominant. In the near-shore regions of this shallow lake, low N:P ratios potentially favor blooms of N2-fixing

  13. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  14. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation

    Directory of Open Access Journals (Sweden)

    Marlene S. Arcifa

    2015-06-01

    Full Text Available The primary factor that governs the size and species composition of zooplankton is still a controversial issue and temperature is considered the main factor responsible for latitudinal differences. In waters with a narrow temperature range, such as in the tropics, predation may be a more important factor. Nearly three decades of intermittent studies of the crustacean plankton in a shallow tropical lake revealed that the main event that led to their restructuring was the appearance of a second predator, the water mite Krendowskia sp. The new predator and larvae of the dipteran Chaoborus brasiliensis Theobald exerted a combined, although asymmetrical effect on microcrustaceans. The period when the mite was detected was followed by the restructuring of the crustacean plankton community. Predation by these two invertebrates emerged as the factor responsible for community changes, involving an increased contribution of copepods and decreases in the relative abundance of smaller cladoceran species. In the short term, the mite caused a decrease in species richness and the annual mean instantaneous composition of cladocerans, a predominance of large-sized species (Daphnia ambigua Scourfield and Daphnia gessneri Herbst and the virtual disappearance of small species (e.g., Bosmina tubicen Brehm. The long-term impact resulted in increased species richness and the dominance of large and medium-sized cladocerans, such as D. gessneri and Ceriodaphnia richardi Sars. The larger body size of three cladocerans, the two Daphnia species and B. tubicen, in the long term, may be a response to the dominant predator, Chaoborus. The seasonal variation in the predator abundance, mainly Chaoborus larvae, allowed the prey to recover during the cool season. The copepods Tropocyclops prasinus meridionalis (Fischer and Thermocyclops decipiens Kiefer were less affected by predation than the cladocerans; their contribution to the crustacean plankton increased 12-28% after the

  15. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2001-03-01

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  16. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.

    Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  17. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  18. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    Science.gov (United States)

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow

  19. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia

    Science.gov (United States)

    Owens, Randall W.; Dittman, Dawn E.

    2003-01-01

    In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths 100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of abundance. We do not expect slimy

  20. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    Science.gov (United States)

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies ( 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  1. Extreme Weather Years Drive Episodic Acidification and Brownification in Lakes in the Northeast US: Implications for Long-term Shifts in Dissolved Organic Carbon, Water Clarity, and Thermal Structure

    Science.gov (United States)

    Strock, K.; Saros, J. E.

    2017-12-01

    Interannual climate variability is expected to increase over the next century, but the extent to which hydroclimatic variability influences biogeochemical processes is unclear. To determine the effects of extreme weather on surface water chemistry, a 30-year record of surface water geochemistry for 84 lakes in the northeastern U.S. was combined with landscape data and watershed-specific weather data. With these data, responses in sulfate and dissolved organic carbon (DOC) concentrations were characterized during extreme wet and extreme dry conditions. Episodic acidification during drought and episodic brownification (increased DOC) during wet years were detected broadly across the northeastern U.S. Episodic chemical response was linearly related to wetland coverage in lake watersheds only during extreme wet years. The results of a redundancy analysis suggest that topographic features also need to be considered and that the interplay between wetlands and their degree of connectivity to surface waters could be driving episodic acidification in this region. A subset of lakes located in Acadia National Park, Maine U.S.A. were studied to better understand the implications of regional increases of DOC in lakes. Water transparency declined across six study sites since 1995 as DOC increased. As clarity declined, some lakes experienced reduced epilimnion thickness. The degree to which transparency changed across the lakes was dependent on DOC concentration, with a larger decline in transparency occurring in clear water lakes than brown water lakes. The results presented here help to clarify the variability observed in long-term recovery from acidification and regional increases in DOC. Specifically, an increased frequency of extreme wet years may be contributing to a recent acceleration in the recovery of lake ecosystems from acidification; however, increased frequency of wet years may also lead to reduced water clarity and altered physical lake habitat. Clarifying the

  2. The impact of warming and nutrients on algae production and microcystins in seston from the iconic lake lesser Prespa, Greece

    NARCIS (Netherlands)

    Maliaka, Valentini; Faassen, Elisabeth J.; Smolders, Alfons J.P.; Lürling, Miquel

    2018-01-01

    Lake Lesser Prespa and its adjacent pond, Vromolimni in Greece, is a shallow freshwater system and a highly protected area hosting an exceptional biodiversity. The occurrence of microcystins (MCs) producing cyanobacterial blooms in these waters during recent years can be harmful to the wildlife. We

  3. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    Science.gov (United States)

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  4. Limitations for life in Lake Vostok, Antarctica

    Science.gov (United States)

    Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya.; Leitchenkov, G. L.; Raynaud, D.; Petit, J. R.

    2003-04-01

    Ribosomal RNA gene sequence data indicates that both glacial and accretion (re-frozen lake water) Vostok ice samples are exceedingly clean in regard to microbe content. This makes ice sample decontamination (from drilling fluid and human activity) a crucial issue. The 4km thick ice sheet and the 0.8 Ma transit time to reach the lake make a severe constrain on the transit of microbes. At present no any evidence for revived microbes is reported for deep glacial Vostok ice core. This is probably due to the presence of liquid water films at the grain boundaries and the dissolved oxygen which both may be harmful for microbial cells/DNA survival. Even more horrible conditions are faced by microorganisms when they are released in the open lake since oxygen is expected to be in excess here (up to 1.3 g/l) making the open lake a 'cold oxygen reactor'. Such a high oxygen tension can be highly toxic and even chemically destructive for living cells and DNA. Indeed, until now we have no indication for undamaged full-sized small rDNA subunit for bacteria and archaea in Vostok accretion ice core up to 3623 m horizon. Thus, it seems that open lake provides no habitat for free-living bacteria. In the 15 kyr old accreted ice core from 3607 m depth, which contains sediment inclusions, we found puzzling signatures for three moderately thermophilic-like chemolithoautotroph-related bacteria. In fact, a hydrothermal environment is likely existing in deep crustal faults within the lake bedrock. Seeping solutions from the crust encouraged by rare seismotectonic events boost hydrothermal plume and may flush out 'crustal' bacteria and mineral products up to their vents. Some of them likely open in a shallow bay upstream Vostok where microbes and sediments may steadily be trapped by a rapid process of accretion. In accreted ice, absence of gas, shorter time and larger ice crystals make DNA better preserved. Lake Vostok can be viewed as a well isolated from the above surface biota ecosystem

  5. Sediment lithostratigraphy and past changes in sedimentary environment in isolated lakes in Satakunta region; Sedimenttistratigrafia ja sedimentaatioympaeristoen muutokset Itaemerestae kuroutuneissa jaervissae Satakunnassa

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, A.E.K. [GTK Geological Survey of Finland, Espoo (Finland)

    2011-12-15

    The purpose of the present study was to investigate lacustrine sediment sections in lakes isolated from the Baltic Sea basin and appearing in Satakunta region. One of the aims was to characterize their sediment composition and structures (sediment lithostratigraphy) and to describe their past and present sedimentary environment. Altogether, 8 lakes were selected for the study based on their variable appearance and catchment environmental conditions, i.e. properties such as lake shape, size, and morphometry, as well as altitude and geology of the drainage basin. The primary research methods applied included use of ground penetrating radar, sediment coring and physical sedimentological applications. Sediment erosion, transportation and deposition (re-deposition) are significant but often slowly-appearing processes in lacustrine environment, such as the one presently studied. The rate of erosion and sediment yield depend primarily on water depth in different parts of a lake, wind and current action, and hydrological (palaeohydrological) changes. All the presently studied sediment sections were characterized by erosion and redeposition horizons. However, this is not surprising considering their isolation history from the Baltic Sea basin and current rather shallow nature. All presently studied lakes contained 2-8 meters thick section of post-glacial sediments. Being rather shallow and filled with sediments, these lakes were considered to be prone to erosion by wind and wave actions as well as sediment re-deposition. Some of the presently studied sediment sections were characterized by 10 to 50 cm thick (sandy) erosion horizons in their type-stratigraphies. However, sections were not discovered to contain massive discontinuity surfaces that would indicate fault-type sediment structures during the past 8000 years. Neither did the ground penetrating radar data show significant faults. (orig.)

  6. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: implications for aquifer susceptibility

    International Nuclear Information System (INIS)

    Tesoriero, Anthony J.; Spruill, Timothy B.; Eimers, Jo L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O 2 ) and nitrate (NO 3 - ) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O 2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p 3 - found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 μg/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone

  7. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  8. Lake-level variation in the Lahontan basin for the past 50,000 years

    Science.gov (United States)

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  9. Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach

    Directory of Open Access Journals (Sweden)

    Tiiu Koff

    2016-11-01

    Full Text Available Palaeolimnological techniques were utilized to determine the extent of the effect of anthropogenic pollutants or other environmental stressors on three lake ecosystems over the last 200 years. The ecology of the study sites has experienced significant changes due to various activities such as (1 extensive catchment drainage and using poisoning as a fish management measure, (2 seepage of urban waste water due to establishment and growth of a town and (3 artificial inflow of oil-shale mining waters. Sediment geochemical composition, fossil pigments and Cladocera remains from the sediment cores were analysed to demonstrate that sufficient information can be derived from sediments to permit a historical reconstruction. The integrated use of archival maps, historical records and lake monitoring data confirmed links to anthropogenic pollutants, primarily on the catchment level. The examples show how the sediment indicators provide unique insights into the causes and temporal dynamics of lake ecosystem changes relevant for environmental management decisions. This study demonstrates that palaeolimnology has great potential to assist in eutrophication assessment and management efforts in waterbodies.

  10. Late Holocene distribution of lake sediment and peat in NE Uppland, Sweden

    International Nuclear Information System (INIS)

    Bergstroem, Elisabeth

    2001-02-01

    This report is part of a larger project conducted by SKB. The aim is to carry out investigations of eight lakes and one bog, with respect to stratigraphic and geographic distribution of sediment and peat. More than 150 corings were made with a Russian peat sampler. The bog was investigated regarding its isolation from the Baltic basin. This site is included in the shore displacement model elaborated from other sites situated at the same isobase for the Litorina Sea. Northern Uppland is an area with a smooth topography, which also affects the lake basins. The water depth is generally shallow, 1-3 metres. The bedrock mainly consists of granitoids. A few areas consist of meta volcanics, younger granites and pegmatites. The Quaternary deposits in Uppland are more or less calcareous, which is reflected in the rich flora with e. g. orchids and saw grass. Till is the most common deposit in the area covering considerable areas but rarely forming geomorphological features. Glaciofluvial deposits i. e. eskers, stretches in more or less S-N direction, being generally small. In northern Uppland, large areas are covered by mires. Most of them are affected by human activities in the form of ditching; some are used for cultivation or as pasture land. One site, Vissomossen, with a levelled isolation threshold at 27. 4 m a. s. l. , is mainly a fen, with a bog developing in the central part. Diatom analyses and AMS dates show that the basin was earlier a bay of the Litorina Sea and isolated 3500-3600 14 C years BP. The former lake basin was as large as the present extension of the mire. Accumulated material reveals that the lake during time has been filled in with sediment, overgrown and finally forming a mire. The result of the present study is summarized as an extended shore displacement model for northern Uppland, and it reflects an ongoing regression in the area. A decline in regression can be compared with the Litorina transgression 3 (L3), which in the Stockholm area is dated

  11. Differentiating TOC sources, preservation, and potential methane emissions in sub-Arctic lakes in Sweden

    Science.gov (United States)

    Johnson, J. E.; Varner, R. K.; Wik, M.; Chanton, J.; Crill, P. M.

    2015-12-01

    Organic carbon-rich sediments from high latitude, shallow lakes and ponds are significant sources of methane throughout the Arctic. The origin and evolution of these lakes and ponds, however, is often not the same. Several lake types have been identified based on (1) hydrological conditions (melt-water fed, rain water fed, groundwater influenced, evaporation dominated, drained) (2) permafrost condition (thermokarst), and (3) time of origin (glacial or post-glacial). Given sufficient time (100's to 1000's years) many of these lake types may morph into others. In sub-Arctic Sweden, near Abisko and within the zone of discontinuous permafrost, the elongate glacial lake Torneträsk is fed by several streams draining the surrounding highlands. Lake Tornetrask is one of several NW-SE trending glacial lakes common in the landscape throughout northern and western Sweden. Between and alongside these glacial lakes, several small (ponds exist in low-lying mires. Sediment cores from the lakes in the Stordalen Mire are characterized by high total organic carbon (TOC) content (10-50 wt. %) in the uppermost ~50 cm and commonly underlain by glaciofluvial derived sediments with lower TOC (emissions from several of these lakes has also been measured and is driven by heat input. Coincident young ages of carbon in the sediments and in methane indicate in situ production. A published record from Lake Torneträsk shows sediments there contain significantly less TOC (1-2.5 wt. %) that is derived primarily from old, terrestrial organic carbon delivered via rivers to the lake. Although the larger and deeper glacial lakes currently occupy much of the landscape it is becoming clear that as the Arctic warms TOC preservation and methane production in the smaller lakes and ponds play a more significant, immediate role in emission of methane to the atmosphere. With continued warming in the Arctic, terrestrial TOC will be relinquished from highland watersheds to glacial lakes, but the methane

  12. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  13. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    Science.gov (United States)

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  14. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  15. Zeolitization of intracaldera sediments and rhyolitic rocks in the 1.25 Ma lake of Valles caldera, New Mexico, USA

    Science.gov (United States)

    Chipera, Steve J.; Goff, Fraser; Goff, Cathy J.; Fittipaldo, Melissa

    2008-12-01

    Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to depths of only a few tens of meters and resembles shallow "caldera-type zeolitization" as defined by Utada et al. [Utada, M., Shimizu, M., Ito, T., Inoue, A., 1999. Alteration of caldera-forming rocks related to the Sanzugawa volcanotectonic depression, northeast Honshu, Japan — with special reference to "caldera-type zeolitization." Resource Geol. Spec. Issue No. 20, 129-140]. Geology and 40Ar/ 39Ar dates limit the period of extensive zeolite growth to roughly the first 30 kyr after the current caldera formed (ca. 1.25 to 1.22 Ma). Zeolitic alteration was promoted by saturation of shallow rocks with alkaline lake water (a mixture of meteoric waters and degassed hydrothermal fluids) and by high thermal gradients caused by cooling of the underlying magma body and earliest post-caldera rhyolite eruptions. Zeolitic alteration of this type is not found in the later volcanic and lacustrine rocks of the caldera moat (≤ 0.8 Ma) suggesting that later lake waters were cooler and less alkaline. The shallow zeolitic alteration does not have characteristics resembling classic, alkaline lake zeolite deposits (no analcime, erionite, or chabazite) nor does it contain zeolites common in high-temperature hydrothermal systems (laumontite or wairakite). Although aerially extensive, the early zeolitic alteration does not form laterally continuous beds and are consequently, not of economic significance.

  16. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  17. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  18. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    Science.gov (United States)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  19. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake

    Directory of Open Access Journals (Sweden)

    Denise Tonetta

    2015-09-01

    Full Text Available ABSTRACTAlthough many studies have shown that the dispersion, increased abundance and dominance of cyanobacteria can be attributed to nutrient enrichment, we discuss features contributing to the dominance of Cylindrospermopsis raciborskii in a shallow, polymictic, subtropical coastal lake with low phosphorus and light limitation (Peri Lake. The presence and dominance of C. raciborskii in an environment with such characteristics emphasizes the idea that nutrients alone do not explain the high density of this cyanobacterium. Other features should be considered in explaining this species dominance, such as phosphorus storage and physiological flexibilitywhich seem to be key features to high densities in low phosphorus systems.

  20. A 200 year sedimentary record of progressive eutrophication in lake Greifen (Switzerland): Implications for the origin of organic-carbon-rich sediments

    Science.gov (United States)

    Hollander, David J.; McKenzie, Judith A.; Lo Ten Haven, H.

    1992-09-01

    Over the past 200 years Lake Greifen, a small lake in northeastern Switzerland, has undergone dramatic changes in primary productivity and eutrophication due to increased nutrient supply from agricultural activity and industrialization. A 40 year historical record of the water-column chemistry indicates that productivity and eutrophication reached a maximum in 1974, after which stricter regulations on the input of nutrients resulted in a progressive decrease. Collected cores show the sedimentary expression of this anthropogenically induced eutrophication by a well-developed annual sedimentation and by enhanced values of total organic carbon, organic-carbon accumulation rates, and hydrogen indices (HI) of the kerogens. Analyses of the carbon isotopic composition of sedimentary carbonates and organic matter reveal that the fractionation between these two phases varies with the HI of kerogens. This observation is explicable in terms of changing productivity and preservation of the organic matter, and the CO2(aq) budget of the water body. We propose that if high primary productivity were primarily responsible for the preservation and accumulation of organic matter, then a negative correlation will occur between Δδ13Ccalcite-organic matter (Δδ13Ccal-om) and HI values. In an environment with relatively low to moderate productivity but with bottom-water anoxia, a positive correlation will exist between Δδ13Ccal-om and HI values. This study of Lake Greifen has implications for understanding paleoenvironmental controls on ancient organic-carbon-rich sediments.

  1. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes.

    Science.gov (United States)

    Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M

    2007-09-01

    Although Lake Tanganyika is not the most species-rich of the Great East African Lakes it comprises by far the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. Our study focuses on the Tanganyikan cichlid tribe Perissodini, which exhibits one of the most peculiar feeding strategies found in cichlids-scale-eating. Their evolutionary history was reconstructed from 1416 bp DNA sequence of two mitochondrial genes (ND2 and partial control region) and from 612 AFLP markers. We confirm the inclusion of the zooplanktivorous genus Haplotaxodon in the tribe Perissodini, and species status of Haplotaxodon trifasciatus. Within the Perissodini, the major lineages emerged within a short period roughly 1.5-2 MYA, which makes their radiation slightly younger than that of other Tanganyikan cichlid tribes. Most scale-eaters evolved in deep-water habitat, perhaps associated with the previously documented radiations of other deep-water dwelling cichlid lineages, and colonized the shallow habitat only recently.

  2. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1, planktivorous fish-dominated lakes (Type 2, and eutrophic lakes with high cyanobacterial biomass (Type 3. A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where

  3. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Surficial geologic map of the Red Rock Lakes area, southwest Montana

    Science.gov (United States)

    Pierce, Kenneth L.; Chesley-Preston, Tara L.; Sojda, Richard L.

    2014-01-01

    The Centennial Valley and Centennial Range continue to be formed by ongoing displacement on the Centennial fault. The dominant fault movement is downward, creating space in the valley for lakes and the deposition of sediment. The Centennial Valley originally drained to the northeast through a canyon now represented by a chain of lakes starting with Elk Lake. Subsequently, large landslides blocked and dammed the drainage, which created Lake Centennial, in the Centennial Valley. Sediments deposited in this late Pleistocene lake underlie much of the valley floor and rest on permeable sand and gravel deposited when the valley drained to the northeast. Cold Pleistocene climates enhanced colluvial supply of gravelly sediment to mountain streams and high peak flows carried gravelly sediment into the valley. There, the lower gradient of the streams resulted in deposition of alluvial fans peripheral to Lake Centennial as the lake lowered through time to the level of the two present lakes. Pleistocene glaciers formed in the high Centennial Range, built glacial moraines, and also supplied glacial outwash to the alluvial fans. Winds from the west and south blew sand to the northeast side of the valley building up high dunes. The central part of the map area is flat, sloping to the west by only 0.6 meters in 13 kilometers (2 feet in 8 miles) to form a watery lowland. This lowland contains Upper and Lower Red Rock Lakes, many ponds, and peat lands inside the “water plane,” above which are somewhat steeper slopes. The permeable sands and gravels beneath Lake Centennial sediments provide a path for groundwater recharged from the adjacent uplands. This groundwater leaks upward through Lake Centennial sediments and sustains wetland vegetation into late summer. Upper and Lower Red Rock Lakes are formed by alluvial-fan dams. Alluvial fans converge from both the south and the north to form outlet thresholds that dam the two shallow lakes upstream. The surficial geology aids in

  5. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  6. Diatom assemblage in a tropical lake of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Lilian Rodrigues do Nascimento

    2010-02-01

    Full Text Available The composition and spatial variation of diatom assemblage in surface sediments of Caçó Lake (shallow, mesotrophic and weakly acid lake - Maranhão State, Brazil were analyzed in order to know the distribution pattern of the species along the lake during rainy season (April 1999. Four zones were established in the lake based on 21 diatoms species and habitat affinities. The first three zones (prime three meters deep to six meters deep were marked by the occurrence of Pinnularia gigas, Frustulia rhomboides, Encyonopsis krasskei, Eunotia camelus, E. femoriformis and E. monodon. Zone IV (seven to nine meters deep was inhabited mainly by Surirella biseriata and Fragilariforma floridana. During the beginning of the rainy season, the diatom assemblage in Caçó Lake was composed mainly by benthic and epiphytic forms that reflected the low lake levels and the abundance of littoral vegetation present in this lake.Com o objetivo de se conhecer a dinâmica espacial e a distribuição das diatomáceas contidas no sedimento superficial do lago Caçó, durante o período de chuvas (abril de 1999 foram realizadas coletas em um "transect" horizontal. A partir da observação destas coletas efetuadas a cada 1 metro pode-se observar que a distribuição das diatomáceas esteve fortemente ligada a ocorrência do banco de macrófitas da sua margem, com a ocorrência maciça das espécies epifíticas e bentônicas. A análise de agrupamento de dados permitiu uma melhor visualização, da sua distribuição a cada profundidade e também das associações específicas em cada zona. Os resultados deste estudo permitiram concluir que a ocorrência e distribuição das diatomáceas do Lago Caçó está fortemente ligada ao banco de macrófitas localizado em suas margens, definindo assim zonas características dentro do lago.

  7. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability

    Science.gov (United States)

    Bridgeman, Thomas B.; Schloesser, Don W.; Krause, Ann E.

    2006-01-01

    After a 40-year absence caused by pollution and eutrophication, burrowing mayflies (Hexagenia spp.) recolonized western Lake Erie in the mid 1990s as water quality improved. Mayflies are an important food resource for the economically valuable yellow perch fishery and are considered to be major indicator species of the ecological condition of the lake. Since their reappearance, however, mayfly populations have suffered occasional unexplained recruitment failures. In 2002, a failure of fall recruitment followed an unusually warm summer in which western Lake Erie became temporarily stratified, resulting in low dissolved oxygen levels near the lake floor. In the present study, we examined a possible link between Hexagenia recruitment and periods of intermittent stratification for the years 1997-2002. A simple model was developed using surface temperature, wind speed, and water column data from 2003 to predict stratification. The model was then used to detect episodes of stratification in past years for which water column data are unavailable. Low or undetectable mayfly recruitment occurred in 1997 and 2002, years in which there was frequent or extended stratification between June and September. Highest mayfly reproduction in 2000 corresponded to the fewest stratified periods. These results suggest that even relatively brief periods of stratification can result in loss of larval mayfly recruitment, probably through the effects of hypoxia. A trend toward increasing frequency of hot summers in the Great Lakes region could result in recurrent loss of mayfly larvae in western Lake Erie and other shallow areas in the Great Lakes.

  8. Lost lake - restoration of a Carolina bay

    Energy Technology Data Exchange (ETDEWEB)

    Hanlin, H.G.; McLendon, J.P. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; Wike, L.D. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Dietsch, B.M. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Univ. of Georgia, Aiken, SC (United States)

    1994-09-01

    Carolina bays are shallow wetland depressions found only on the Atlantic Coastal Plain. Although these isolated interstream wetlands support many types of communities, they share the common features of having a sandy margin, a fluctuating water level, an elliptical shape, and a northwest to southeast orientation. Lost Lake, an 11.3 hectare Carolina bay, was ditched and drained for agricultural production before establishment of the Savannah River Site in 1950. Later it received overflow from a seepage basin containing a variety of chemicals, primarily solvents and some heavy metals. In 1990 a plan was developed for the restoration of Lost Lake, and restoration activities were complete by mid-1991. Lost Lake is the first known project designed for the restoration and recovery of a Carolina bay. The bay was divided into eight soil treatment zones, allowing four treatments in duplicate. Each of the eight zones was planted with eight species of native wetland plants. Recolonization of the bay by amphibians and reptiles is being evaluated by using drift fences with pitfall traps and coverboard arrays in each of the treatment zones. Additional drift fences in five upland habitats were also established. Hoop turtle traps, funnel minnow traps, and dip nets were utilized for aquatic sampling. The presence of 43 species common to the region has been documented at Lost Lake. More than one-third of these species show evidence of breeding populations being established. Three species found prior to the restoration activity and a number of species common to undisturbed Carolina bays were not encountered. Colonization by additional species is anticipated as the wetland undergoes further succession.

  9. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China Using a Combined Model Approach

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-09-01

    Full Text Available The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model (MIKE 21 in conjunction with transport and particle-tracking sub-models to provide comprehensive investigation of transport behaviors in Poyang Lake. Model simulations reveal that the lake’s prevailing water flow patterns cause a unique transport trajectory that primarily develops from the catchment river mouths to the downstream area along the lake’s main flow channels, similar to a river-transport behavior. Particle tracking results show that the mean residence time of the lake is 89 days during July–September. The effect of the Yangtze River (the effluent of the lake on the residence time is stronger than that of the catchment river inflows. The current study represents a first attempt to use a combined model approach to provide insights into the transport behaviors for a large river–lake system, given proposals to manage the pollutant inputs both directly to the lake and catchment rivers.

  10. Structural Composition of Protozooplankton Communities in Relation to Environmental Factors in Shallow Lakes and Reservoirs of Rīga, Latvia

    Directory of Open Access Journals (Sweden)

    Buholce Linda

    2015-08-01

    Full Text Available Protozooplankton are dominant grazers of phytoplankton and an important component of the microbial food web, as a link between pico and nanoplankton to higher trophic levels. Their fast growing rate, relative abundance, biomass and diversity are used as indicators of organic and toxic pollution. The impact of urbanisation on ecosystems and their sustainability and biodiversity have recently been much studied. We studied the protozooplankton ciliate communities during the vegetation period from April to October in two small lakes (Bābelītis, Gaiļezers and two reservoirs (Bolderāja, Saurieši. The largest peak of biomass (15.7 × 102 mg/l was found in Gaiļezers Lake in August and of abundance (60.2 × 103 org/l in Bābelītis Lake in July. The lowest biomass (0.006 mg/l and abundance (0.12 × 103 org/l were found in the Saurieši Reservoir station. The most abundant ciliates were from the order Oligotrichida.

  11. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    coupled models have been applied to simulate the spatial variation trends of ecological condition under ecological water supplement as an example to reflect the application effect in lake restoration and management. The simulation results indicate that the models can provide a useful tool for lake restoration and management. The simulated spatial variation trends can provide a foundation for establishing permissible ranges for a selected set of water quality indices for a series of management measures such as watershed pollution load control and ecological water transfer. Meanwhile, the coupled models can help us to understand processes taking place and the relations of interaction between components in the lake ecosystem and external conditions. Taken together, the proposed models we established show some promising applications as middle-scale or large-scale lake management tools for pollution load control and ecological water transfer. These tools quantify the implications of proposed future water management decisions.

  12. Capturing Postseismic Processes of the 2016 Mw 7.1 Kumamoto Earthquake, Japan, Using Dense, Continuous GPS and Short-repeat Time ALOS-2 InSAR Data: Implications for the Shallow Slip Deficit Problem

    Science.gov (United States)

    Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.

    2017-12-01

    Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.

  13. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  14. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    Science.gov (United States)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  15. Lake Restoration in Terms of Ecological Resilience: a Numerical Study of Biomanipulations under Bistable Conditions

    Directory of Open Access Journals (Sweden)

    Takashi Amemiya

    2005-12-01

    Full Text Available An abstract version of the comprehensive aquatic simulation model (CASM is found to exhibit bistability under intermediate loading of nutrient input, supporting the alternative-stable-states theory and field observations for shallow lakes. Our simulations of biomanipulations under the bistable conditions reveal that a reduction in the abundance of zooplanktivorous fish cannot switch the system from a turbid to a clear state. Rather, a direct reduction of phytoplankton and detritus was found to be most effective to make this switch in the present model. These results imply that multiple manipulations may be effective for practical restorations of lakes. We discuss the present results of biomanipulations in terms of ecological resilience in multivariable systems or natural systems.

  16. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective.

    Science.gov (United States)

    Zhang, Yunlin; Yao, Xiaolong; Qin, Boqiang

    2016-07-01

    development of shallow lake limnology will be largely promoted.

  17. The role of light for fish-zooplankton-phytoplankton interactions during winter in shallow lakes - a climate change perspective

    DEFF Research Database (Denmark)

    Bramm, Mette Elisabeth; Lassen, Majbritt Kjeldahl; Liboriussen, Lone

    2009-01-01

    in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish. 4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers...... in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century...

  18. Implications of rate and state dependent friclion for creep on shallow faults

    Directory of Open Access Journals (Sweden)

    M. E. Belardinelli

    1994-06-01

    Full Text Available The aseismic sliding on shallow strike-slip faults, under the assumption of a non linear constitutive equation (velocity strengthening, is here treated as a two-dimensional quasi-static crack problem whose equations are solved numerically (boundary elements method. Results are compared with the corresponding one-dimensional («depth averaged» model by a suitable choice of the effective stiffness of the fault. In the one-dimensional case also the inertial term was taken into account in the evolutive equation. The current results are in agreement with an earlier one-dimensional model for afterslip as long as the state variable evolution is neglected a priori and friction depends only on velocity. In general, if the state variable is allowed to evolve, the previous approximation is valid for velocity strengthening slipping section of faults extending down to several kilometers in depth. For smaller sections of fault the evolution of the state variable affects the coseismic and early postseismic phase and accordingly it cannot be neglected. Moreover, in the presence of rheological heterogeneities, for fault sections shallower than 1 km depth, the comparison between the two-dimensional and one-dimensional models suggests the need to employ the two-dimensional model, possibly taking into account inertial effects.

  19. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions

    Science.gov (United States)

    Longo, William M.; Huang, Yongsong; Yao, Yuan; Zhao, Jiaju; Giblin, Anne E.; Wang, Xian; Zech, Roland; Haberzettl, Torsten; Jardillier, Ludwig; Toney, Jaime; Liu, Zhonghui; Krivonogov, Sergey; Kolpakova, Marina; Chu, Guoqiang; D'Andrea, William J.; Harada, Naomi; Nagashima, Kana; Sato, Miyako; Yonenobu, Hitoshi; Yamada, Kazuyoshi; Gotanda, Katsuya; Shinozuka, Yoshitsugu

    2018-06-01

    Alkenones are C35-C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n = 30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: -17.3-10.9 °C; mean annual precipitation range: 125-1657 mm yr-1; latitude range: 40-81°N), and are commonly found in neutral to basic lakes (pH > 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U37K) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U37K = 0.029 * T - 0.49; r2 = 0.60; p < 0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632°N, 149.602°W; Lake E5, 68.643°N, 149.458

  20. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    International Nuclear Information System (INIS)

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites