WorldWideScience

Sample records for shale combustion technology

  1. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  2. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  3. Evaluating possible industrial applications of combustible shales and shale ash wastes

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2016-08-01

    Full Text Available Today energy consumption is constantly growing while explored reserves of easily accessible oil are depleting, which is a reason why most countries tend to diversify their energy mix, develop non-hydrocarbon energy sources and use domestic types of fuel, including the low grade ones. Thereby interest is raised to such a source of hydrocarbons as combustible shales. Combustible shales appear to be one of the highest-potential types of organic raw materials, which may offset and in future even substitute oil products and gas. The paper is investigating behavior and structure of combustible shales during heat treatment in order to identify their possible industrial applications. A synchronous thermal analysis has been held, chemical composition of combustible shales’ mineral fraction and optimal conditions for shale fines briquetting have been determined.

  4. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  5. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  6. Producing electricity from Israel oil shale with PFBC technology

    International Nuclear Information System (INIS)

    Grinberg, A.; Keren, M.; Podshivalov, V.; Anderson, J.

    2000-01-01

    Results of Israeli oil shale combustion at atmospheric pressure in the AFBC commercial boiler manufactured by Foster Wheeler Energia Oy (Finland) and in the pressurized test facility of ABB Carbon AB (Finspong, Sweden) confirm suitability of fluidized-bed technologies in case of oil shale. The results approve possibility to use the PFBC technology in case of oil shale after solving of some problems connected with great amounts of fine fly ash. (author)

  7. Perspective usage estimation of Volga region combustible shale as a power generating fuel alternative

    Science.gov (United States)

    Korolev, E.; Barieva, E.; Eskin, A.

    2018-05-01

    A comprehensive study of combustible shale, common within Tatarstan and Ulyanovsk region, is carried out. The rocks physicochemical parameters are found to meet the power generating fuels requirements. The predictive estimate of ash products properties of combustible shale burning is held. Minding furnace process technology it is necessary to know mineral and organic components behavior when combustible shale is burnt. Since the first will determine slagging properties of energy raw materials, the second – its calorific value. In consideration of this the main research methods were X-ray, thermal and X-ray fluorescence analyses. Summing up the obtained results, we can draw to the following conclusions: 1. The combustible shale in Tatarstan and the Ulyanovsk region has predominantly low calorific value (Qb d = 5-9 MJ/kg). In order to enhance its efficiency and to reduce cost it is possible to conduct rocks burning together with some other organic or organic mineral power generating fuels. 2. High ash content (Ad = 60-80%) that causes a high external ballast content in shale implies the appropriateness of using this fuel resource next to its exploitation site. The acceptable distance to a consumer will reduce unproductive transportation charges for large ash and moisture masses. 3. The performed fuel ash components characteristics, as well as the yield and volatiles composition allow us to specify the basic parameters for boiler units, designed for the Volga combustible shale burning. 4. The noncombustible residual components composition shows that shale ash can be used in manufacture of materials of construction.

  8. Sulphation of oil shale ash under atmospheric and pressurized combustion conditions

    International Nuclear Information System (INIS)

    Kuelaots, I.; Yrjas, P.; Hupa, M.; Ots, A.

    1995-01-01

    One of the main problems in conventional combustion boilers firing pulverized oil shale is the corrosion and fouling of heating surfaces, which is caused by sulphur compounds. Another major problem, from the environmental point of view, are the high SO 2 emissions. Consequently, the amount of sulphur in flue gases must be reduced. One alternative to lower the SO 2 , concentration is the use of new technologies, such as pressurized fluidized bed combustion (PFBC). In FBC processes, the sulphur components are usually removed by the addition of limestone (CaCO 3 ) or dolomite (CaCO 3 x MgCO 3 ) into the bed. The calcium in these absorbents react with SO 2 , producing solid CaSO 4 . However, when burning oil shale, there would be no need to add limestone or dolomite into the bed, due to the initially high limestone content in the fuel (molar ratio Ca/S =10). The capture of sulphur by oil shale ashes has been studied using a pressurized thermogravimetric apparatus (PTGA). The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. Four different materials were tested - one cyclone ash from an Estonian oil shale boiler, two size fractions of Estonian oil shale and, one fraction of Israeli oil shale. The cyclone ash was found to be the poorest sulphur absorbent. In general, the results from the sulphur capture experiments under both atmospheric and pressurized fluidized bed conditions showed that the oil shale can capture not only its own sulphur but also significant amounts of additional sulphur from another fuel if the fuels are mixed together. (author)

  9. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  10. The combustion heat of power producing shale based on individual deliveries for the years 1968 to 1981

    Energy Technology Data Exchange (ETDEWEB)

    Yyspuu, L M; Rayur, K W; Sits, Kh I

    1983-01-01

    The results are cited of a retrospective study of the specific combustion heat of power producing shale relative to the geological and mining technological conditions for nine mines and four open pits of the Baltic Sea Basin. In 1981 the maximal mean annual combustion heatQsigma-c of 12.44 megajoules per kilogram was held by the shales from the Tammiku mine, while the minimum of 10.12 megajoules per kilogram was held by the shales from the Leningradskaya mine. The results are used in a predictive evaluation of the heat creativity of the total fuel of the Baltic Sea region and the Estonian state regional electric power plants (GRES) for the coming years.

  11. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  12. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  13. Oil shale technology

    International Nuclear Information System (INIS)

    Lee, S.

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail

  14. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  15. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  16. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Yang, Yu; Lu, Xiaofeng; Wang, Quanhai

    2017-01-01

    Highlights: • The co-combustion characteristic parameters were studied. • The co-combustion of oil shale and semi-coke could be expressed roughly by the addition of individual components. • Activation energy was calculated by Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. - Abstract: In the present work, thermogravimetric analysis was employed to investigate co-combustion behaviors of Fushun low calorific oil shale and its semi-coke. The synergy effect was estimated by using the interaction coefficient and the relative error of mean square root. In addition, activation energy was also calculated by means of Coats-Redfern, distributed activation energy model and Flynn-Wall-Ozawa methods. Results indicated that with the increase of oil shale mass fraction and oxygen concentration, combustion characteristics of the samples were improved. And some little interaction did occur during the co-combustion process, but it was relatively slight. Consequently, the co-combustion of oil shale and semi-coke still could be expressed roughly by the addition of individual components of the mixtures. Furthermore, activation energy of the samples decreased slowly at the initial stage attributed to the minerals’ catalytic effects, and in the final stage, it jumped to a high value, suggesting that the burnout of the samples was difficult. Besides, the mix proportion of oil shale which was added to stabilize the combustion in the circulating fluidized bed was also theoretically calculated.

  17. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis

    International Nuclear Information System (INIS)

    Fan, Yunlong; Yu, Zhaosheng; Fang, Shiwen; Lin, Yan; Lin, Yousheng; Liao, Yanfen; Ma, Xiaoqian

    2016-01-01

    Highlights: • Co-combustion of oil shale with municipal solid waste created significant changes. • Blending with municipal solid wastes could improve the combustion performance. • 10–30% of oil shale in the blends could be determined as the optimum ratio range. • Activation energy were calculated by the conversion rate and different proportion. - Abstract: The aim of this study is trying to reveal the thermal characteristics and kinetics of oil shale, municipal solid waste and their blends in the combustion process which are needed for efficient utilization. The combustion experiment is carried out in a thermogravimetric simultaneous thermal analyzer, where the temperature ranged from 110 °C to 900 °C at three different heating rates as 10 °C/min, 20 °C/min and 30 °C/min. Their kinetics were studied by Ozawa–Flynn–Wall and Friedmen methods. According to the data analysis, combustion characteristic index increased progressively with the increase of the proportion of municipal solid waste. And it’s suggested that there was certain interaction in the combustion process of oil shale and municipal solid waste. The average activation energy of the blends reached the minimum value, 177.7927 kJ/mol by Ozawa–Flynn–Wall method and 167.4234 kJ/mol by Friedmen method, when the proportion of MSW was 70%.

  18. A review on technologies for oil shale surface retort

    International Nuclear Information System (INIS)

    Pan, Y.; Zhang, X.; Liu, S.; Yang, S.A.; Ren, N.

    2012-01-01

    In recent years, with the shortage of oil resources and the continuous increase in oil prices, oil shale has seized much more attention. Oil shale is a kind of important unconventional oil and gas resources. Oil shale resources are plentiful according to the proven reserves in places. And shale oil is far richer than crude oil in the world. Technology processing can be divided into two categories: surface retorting and in-situ technology. The process and equipment of surface retorting are more mature, and are still up to now, the main way to produce shale oil from oil shale. According to the variations of the particle size, the surface retorting technologies of oil shale can be notified and classified into two categories such as lump shale process and particulate shale process. The lump shale processes introduced in this article include the Fushun retorting technology, the Kiviter technology and the Petrosix technology; the particulate processes include the Gloter technology, the LR technology, the Tosco-II technology, the ATP (Alberta Taciuk Process) technology and the Enefit-280 technology. After the thorough comparison of these technologies, we can notice that, this article aim is to show off that : the particulate process that is environmentally friendly, with its low cost and high economic returns characteristics, will be the major development trend; Combined technologies of surface retorting technology and other oil producing technology should be developed; the comprehensive utilization of oil shale should be considered during the development of surface retorting technology, meanwhile the process should be harmless to the environment. (author)

  19. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  20. Shale Gas Technology. White Paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    Shale gas is extracted using horizontal drilling and hydraulic fracturing or 'fracking'. None of which are particularly new technologies or shale gas specific. In this white paper attention is paid to Horizontal drilling; Hydraulic fracturing or 'frackin'; Other 'unconventionals'; and Costs.

  1. Oil shale activities in China

    International Nuclear Information System (INIS)

    Peng, D.; Jialin, Q.

    1991-01-01

    China has abundant oil shale resources, of the Early Silurian to Neogene age, the most important being the Tertiary period. The proved oil shale reserves in Fushun amount to 3.6 billion t, in Maoming 4.1 billion t. In Fushun, oil shale is produced by open-pit mining as a byproduct of coal, in Maoming it is also mined in open pits, but without coal. In China, scale oil has been produced from oil shale for 60 years. Annual production of crude shale oil amounts to about 200 000 t. The production costs of shale oil are lower than the price of crude petroleum on the world market. China has accumulated the experience and technologies of oil shale retorting. The Fushun type retort has been elaborated, in which the latent and sensible heat of shale coke is well utilized. But the capacity of such retort is relatively small, therefore it is suitable for use in small or medium oil plants. China has a policy of steadily developing shale oil industry. China is conducting oil shale research and developing oil shale processing technology. Much attention is being pay ed to the comprehensive utilization of oil shale, shale oil, and to environmental problems. In China, oil shale is mostly used for producing shale by retorting, attention will also be paid to direct combustion for power generation. Great achievements in oil shale research have been made in the eighties, and there will be a further development in the nineties. (author), 12 refs., 3 tabs

  2. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  3. Application of the High Temperature Gas Cooled Reactor to oil shale recovery

    International Nuclear Information System (INIS)

    Wadekamper, D.C.; Arcilla, N.T.; Impellezzeri, J.R.; Taylor, I.N.

    1983-01-01

    Current oil shale recovery processes combust some portion of the products to provide energy for the recovery process. In an attempt to maximize the petroleum products produced during recovery, the potentials for substituting nuclear process heat for energy generated by combustion of petroleum were evaluated. Twelve oil shale recovery processes were reviewed and their potentials for application of nuclear process heat assessed. The High Temperature Gas Cooled Reactor-Reformer/Thermochemical Pipeline (HTGR-R/TCP) was selected for interfacing process heat technology with selected oil shale recovery processes. Utilization of these coupling concepts increases the shale oil product output of a conventional recovery facility from 6 to 30 percent with the same raw shale feed rate. An additional benefit of the HTGR-R/TCP system was up to an 80 percent decrease in emission levels. A detailed coupling design for a typical counter gravity feed indirect heated retorting and upgrading process were described. Economic comparisons prepared by Bechtel Group Incorporated for both the conventional and HTGR-R/TCP recovery facility were summarized

  4. Production of oil from Israeli oil shale

    International Nuclear Information System (INIS)

    Givoni, D.

    1993-01-01

    Oil shale can be utilized in two-ways: direct combustion to generate steam and power or retorting to produce oil or gas. PAMA has been developing both direct combustion and retorting processes. Its main effort is in the combustion. An oil shale fired steam boiler was erected in the Rotem industrial complex for demonstration purposes. PAMA has also been looking into two alternative retorting concepts - slow heating of coarse particles and fast heating of fine particles. The present paper provides operating data of oil shale processing in the following scheme: (a) retorting in moving bed, pilot and bench scale units, and (b) retorting in a fluidized bed, bench scale units. (author)

  5. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  6. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  7. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  8. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  9. Shale gas technology innovation rate impact on economic Base Case – Scenario model benchmarks

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2015-01-01

    Highlights: • Cash flow models control which technology is affordable in emerging shale gas plays. • Impact of technology innovation on IRR can be as important as wellhead price hikes. • Cash flow models are useful for technology decisions that make shale gas plays economic. • The economic gap can be closed by appropriate technology innovation. - Abstract: Low gas wellhead prices in North America have put its shale gas industry under high competitive pressure. Rapid technology innovation can help companies to improve the economic performance of shale gas fields. Cash flow models are paramount for setting effective production and technology innovation targets to achieve positive returns on investment in all global shale gas plays. Future cash flow of a well (or cluster of wells) may either improve further or deteriorate, depending on: (1) the regional volatility in gas prices at the wellhead – which must pay for the gas resource extraction, and (2) the cost and effectiveness of the well technology used. Gas price is an externality and cannot be controlled by individual companies, but well technology cost can be reduced while improving production output. We assume two plausible scenarios for well technology innovation and model the return on investment while checking against sensitivity to gas price volatility. It appears well technology innovation – if paced fast enough – can fully redeem the negative impact of gas price decline on shale well profits, and the required rates are quantified in our sensitivity analysis

  10. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  11. Process for oil shale retorting

    Science.gov (United States)

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  12. Oil shale : could Shell's experimental oil shale technology be adapted to Alberta's bitumen carbonates?

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2006-07-01

    Although Shell has been trying to develop technologies to economically extract oil from shale containing kerogen for the last 25 years, the volume of oil Shell produced from its Mahogany Research Project in Colorado has added up to less than 2500 bbls in total, and the company has recently devoted $400 million to purchase leases on carbonate reservoirs in Alberta. This article examined whether or not the technologies developed by Shell for oil shales could be used to profitably extract bitumen from carbonates. Extracting bitumen from carbonates may be easier than producing oil from shale, as the resource in carbonates is already oil, whereas the oil in oil shale is actually kerogen, which needs to be chemically cracked at extremely high temperatures. Although the technical feasibility of an in situ cracking process has been proven, work remains to be done before Shell can invest in a commercial-scale oil shale project. Challenges to oil shale production include preventing groundwater from entering target zones and keeping produced fluids out of the groundwater. However, a freeze wall test has recently been designed where chilled liquid is circulated through a closed-loop pipe system to freeze formation water, sealing off an area about the size of a football field from the surrounding strata. The energy requirements of the process that Shell is testing to produce shale oil in Colorado remain unprofitably high, as higher temperatures are necessary for thermal cracking. Shell has yet to make a decision as to what energy sources it will use to make the production process economically viable. An energy conservation group in Colorado has claimed that production of 100,000 bbls of shale oil would require the largest power plant in Colorado history. 2 figs.

  13. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  14. Chemical kinetics and oil shale process design

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  15. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    Science.gov (United States)

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  16. The role of technology in unlocking the possibilities of shale gas

    CSIR Research Space (South Africa)

    Heydenrich, PR

    2017-10-01

    Full Text Available expelled from the Shale during burial and maturation and so it can be targeted without regard to structural closure. In some cases, a topseal (tight rock) is required Conventional System: Requires trap, or closure Unconventional System: Does... 2. Production of Shale Gas requires: ● Drilling technology capable of horizontal/geosteered well targeting (up to 3000m horizontal length is common) ● Completions technology to optimise the extraction of gas from the formation: ● Temporary...

  17. Indicative energy technology assessment of UK shale gas extraction

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; O’Grady, Áine

    2017-01-01

    Highlights: • UK shale gas ‘fracking’ is at a very early stage with an uncertain size of resource. • Shale gas extraction might benefit UK fuel security, as well as jobs and growth. • Potentially harmful environmental ‘side-effects’ must be monitored and regulated. • Gas bills for UK household and industrial consumers are unlikely to fall sharply. • Costs & benefits of shale gas fracking are unevenly distributed between communities. - Abstract: There is at present much interest in unconventional sources of natural gas, especially in shale gas which is obtained by hydraulic fracturing, or ‘fracking’. Boreholes are drilled and then lined with steel tubes so that a mixture of water and sand with small quantities of chemicals – the fracking fluid – can be pumped into them at very high pressure. The sand grains that wedge into the cracks induced in the shale rock by a ‘perforating gun’ then releases gas which returns up the tubes. In the United Kingdom (UK) exploratory drilling is at an early stage, with licences being issued to drill a limited number of test boreholes around the country. However, such activities are already meeting community resistance and controversy. Like all energy technologies it exhibits unwanted ‘side-effects’; these simply differ in their level of severity between the various options. Shale gas may make, for example, a contribution to attaining the UK’s statutory ‘greenhouse gas’ emissions targets, but only if appropriate and robust regulations are enforced. The benefits and disadvantages of shale gas fracking are therefore discussed in order to illustrate a ‘balance sheet’ approach. It is also argued that it is desirable to bring together experts from a range of disciplines in order to carry out energy technology assessments. That should draw on and interact with national and local stakeholders: ‘actors’ both large and small. Community engagement in a genuinely participative process – where the

  18. Shale gas - los yacimientos de hidrocarburos no convencionales: origen del Shale gas

    Directory of Open Access Journals (Sweden)

    José Francisco Longoria Treviño

    2015-06-01

    Full Text Available El shale gas tiene su origen en la acumulación de materia orgánica en cuencas marinas. En Norteamérica el gas de lutita (shale gas es una fuente emergente de gas natural de bajo costo. El gas natural es una fuente de energía abundante y relativamente limpia al quemarse. Se ha convertido en un combustible popular tanto para aplicaciones residenciales como industriales. De acuerdo con los datos recientes se estima que el suministro de gas natural derivado de yacimientos no convencionales (gas de lutita – shale gas durará más de 100 años. El gas natural ofrece un remplazo potencial para sustituir a los combustibles fósiles que producen gases de efecto invernadero y que en la actualidad se usan en la generación de energía, calefacción y transporte. Las emisiones de gas de efecto invernadero de la combustión de gas natural son aproximadamente 30% más limpias que aquellas que se derivan del aceite y 45% más limpias de las del carbón.

  19. Western oil shale development: a technology assessment. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  20. Method and arrangement of distillation of shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1920-03-29

    A method is given of distilling shale and other bituminous materials utilizing the heat from the combustion of the residue, possibly with additional heat from other fuels. It is characterized by the shale, which is arranged in layers, being first submitted to a process of distillation utilizing the heat mentioned, and at the same time recovering the products of distillation, and second the shale being burned without disturbing the layers to any appreciable extent. The patent has 16 more claims.

  1. Oil shale utilization in Israel

    International Nuclear Information System (INIS)

    Kaiser, A.

    1993-01-01

    Geological surveys have confirmed the existence of substantial Israeli oil shale reserves. The proven reserves contain approximately 12 billion tons of available ores, and the potential is deemed to be much higher. Economic studies conducted by PAMA indicate promising potential for power generation via Israel oil shale combustion. Electric power from oil shale appears competitive with power generated from coal fired power plants located along the coast. PAMA's demonstration power plant has been in operation since the end of 1989. Based on the successful results of the first year of operation, PAMA and IEC are now engaged in the pre-project program for a 1000 MW commercial oil shale fired power plant, based on eight 120 MW units; the first unit is scheduled to begin operation in 1996

  2. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  3. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  4. Shale gas. Shale gas formation and extraction

    International Nuclear Information System (INIS)

    Renard, Francois; Artru, Philippe

    2015-10-01

    A first article recalls the origin of shale gases and technological breakthroughs which allowed their exploitation, describes the development of shale gas exploitation in the USA during the 2000's and the consequences for the gas and electricity markets, and discusses the various environmental impacts (risks of pollution of aquifers, risks of induced seismicity, use and processing of drilling and production waters). The second article describes the formation of shale gas: presence of organic matter in sediments, early evolution with the biogenic gas, burrowing, diagenesis and oil formation, thermal generation of gas (condensates and methane). The author indicates the location of gas within the rock, and the main sites of shale oils and shale gases in the World. In the next part, the author describes the various phases of shale gas extraction: exploration, oriented drillings, well preparation for hydraulic fracturing, fracturing, processing of fracturing fluids, flow-back, gas production and transport, aquifer protection. He finally gives a brief overview of technical evolution and of shale gas economy

  5. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  6. Combustible shales of the U. S. S. R

    Energy Technology Data Exchange (ETDEWEB)

    Dobryanskii, A F

    1947-01-01

    Without exception, the geological character of all known oil shales (including sapropelic shales) indicates an aqueous origin for these minerals. The initial organic material of shales has accumulated in every geological period from Cambrian to the present time. Algae, amoeba, rhizopoda, multicellular organisms, and highly organized animals and plants were the forerunners of an intermediate decomposition product referred to as ''pelogen.'' After deposition, pelogen is transformed into sapropels under the influence of anerobic conditions. The composition of sapropel depends upon the percentage of humic acids, lignins, bitumens, albumin, and similar materials that were present in the pelogen. Wax and solid hydrocarbons do not contribute significantly to the process of conversion. Factors that affect the composition of the sapropel are prevalence of plant or animal matter, age of the sapropel, and depth of burial. The basic reaction involved in the change from pelogen to sapropel consisted of an increase in carbon and hydrogen content and a decrease in oxygen content. During this change, hydroxyl groups were removed in the form of water, carboxyl in the form of carbon dioxide gas, and ethereal oxygen in the form of carbon dioxide and carbon monoxide.

  7. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  8. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  9. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  10. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  11. The Devonian Marcellus Shale and Millboro Shale

    Science.gov (United States)

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  12. Application of surface–downhole combined microseismic monitoring technology in the Fuling shale gas field and its enlightenment

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-01-01

    Full Text Available The Fuling shale gas field in the Sichuan Basin, as a national shale gas demonstration area, is the largest commercially developed shale gas field in the world except those in North America. The fracturing technology in the mode of “well factory” has been applied widely in the gas field, but it is necessary to perform further investigation on the way to evaluate effectively the fracturing effect of multi-well platform “well factory” and the distribution laws of its induced fracture networks. In this paper, the fractures induced by the “well factory” at the JY 48 platform were real-time monitored by a surface–downhole combined microseismic monitoring technology. The geometric size and extension direction of artificial fractures induced in the model of “well factory” fracturing in the Jiaoshiba block of Fuling Shale Gas Field were preliminarily understood. Moreover, the fracturing parameters under the mode of “well factory” were recognized by using the comprehensive interpretation results of surface–downhole combined microseismic monitoring technology, together with the SRV fracturing prediction chart. Eventually, the distribution laws of artificial fractures during the “well-factory-zipper” fracturing in the Fuling Shale Gas Field were clarified definitely. This paper provides guidance for the optimization of fracturing parameters at the later stage.

  13. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  14. Shale gas boom in the US. Technology - economy - environmental effects

    International Nuclear Information System (INIS)

    Meyer-Renschhausen, Martin; Klippel, Philipp

    2017-01-01

    There is hardly any other issue that polarizes the energy policy discussion so far as the production of shale gas and shale oil by means of fracking processes. For the advocates, the expansion of unconventional gas and oil production offers the opportunity to intensify competition in the oil and gas markets, to lower prices and to reduce the dependence on uncertain deliveries of OPEC and Russia by increased domestic production. The critics, on the other hand, emphasize the environmental risks associated with fracking and see the extension of the fossil energy base as an obstacle to the climatically required transition to renewable energies. The German legislature emphasizes the environmental risks associated with fracking and has de facto forbidden fracking with the fracking law package of 24 June 2016. Internationally, the advantages and disadvantages of fracking are, however, assessed very differently, so that a further expansion of unconventional oil and gas production is to be expected. Fracking currently focuses almost entirely on the USA. Numerous studies investigate the potentials, the profitability of the different methods of production as well as the environmental effects. Therefore, American shale gas production offers an excellent viewpoint in order to estimate the technology, its economic efficiency and its consequences. This book evaluates the current studies and data and contributes to the assessment of the long-term energy-economic and climatological significance of shale gas production in the international context. [de

  15. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  16. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  17. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    International Nuclear Information System (INIS)

    Motlep, Riho; Sild, Terje; Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  18. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  19. Scenarios for shale oil, syncrude and electricity production in Estonia in the interim 1995-2025

    International Nuclear Information System (INIS)

    Oepik, I.

    1992-01-01

    This paper is based on the author's pre-feasibility studies of oil shale utilization in oil production, electricity generation and cement industry. The electricity generation has been calculated on the basis of 1.4 and 1.6 GW oil shale power plants with pulverized fuel combustion today. The three scenarios OILMIN, OILMED and OILMAX differ by annual oil production and different investment costs. The investments in the oil shale processing industry seem to be more profitable than those in electricity generation. It is also important to take into account that the very high sensitivity of oil market to geopolitical aspects of resources and to sudden crises, makes the crude price a stochastic parameter, which loses its indicative character for long term economic choice. Therefore it will be very important to have the electric power plants with flexible combined oil shale and coal combustion. 4 figs., 4 tabs., 6 refs

  20. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  1. Introduction to special section: China shale gas and shale oil plays

    Science.gov (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  2. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  3. Update on status of fluidized-bed combustion technology

    International Nuclear Information System (INIS)

    Stallings, J.; Boyd, T.; Brown, R.

    1992-01-01

    During the 1980s, fluidized-bed combustion technology has become the dominant technology for solid-fuel-fired power generation systems in the United States. Atmospheric fluidized beds as large as 160 MWe in capacity are now in operation, while pressurized systems reaching 80 MWe have started up in the last year. The commercial status, boiler performance, emissions, and future developments for both atmospheric and pressurized fluidized-bed combustion systems are discussed

  4. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  5. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  6. Barnett shale completions

    Energy Technology Data Exchange (ETDEWEB)

    Schein, G. [BJ Services, Dallas, TX (United States)

    2006-07-01

    Fractured shales yield oil and gas in various basins across the United States. A map indicating these fractured shale source-reservoir systems in the United States was presented along with the numerous similarities and differences that exist among these systems. Hydrocarbons in the organic rich black shale come from the bacterial decomposition of organic matter, primary thermogenic decomposition of organic matter or secondary thermogenic cracking of oil. The shale may be the reservoir or other horizons may be the primary or secondary reservoir. The reservoir has induced micro fractures or tectonic fractures. This paper described the well completions in the Barnett Shale in north Texas with reference to major players, reservoir properties, mineralogy, fluid sensitivity, previous treatments, design criteria and production examples. The Barnett Shale is an organic, black shale with thickness ranging from 100 to 1000 feet. The total organic carbon (TOC) averages 4.5 per cent. The unit has undergone high rate frac treatments. A review of the vertical wells in the Barnett Shale was presented along with the fracture treatment schedule and technology changes. A discussion of refracturing opportunities and proppant settling and transport revealed that additional proppant increases fluid recovery and enhances production. Compatible scale inhibitors and biocides can be beneficial. Horizontal completions in the Barnett Shale have shown better results than vertical wells, as demonstrated in a production comparison of 3 major horizontal wells in the basin. tabs., figs.

  7. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  8. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  9. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  10. Research and field tests of staged fracturing technology for casing deformation sections in horizontal shale gas wells

    Directory of Open Access Journals (Sweden)

    Shimeng Liao

    2018-02-01

    Full Text Available Horizontal shale gas well fracturing is mostly carried out by pumping bridge plugs. In the case of casing deformation, the bridge plug can not be pumped down to the designated position, so the hole sections below the deformation could not be stimulated according to the design program. About 30% of horizontal shale gas wells in the Changning and Weiyuan Blocks, Sichuan Basin, suffer various casing deformation after fracturing. Previously, the hole sections which could not be stimulated due to casing deformation were generally abandoned. As a result, the resources controlled by shale gas wells weren't exploited effectively and the fracturing effect was impacted greatly. There are a lot of difficulties in investigating casing deformation, such as complex mechanisms, various influencing factors and unpredictable deformation time. Therefore, it is especially important to seek a staged fracturing technology suitable for the casing deformation sections. In this paper, the staged fracturing technology with sand plugs inside fractures and the staged fracturing technology with temporary plugging balls were tested in casing deformation wells. The staged fracturing technology with sand plugs inside fractures was carried out in the mode of single-stage perforation and single-stage fracturing. The staged fracturing technology with temporary plugging balls was conducted in the mode of single perforation, continuous fracturing and staged ball dropping. Then, two kinds of technologies were compared in terms of their advantages and disadvantages. Finally, they were tested on site. According to the pressure response, the pressure monitoring of the adjacent wells and the microseismic monitoring in the process of actual fracturing, both technologies are effective in the stimulation of the casing deformation sections, realizing well control reserves efficiently and guaranteeing fracturing effects. Keywords: Shale gas, Horizontal well, Casing deformation, Staged

  11. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  12. Suggestions on the development strategy of shale gas in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-12-01

    Full Text Available From the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1 Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2 Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3 The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4 Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5 Reform the mining rights management system, establish information platform of shale

  13. Shale gas exploitation: Status, problems and prospect

    Directory of Open Access Journals (Sweden)

    Shiqian Wang

    2018-02-01

    Full Text Available Over the past five years, great progress has been made in shale gas exploitation, which has become the most driving force for global gas output growth. Hydrocarbon extraction from shale helps drive the USA on the road to energy independence. Besides, shale oil & gas production has been kept in a sustained growth by continuous improvement in drilling efficiency and well productivity in the case of tumbling oil prices and rig counts. Shale gas reserves and production have been in a rapid growth in China owing to the Lower Paleozoic Wufeng and Longmaxi shale gas exploitation in the Sichuan Basin, which has become an important sector for the future increment of gas reserves and output in China. However, substantial progress has been made neither in non-marine shale gas exploitation as previously expected nor in the broad complicated tectonic areas in South China for which a considerable investment was made. Analysis of the basic situation and issues in domestic shale gas development shows that shale gas exploitation prospects are constrained by many problems in terms of resources endowment, horizontal well fracturing technology, etc. especially in non-marine shale deposits and complicated tectonic areas in South China where hot shales are widely distributed but geological structures are found severely deformed and over matured. Discussion on the prospects shows that the sustained and steady growth in shale gas reserves and production capacity in the coming years lies in the discovery and supersession of new shale plays in addition to Wufeng and Longmaxi shale plays, and that a technological breakthrough in ultra-high-pressure and ultra-deep (over 3500 m buried in the Sichuan Basin marine shale gas exploitation is the key and hope. Keywords: Shale gas, Exploitation, Marine facies, Hot shale, Resource endowment, Sichuan Basin, South China, Complicated tectonic area, Gas play

  14. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  15. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  16. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  17. Oil shale commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  18. The technology available for more efficient combustion of waste gases

    International Nuclear Information System (INIS)

    Burrows, J.

    1999-01-01

    Alternative combustion technologies for open flare systems are discussed, stressing their advantages and limitations while meeting the fundamental requirements of personnel and plant safety, high destruction efficiencies, environmental parameters and industrial reliability. The use of BACT (Best Available Control Technologies) is dependent on the destruction efficiency of waste gas defined by regulatory agencies or industrial leaders. Enclosed vapour combustors and high destruction efficiency thermal oxidation are two of the technologies which result in more efficient combustion of waste gases. There are several conditions that should be considered when choosing combustion equipment for the disposal of waste gas. These include volatile organic compounds content, lower heating value, the composition of the waste gas, the specified combustion efficiency, design flow rates, smokeless operation, operating conditions, ground level radiation, SO 2 dispersion, environmental and social expectations, and economic limitation. 10 figs

  19. Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Chuguang Zheng

    2015-03-01

    Full Text Available Oxyfuel combustion with carbon capture and sequestration (CCS is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 MWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration (RD&D roadmap for oxyfuel combustion in China has become a critical component of the global RD&D roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RD&D process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and next-generation oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion.

  20. EVALUATION OF SHALE GAS POTENTIAL IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Lidiya Parkhomchik

    2015-01-01

    Full Text Available The article considers the primary evaluation of the shale gas resource potential in Kazakhstan, as well as defines the most problematic issues for the large-scale shale gas production over the state. The authors pay special attention to the national strategy of the Kazakhstani government in the sphere of the unconventional energy sources production, defining the possible technological and environmental problems for the shale gas extraction. The article also notes that implementation of the fracking technologies in the country could cause both positive and negative effects on the economy of Kazakhstan. Therefore, further steps in this direction should be based on the meaningful and comprehensive geological data regarding the shale gas potential.

  1. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  2. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  3. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  4. Shale gas. A provisional assessment of climate change and environmental impacts

    International Nuclear Information System (INIS)

    Wood, R.; Gilbert, P.; Sharmina, M.; Anderson, K.; Footitt, A.; Glynn, S.; Nicholls, F.

    2011-01-01

    This report, commissioned by The Co-operative, provides a provisional review and assessment of the risks and benefits of shale gas development, with the aim of informing The Co-operative's position on this 'unconventional' fuel source. The analysis within the report addresses two specific issues associated with the extraction and combustion of shale gas. Firstly, it outlines potential UK and global greenhouse gas (GHG) emissions arising from a range of scenarios building on current predictions of shale gas resources. Secondly, it explores the health and environmental risks associated with shale gas extraction. It should be stressed that a key issue in assessing these issues has been a paucity of reliable data. To date shale gas has only been exploited in the US and, while initial estimates have been made, it is difficult to quantify the possible resources in other parts of the globe, including the UK. Equally, information on health and environmental aspects is of variable quality and only now is there any systematic effort being undertaken to better understand these issues. Therefore, while every effort has been made to ensure the accuracy of the information in the report, it can only be as accurate as the information on which it draws. It is clear however, that while shale gas extraction, at a global level, does not involve the high energy and water inputs at the scale of other unconventional fuels, such as oil derived from tar sands, it does pose significant potential risks to human health and the environment. Principally, the potential for hazardous chemicals to enter groundwater via the extraction process must be subject to more thorough research prior to any expansion of the industry being considered. Additionally, while being promoted as a transition route to a low carbon future, none of the available evidence indicates that this is likely to be the case. It is difficult to envisage any situation other than shale gas largely being used in addition to other

  5. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  6. Low emission turbulent technology for fuel combustion

    International Nuclear Information System (INIS)

    Finker, F. Z.; Kubyshkin, I. B.; Zakharov, B. Yu.; Akhmedov, D. B.; Sobchuk, Ch.

    1997-01-01

    The company 'POLITEKHENERGO' in co-operation and the Russian-Poland firm 'EnergoVIR' have performed investigations for modernization of the current existing boilers. A low emission turbulent technology has been used for the modernization of 10 industrial boilers. The reduction of NO x emissions is based on the following processes: 1) multistage combustion assured by two counter-deviated fluxes; 2) Some of the combustion facilities have an abrupt slope and a reduced air supply which leads to an intense separation of the fuel in the bottom part and a creation of a low-temperature combustion zone where the active restoration of the NO x takes part; 3) The influence of the top high-temperature zone on the NO x formation is small. Thus the 'sandwich' consisting of 'cold' and'hot' combustion layers provides a full rate combustion. This technique permits to: decrease of the NO x and CO x down to the European standard values;increase of the efficiency in 1-2%; obtain a stable coal combustion up to 97-98%; assure the large loading range (30 -100%); modernize and use the old boilers

  7. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  8. Oil shale highlights

    International Nuclear Information System (INIS)

    1994-01-01

    The low prices of crude oil have continued to retard the commercial development of oil shale and other syn fuels. Although research funds are more difficult to find, some R and D work by industry, academia, and governmental agencies continues in the United States and in other parts of the world. Improvements in retorting technology, upgrading oil-shale feedstock, and developing high-value niche-market products from shale oil are three notable areas of research that have been prominent for the past several years. Although the future prices of conventional crude cannot be predicted, it seems evident that diminishing supplies and a burgeoning world population will force us to turn to alternate fossil fuels as well as to cleaner sources of non-fossil energy. (author)

  9. Patent analysis to identify shale gas development in China and the United States

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Sohn, So Young

    2014-01-01

    Shale gas has become an increasingly important form of hydrocarbon energy, and related technologies reflect the geographical characteristics of the countries where the gas is extracted and stored. The United States (U.S.) produces most of the world’s shale gas, while China has the world’s largest shale gas reserves. In this research, we focused on identifying the trends in shale-gas related technologies registered to the United States Patent and Trademark Office (USPTO) and to the State Intellectual Property Office of the People’s Republic of China (SIPO) respectively. To cluster shale-gas related technologies, we text-mined the abstracts of patent specifications. It was found that in the U.S., the key advanced technologies were related to hydraulic fracturing, horizontal drilling, and slick water areas, whereas China had a focus on proppants. The results of our study are expected to assist energy experts in designing energy policies related to technology importation. - Highlights: • We analyzed shale gas-related patent applications in the USPTO and SIPO. • We clustered shale gas patents by text mining patent abstract. • Differences were observed in shale gas technologies developed in the U.S. and China. • We proposed the policies of shale gas exploration and development based on patent analysis

  10. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  11. Development of new estimation method for CO2 evolved from oil shale

    International Nuclear Information System (INIS)

    Sato, S.; Enomoto, M.

    1997-01-01

    The quality of fossil fuels tends to be evaluated by amounts of CO 2 emissions. For the evaluation of an oil shale from this point, an on-line thermogravimetric-gas chromatographic system was used to measure CO 2 evolution profiles on temperature with a small oil shale sample. This method makes it possible to estimate the amounts of CO 2 evolved from kerogen and carbonates in retorting and those from carbonates in combustion, respectively. These results will be basic data for a novel oil shale retorting process for the control of CO 2 emissions. The profiles for Thai and Colorado oil shales have shown CO 2 mainly evolved by the pyrolysis of kerogen below 550 degree C, and that evolved by the decomposition of carbonates above that temperature. On the other hand, the profile for Condor oil shale showed that most carbonates decomposed below 550 degree C, while only small amounts of carbonates decomposed above this temperature. 14 refs., 2 figs., 3 tabs

  12. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  13. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production

    OpenAIRE

    GANDOSSI Luca

    2013-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  14. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  15. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  16. Scoping of fusion-driven retorting of oil shale

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1979-11-01

    In the time frame beyond 2005, fusion reactors are likely to make their first appearance when the oil shale industry will probably be operating with 20% of the production derived from surface retorts operating on deep mined shale from in situ retorts and 80% from shale retorted within these in situ retorts using relatively fine shale uniformly rubblized by expensive mining methods. A process was developed where fusion reactors supply a 600 0 C mixture of nitrogen, carbon dioxide, and water vapor to both surface and in situ retorts. The in situ production is accomplished by inert gas retorting, without oxygen, avoiding the burning of oil released from the larger shale particles produced in a simpler mining method. These fusion reactor-heated gases retort the oil from four 50x50x200m in-situ rubble beds at high rate of 40m/d and high yield (i.e., 95% F.A.), which provided high return on investment around 20% for the syncrude selling at $20/bbl, or 30% if sold as $30/bbl for heating oil. The bed of 600 0 C retorted shale, or char, left behind was then burned by the admission of ambient air in order to recover all of the possible energy from the shale resource. The hot combustion gases, mostly nitrogen, carbon dioxide and water vapor are then heat-exchanged with fusion reactor blanket coolant flow to be sequentially introduced into the next rubble bed ready for retorting. The advantages of this fusion-driven retorting process concept are a cheaper mining method, high yield and higher production rate system, processing with shale grades down to 50 l/mg (12 gpt), improved resource recovery by complete char utilization and low energy losses by leaving behind a cold, spent bed

  17. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  18. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  19. Review of modern low emissions combustion technologies for aero gas turbine engines

    Science.gov (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  20. Liberation play : technology and prices help release shale gas from unconventional status

    International Nuclear Information System (INIS)

    Roche, P.

    2006-01-01

    Shale gas production is set to increase in Canada. The British Columbia (BC) Oil and Gas Commission has approved more than 20 blocks of potential shale lands as experimental scheme areas targeting Cretaceous-age and Devonian-age shales. The BC government is currently working on a royalty scheme to benefit shale gas producers by allowing them to defer the bulk of the royalty collection until projects have reached a certain economic payout point. Interest in unconventional gas has spawned activity in previously unexplored areas of BC. Coals and shales are currently being evaluated near the community of Hudson's Hope, which has an estimated 1.8 tcf of shale gas. Canadian Spirit Resources Inc., who have leased the land, are now focusing on optimizing production processes to improve the economics of shale gas recovery. In Saskatchewan, shale gas exploration is occurring in the central region of the province, far from existing oil and gas production. PanTerra Resources Corp. has recently drilled 16 wells on its Foam Lake project, and detailed core and log analyses are being conducted to improve the understanding of the lithology and rock fabric and allow the company to design completion and stimulation programs. Stealth Ventures Ltd. is concentrating on developing the tight, biogenic Colorado Shale, which extends from Manitoba to the foothills of Alberta. Because of the shallow depths, the initial drilling costs are lower for biogenic gas than for thermogenic gas. Success will depend on the right drilling and completion methods. Junior explorers are also exploring for shale gas in an area straddling the St. Lawrence River between Quebec City and Montreal. Several large companies are examining the economic potential of shale gas production throughout North America. It was concluded that oil and gas operators are becoming more confident that domestic shale gas resources will be cheaper in future than imported liquefied natural gas (LNG), which requires special ships

  1. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  2. Scale up risk of developing oil shale processing units

    International Nuclear Information System (INIS)

    Oepik, I.

    1991-01-01

    The experiences in oil shale processing in three large countries, China, the U.S.A. and the U.S.S.R. have demonstrated, that the relative scale up risk of developing oil shale processing units is related to the scale up factor. On the background of large programmes for developing the oil shale industry branch, i.e. the $30 billion investments in colorado and Utah or 50 million t/year oil shale processing in Estonia and Leningrad Region planned in the late seventies, the absolute scope of the scale up risk of developing single retorting plants, seems to be justified. But under the conditions of low crude oil prices, when the large-scale development of oil shale processing industry is stopped, the absolute scope of the scale up risk is to be divided between a small number of units. Therefore, it is reasonable to build the new commercial oil shale processing plants with a minimum scale up risk. For example, in Estonia a new oil shale processing plant with gas combustion retorts projected to start in the early nineties will be equipped with four units of 1500 t/day enriched oil shale throughput each, designed with scale up factor M=1.5 and with a minimum scale up risk, only r=2.5-4.5%. The oil shale retorting unit for the PAMA plant in Israel [1] is planned to develop in three steps, also with minimum scale up risk: feasibility studies in Colorado with Israel's shale at Paraho 250 t/day retort and other tests, demonstration retort of 700 t/day and M=2.8 in Israel, and commercial retorts in the early nineties with the capacity of about 1000 t/day with M=1.4. The scale up risk of the PAMA project r=2-4% is approximately the same as that in Estonia. the knowledge of the scope of the scale up risk of developing oil shale processing retorts assists on the calculation of production costs in erecting new units. (author). 9 refs., 2 tabs

  3. Developments in production of synthetic fuels out of Estonian shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, Indrek

    2010-09-15

    Estonia is still the world leader in utilization of oil shale. Enefit has cooperated with Outotec to develop a new generation of solid heat carrier technology - Enefit280, which is more efficient, environmentally friendlier and has higher unit capacity. Breakeven price of oil produced in Enefit280 process is competitive with conventional oils. The new technology has advantages that allow easy adaptation to other oil shales around the world. Hydrotreated shale oil liquids have similar properties to crude oil cuts. Design for a shale oil hydrotreater unit can use process concepts, hardware components, and catalysts commercially proven in petroleum refining services.

  4. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  5. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  6. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  8. Elemental analysis of combustion products by neutron activation

    International Nuclear Information System (INIS)

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification

  9. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures

    International Nuclear Information System (INIS)

    Niu, Mengting; Wang, Sha; Han, Xiangxin; Jiang, Xiumin

    2013-01-01

    Highlights: • The whole formation process of shale oil might be divided into four stages. • Higher ash/shale mass ratio intensified the cracking and coking of shale oil. • Ash/shale ratio of 1:2 was recommended for oil shale fluidized bed retort with fine oil-shale ash as solid heat carrier. - Abstract: For exploring and optimizing the oil shale fluidized bed retort with fine oil-shale ash as a solid heat carrier, retorting experiments of oil shale and fine oil-shale ash mixtures were conducted in a lab-scale retorting reactor to investigate the effects of fine oil-shale ash on shale oil. Oil shale samples were obtained from Dachengzi Mine, China, and mixed with fine oil-shale ash in the ash/shale mass ratios of 0:1, 1:4, 1:2, 1:1, 2:1 and 4:1. The experimental retorting temperature was enhanced from room temperature to 520 °C and the average heating rate was 12 °C min −1 . It was found that, with the increase of the oil-shale ash fraction, the shale oil yield first increased and then decreased obviously, whereas the gas yield appeared conversely. Shale oil was analyzed for the elemental analysis, presenting its atomic H/C ratio of 1.78–1.87. Further, extraction and simulated distillation of shale oil were also conducted to explore the quality of shale oil. As a result, the ash/shale mixing mass ratio of 1:2 was recommended only for the consideration of increasing the yield and quality of shale oil

  10. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  11. Breakthrough and prospect of shale gas exploration and development in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-01-01

    Full Text Available In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas exploration and development in China is, on the whole, still at its early stage. Especially, marine shale gas in the Sichuan Basin has dominated the recent exploration and development. For the realization of shale gas scale development in China, one key point lies in the breakthrough and industrial production of transitional facies and continental facies shale gas. Low–moderate yield of shale gas wells is the normal in China, so it is crucial to develop key exploration and development technologies. Especially, strictly controlling single well investment and significantly reducing cost are the important means to increase shale gas exploration and development benefits. And finally, suggestions were proposed in five aspects. First, continuously strengthen theoretical and technical researches, actively carry out appraisal on shale gas “sweet spots”, and gradually accumulate development basis. Second, stress on primary evaluation of exploration and development, highlight the effective implementation of shale gas resources, and control the rhythm of appraisal drilling and productivity construction. Third, highlight fine description and evaluation of shale gas reservoirs and increase the overall development level. Fourth, intensify the research on exploration and development technologies in order to stand out simple and practical technologies with low costs. And fifth, summarize the experiences in fast growth of shale gas exploration and development, highlight

  12. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  13. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production - Update 2015

    OpenAIRE

    GANDOSSI Luca; VON ESTORFF Ulrik

    2015-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  14. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  15. Modules for estimating solid waste from fossil-fuel technologies

    International Nuclear Information System (INIS)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  16. Improvement study for the dry-low-NOx hydrogen micromix combustion technology

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2015-09-01

    Full Text Available The dry-low-NOx (DLN micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300. The further decrease of NOx emissions along a wider operation range with pure hydrogen supports the introduction of the micromix technology to industrial applications. Experimental and numerical studies show the successful advance of the DLN micromix combustion to extended DLN operation range. The impact of the hydrogen fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using an eddy dissipation concept combustion model and validated against experimental results.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  20. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  1. Assessment of industry needs for oil shale research and development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  2. Economic appraisal of shale gas plays in Continental Europe

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2013-01-01

    Highlights: ► Economic feasibility of five European shale gas plays is assessed. ► Polish and Austrian shale plays appear profitable for P90 assessment criterion. ► Posidonia (Germany), Alum (Sweden) and a Turkish shale play below the hurdle rate. ► A 10% improvement of the IRR by sweet spot targeting makes all plays profitable. - Abstract: This study evaluates the economic feasibility of five emergent shale gas plays on the European Continent. Each play is assessed using a uniform field development plan with 100 wells drilled at a rate of 10 wells/year in the first decade. The gas production from the realized wells is monitored over a 25 year life cycle. Discounted cash flow models are used to establish for each shale field the estimated ultimate recovery (EUR) that must be realized, using current technology cost, to achieve a profit. Our analyses of internal rates of return (IRR) and net present values (NPVs) indicate that the Polish and Austrian shale plays are the more robust, and appear profitable when the strict P90 assessment criterion is applied. In contrast, the Posidonia (Germany), Alum (Sweden) and a Turkish shale play assessed all have negative discounted cumulative cash flows for P90 wells, which puts these plays below the hurdle rate. The IRR for P90 wells is about 5% for all three plays, which suggests that a 10% improvement of the IRR by sweet spot targeting may lift these shale plays above the hurdle rate. Well productivity estimates will become better constrained over time as geological uncertainty is reduced and as technology improves during the progressive development of the shale gas fields

  3. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  4. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  5. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  6. Distilling oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, R H

    1923-04-18

    In the fractional distillation of oils from oil shale and similar materials the charge is passed continuously through a vertical retort heated externally by hot combustion gases in flues and internally by the passage of these gases through flues passing through the retort so that zones of increasing temperature are maintained. A vapor trap is provided in each zone having an exit pipe leading through a dust trap to a condenser. The bottoms of the conical vapor traps are provided with annular passages perforated to permit of steam being sprayed into the charge to form screens which prevent the vapors in different zones from mingling, and steam may also be introduced through perforations in an annular steam box. Dampers are provided to control the passage of the heating gases through the flues independently.

  7. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...

  8. Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976

    Energy Technology Data Exchange (ETDEWEB)

    Routson, R.C.; Bean, R.M.

    1977-12-01

    This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

  9. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J; Armour, H

    1889-05-07

    The invention relates to retorts and accessory apparatus for distilling shale or other oil-yielding minerals. A series of long vertical retorts, composed of fire-brick or similar refractory material, are arranged in two rows in a bench, being divided into groups of four by transverse vertical partitions. The retorts are surmounted by metal casings or hoppers into which the fresh mineral is charged, and from which the distillate passes off through lateral pipes. Any uncondensed gases from the retorts may be passed into the flues surrounding them by the pipe and burned. The products of combustion from a furnace pass through a series of horizontal flues, being compelled to pass completely round each retort before entering the flue above. The products from two or more sets pass from the upper flues into flues running along the top of the bench, and return through a central flue to the chimney.

  10. Proceedings of the first thermomechanical workshop for shale

    International Nuclear Information System (INIS)

    1986-03-01

    Chapter 2 provides a description of the three federal regulations that pertain to the development of a high-level nuclear waste repository regardless of the rock type. Chapter 3 summarizes the reference shale repository conditions selected for this workshop. A room-and-pillar configuration was considered at an extraction ratio of about 0.25. The depth was assumed to be 700 m. Chapter 4 gives a summary of several case histories that were considered to be valuable in gaining an understanding of some of the design and construction features that might be unique in creating underground openings in shale. Chapter 5 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for analytical/numerical modeling in heat transfer, fluid flow, and thermomechanics. Chapter 6 assesses data and information needs in the laboratory and considerations associated with shale rock characterization. Chapter 7 assesses the data and information needs, availability, technology for acquisition, and the research and development necessary for field/in situ testing. Chapter 8 presents the consensus of the workshop participants that there is a definite need to advance the state of knowledge concerning the thermomechanical behavior of shales and to gain experience in applying this knowledge to the design of room-and-pillar excavations. Finally, Chapter 9 provides a summary of the research and development needs in the various interacting activities of repository development, including analytical/numerical modeling, laboratory testing, and field/in situ testing. The main conclusion of the workshop was that a need exists for an aggressive program in laboratory, field, numerical modeling, and design studies to provide a thermomechanical, technological base for comparison of shale types and shale regions/areas/sites

  11. On possibilities to decrease influence of oxidation processes on oil yield at oil shale retorting

    International Nuclear Information System (INIS)

    Yefimov, V.; Loeoeper, R.; Doilov, S.; Kundel, H.

    1993-01-01

    At the present technical level retorting is carried out so that an increase in specific air consumption results in an increase of oxygen ingress into the semi coking shaft. At the same time a direct relationship between the degree of volatiles pyrolysis and specific air consumption was observed. This regularity enables to assume that within the reaction volume there occurs most likely the thermo oxidative pyrolysis of volatile products, not the oxidation of oil shale as it is considered traditionally. The main source of oxygen ingress ed into the semi coking shaft at processing oil shale in retorts is the process of spent shale. This process is not fully elaborated for utilization in commercial scale and can not be arranged so that the ingress of oxygen into the smacking chamber could be eliminated. In case of a slower semi coke gasification process and reduced specific air consumption for gasification the absolute amount of oxygen ingress ed into the semi coking shaft also decreases. One of the efficient methods to decrease specific air consumption is to build furnaces into the semi coking chamber to obtain additional amount of heat carrier by combusting generator gas. The maximum effect is reached when steam-and-air blow is completely replaced by recycle gas: specific air consumption is reduced whereas recycle gas is deoxygenated in the cooling zone while passing through spent shale bed which has the temperature of about 500 deg C. Another possible source of oxygen to the semi coking shaft with heat carrier is production of flue gases by combusting recycle gas in burners built in retorts. We consider the recycle gas employed upon processing oil shale in retorts hardly to be an appreciable source of the oxygen ingress into the semi coking shaft. Additional amounts of residual oxygen containing in recycle gas fed into both cooling zone and furnaces are practically totally consumed at gas combusting and passing across the bed of semi coke heated up to approximately

  12. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  13. Oil. The revenge of shales

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2017-01-01

    This article comments the evolutions noticed during these past years as the USA started to exploit non conventional hydrocarbons (shale gas and oil), and thus reduced their supplies from the Middle East. In reaction, OPEC members provoked a massive oil price decrease. If shale oil exploitation in the USA has slowed down for a while, it starts again: the number of platforms and production are increasing. Moreover, the profitability threshold is strongly decreasing. Argentina and China are also developing this sector, and Great-Britain and South-Africa are about to start projects. The article outlines that, even though France decided not to exploit shale gas and oil, French industries are present on this market and technology. In an interview, a representative of the French sector of non conventional hydrocarbons comments these evolutions as well as the French decision and its possible evolutions

  14. Distillation of combustibles at temperatures below fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1946-09-26

    A process is described for combustion and distillation for dry fuels, such as bituminous shales, below the temperature of fusion of the ash, for the production of heat, in which the temperature in the charge of fuel forming a vertical column is maintained beneath the temperature of fusion of the ash by a withdrawal of the heat from the combustible charge by means of a fluid absorbing this heat. This fluid being constituted, for example, by water in a suitable form, so that it can be circulated through a convenient cooling system, extending through the different parts of the charge. The fluid circulating also through the desired parts of the charge and absorbing the heat, the quantity of fluid or the surface of absorption increasing with the intensity of the combustion in the part of the combustible charge traversed by the fluid.

  15. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  16. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  17. Contesting Technologies in the Networked Society: A Case Study of Hydraulic Fracturing and Shale Development

    Science.gov (United States)

    Hopke, Jill E.

    In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking

  18. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  19. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  20. Oil shale mining and processing impact on landscapes in north-east Estonia

    International Nuclear Information System (INIS)

    Toomik, Arvi; Liblik, Valdo

    1998-01-01

    As the world's largest commercial oil shale reserve, the Estonian Oil Shale Deposit has been exploited since 1916. As a result of mining, storing of solid wastes from the oil shale separation, combustion in the power plants and its thermal processing, the landscape in northeastern Estonia has been essentially changed and the man-made landforms have developed: the new microreliefs of natural and artificial structure are formed, as well as 'mountainous' and hilly reliefs in the form of waste heaps, ash plateaus, coke-ash dumps etc. Deformed (stable) and undeformed (unstable) areas from underground mining currently cover about 220km 2 . About 90km 2 (80%) of the area damaged by open pits are recultivated and reformed as forested and agricultural (grassland) areas. The total area occupied by solid waste has reached up to 26km 2 . New technogenic landscape units, i.e. made by technical means, will essentially influence the environment

  1. Plan and justification for a Proof-of-Concept oil shale facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  2. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  3. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

    Science.gov (United States)

    Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II

    2017-12-01

    Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  4. Shale Gas in Europe: pragmatic perspectives and actions

    Science.gov (United States)

    Hübner, A.; Horsfield, B.; Kapp, I.

    2012-10-01

    Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.

  5. Shale Gas in Europe: pragmatic perspectives and actions

    Directory of Open Access Journals (Sweden)

    Horsfield B.

    2012-10-01

    Full Text Available Natural gas will continue to play a key role in the EU’s energy mix in the coming years, with unconventional gas’ role increasing in importance as new resources are exploited worldwide. As far as Europe’s own shale gas resources are concerned, it is especially the public’s perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project “Gas Shales in Europe” (GASH and the shale gas activities of “GeoEnergie” (GeoEn are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP brings these issues into the public domain.

  6. Techno-economic analysis of PC versus CFB combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    In the last ten years circulating fluidised bed combustion (CFBC) has emerged as a viable alternative to pulverised coal combustion (PCC) for utility-scale coal power generation, with widespread deployment of 300 MW boilers and the successful demonstration of supercritical units of up to 600 MW. Although CFBC offers a greater degree of fuel flexibility and does not usually require downstream flue gas cleaning, high capital costs and high auxiliary power use have hindered the adoption of CFBC for utility power generation. Recent advances in CFBC unit capacity and steam conditions have led to higher efficiencies and economies of scale, with the result that a CFBC plant may now be more economically favourable than a PCC plant depending on a range of factors such as available fuels and regional emissions limits. This report reviews the state-of-the-art for both technologies and provides a comparison of their relative performances and economic costs. Standard operational parameters such as efficiency, availability, and flexibility are assessed, in addition to relative suitability for biomass cofiring and oxyfuel combustion as strategies for carbon mitigation. A review of recent cost evaluations of the two technologies is accompanied by a breakdown of individual plant expenses including flue gas scrubbing equipment and ash recycle value.

  7. Life cycle carbon footprint of shale gas: review of evidence and implications.

    Science.gov (United States)

    Weber, Christopher L; Clavin, Christopher

    2012-06-05

    The recent increase in the production of natural gas from shale deposits has significantly changed energy outlooks in both the US and world. Shale gas may have important climate benefits if it displaces more carbon-intensive oil or coal, but recent attention has discussed the potential for upstream methane emissions to counteract this reduced combustion greenhouse gas emissions. We examine six recent studies to produce a Monte Carlo uncertainty analysis of the carbon footprint of both shale and conventional natural gas production. The results show that the most likely upstream carbon footprints of these types of natural gas production are largely similar, with overlapping 95% uncertainty ranges of 11.0-21.0 g CO(2)e/MJ(LHV) for shale gas and 12.4-19.5 g CO(2)e/MJ(LHV) for conventional gas. However, because this upstream footprint represents less than 25% of the total carbon footprint of gas, the efficiency of producing heat, electricity, transportation services, or other function is of equal or greater importance when identifying emission reduction opportunities. Better data are needed to reduce the uncertainty in natural gas's carbon footprint, but understanding system-level climate impacts of shale gas, through shifts in national and global energy markets, may be more important and requires more detailed energy and economic systems assessments.

  8. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  9. Influence of injector technology on injection and combustion development - Part 2: Combustion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    The influence of injection technology on the fuel-air mixing process and the combustion development are analyzed by means of visualization techniques. For this purpose, two injectors (one solenoid and one piezoelectric) are characterized using an optical accessible two stroke engine. Visualization of liquid penetration has allowed the measurement of the stabilized liquid length, which is related with the efficiency of fuel-air mixing process. A theoretical derivation is used in order to relate this liquid length with chamber conditions, as well as to make a temporal analysis of these phenomena. After this, natural flame emission and chemiluminescence techniques are carried out. These results indicate that the piezoelectric system has a more efficient fuel-air mixing and combustion, reducing the characteristic times as well as soot formation. Finally, a correlation for the ignition delay of the two systems is obtained. (author)

  10. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  11. Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy

    International Nuclear Information System (INIS)

    Berggren, Christian; Magnusson, Thomas

    2012-01-01

    Reducing transport emissions, in particular vehicular emissions, is a key element for mitigating the risks of climate change. In much of the academic and public discourse the focus has been on alternative vehicle technologies and fuels (e.g. electric cars, fuel cells and hydrogen), whereas vehicles based on internal combustion engines have been perceived as close to their development limits. This paper offers a different perspective by demonstrating the accelerated improvement processes taking place in established combustion technologies as a result of a new competition between manufacturers and technologies, encouraged both by more stringent EU legislation and new CAFE levels in the US. The short-term perspective is complemented by an analysis of future improvement potentials in internal combustion technologies, which may be realized if efficient regulation is in place. Based on a comparison of four different regulatory approaches, the paper identifies the need for a long-term technology-neutral framework with stepwise increasing stringencies, arguing that this will encourage continual innovation and diffusion in the most effective way. - Highlights: ► From 1990 to 2008, CO 2 emissions from road transportation in the EU increased by 21%. ► Alternative vehicles are important, but internal combustion engines (ICE) will remain dominant. ► The paper shows how competition and new regulation accelerate the improvement of ICE-vehicles. ► The key factor for long-term emissions reduction is appropriate regulation, not technology. ► Most effective is a technology-neutral framework with stepwise increasing stringencies.

  12. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    Science.gov (United States)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  13. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...

  14. The influence of global sea level changes on European shale distribution and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Turner, P.; Cornelius, C.T.; Clarke, H. [Cuadrilla Resources Ltd., Staffordshire (United Kingdom)

    2010-07-01

    Technological advances in directional drilling and hydraulic fracturing technology have unlocked new supplies of shale gas from reservoirs that were previously considered to be uneconomic. Several companies, both experienced majors and small independents, are currently evaluating the unconventional resource potential of mainland Europe. This paper demonstrated that global sea level changes govern the distribution of marine black shales. The Hallam Curve was used in this study to identify periods of prospective gas shale deposition. In general, these correspond to post-glacial periods of relatively high sea level. Under-filled marginal sedimentary basins are key exploration targets. The geochemical and petrophysical characteristics of the shales deposited under these conditions are often comparable to North American shales, particularly the Barnett Shale which is currently in production. Many orogenic events influence European shales in terms of organic maturity, hydrocarbon generation and fracture generation. The main prospective horizons in ascending stratigraphic sequence are the Alum Shale, Llandovery Shale, Fammenian/Frasnian Shale, Serpukhovian Shale, Toarcian Shale, Kimmeridge Clay and the Tertiary Eocene and Oligocene shales common to central Europe. This paper presented the authors initial exploration strategy, with particular focus on the Lower Palaeozoic of central Europe, the Namurian of northwest England and the Jurassic Posidonia Formation of the Roer Valley Graben in Holland. The potential obstacles to unconventional exploration in Europe include restricted access to surface locations, high water usage, a lack of convenient pipeline infrastructure, strict environmental regulations, a high population density and lack of suitable drilling rigs and well completion equipment. 13 refs., 7 figs.

  15. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  16. Can the US shale revolution be duplicated in Europe?

    International Nuclear Information System (INIS)

    Saussay, Aurelien

    2015-04-01

    Over the past decade, the rapid increase in shale gas and shale oil production in the United States has profoundly changed energy markets in North America, and has led to a significant decrease in American natural gas prices. The possible existence of large shale deposits in Europe, mainly in France, Poland and the United Kingdom, has fostered speculation on whether the 'shale revolution', and its accompanying macro-economic impacts, could be duplicated in Europe. However, a number of uncertainties, notably geological, technological and regulatory, make this possibility unclear. We present a techno-economic model, SHERPA (Shale Exploitation and Recovery Projection and Analysis), to analyze the main determinants of the profitability of shale wells and plays. We calibrate our model using production data from the leading American shale plays. We use SHERPA to estimate three shale gas production scenarios exploring different sets of geological and technical hypotheses for the largest potential holder of shale gas deposits in Europe, France. Even considering that the geology of the potential French shale deposits is favorable to commercial extraction, we find that under assumptions calibrated on U.S. production data, natural gas could be produced at a high breakeven price of $8.6 per MMBtu, and over a 45 year time-frame have a net present value of $19.6 billion - less than 1% of 2012 French GDP. However, the specificities of the European context, notably high deposit depth and stricter environmental regulations, could increase drilling costs and further decrease this low profitability. We find that a 40% premium over American drilling costs would make shale gas extraction uneconomical. Absent extreme well productivity, it appears very difficult for shale gas extraction to have an impact on European energy markets comparable to the American shale revolution. (author)

  17. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale

  18. Geology of the Devonian black shales of the Appalachian Basin

    Science.gov (United States)

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  19. Shale gas - uncertain destiny?

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2013-01-01

    This article outlines that, even if it would be allowed, the exploitation of shale gas in France would need ten years to start, and no one can say what would be our needs then and what would be the situation of the gas market at that time. Even if the government decided to forbid hydraulic fracturing, there could be some opportunity for experimentation with a search for alternative technology. The article notices that risks associated with hydraulic fracturing and extraction of non conventional hydrocarbons, i.e. water pollution and consumption and land use, are variously perceived in different European countries (Germany, Romania, Poland) where important American actors are present (Chevron, Exxon) to exploit shale gases. In the USA, the economic profitability seems in fact to rapidly decrease

  20. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  1. Apparatus for utilizing liquid hydrocarbons such as shale oil, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dorset, M

    1868-02-29

    The hydrocarbon liquids such as petroleum, shale oil, naphtha, cresol, coal tar, or other mineral, animal or vegetable oil are placed in a heater or special generator analogous to ordinary generators for vapors and to which the name vaporizer has been given in the description. This vaporizer is furnished with all kinds of safety devices, such as valves, manometer, float indicating the level, standard stopcock, etc., and is heated by the combustion of the vapors produced by it.

  2. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  3. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  4. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  5. How did the US economy react to shale gas production revolution? An advanced time series approach

    International Nuclear Information System (INIS)

    Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim

    2016-01-01

    This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution

  6. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  7. Analysis and characterization of trace elements in shale oil and shale oil products by instrumental neutron activation analysis. Master's thesis

    International Nuclear Information System (INIS)

    Shaw, P.

    1978-12-01

    Trace elements and their mobilization constitute an important consideration in the development of new fossil fuel technologies. Shale oil produced by in situ retorting of oil shale is an alternative fossil energy source. This study deals with the analysis of trace elements in various shale oil products using instrumental neutron activation analysis (INAA). INAA offers several advantages for those elements for which it is applicable. The greatest advantage is the lack of sample preparation prior to analysis, which greatly simplifies the process and prevents sample contamination. The elements for which analyses are reported in this study are aluminum, antimony, arsenic, bromine, cerium, chlorine, chromium, cobalt, copper, gallium, gold, iodine, iron, manganese, mercury, molybdenum, potassium, selenium, sodium, sulfur, tungsten, vanadium, and zinc

  8. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  10. Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. (author)

  11. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  12. Opportunity, challenges and policy choices for China on the development of shale gas

    International Nuclear Information System (INIS)

    Hu, Desheng; Xu, Shengqing

    2013-01-01

    With the highest shale gas reserves worldwide and huge need for energy, the Chinese government has introduced many incentives to accelerate the development of shale gas, including subsidies and reduction or waiver of the related fees or taxes. However, the challenges posed by a lack of advanced technologies, environmental protection, a shortage of water in quantity and a knowledge of how to develop a good industry–local community relationship are anticipated in the realization of the predicted golden age of the Chinese shale gas industry. Based on the particular situation and available resources in China, and with reference to the experiences in countries with a developed shale gas industry (such as the U.S.A.) and suggestions by the International Energy Agency, recommendations about the choices facing China can be summarized as follows: allowing foreign investors directly to hold exploration and mining rights in shale gas could facilitate the obtainment of advanced technologies; the improvement of the regulatory arrangements related to environmental protection could make developers more responsible; prompting developers to improve their water-use efficiency could help in not worsening the water supply to some extent; and SLO-based mechanism guidance could be helpful in developing a mutual-trust and -benefit relationship between the shale gas industry and the local community. - Highlights: • China faces four major challenges in shale gas development. • Granting foreign investors mining rights is helpful to get advanced technology soon. • Improving environmental regulation could make developers more responsible. • Developers' efficient water-use could help in not worsening water supply. • SLO-based mechanism guidance may improve industry–community relationship

  13. Unconventional shale gas extraction: present and future affects

    OpenAIRE

    Mohajan, Haradhan

    2012-01-01

    In the 1990s the extraction of unconventional shale gas extraction increases in the USA due to national and global demand of energy. The expansion of shale gas production will provide low carbon economy, therefore it is a positive side of low greenhouse gas emissions in the atmosphere and considering the benefit sides it has been referred to as a bridging fuel. Horizontal drilling and hydraulic fracturing are the two technologies by the combination with one another; provide the potential to ...

  14. The perspectives of shale gas in the World

    International Nuclear Information System (INIS)

    Weymuller, B.

    2011-01-01

    This report defines what non conventional gases are and which are their characteristics, indicates technological advances which enabled their development, the environmental challenges, and discusses the peculiarities of the business model of shale gas development. The author reports the shale gas experience of the United States (history, main areas, development characteristics, perspectives for 2020-2030), discusses the development perspectives outside the United States. He describes the roles played by international actors: United States, emerging consumer countries (China and India), Europe, and current exporters

  15. Optimization of the key geological target parameters of shale-gas horizontal wells in the Changning Block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Hongzhi Yang

    2016-12-01

    Full Text Available In recent years, great progress has been made in geologic evaluation, engineering test and development optimization of the Lower Cambrian Wufeng Fm–Lower Silurian Longmaxi Fm shale gas in the Sichuan Basin, and the main shale gas exploitation technologies have been understood preliminarily. In addition, scale productivity construction has been completed in Jiaoshiba, Changning and Weiyuan blocks. In this paper, the Wufeng Fm–Longmaxi Fm shale gas wells in Changning Block were taken as the study object to provide technical reference for the development design of similar shale-gas horizontal wells. The technology combining geology with engineering, dynamic with static, and statistical analysis with simulation prediction was applied to quantify the main factors controlling shale-gas well productivity, develop the shale-gas well production prediction model, and optimize the key technical parameters of geologic target of shale-gas horizontal wells in the block (e.g. roadway orientation, location and spacing, horizontal section length and gas well production index. In order to realize high productivity of shale gas wells, it is necessary to maximize the included angle between the horizontal section orientation and the maximum major stress and fracture development direction, deploy horizontal-well roadway in top-quality shale layers, and drill the horizontal section in type I reservoirs over 1000 m long. It is concluded that high productivity of shale gas wells is guaranteed by the horizontal-well wellbore integrity and the optimized low-viscosity slickwater and ceramsite fracturing technology for complex fracture creation. Based on the research results, the technical policies for shale gas development of Changning Block are prepared and a guidance and reference are provided for the shale gas development and productivity construction in the block and the development design of similar shale-gas horizontal wells.

  16. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  17. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  18. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-02-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  19. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.; Williams, P.T.

    1998-01-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e. the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oil shale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  20. Prospect of shale gas recovery enhancement by oxidation-induced rock burst

    Directory of Open Access Journals (Sweden)

    Lijun You

    2017-11-01

    Full Text Available By horizontal well multi-staged fracturing technology, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water phase trapping damage caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to “break” shale rocks via hydraulic force and to “burst” shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

  1. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  2. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    Science.gov (United States)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  3. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  5. Application and demonstration of oxyfuel combustion technologies to the existing power plant in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Terutoshi; Yamada, Toshihiko; Watanabe, Shuzo; Kiga, Takashi; Gotou, Takahiro [IHI Corporation, Tokyo (Japan). Power Plant Div.; Misawa, Nobuhiro [Electric Power Development Co., Ltd., Tokyo (Japan); Spero, Chris [CS Energy Ltd, Brisbane (Australia)

    2013-07-01

    Oxyfuel combustion is able to directly make the highly concentrated CO{sub 2} from the flue gas of pulverized coal fired power plant and, therefore, is expected as one of the promising technologies for CO{sub 2} capture. We are advancing the Oxyfuel combustion demonstration project, which is called Callide Oxyfuel Project, with the support of both Australian and Japanese governments. Currently the boiler retrofit work is completed and the commissioning in air combustion is going on. In this paper, we introduce the general outline of the Callide Oxyfuel Project and its progress.

  6. Life cycle environmental impacts of UK shale gas

    International Nuclear Information System (INIS)

    Stamford, Laurence; Azapagic, Adisa

    2014-01-01

    Highlights: • First full life cycle assessment of shale gas used for electricity generation. • Comparison with coal, conventional and liquefied gas, nuclear, wind and solar PV. • Shale gas worse than coal for three impacts and better than renewables for four. • It has higher photochemical smog and terrestrial toxicity than the other options. • Shale gas a sound environmental option only if accompanied by stringent regulation. - Abstract: Exploitation of shale gas in the UK is at a very early stage, but with the latest estimates suggesting potential resources of 3.8 × 10 13 cubic metres – enough to supply the UK for next 470 years – it is viewed by many as an exciting economic prospect. However, its environmental impacts are currently unknown. This is the focus of this paper which estimates for the first time the life cycle impacts of UK shale gas, assuming its use for electricity generation. Shale gas is compared to fossil-fuel alternatives (conventional gas and coal) and low-carbon options (nuclear, offshore wind and solar photovoltaics). The results suggest that the impacts range widely, depending on the assumptions. For example, the global warming potential (GWP100) of electricity from shale gas ranges from 412 to 1102 g CO 2 -eq./kWh with a central estimate of 462 g. The central estimates suggest that shale gas is comparable or superior to conventional gas and low-carbon technologies for depletion of abiotic resources, eutrophication, and freshwater, marine and human toxicities. Conversely, it has a higher potential for creation of photochemical oxidants (smog) and terrestrial toxicity than any other option considered. For acidification, shale gas is a better option than coal power but an order of magnitude worse than the other options. The impact on ozone layer depletion is within the range found for conventional gas, but nuclear and wind power are better options still. The results of this research highlight the need for tight regulation and

  7. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  8. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  9. Process for retorting shale

    Energy Technology Data Exchange (ETDEWEB)

    1952-03-19

    The method of retorting oil shale to recover valuable liquid and gaseous hydrocarbons consists of heating the oil shale in a retorting zone to a temperature sufficient to convert its kerogenic constituents to normally liquid and normally gaseous hydrocarbons by contact with hot gas previously recovered from shale, cooling the gases and vapors effluent from the retorting zone by direct countercurrent contact with fresh shale to condense the normally liquid constituents of the gases and vapors, separating the fixed gas from the liquid product, heating the fixed gas, and returning it to the retorting zone to contact further quantities of shale.

  10. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  11. Wastewater management and Marcellus Shale gas development: trends, drivers, and planning implications.

    Science.gov (United States)

    Rahm, Brian G; Bates, Josephine T; Bertoia, Lara R; Galford, Amy E; Yoxtheimer, David A; Riha, Susan J

    2013-05-15

    Extraction of natural gas from tight shale formations has been made possible by recent technological advances, including hydraulic fracturing with horizontal drilling. Global shale gas development is seen as a potential energy and geopolitical "game-changer." However, widespread concern exists with respect to possible environmental consequences of this development, particularly impacts on water resources. In the United States, where the most shale gas extraction has occurred, the Marcellus Shale is now the largest natural gas producing play. To date, over 6,000,000 m(3) of wastewater has been generated in the process of extracting natural gas from this shale in the state of Pennsylvania (PA) alone. Here we examine wastewater management practices and trends for this shale play through analysis of industry-reported, publicly available data collected from the Pennsylvania Department of Environmental Protection Oil and Gas Reporting Website. We also analyze the tracking and transport of shale gas liquid waste streams originating in PA using a combination of web-based and GIS approaches. From 2008 to 2011 wastewater reuse increased, POTW use decreased, and data tracking became more complete, while the average distance traveled by wastewater decreased by over 30%. Likely factors influencing these trends include state regulations and policies, along with low natural gas prices. Regional differences in wastewater management are influenced by industrial treatment capacity, as well as proximity to injection disposal capacity. Using lessons from the Marcellus Shale, we suggest that nations, states, and regulatory agencies facing new unconventional shale development recognize that pace and scale of well drilling leads to commensurate wastewater management challenges. We also suggest they implement wastewater reporting and tracking systems, articulate a policy for adapting management to evolving data and development patterns, assess local and regional wastewater treatment

  12. China organic-rich shale geologic features and special shale gas production issues

    Directory of Open Access Journals (Sweden)

    Yiwen Ju

    2014-06-01

    Full Text Available The depositional environment of organic-rich shale and the related tectonic evolution in China are rather different from those in North America. In China, organic-rich shale is not only deposited in marine environment, but also in non-marine environment: marine-continental transitional environment and lacustrine environment. Through analyzing large amount of outcrops and well cores, the geologic features of organic-rich shale, including mineral composition, organic matter richness and type, and lithology stratigraphy, were analyzed, indicating very special characteristics. Meanwhile, the more complex and active tectonic movements in China lead to strong deformation and erosion of organic-rich shale, well-development of fractures and faults, and higher thermal maturity and serious heterogeneity. Co-existence of shale gas, tight sand gas, and coal bed methane (CBM proposes a new topic: whether it is possible to co-produce these gases to reduce cost. Based on the geologic features, the primary production issues of shale gas in China were discussed with suggestions.

  13. Process of recovering shale oil

    Energy Technology Data Exchange (ETDEWEB)

    1949-01-17

    A process is disclosed for recovering oil from shale rock by means of channels cut in the shale deposit, to which heat is carried for warming the shale mass and which are separated from the fume channels formed in the shale by parts of the shale rock, characterized in that heating elements are put down in the heating channels, which occupy less cross section than these channels, and in the so-formed space between the channel wall and the heating element a filling is placed, which facilitates heat transfer between the heating element and the shale and simultaneously prevents a streaming of the oily product gasified out of the shale from working into the heating element and stopping it.

  14. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  15. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  17. [Chemical hazards arising from shale gas extraction].

    Science.gov (United States)

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  18. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  19. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion

    International Nuclear Information System (INIS)

    Kaasik, M.

    2000-01-01

    Field measurements of concentrations of SO 2 and NO 2 in the air and deposition of Ca 2+ , Mg 2+ , K + , Na + , SO 4 2- , NO 3 - and Cl - in northeastern Estonia were carried out in the end of winter 1998/99. Concentrations in the air were measured by passive sampling method (Palmes tubes); snow samples were used to quantify the deposition loads. The measurement domain covered entire Ida-Viru County, eastern part of Laeaene-Viru County and a few sites in Jogeva County. These measurements and comparison with earlier investigations show that in wintertime most of sulfate over the area affected by oil shale industrial complex appears to be deposited with fly ash particles. The regression formulae for wintertime sulfate and calcium deposition loads for oil-shale region are derived. The inhomogeneous chemical composition of fly ash and influence of other (domestic, traffic) emissions are suggested as possible factors affecting the ratio of sulfate and calcium deposition loads. (author)

  20. Policy Brief: Shale Gas in India: Look Before You Leap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    Natural gas forms 9 per cent of the total commercial energy mix in India, but demand far exceeds supply, as shown in Figure 1. Part of the demand in 2012–13 was made up by the import of liquefied natural gas (LNG) to the extent of 18 bcm. Several power plants, which were in operation, or ready for commissioning, or in an advanced state of construction, representing about 10,000 MW of generation capacity, were, however, idle for want of gas. The exploration and production of shale gas in the United States (US) has been a game changer, making the country self-sufficient in natural gas over the last few years. This has created considerable excitement globally, particularly in Europe. India is also looking at exploring shale gas domestically to fill in the supply–demand gap. But will what works for the US also work for Europe and India? This policy brief explores this question in the context of India. It explains the nature of shale gas, the technology for its extraction from underground sources, and its potential for India. It also highlights overseas acquisitions of this resource by Indian companies even before it is sourced domestically, and then examines the viability of the technology in India. One of the key determinants of the viability of this technology is the availability of large quantities of clean water. This policy brief raises a red flag on this complementary input for exploiting shale gas resources in India, given that India is a water stressed country, and is fast approaching water scarcity conditions.

  1. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  2. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  3. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  4. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    Science.gov (United States)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may

  5. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2015-01-01

    Full Text Available The Sichuan Basin, a hotspot and one of the most successful areas for shale gas exploration and development, can largely reflect and have a big say in the future prospect of shale gas in China. Through an overall review on the progress in shale gas exploration and development in the Sichuan Basin, we obtained the following findings: (1 the Sichuan Basin has experienced the marine and terrestrial depositional evolution, resulting in the deposition of three types of organic-matter-rich shales (i.e. marine, transitional, and terrestrial, and the occurrence of six sets of favorable shale gas enrichment strata (i.e. the Sinian Doushantuo Fm, the Cambrian Qiongzhusi Fm, the Ordovician Wufeng–Silurian Longmaxi Fm, the Permian Longtan Fm, the Triassic Xujiahe Fm, and the Jurassic Zhiliujing Fm; (2 the five key elements for shale gas accumulation in the Wufeng-Longmaxi Fm are deep-water shelf facies, greater thickness of organic-rich shales, moderate thermal evolution, abundant structural fractures, reservoir overpressure; and (3 the exploration and development of shale gas in this basin still confronts two major challenges, namely, uncertain sweet spots and potential prospect of shale gas, and the immature technologies in the development of shale gas resources at a depth of more than 3500 m. In conclusion, shale gas has been discovered in the Jurassic, Triassic and Cambrian, and preliminary industrial-scale gas has been produced in the Ordovician-Silurian Fm in the Sichuan Basin, indicating a promising prospect there; commercial shale gas can be produced there with an estimated annual gas output of 30–60 billion m3; and shale gas exploration and production experiences in this basin will provide valuable theoretical and technical support for commercial shale gas development in China.

  6. Seismic fracture detection of shale gas reservoir in Longmaxi formation, Sichuan Basin, China

    Science.gov (United States)

    Lu, Yujia; Cao, Junxing; Jiang, Xudong

    2017-11-01

    In the shale reservoirs, fractures play an important role, which not only provide space for the oil and gas, but also offer favorable petroleum migration channel. Therefore, it is of great significance to study the fractures characteristics in shale reservoirs for the exploration and development of shale gas. In this paper, four analysis technologies involving coherence, curvature attribute, structural stress field simulation and pre-stack P-wave azimuthal anisotropy have been applied to predict the fractures distribution in the Longmaxi formation, Silurian, southeast of Sichuan Basin, China. By using the coherence and curvature attribute, we got the spatial distribution characteristics of fractures in the study area. Structural stress field simulation can help us obtain distribution characteristics of structural fractures. And using the azimuth P-wave fracture detection technology, we got the characteristics about the fracture orientation and density of this region. Application results show that there are NW and NE fractures in the study block, which is basically consistent with the result of log interpretation. The results also provide reliable geological basis for shale gas sweet spots prediction.

  7. The impact of intensity on perceived risk from unconventional shale gas development.

    Science.gov (United States)

    Livy, Mitchell R; Gopalakrishnan, Sathya; Klaiber, H Allen; Roe, Brian E

    2018-07-15

    The recent boom in the extraction of natural gas from subsurface shale deposits due to advances in hydraulic fracturing and horizontal drilling technologies has raised concern around environmental risks. Reliable measures of how residents view these risks are therefore a necessary first step in evaluating policies that regulate the industry through risk mitigation measures. We conduct a choice experiment targeting residents in an area of Ohio with significant shale drilling activity, and find that households are willing to pay to avoid high intensities of shale development and truck traffic. Our analysis presents new policy-relevant evidence of preferences associated with unconventional shale gas reserves, and highlights the tradeoffs between activity intensity at each site and the number of sites in aggregate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  9. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  10. Process and apparatus for the distillation of shale and other bituminous substances

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, H

    1883-01-14

    The upper part of a vertical retort used for distillation is made of fire-resisting material, and the lower part of iron. The firing is carried out on the grate, so that the gases play over and under the retorts. The distillation products are carried off through a condenser. For raising the heat in the retorts and for increasing the yield of distillation proudcts the lower part of the exhausted shale is removed from the retort and it is filled up again. The exhaust gases serve to warm up the air for combustion.

  11. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  12. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  13. Could Shale Gas Become a Reliable Energy Source for Europe and Romania?

    Directory of Open Access Journals (Sweden)

    MARIANA PAPATULICĂ

    2015-05-01

    Full Text Available While shale gas and oil is a success story in USA and Canada where production has considerably increased in the last five years the situation is quite different in Europe where exploration and production activities are quite low and prospects are not encouraging. Even in the Eastern Europe the first results of exploration are disappointing for the American companies, which have the technical expertise for exploring and extraction shale gas. Due to global warming there is now at the world scale a fierce confrontation between environmentalists and lobbyists of producing companies regarding the negative effects of hydraulic fracturing. Shale gas development in Europe depends more on the coal substitution by gas and on the use of CCS technologies. The collapse of crude oil prices may delay many projects in the field of shale gas and oil, especially in Europe. The prospects of oil gas in Romania are linked to the energy security concept, whose implementation requires diversification of energy supply on some levels. The development of shale gas in order to diversify the energy supply cannot compensate the groundwater pollution and other negative effects, like earthquake. The temporary withdrawal of Chevron from Romania will have some positive effects, allowing to our country a necessary time-out to better substantiate public policies in the field and to producing companies some time required for carrying out new technologies, less polluting and harmful.

  14. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  15. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Local and Regional Air Quality

    Science.gov (United States)

    Weger, L.; Lupascu, A.; Cremonese, L.; Butler, T. M.

    2017-12-01

    Numerous countries in Europe that possess domestic shale gas reserves are considering exploiting this unconventional gas resource as part of their energy transition agenda. While natural gas generates less CO2 emissions upon combustion compared to coal or oil, making it attractive as a bridge in the transition from fossil fuels to renewables, production of shale gas leads to emissions of CH4 and air pollutants such as NOx, VOCs and PM. These gases in turn influence the climate as well as air quality. In this study, we investigate the impact of a potential shale gas development in Germany and the United Kingdom on local and regional air quality. This work builds on our previous study in which we constructed emissions scenarios based on shale gas utilization in these counties. In order to explore the influence of shale gas production on air quality, we investigate emissions predicted from our shale gas scenarios with the Weather Research and Forecasting model with chemistry (WRF-Chem) model. In order to do this, we first design a model set-up over Europe and evaluate its performance for the meteorological and chemical parameters. Subsequently we add shale gas emissions fluxes based on the scenarios over the area of the grid in which the shale gas activities are predicted to occur. Finally, we model these emissions and analyze the impact on air quality on both a local and regional scale. The aims of this work are to predict the range of adverse effects on air quality, highlight the importance of emissions control strategies in reducing air pollution, to promote further discussion, and to provide policy makers with information for decision making on a potential shale gas development in the two study countries.

  17. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  18. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  19. Distillation of bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M

    1875-02-16

    The retort with its accessories constitutes a distillation apparatus for shale composed of a cylindrical, vertical, fixed, tubular, and of ring form metal retort. Also it is comprised of a special hearth of large dimensions in the form of a circular pocket receiving from the retort as heating agent the distilled shale and emitting by radiation the heat that makes the distillation apparatus for the shale act.

  20. Modelling of underground geomechanical characteristics for electrophysical conversion of oil shale

    International Nuclear Information System (INIS)

    Bukharkin, A A; Koryashov, I A; Martemyanov, S M; Ivanov, A A

    2015-01-01

    Oil shale energy extraction is an urgent issue for modern science and technique. With the help of electrical discharge phenomena it is possible to create a new efficient technology for underground conversion of oil shale to shale gas and oil. This method is based on Joule heat in the rock volume. During the laboratory experiments the problem has arisen, when the significant part of a shale fragment is being heated, but the further heating is impossible due to specimen cracking. It leads to disruption in current flow and heat exchange. Evidently, in the underground conditions these failure processes will not proceed. Cement, clay and glass fiber/epoxy resin armature have been used for modelling of geomechanical underground conditions. Experiments have shown that the use of a reinforcing jacket makes it possible to convert a full rock fragment. Also, a thermal field extends radially from the centre of a tree-type structure, and it has an elliptic cross section shape. It is explained by the oil shale anisotropy connected with a rock laminar structure. Therefore, heat propagation is faster along the layers than across ones. (paper)

  1. Oil shale (in memoriam)

    International Nuclear Information System (INIS)

    Strandberg, Marek

    2000-01-01

    Plans for the continued use of oil shale may lead the development of this country into an impasse. To this day no plans have been made for transition from the use of energy based on fossil fuels to that based on renewable resources. Without having any clear strategic plan politicians have been comforting both themselves and the population with promises to tackle the problem when the right time comes. Today the only enterprise whose cash flows and capital would really make it possible to reform the power industry is the firm Eesti Energia (Estonian Energy). However, its sole present shareholder - the state - prefers the sale of the firm's shares to carrying out a radical reform. At the same time, local consumers are likely to rather be willing to pay for the expensive electric energy produced from renewable resources than for that produced from fossil fuels, the price of which will also remain high due to the pollution tax. Practically it is impossible to buy a globally balanced environment for money - pollution taxes are but punitive mechanisms. The investments made into the oil-shale industry will also reinforce the cultural distance of North-East Estonia from the rest of Estonia - the uniform and prevalently Russian-speaking industrial area will be preserved as long as capital will continue to flow into the oil shale industry concentrated there. The way out would be for industries to make wider use of ecological and ecosystemic technologies and for the state to enforce ecologically balanced economic and social policies. (author)

  2. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  3. The critical assessment of the carbon dioxide purification technologies after Oxyfuel combustion of coals

    International Nuclear Information System (INIS)

    Iovchev, M.; Gadjanov, P.; Tzvetkov, N.

    2012-01-01

    The critical assessment of the two carbon dioxide purification technologies after Oxyfuel - combustion of coals are discussed in the report. It is noticed that these technologies proposed by 'Foster Wheeler' and 'Air Products' companies are under development now (2012) and their presence in the international market is to be expected in the next years. (authors)

  4. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  5. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Link, Albert N. [Univ. of North Carolina, Greensboro, NC (United States)

    2010-05-01

    Advanced Combustion Engine R&D (ACE R&D) is one of the subprograms within DOE's Vehicle Technologies Office. The ACE subprogram's R&D is conducted in cooperation with the DOE Combustion Research Facility (CRF). This report summarizes the findings from a retrospective study of the net benefits to society from investments by DOE (both EERE and cooperative CRF efforts) in laser diagnostic and optical engine technologies and combustion modeling for heavy-duty diesel engines.

  6. Organic substances of bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, V A; Pronina, M V

    1944-01-01

    Samples of Gdov (Estonia) and Volga (Russia) oil shales were oxidized by alkaline permanganate to study the distribution of carbon and the composition of the resulting oxidation products. Gdov shale was rather stable to oxidation and, after 42 hours 61.2 percent of the organic material remained unoxidized. Five hundred hours were required for complete oxidation, and the oxidation products consisted of CO/sub 2/, acetic, oxalic, and succinic acids. The oxidation products from Volga shale consisted of CO/sub 2/, acetic, oxalic, succinic, adipic, phthalic, benzenetricarboxylic, benzenetetracarboxylic, and benzenepentacarboxylic acids. The results indicated that Gdov shale is free of humic substances and is of sapropelic origin, while Volga shale is of sapropelic-humic origin.

  7. Conversion characteristics of 10 selected oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1989-08-01

    The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

  8. Apparatus for treating bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    1942-11-24

    A method is given of transforming finely crushed bituminous shale, for instance of maximum particle size of about 5 mm, into balls, nodules, or similar shapes, in which the shale to be treated is passed in the form of lumps through a rotary drum. The finely crushed shale with a higher content of moisture is brought into contact with finely crushed shale of a lower content of moisture, and thereby serves as kernel material during the formation of the nodules or similar shapes.

  9. A review of the organic geochemistry of shales and possible interactions between the organic matter of shales and radionuclides

    International Nuclear Information System (INIS)

    Ho, P.C.

    1990-01-01

    Shale formations have been suggested as potential host rocks for high level nuclear waste repositories. Several studies have demonstrated the interactions of nuclides with organic compounds found in shales. In order to understand the possibility of interaction between organic components of shales and trace elements, literature on the identification of organic compounds from various shales of the continental United States and evidences of interactions have been reviewed first. The Green River Formation of the Cenozoic era is the most studied shale followed by the Pierre Shale of the Mesozoic era and the Devonian Black Shale of the Paleozoic era. Organic compounds that have been identified from these shales are mainly hydrocarbons and carboxylates along with small amounts of other compounds. These organic compounds, however, constitute only a small fraction of the organic matter in shales; the majority of the organic compounds in shales are still unidentified. Interaction between organics and trace elements are found mostly due to the formation of complexes between carboxylates of shales and the elements. (orig.)

  10. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    Science.gov (United States)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  11. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Kern, L

    1922-07-21

    In the distillation of shale and similar materials the shale is ground and briquetted and the briquettes are placed in a retort so that air passages are left between them, after which they are uniformly and slowly heated to at least 700/sup 0/C, the air passages facilitating the escape of the oil vapors, and the slow heating preventing fusion of the flux forming constituents. After the bitumen has been driven off, air is passed into the retort and heating continued to about 1050/sup 0/C, the result being a porous product suitable for insulating purposes or as a substitute for kieselguhr. The ground shale may be mixed prior to distillation with peat, sawdust, or the like, and with substances which yield acids, such as chlorides, more particularly magnesium chloride, the acids acting on the bitumen.

  12. The 'Shale Gas Revolution'. Hype and Reality

    International Nuclear Information System (INIS)

    Stevens, P.

    2010-09-01

    The 'shale gas revolution' - responsible for a huge increase in unconventional gas production in the US over the last couple of years - is creating huge investor uncertainties for international gas markets and renewables and could result in serious gas shortages in 10 years time. This report casts serious doubt over industry confidence in the 'revolution', questioning whether it can spread beyond the US, or indeed be maintained within it, as environmental concerns, high depletion rates and the fear that US circumstances may be impossible to replicate elsewhere, come to the fore. Investor uncertainty will reduce investment in future gas supplies to lower levels than would have happened had the 'shale gas revolution' not hit the headlines. While the markets will eventually solve this problem, rising gas demand and the long lead-in-times on most gas projects are likely to inflict high prices on consumers in the medium term. The uncertainties created by the 'shale gas revolution' are also likely to compound existing investor uncertainty in renewables for power generation in the aftermath of Copenhagen. The serious possibility of cheap, relatively clean gas may threaten investment in more expensive lower carbon technologies.

  13. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-02-06

    The yield of oil obtained by distilling shale is increased by first soaking the shale with about 10 percent of its volume of a liquid hydrocarbon for a period of 24 hours or longer. Distillation is carried on up to a temperature of about 220/sup 0/C., and a further 10 percent of hydrocarbon is then added and the distillation continued up to a temperature of about 400/sup 0/C.

  14. Problem of Production of Shale Gas in Germany

    Directory of Open Access Journals (Sweden)

    Nataliya K. Meden

    2014-01-01

    Full Text Available A bstract: Our magazine publishes a series of articles on shale gas in different countries. This article is about Germany, a main importer of Russian natural gas, so a perspective of exploitation of local shale gas resources is of a clear practical importance for Russia. We discuss external and internal factors which determine position of the German government concerning the shale gas excavation: policy of the USA and the EU, positions of German political parties, influence of the lobbying communities and civic associations. The article contains rich information on vast variety of interests of actors in the domestic discussion. Taking into account the importance of civil society for political decisions, the author rests upon public relations of big companies, their methodic and results. The article summarizes data on reserve estimation and current geological projects, as well all the officially published reports concerning environmental threats cased by fracking technology. On the base of the above analyze, the author predicts possible evolution of the federal government policy.

  15. Ultraviolet laser-induced voltage in anisotropic shale

    Science.gov (United States)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  16. Impact of shale gas development on water resources: a case study in northern poland.

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  17. Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland

    Science.gov (United States)

    Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo

    2015-06-01

    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.

  18. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  19. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  20. Using BP Neural Networks to Prioritize Risk Management Approaches for China’s Unconventional Shale Gas Industry

    Directory of Open Access Journals (Sweden)

    Cong Dong

    2017-06-01

    Full Text Available This article is motivated by a conundrum: How can shale gas development be encouraged and managed without complete knowledge of the associated risks? To answer this question, we used back propagation (BP neural networks and expert scoring to quantify the relative risks of shale gas development across 12 provinces in China. The results show that the model performs well with high predictive accuracy. Shale gas development risks in the provinces of Sichuan, Chongqing, Shaanxi, Hubei, and Jiangsu are relatively high (0.4~0.6, while risks in the provinces of Xinjiang, Guizhou, Yunnan, Anhui, Hunan, Inner Mongolia, and Shanxi are even higher (0.6~1. We make several recommendations based on our findings. First, the Chinese government should promote shale gas development in Sichuan, Chongqing, Shaanxi, Hubei, and Jiangsu Provinces, while considering environmental, health, and safety risks by using demonstration zones to test new technologies and tailor China’s regulatory structures to each province. Second, China’s extremely complex geological conditions and resource depths prevent direct application of North American technologies and techniques. We recommend using a risk analysis prioritization method, such as BP neural networks, so that policymakers can quantify the relative risks posed by shale gas development to optimize the allocation of resources, technology and infrastructure development to minimize resource, economic, technical, and environmental risks. Third, other shale gas industry developments emphasize the challenges of including the many parties with different, often conflicting expectations. Government and enterprises must collaboratively collect and share information, develop risk assessments, and consider risk management alternatives to support science-based decision-making with the diverse parties.

  1. Development of simultaneous hyperspectral coherent Raman imaging for advancing reduced emission combustion technology

    NARCIS (Netherlands)

    Bohlin, G.A.

    2016-01-01

    Overall aim and key objectives Advances in optical imaging techniques over the past decades have revolutionized our ability to study chemically reactive flows encountered in air-breathing combustion systems. Emerging technology for unravelling clean- and efficient

  2. Water management technologies used by Marcellus Shale Gas Producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  3. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  4. Relation of peat to oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Linker, S

    1924-01-01

    Samples of oil shale from the Green River formation and from Elko (Nev.), Brazil, Austria, and South Africa were examined, and several varieties of shale were found. Green River oil shale represents three of the more common types plus one less common type. These were: contorted shale with a velvety appearance, thin paper shale resembling the curled-up leaves of a book, massive black shale resembling a piece of rubber, and a less common type, which showed the bedding planes very clearly. The Elko (Nev.) shale was a light buff color; the shale from Brazil resembled a piece of petrified peat. When the shales were cut very thin, their colors ranged from yellow to reddish-brown. The composition, as seen under the microscope, was of well-preserved plant material such as spores, pollen grains, fragments of cell tissues, algae, fungi, bacteria, macerated organic residue, small pieces of resin, animal fossils, and translucent bodies. Oil shale was produced from organic material that accumulated in peat bogs, marshes, or swamps in fresh or salt waters. The organic matter was decomposed by bacterial action. Certain parts of the plants decayed more readily than others. Before lithification occurred, a chemical action took place that changed the softer tissues of the plant debris into a gel. This collodial matter penetrated and surrounded the more resistant fragments and preserved them from further decay. Certain bog waters contain a high percentage of humic acids in solution or collodial suspension and produce insoluble humates when neutralized. These humates are probably the so-called kerogen bodies.

  5. Chemical-looping combustion as a new CO{sub 2} management technology

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, Tobias; Lyngfelt, Anders [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Zafar, Qamar; Johansson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3-50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible at a low cost. Further, work is going on to adapt the technique for use with solid fuels and for hydrogen production. This paper presents an overview of the research performed on CLC and highlights the current status of the technology.

  6. A review of the organic geochemistry of shales

    International Nuclear Information System (INIS)

    Ho, P.C.; Meyer, R.E.

    1987-06-01

    Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids, fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified

  7. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  8. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  9. Shale gas - Risks and stakes

    International Nuclear Information System (INIS)

    Parks, Olivier

    2014-01-01

    This book aims at exploring all aspects of the shale gas issue: geological data, environmental impacts, financial aspects and economical impacts of shale gas exploitation. It compares the available information with the field reality and defeats the dogmatic mirages. The research and compilation work carried out by the author make this book a reference in the domain of shale gas exploitation

  10. Process of briquetting fine shale

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J

    1943-05-05

    A process is described for the preparation of briquetts of fine bituminous shale, so-called Mansfield copper shale, without addition of binding material, characterized in that the fine shale is warmed to about 100/sup 0/C and concurrently briquetted in a high-pressure rolling press or piece press under a pressure of 300 to 800 kg/cm/sup 2/.

  11. Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Sharifzadeh Mahdi

    2017-04-01

    Full Text Available As the demand for energy continues to increase, shale gas, as an unconventional source of methane (CH4, shows great potential for commercialization. However, due to the ultra-low permeability of shale gas reservoirs, special procedures such as horizontal drilling, hydraulic fracturing, periodic well shut-in, and carbon dioxide (CO2 injection may be required in order to boost gas production, maximize economic benefits, and ensure safe and environmentally sound operation. Although intensive research is devoted to this emerging technology, many researchers have studied shale gas design and operational decisions only in isolation. In fact, these decisions are highly interactive and should be considered simultaneously. Therefore, the research question addressed in this study includes interactions between design and operational decisions. In this paper, we first establish a full-physics model for a shale gas reservoir. Next, we conduct a sensitivity analysis of important design and operational decisions such as well length, well arrangement, number of fractures, fracture distance, CO2 injection rate, and shut-in scheduling in order to gain in-depth insights into the complex behavior of shale gas networks. The results suggest that the case with the highest shale gas production may not necessarily be the most profitable design; and that drilling, fracturing, and CO2 injection have great impacts on the economic viability of this technology. In particular, due to the high costs, enhanced gas recovery (EGR using CO2 does not appear to be commercially competitive, unless tax abatements or subsidies are available for CO2 sequestration. It was also found that the interactions between design and operational decisions are significant and that these decisions should be optimized simultaneously.

  12. Neutron activation determination of rhenium in shales shales and molybdenites

    International Nuclear Information System (INIS)

    Zajtsev, E.I.; Radinovich, B.S.

    1977-01-01

    Described is the technique for neutron activation determination of rhenium in shales and molybdenites with its radiochemical extraction separation by methyl-ethyl ketone. The sensitivity of the analysis is 5x10 -7 %. Experimental checking of the developed technique in reference to the analysis of shales and molybdenites was carried out. Estimated is the possibility of application of X-ray gamma-spectrometer to instrumental determination of rhenium in molybdenites

  13. Preparation of hydraulic cement from oil-shale

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement from oil-shale or oil-shale residue is characterized in that, the oil-shale or shale-coke together with a slight amount of marl is burned under sintering conditions and the residue obtained is ground to a fine dust.

  14. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  15. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen combustion technology); 1975 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This research mainly aims at establishment of various conditions necessary for using hydrogen fuel. The research includes (1) properties of hydrogen-methane mixture gas, and the proposal to future R and D, (2) extraction of various problems in practical use of home or industrial combustors, and evaluation of existing technologies, (3) the environmental impact of hydrogen fuel and its reduction measures, and (4) estimation of energy structures in cities and placing of hydrogen fuel in 2000. Detailed study items are as follows. In (1), general and proper combustion characteristics of and combustion technology for hydrogen- methane mixture system. In (2), problems for every use of various gas equipment, application of various gas equipment to hydrogen, peripheral technologies, conversion from natural gas, problems of heating furnaces and hydrogen burners, combustion safety/control equipment for various combustors, water content recovery combustion system, hydrogen embrittlement, and sealing. In (3), NO{sub x} generation in hydrogen combustion and its reduction measures. In (4), problems in introduction of a hydrogen-electric power energy system to an assumed model city in 2000. (NEDO)

  16. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  17. Improvements in the distillation of shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-20

    A process for treating shale and other bituminous substances containing sulfur and obtaining desulfurized products of distillation consisting in the consecutive steps of crushing the shale, mixing a suitable liquid with the shale granules, mixing slaked lime with the liquid coated shale granules, and gradually feeding the lime coated shale granules into a retort presenting a series of ledges or the like and working the shale granules down from ledge to ledge so that they are continuously agitated while being heated, the volatile constituents escaping through the lime coating and being conducted away from the upper part of the retort to suitable condensing apparatus, and the sulfur being arrested by the lime coating and together with the exhausted shale and other impurities being discharged from the lower part of the retort.

  18. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  19. Construction of Shale Gas Well

    Science.gov (United States)

    Sapińska-Śliwa, Aneta; Wiśniowski, Rafał; Skrzypaszek, Krzysztof

    2018-03-01

    The paper describes shale gas borehole axes trajectories (vertical, horizontal, multilateral). The methodology of trajectory design in a two-and three-dimensional space has been developed. The selection of the profile type of the trajectory axes of the directional borehole depends on the technical and technological possibilities of its implementation and the results of a comprehensive economic analysis of the availability and development of the field. The work assumes the possibility of a multivariate design of trajectories depending on the accepted (available or imposed) input data.

  20. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  1. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  2. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  3. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    Science.gov (United States)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to

  4. Origin of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, W G

    1923-01-01

    The theory by Jones was questioned. Oil shales do not contain partly decomposed vegetable matter, and, where particles of vegetation are identified, they do not prove that kerogen was formed in its place. Some shales do contain free oil that can be extracted with solvents.

  5. The shale gas potential of the Opalinus Clay and Posidonia Shale in Switzerland - A first assessment

    International Nuclear Information System (INIS)

    Leu, W.; Gautschi, A.

    2014-01-01

    There has been recent interest in the shale gas potential of the Opalinus Clay and Posidonia Shale (Middle and Lower Jurassic) below the Swiss Molasse Basin in the light of the future role of domestic gas production within the expected future energy shift of Switzerland and possible conflicts in underground use. The Opalinus Clay of northern Switzerland is a potential host rock for repositories of both high-level and low-to-intermediate level radioactive waste and the exploitation of shale gas resources within or below this formation would represent a serious conflict of use. Well data from northern Switzerland shows that these two formations are unsuitable for future shale gas recovery. They never reached the gas window during their burial history (maturity values are ≤ 0.6% R o ) and as a consequence never generated significant quantities of thermogenic gas. Geochemical data further shows that the average TOC values are in the range of 0.7%, i.e. clearly below accepted values of more than 1.5% for prospective shales. A review of available exploration data for the Opalinus Clay and Posidonia Shale in the deeper and western part of the Swiss Molasse Basin indicate that their shale gas potential may be substantial. The gross Posidonia Shale thickness increases from central Switzerland from less than 10 m to over 100 m in the Yverdon-Geneva area and is characterised by numerous bituminous intervals. A simplified shale gas resource calculation results for a geologically likely scenario in a technically recoverable gas volume of ∼120 billions m 3 . The current database for such estimates is small and as a consequence, the uncertainties are large. However, these first encouraging results support a more detailed exploration phase with specific geochemical and petrophysical analysis of existing rock and well log data. (authors)

  6. The shale gas potential of the Opalinus Clay and Posidonia Shale in Switzerland - A first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Leu, W. [Geoform Ltd, Villeneuve (Switzerland); Gautschi, A. [NAGRA, Wettingen (Switzerland)

    2014-07-01

    There has been recent interest in the shale gas potential of the Opalinus Clay and Posidonia Shale (Middle and Lower Jurassic) below the Swiss Molasse Basin in the light of the future role of domestic gas production within the expected future energy shift of Switzerland and possible conflicts in underground use. The Opalinus Clay of northern Switzerland is a potential host rock for repositories of both high-level and low-to-intermediate level radioactive waste and the exploitation of shale gas resources within or below this formation would represent a serious conflict of use. Well data from northern Switzerland shows that these two formations are unsuitable for future shale gas recovery. They never reached the gas window during their burial history (maturity values are ≤ 0.6% R{sub o}) and as a consequence never generated significant quantities of thermogenic gas. Geochemical data further shows that the average TOC values are in the range of 0.7%, i.e. clearly below accepted values of more than 1.5% for prospective shales. A review of available exploration data for the Opalinus Clay and Posidonia Shale in the deeper and western part of the Swiss Molasse Basin indicate that their shale gas potential may be substantial. The gross Posidonia Shale thickness increases from central Switzerland from less than 10 m to over 100 m in the Yverdon-Geneva area and is characterised by numerous bituminous intervals. A simplified shale gas resource calculation results for a geologically likely scenario in a technically recoverable gas volume of ∼120 billions m{sup 3}. The current database for such estimates is small and as a consequence, the uncertainties are large. However, these first encouraging results support a more detailed exploration phase with specific geochemical and petrophysical analysis of existing rock and well log data. (authors)

  7. Review of Membrane Oxygen Enrichment for Efficient Combustion

    Science.gov (United States)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  8. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  9. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  10. Uncertainty in the Shale Gas Debate: Views From the Science–Policymaking Interface

    Directory of Open Access Journals (Sweden)

    Constantin Marius PROFIROIU

    2015-10-01

    Full Text Available Shale gas involves a technology which is a controversial method of energy production mainly because there are uncertainties about the possible environmental and human health impacts. The article aims to identify the level of knowledge in relation to the impact of environmental risks attached to shale gas exploitation in the academic and scientifi c community. It does so by employing the expert elicitation approach which has the benefi t of quantifying the judgment of individual experts. We have revealed a consistency among researchers in assessing the level of uncertainty of the main environmental risks and a preferred policy option in dealing with uncertainty, a vow for improved transparency, openness and ease of access to information. Shale gas policy-making in Europe needs a science- based approach as science informs policy by delivering objective and reliable knowledge. The article concludes that developing a comprehensive approach based on scientifi c data and an appropriate regulatory framework will provide a path forward for the future development of contested policies like shale gas.

  11. Technical-economic parameters of the new oil shale mining-chemical complex in Northeast Estonia

    International Nuclear Information System (INIS)

    Kuzmiv, I.; Fraiman, J.

    2006-01-01

    The history of oil shale mining in Estonia has reached its century mark. Three oil shale branches have been formed and have been working on the basis of Estonian oil shale deposits: the mining industry (underground and surface extraction), the power industry (heat and electric energy generation), and the chemical industry (gas and synthetic oils). The authors attempted to summarize the experience of the activities of these branches and to make into a whole the results of their research developments in the past years, as well as to form a notion about perspectives of oil shale in Estonia. Variants of the mining-chemical oil shale complex production and trade patterns differed from used ones. Mining methods, thermal processing of oil shale, and solid, liquid, and gas waste recovery have been studied, analyzed, and worked out up to the present. Setting up a flexible trade structure within the framework of that complex is considered the main economic mechanism capable of balancing production costs of such a complex with its earnings, which could respond properly to any, even peak, fluctuations of the market for final products processed from oil shale. Data of the working 'Estonia' oil shale mine were used as the basis of the analysis and practical conclusions. Information on the mine being projected in the region of Ojamaa in the northeast of Estonia was taken as the data of the worthwhile supplier. Oil shale processing chemical complex is considered in two structural alternatives: in technological chain with the 'Estonia' mine (the first variant), and the projected mine of a new technical level (the second variant). (author)

  12. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2017-03-01

    The study reveals great optimization potential of the micromix combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the micromix burners and to integrate this technology in industrial gas turbines.

  13. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O' Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  14. Trust in the source of received information as a factor related to public perception of shale gas drilling

    Directory of Open Access Journals (Sweden)

    Sylwia Mrozowska

    2016-11-01

    Full Text Available Three studies were carried out to examine whether trust in sources of information on technology is related to positive attitudes toward shale gas drilling. Factors we controlled for included: scientific knowledge, universalism and security as personal values, attitudes towards science, personal and group identity fusion, political views, and valence of the media information people received. We assumed hypothesis 1, that trust in the source of the information would be a significant predictor of positive attitudes toward shale gas, above and beyond other variables we controlled for (study 1. Also, we stated hypothesis 2, that trust in the source of information on technology in question would be related to more positive attitudes toward shale gas when more positive information is provided, and to more negative perception of gas drilling when less positive information is presented. Thus, we expected an interaction effect between trust and valence of information presented to participants (studies 2 and 3. Participants completed questionnaires in Poland (studies 1 and 2 and the USA (study 3. They where recruited from communities in regions where shale gas industry could potentially be developed (study 2 or has been developed (study 3. The results showed: (a a significant relationship between trust in negative information on shale gas and negative attitudes toward extraction; (b a significant interaction between trust and valence of information on shale gas. That is, trust in the source of information was related to more positive attitudes toward shale gas when a positive view is provided, and to more negative attitudes when undesirable information is presented.

  15. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  16. Modelling oil-shale integrated tri-generator behaviour: predicted performance and financial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, J.O.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering; Williams, P.T. [Leeds University (United Kingdom). Dept. of Fuel and Energy

    1998-03-01

    A simple theoretical model relating the inputs and outputs of the proposed process has been developed; the main objectives being to predict the final products (i.e., the production rates for liquid and gaseous fuels as well as electricity), the total energy-conversion efficiency and the incurred costs under various operating conditions. The tri-production concept involves the use of a circulating fluidised-bed combustor together with a gasifier, retort and simple combined-cycle plant. The mathematical model requires mass and energy balances to be undertaken: these are based on the scarce published data about retorting as well as fluidised-bed combustion and gasification of oilshale. A prima facie case is made that the proposed tri-production plant provides an attractive and economic means for producing synthetic fuels and electricity from oil shale. The unit cost of electricity, so generated, would at present be about 0.057 US$ per kWh, assuming a 10% annual interest charge on the invested capital. If the produced shale oil could be sold for more than 25 US$ per barrel, then the cost of the generated electricity would be appropriately less and hence more competitive. (author)

  17. Enrichment of {sup 210}Po and {sup 210}Pb in ash samples from oil shale-fired power plants in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, B. [University of Tartu, Institute of Physics/Ege University, Institute of Nuclear Sciences (Estonia); Vaasma, T.; Kiisk, M.; Suursoo, S.; Tkaczyk, A.H. [University of Tartu,Institute of Physics (Estonia)

    2014-07-01

    Energy production in Estonia is largely dependent on the oil shale industry. Oil shale is a fossil fuel typically characterized by relatively high mineral composition, modest organic fraction (varying between 10 and 65%), high ash content (usually 45% to 50%), and average lower heating value of 8.4 MJ/kg{sup -1}. Oil shale-fired power plants account for 85% of Estonian electricity production and produce up to 6 million tons of oil shale ash annually. This ash contains elevated amounts of natural radionuclides (from the {sup 238}U and {sup 232}Th series and {sup 40}K), which were bound to oil shale during its formation. These radionuclides become enriched in ash fractions during the combustion process and are partially emitted to the atmosphere via fly ash and flue gases. Oil shale-fired electricity production is foreseen to remain a dominant trend in Estonia, suggesting that the radionuclide emissions to the atmosphere will continue in the future. The natural radionuclides {sup 210}Po and {sup 210}Pb, with half-lives of 138 days and 22.3 years respectively, originate from the radioactive decay of radionuclides of {sup 238}U series present in the earth's crust. These radionuclides are also built up artificially in the environment due to waste discharge from phosphate, oil, and gas industries, combustion of fossil fuels and other energy production as technically enhanced natural radionuclides. There are few studies on oil shale power plants influence on the levels of natural radioactivity in the surrounding areas. Realo, et al. reported that the annual doses from fly ash depositions over a 30 year period are in the range 90 - 200 μSv a{sup -1}. A study previously initiated by the University of Tartu, Institute of Physics (IPh) evaluated enrichment in the activity concentrations of {sup 238}U, {sup 226}Ra, {sup 210}Pb, {sup 232}Th, {sup 228}Ra and {sup 40}K in ash samples collected from Eesti Power Plant's circulating fluidized bed (CFB) boiler. According

  18. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  19. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.

    2013-01-16

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.

  20. Obtaining shale distillate free from sulphur

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-09-14

    A process whereby, from sulfur-containing shale, products free from sulfur may be obtained, consisting of mixing with the finely ground shale a portion of iron salts containing sufficient metal to unite with all the sulfur in the shale and form sulfide therewith, grinding the mixture to a fine state of subdivision and subsequently subjecting it to destructive distillation.

  1. Low temperature distillation of coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-12

    A process is disclosed for the low temperature distillation of solid carbonaceous fuels, such as coal, lignite, shale or the like, which comprises feeding or supplying the comminuted fuel in the form of a layer of shallow depth to drying and distilling zones in succession moving the fuel forward through the zones, submitting it to progressively increasing nonuniform heating therein by combustion gases supplied to the distillation zone and traveling thence to the drying zone, the gases heating the distillation zone indirectly and the drying zone both indirectly and then directly such that the fuel retains its solid discrete form during substantially the whole of its travel through the drying and distillation zones, subjecting the fuel for a portion of its travel to a zigzag ploughing and propelling movement on a heated sole, and increasing the heating so as to cause fusion of the fuel immediately prior to its discharge from the distillation zone.

  2. A perspective on Canadian shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Mike; Davidson, Jim; Mortensen, Paul

    2010-09-15

    In a relatively new development over just the past few years, shale formations are being targeted for natural gas production. Based on initial results, there may be significant potential for shale gas in various regions of Canada, not only in traditional areas of conventional production but also non-traditional areas. However, there is much uncertainty because most Canadian shale gas production is currently in experimental or early developmental stages. Thus, its full potential will not be known for some time. If exploitation proves to be successful, Canadian shale gas may partially offset projected long-term declines in Canadian conventional natural gas production.

  3. Is Estonian oil shale beneficial in the future?

    International Nuclear Information System (INIS)

    Reinsalu, Enno

    1998-01-01

    Oil shale mining production reached its maximum level of 31.35·10 6 tonnes per year in 1980. After the eighties there was a steady decline in mining. The first scientific prognoses of the inescapable decrease in oil shale mining were published in 1988. According to this, the Estonian oil shale industry would vanish in the third decade of the next century. From the beginning of the nineties, the consumption and export of electricity have dropped in Estonia. The minimum level of oil shale mining was 13.5·10 6 tonnes per year. This occurred in 1994/1995. Some increase in consumption of electric power and oil shale began at the end of 1995. Oil shale processing began to increase gradually in 1993. Oil shale is the most important fuel in Estonia today. In 1997, oil shale provided 76% of Estonia's primary energy supply and accounted for 57% of its economic value. Oil shale is the cheapest fuel in Estonia. Nowadays, oil shale provides an essential part of the fuel supply in Estonia because it is considerably cheaper than other fuels. Oil shale costs EEK 12.16 per G J. At the same time, coal costs EEK 23.41 per G J and peat costs EEK 14.80 per G J (year 1997). There are three important customers of oil shale: the electric power company Eesti Energia, the oil processing company Kiviter and the factory Kunda Nordic Cement. In 1995, the power company utilised 81% of the oil shale mass and 77% of its heating value. The state energy policy inhibits increases in the oil shale price even though the mining infrastructure is decaying. Government price policies subside oil shale processing. The energy of oil shale processing is 1.9 times cheaper than the heating value of raw oil shale for power stations. It could be considered as a state subsidisation of oil and cement export at the expense of electricity. The subsidy assigned to oil processing was of EEK 124·10 6 and to the cement industry of EEK 8.4·10 6 in year 1997 (based on heating value). State regulation of prices and

  4. RUSSIA DOESN’T SUPPORT «SHALE REVOLUTION»

    Directory of Open Access Journals (Sweden)

    S. S. Zhiltsov

    2015-01-01

    Full Text Available Growth of volumes of production of shale gas in the USA compelled Russia to pay attention to this type of resourses. The interest to shale gas in Russia was limited to discussions at the level of experts and reflection of importance of this problem in statements of politicians. In the next years in Russia don't plan production of shale gas commercially. It is connected with existence in Russia of considerable reserves of traditional natural gas, absence of exact data of reserves of shale gas, high costs of production, and also environmental risks which accompany development of fields of shale gas.

  5. The role of ethics in shale gas policies.

    Science.gov (United States)

    de Melo-Martín, Inmaculada; Hays, Jake; Finkel, Madelon L

    2014-02-01

    The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled natural gas to be produced from unconventional sources, such as shale. There has been much discussion about the costs and benefits of developing shale gas among scientists, policy makers, and the general public. The debate has typically revolved around potential gains in economics, employment, energy independence, and national security as well as potential harms to the environment, the climate, and public health. In the face of scientific uncertainty, national and international governments must make decisions on how to proceed. So far, the results have been varied, with some governments banning the process, others enacting moratoria until it is better understood, and others explicitly sanctioning shale gas development. These policies reflect legislature's preferences to avoid false negative errors or false positive ones. Here we argue that policy makers have a prima facie duty to minimize false negatives based on three considerations: (1) protection from serious harm generally takes precedence over the enhancement of welfare; (2) minimizing false negatives in this case is more respectful to people's autonomy; and (3) alternative solutions exist that may provide many of the same benefits while minimizing many of the harms. © 2013.

  6. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    Science.gov (United States)

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  7. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia – The impact of new circulating fluidized bed technology

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated – two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides and for 40 K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ( 210 Pb and 40 K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ( 238 U, 226 Ra, 210 Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, 226 Ra and 228 Ra. A part of 226 Ra input activity, unlike 228 Ra, was undetectable in the solid

  8. GRI's Devonian Shales Research Program

    International Nuclear Information System (INIS)

    Guidry, F.K.

    1991-01-01

    This paper presents a summary of the key observations and conclusions from the Gas Research Institute's (GRI's) Comprehensive Study Well (CSW) research program conducted in the Devonian Shales of the Appalachian Basin. Initiated in 1987, the CSW program was a series of highly instrumented study wells drilled in cooperation with industry partners. Seven wells were drilled as part of the program. Extensive data sets were collected and special experiments were run on the CSW's in addition to the operator's normal operations, with the objectives of identifying geologic production controls, refining formation evaluation tools, and improving reservoir description and stimulation practices in the Devonian Shales. This paper highlights the key results from the research conducted in the CSW program in the areas of geologic production controls, formation evaluation, stimulation and reservoir engineering, and field operations. The development of geologic, log analysis, and reservoir models for the Shales from the data gathered and analysis, and reservoir models for the Shales from the data gathered and analyzed during the research is discussed. In addition, on the basis of what was learned in the CSW program, GRI's plans for new research in the Devonian Shales are described

  9. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  10. Process for extracting oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process is described for recovering bituminous material from oil shale, characterized in that the oil shale is extracted with wood spirits oil (byproduct of woodspirit rectification), if necessary in admixture with other solvents in the cold or the hot.

  11. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    Science.gov (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  12. A risk assessment tool applied to the study of shale gas resources

    Energy Technology Data Exchange (ETDEWEB)

    Veiguela, Miguel [Mining, Energy and Materials Engineering School, University of Oviedo (Spain); Hurtado, Antonio; Eguilior, Sonsoles; Recreo, Fernando [Environment Department, CIEMAT, Madrid (Spain); Roqueñi, Nieves [Mining, Energy and Materials Engineering School, University of Oviedo (Spain); Loredo, Jorge, E-mail: jloredo@uniovi.es [Mining, Energy and Materials Engineering School, University of Oviedo (Spain)

    2016-11-15

    The implementation of a risk assessment tool with the capacity to evaluate the risks for health, safety and the environment (HSE) from extraction of non-conventional fossil fuel resources by the hydraulic fracturing (fracking) technique can be a useful tool to boost development and progress of the technology and winning public trust and acceptance of this. At the early project stages, the lack of data related the selection of non-conventional gas deposits makes it difficult the use of existing approaches to risk assessment of fluids injected into geologic formations. The qualitative risk assessment tool developed in this work is based on the approach that shale gas exploitation risk is dependent on both the geologic site and the technological aspects. It follows from the Oldenburg's ‘Screening and Ranking Framework (SRF)’ developed to evaluate potential geologic carbon dioxide (CO{sub 2}) storage sites. These two global characteristics: (1) characteristics centered on the natural aspects of the site and (2) characteristics centered on the technological aspects of the Project, have been evaluated through user input of Property values, which define Attributes, which define the Characteristics. In order to carry out an individual evaluation of each of the characteristics and the elements of the model, the tool has been implemented in a spreadsheet. The proposed model has been applied to a site with potential for the exploitation of shale gas in Asturias (northwestern Spain) with tree different technological options to test the approach. - Highlights: • The proposed methodology is a risk assessment useful tool for shale gas projects. • The tool is addressed to the early stages of decision making processes. • The risk assessment of a site is made through a qualitative estimation. • Different weights are assigned to each specific natural and technological property. • The uncertainty associated to the current knowledge is considered.

  13. A risk assessment tool applied to the study of shale gas resources

    International Nuclear Information System (INIS)

    Veiguela, Miguel; Hurtado, Antonio; Eguilior, Sonsoles; Recreo, Fernando; Roqueñi, Nieves; Loredo, Jorge

    2016-01-01

    The implementation of a risk assessment tool with the capacity to evaluate the risks for health, safety and the environment (HSE) from extraction of non-conventional fossil fuel resources by the hydraulic fracturing (fracking) technique can be a useful tool to boost development and progress of the technology and winning public trust and acceptance of this. At the early project stages, the lack of data related the selection of non-conventional gas deposits makes it difficult the use of existing approaches to risk assessment of fluids injected into geologic formations. The qualitative risk assessment tool developed in this work is based on the approach that shale gas exploitation risk is dependent on both the geologic site and the technological aspects. It follows from the Oldenburg's ‘Screening and Ranking Framework (SRF)’ developed to evaluate potential geologic carbon dioxide (CO_2) storage sites. These two global characteristics: (1) characteristics centered on the natural aspects of the site and (2) characteristics centered on the technological aspects of the Project, have been evaluated through user input of Property values, which define Attributes, which define the Characteristics. In order to carry out an individual evaluation of each of the characteristics and the elements of the model, the tool has been implemented in a spreadsheet. The proposed model has been applied to a site with potential for the exploitation of shale gas in Asturias (northwestern Spain) with tree different technological options to test the approach. - Highlights: • The proposed methodology is a risk assessment useful tool for shale gas projects. • The tool is addressed to the early stages of decision making processes. • The risk assessment of a site is made through a qualitative estimation. • Different weights are assigned to each specific natural and technological property. • The uncertainty associated to the current knowledge is considered.

  14. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  15. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    Science.gov (United States)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  16. Treating bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Ginet, J H

    1921-03-09

    Apparatus for the treatment of bituminous shales is described wherein a number of separate compartments are arranged in alignment and communicate with each other near the bottom thereof, each of the compartments being provided with outlets for the gases evolved therein, while agitators are arranged in each of the compartments, each agitator being composed of a number of shovels which sweep up the comminuted shale at their forward end and discharge it at their rearward end into the path of the next adjacent agitator.

  17. Treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Dolbear, S H

    1921-01-04

    Oil shale is treated for the separation of the valuable organic compounds, with a view to economy in subsequent destructive distillation, by grinding to powder, mixing with water to form a pulp, adding a small quantity of an oil liquid and aerating the mixture to form a froth containing the organic compounds. If the powdered shale contains sufficient free oil, the addition of oil to the pulp may be dispensed with. In some cases an electrolyte such as sulfuric acid may be added to the pulp.

  18. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  19. Oil Shale and Its Relation to Petroleum and Other Fuels (Summary Les schistes à l'huile et leurs relation avec le pétrole et les autres combustibles (résumé

    Directory of Open Access Journals (Sweden)

    Billo S. M.

    2006-10-01

    Full Text Available World oil reserves in oil shales (1. 2 to 2 trillion barrels are at least 4 times as large as proven crude oil petroleum reserves (310 billion barrels. Petroleum is produced from oil shale by pyrolysis (destructive distillation by hecit. Coal can also be converted ta synthetic petroleum products by direct hydrogenation and by the modified Fischer-Tropsch process. Rising cost of oil exploration and production and increasing efficiency of synthetizing processes indicate that synthetic fuels may increase the supply of natural liquid fuels in the foreseeable future. The term kerogen is often used to comprise all the organic matter contained in sediments and may be of two kinds: 1 coalylike kerogen, and 2 sapropellic kerogen - oil shale type. It is believed that both kerogen and petroleum were formed from hypothetical ancestor - protopetroleum. They are found together in sedimenfs and their C13C12 ratios are similar. The largest producer of oil shale ore China, the USSR and Sweden. The USA is technologically prepared to begin production of synthetized fuels through varying economic condition. Richness and size of deposits, cost of mining, cost of retorting, character of products, and location of deposit in relation to plant and market, determine the economic value of a given deposit. Les réserves mondiales de schistes à huile (1,2 à 2 x 10. 12 barils sont au moins quatre fois supérieures aux réserves prouvées de pétrole brut (310 x 10. 9 barils. On extrait le pétrole des schistes par pyrolyse (distillation destructive thermique. Le charbon peut aussi être transformé en hydrocarbures par hydrogénation et par le procédé Fischer-Tropsch modifié. L'augmentation des coûts de l'exploration et de la production du pétrole et amélioration de l'efficacité des procédés synthétiques montrent que les produits synthétiques vont jouer un rôle croissant dans l'approvisionnement en combustibles liquides au cours des années à venir. Le terme k

  20. LNG trumped : the burst of enthusiasm for shale gas could put LNG on the sidelines of global gas trade

    International Nuclear Information System (INIS)

    McKenzie-Brown, P.

    2010-01-01

    The growing interest in shale gas is largely due to rapid innovation in down-hole technologies such as horizontal drilling, better bit design, coil tubing, down-hole motors, geosteering, microseismic, measurement while drilling tools and more powerful fracing systems. Despite these advances in shale gas technology, price will be the deciding factor in the competition between liquefied natural gas (LNG) and shale gas. This article discussed the 3 sources of gas that are of interest to North American producers. The first is the great success of shale gas production in the United States and Canada. The second is the evolution of a global market for LNG. This development has eliminated the need for pipelines to tie stranded gas into the world's industrial markets. For example, Qatar is developing liquefaction facilities for an offshore reservoir with more than a quadrillion cubic feet of proved reserves. The gas industry's third area of interest lies in the huge conventional gas reserves in Alaska and the Northwest Territories. However, there is doubt that any proposed pipelines to deliver the resources to southern markets will be built, particularly since shale gas formations like the Montney and Horn River have great potential and are located right next to existing infrastructure. 2 figs.

  1. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    Science.gov (United States)

    Brantley, S.; Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through tools that are open source and free to use, researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, these tools and data have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing lesson plans, and the resources available to learn more.

  2. Experimental Study of Matrix Permeability of Gas Shale: An Application to CO2-Based Shale Fracturing

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhang

    2018-03-01

    Full Text Available Because the limitations of water-based fracturing fluids restrict their fracturing efficiency and scope of application, liquid CO2 is regarded as a promising substitute, owing to its unique characteristics, including its greater environmental friendliness, shorter clean-up time, greater adsorption capacity than CH4 and less formation damage. Conversely, the disadvantage of high leak-off rate of CO2 fracturing due to its very low viscosity determines its applicability in gas shales with ultra-low permeability, accurate measurement of shale permeability to CO2 is therefore crucial to evaluate the appropriate injection rate and total consumption of CO2. The main purpose of this study is to accurately measure shale permeability to CO2 flow during hydraulic fracturing, and to compare the leak-off of CO2 and water fracturing. A series of permeability tests was conducted on cylindrical shale samples 38 mm in diameter and 19 mm long using water, CO2 in different phases and N2 considering multiple influencing factors. According to the experimental results, the apparent permeability of shale matrix to gaseous CO2 or N2 is greatly over-estimated compared with intrinsic permeability or that of liquid CO2 due to the Klinkenberg effect. This phenomenon explains that the permeability values measured under steady-state conditions are much higher than those under transient conditions. Supercritical CO2 with higher molecular kinetic energy has slightly higher permeability than liquid CO2. The leak-off rate of CO2 is an order of magnitude higher than that of water under the same injection conditions due to its lower viscosity. The significant decrease of shale permeability to gas after water flooding is due to the water block effect, and much longer clean-up time and deep water imbibition depth greatly impede the gas transport from the shale matrix to the created fractures. Therefore, it is necessary to substitute water-based fracturing fluids with liquid or super

  3. Distillation of shale and other bituminous substances. [shale granules wetted, mixed with lime, heated; sulfur recovered

    Energy Technology Data Exchange (ETDEWEB)

    Noad, J

    1912-09-23

    A process is described for the treatment of shale and other bituminous substances containing sulfur and recovering desulfurized distillates. The process consists of first grinding the shale and mixing the granules obtained with a convenient liquid. The shale granules coated or covered with liquid and mixed with slacked lime are fed into a retort with a series of steps or their equivalent, made to descend, step by step, in such manner that they are continually agitated and heated. The volatile constituents escape through the coating or sheath of lime and are carried away at the upper part of the retort to a convenient condensing apparatus, the sulfur being retained by the sheath of lime and is discharged at the bottom of the retort with the spent shale and other impurities.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  7. Recovering valuable shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Engler, C

    1922-09-26

    A process is described for the recovery of valuable shale oils or tars, characterized in that the oil shale is heated to about 300/sup 0/C or a temperature not exceeding this essentially and then is treated with a solvent with utilization of this heat.

  8. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  9. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  10. Shale gas: the water myth

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, Kerry [Dillon Consulting Limited (Canada)

    2010-07-01

    In recent years, due to the depletion of traditional fossil fuel resources and the rising price of energy, production from unconventional gas activities has increased. Large shale gas plays are available in Quebec but environmental concerns, mainly in terms of water resources, have been raised. The aim of this paper is to provide information on the impact of shale gas exploitation on water resources. It is shown herein that shale gas water use is not significant, the water use of 250 wells represents only 0.3% of the Quebec pulp and paper industry's water use, or 0.0004% of the flow of the St Lawrence. It is also shown that the environmental risk associated with fracking and drilling activities is low. This paper demonstrated that as long as industry practices conform to a well-designed regulatory framework, shale gas development in Quebec will have a low impact on water resources and the environment.

  11. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    Although a soil-shale mixture was employed as the growth medium in this experiment, the results presentd are applicable to the proposed method of disposal mentioned earlier. Under field conditions, when covering the retorted shale with topsoil, some mixing of these materials might occur in the plant root region. In addition, it has been demonstrated that buried shale negatively affects enzyme activities in overburden surface soil. The occurrence of either of those events could affect symbiotic N/sub 2/ fixation in a manner similar to that reported in this paper. Researchers conclude that due to the varied effects of retorted shale on the legumes tested, further evaluation of other legumes may be necessary. Additional research would be required to determine which legumes have potential use for reclamation of retorted shale.

  12. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  13. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  14. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project alternative energy sources: solar, eolic, shale, ocean, hydrogen, organic wastes, peat and lignite

    International Nuclear Information System (INIS)

    1993-07-01

    Several aspects of solar, eolic and ocean energy and shale, peat lignite, hydrogen and organic waste in Brazil are described, including reserves, potential, technology economy and environment. Based in data and information presented in this report, the necessity of a more detailed survey with the potential of alternative energy sources in Brazil, emphasizing the more promiser regions is also mentioned. (C.G.C.)

  15. Senate hearings whet interest in oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Remirez, R

    1967-06-05

    Recent oil shale hearings by the U.S. Senate disclosed the proposed leasing rules for federal oil-shale lands. In addition, Oil Shale Corp. announced that the first commercial shale-oil processing plant would be on stream in 1970. Both these announcements are expected to create a stronger interest in what is possibly the greatest untapped natural wealth in the U.S. According to the leasing rules, development leases would involve the following phases: (1) the contractor would have a 10-yr limit to conduct a research and development program on the leased territory; and (2) upon completion of a successful research program, the Interior Department will make available to lease at least enough land to sustain commercial operation. The terms that applicants will have to meet are included in this report. At the Senate hearing, discussions ranged from opinions indicating that development of oil shale recovery was not immediately necessary to opinions urging rapid development. This report is concluded with a state-of-the-art review of some of the oil shale recovery processes.

  16. Hydrogen generation, distribution and combustion under severe LWR accident conditions: a state-of-technology report

    International Nuclear Information System (INIS)

    Postma, A.K.; Hilliard, R.K.

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report include hydrogen generation, distribution in containment, and combustion characteristics. A companion report addresses hydrogen control. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues

  17. Scoping of oil shale retorting with nuclear fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1983-01-01

    An engineering scoping study was conducted at the U.S. Department of Energy's request to see if a feasible concept could be developed for using nuclear fusion heat to improve in situ extraction by retorting of underground oil shale. It was found that a fusion heated, oxygen-free inert gas could be used for driving modified, in situ retorts at a higher yield, using lower grade shale and producing less environmental problems than present-day processes. It was also found to be economically attractive with return on investments of 20 to 30%. Fusion blanket technology required was found to be reasonable at hot gas delivery temperatures of about650 0 C (920 K). The scale of a fusion reactor at 2.8 GW(thermal) producing 45 000 Mg/day (335 000 barrel/day) was also found to be reasonable

  18. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  20. The influence of shale gas on steamcracking

    Energy Technology Data Exchange (ETDEWEB)

    Rupieper, A. [Linde Engineering Dresden GmbH, Dresden (Germany)

    2013-11-01

    US shale gas reserves with more than 860 TCF (Source: U.S. Energy Information Administration study World Shale Gas Resources) account for 2 of the global largest reserves after China. In 7 areas of the US, these reserves are systematically explored, providing a significant amount of cheap natural gas source for decades. The ethane share, carried by such shale gas, can reach up to 16%. Ethane has been already in the past 2 most important feedstock for Steamcrackers, being the backbone of the Petrochemical Industry. Due to availability of vast shale gas, the US steamcracker industry is facing a shift from naphtha to shale gas ethane, as the margin of Ethylene produced from shale gas ethane is significantly larger than that of naphtha based Ethylene (app. + 630 USD/t Ethylene). As a consequence shale gas is ''the magic bullet'' incinerating investments into Steamcrackers and downstream plants for U.S petrochemical industry. Steamcracker Projects with an additional ethylene production capacity of more than 17 million tons/a by 2020 are announced or already under construction. Investments into downstream plants refining the C2 derivatives will follow or are already in planning/engineering phase. But the US market cannot absorb all related products, causing a significant export exposure, which will influence global trade flows for C2 derivatives and affect prices. This article presents the impact of shale gas ethane cracking on: - Trade flow of C2 derivatives; - By-product deficits; - Alternate C3+ derivative production routes; - Challenges related to engineering requirements and project execution for Steamcracker projects. (orig.)

  1. Organic-rich shale lithofacies geophysical prediction: A case study in the fifth organic-matter-rich interval of Paleogene Hetaoyuan Formation, Biyang Depression

    Science.gov (United States)

    Fei, S.; Xinong, X.

    2017-12-01

    The fifth organic-matter-rich interval (ORI 5) in the He-third Member of the Paleogene Hetaoyuan Formation is believed to be the main exploration target for shale oil in Biyang Depression, eastern China. An important part of successful explorating and producing shale oil is to identify and predict organic-rich shale lithofacies with different reservoir capacities and rock geomechanical properties, which are related to organic matter content and mineral components. In this study, shale lithofacies are defined by core analysis data, well-logging and seismic data, and the spatial-temporal distribution of various lithologies are predicted qualitatively by seismic attribute technology and quantitatively by geostatistical inversion analysis, and the prediction results are confirmed by the logging data and geological background. ORI 5 is present in lacustrine expanding system tract and can be further divided into four parasequence sets based on the analysis of conventional logs, TOC content and wavelet transform. Calcareous shale, dolomitic shale, argillaceous shale, silty shale and muddy siltstone are defined within ORI 5, and can be separated and predicted in regional-scale by root mean square amplitude (RMS) analysis and wave impedance. The results indicate that in the early expansion system tract, dolomitic shale and calcareous shale widely developed in the study area, and argillaceous shale, silty shale, and muddy siltstone only developed in periphery of deep depression. With the lake level rising, argillaceous shale and calcareous shale are well developed, and argillaceous shale interbeded with silty shale or muddy siltstone developed in deep or semi-deep lake. In the late expansion system tract, argillaceous shale is widely deposited in the deepest depression, calcareous shale presented band distribution in the east of the depression. Actual test results indicate that these methods are feasible to predict the spatial distribution of shale lithofacies.

  2. School and Community Impacts of Hydraulic Fracturing within Pennsylvania's Marcellus Shale Region, and the Dilemmas of Educational Leadership in Gasfield Boomtowns

    Science.gov (United States)

    Schafft, Kai A.; Biddle, Catharine

    2014-01-01

    Innovations associated with gas and oil drilling technology, including new hydraulic fracturing and horizontal drilling techniques, have recently led to dramatic boomtown development in many rural areas that have endured extended periods of economic decline. The Marcellus Shale play, one of the world's largest gas-bearing shale formations, lies…

  3. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  4. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  5. Shale gas - the story of a deception

    International Nuclear Information System (INIS)

    Ambroise, Jacques

    2013-01-01

    This bibliographical sheet presents a book which aims at informing citizen about the irreversible consequences of shale gas exploitation on the environment, and about the economical and social aspects of an exploitation of this energy on a large scale. The author highlights the technical and environmental problems raised by hydraulic fracturing, outlines the complexity of the regulatory, legal and administrative framework, discusses the arguments which support shale gas exploitation, and outlines the importance of and energy transition without shale gas. The author notably outlines the conflicts of interest which pervert the debate on shale gas, notably within the French National Assembly

  6. Black shales and naftogenesis. A review

    International Nuclear Information System (INIS)

    Yudovich, Yu.E.; Ketris, M.P.

    1993-01-01

    A genetic relation between petroleum plus hydrocarbon gases and bio organic authigenic matter has been well established. As black shales are enriched in organic matter they may serve as potential petroleum beds on the depths suitable for petroleum generation (2-5 km). The calculations made by petroleum geologists showed that hydrocarbon amounts generated by black shales made up to one fifth of the initial organic matter at the end of MK-2 stage of catagenesis. Consequently, black shales may serve as the main oil producers in many sedimentary basins. Petroleum generation in black shales has some peculiarities. Abundant masses of organic matter generate huge amounts of hydrocarbon gases which in turn produce anomalous high bed pressures followed by pulse cavitation effect. Bed pressures 1.5 times higher than normal lithostatic pressure have been detected in oil-bearing black shales of the Cis-Caucasus on the depth of 2.0-2.5 km, along with very high (6 degrees per 100 m) geothermal gradient. According to Stavropol oil geologists, there occurs an effect of rock-by-fluid-destruction after fluid pressure has greatly exceeded the lithostatic pressure. Stress tensions discharge by impulses and cracks may appear with a rate of 0.3-0.7 of the sound speed. Cavitation of gaseous bubbles is produced by sharp crack extension. Such cavitation accounts for impact waves and increased local pressure and temperature. Such an increase, in turn, fastens petroleum generation and new rock cracking. The effect of over-pressed rocks associated with black shales may serve as a process indicator. That is why the geophysical methods detect enhanced specific gravity and decreased porosity zones in such black shales. Cracks and petroleum accumulation occur on the flanks of such zones of rock-by-fluid-destruction. Some black shales may be petroleum-productive due to enhanced uranium content. There exist ideas about uranium-derived heat or radiolytic effects on the petroleum generation. Such

  7. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    by two to five orders of magnitudes at lower vertical effective stress below 40 MPa as the content of clay minerals increases causing heterogeneity in shale material. Indirect permeability from consolidation can give maximum and minimum values of shale permeability needed in simulating fluid flow......Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... effective stress to 9 μD at high vertical effective stress of 100 MPa. The indirect permeability calculated from consolidation tests falls in the same magnitude at higher vertical effective stress, above 40 MPa, as that of the Kozeny model for shale samples with high non-clay content ≥ 70% but are higher...

  8. Comparative acute toxicity of shale and petroleum derived distillates.

    Science.gov (United States)

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  9. Fiscal 1999 achievement report. Research and technology of important regional technologies (Development of combustion control system technology for rationalizing energy use); 1999 nendo energy shiyo gorika nensho nado seigyo system gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For upgrading and optimizing combustion control systems, research and development is conducted for materializing SiC devices capable of high-temperature operation. In the development of basic technologies common to various types of SiC semiconductor devices, XeCl excimer laser annealing is applied to SiC implanted with Al ions, and low-damage ion implantation is studied. In the development of techniques for forming SiC single crystals into substrates, warpage of 20{mu} or less, surface coarseness of 5{mu}m or less, etc., are achieved in 1-inch and 2-inch wafers. In the development of SiC sensor technology, techniques of heteroepitaxial growth of 3C-SiC on Si substrates and of 6H-SiC on 6H-SiC wafers are established and an optical sensor is built experimentally. A high-temperature UV sensor, switching device for control, rectification device for control, etc., are built of nitrogen ion implanted 6H-SiC. In the effort to develop combustion control system technology, the principle of system operation of the combustion control method proposed under this project is verified. (NEDO)

  10. Estonian combustible shale kukersite: its chemistry technology and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luts, K

    1944-01-01

    Nearly all investigators, except Cunningham-Craig, believe that kukersite represents a maritime product of plant origin. In all probability the deposition of the material that formed kukersite took place in large open seas, at a depth of at least 200 meters and in quiet water not subject to the motion of the sea. The temperature at that depth may have been warm; that of the surface was not below 15/sup 0/C. Variation in the temperature of the water had an effect upon the alternation of the kukersite and the limestone layers in the deposit. Decaying process probably changed the original algal masses to the present kukersite.

  11. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  12. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  13. Oil shale mines and their realizable production

    International Nuclear Information System (INIS)

    Habicht, K.

    1994-01-01

    The production of Estonian oil shale depends on its marketing opportunities. The realizable production is a function of the oil shale price, which in turn depends on production costs. The latter are dependent on which mines are producing oil shale and on the volume of production. The purpose of the present article is to analyze which mines should operate under various realizable production scenarios and what should be their annual output so that the total cost of oil shale production (including maintenance at idle mines) is minimized. This paper is also targeted at observing the change in the average production cost per ton of oil shale depending on the realizable output. The calculations are based on data for the first four months of 1993, as collected by N. Barabaner (Estonian Academy of Sciences, Institute of Economy). The data include the total production volume and production cost from the mines of RE 'Eesti Polevkivi' (State Enterprise 'Estonian Oil Shale'). They also project expenses from mine closings in case of conservation. The latter costs were allocated among mines in direct proportion to their respective number of employees. (author)

  14. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  15. The importance of the industrialization of Brazilian shale when faced with the world energy scenario; A importancia da industrializacao do xisto brasileiro frente ao cenario energetico mundial

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marilin Mariano dos; Matai, Patricia Helena Lara dos Santos [Universidade de Sao Paulo (USP), SP (Brazil). Programa de Pos-Graduacao em Energia], Emails: marilinsantos@usp.br, pmatai@usp.br

    2010-10-15

    This article discusses the importance of the industrialization of Brazilian shale based on factors such as: security of the national energy system security, global oil geopolitical, resources available, production costs, oil prices, environmental impacts and the national oil reserves. The study shows that the industrialization of shale always arises when issues such as peak oil or its geopolitics appear as factors that raise the price of oil to unrealistic levels. The article concludes that in the Brazilian case, shale oil may be classified as a strategic resource, economically viable, currently in development by the success of the retorting technology for extraction of shale oil and the price of crude oil. The article presents the conclusion that shale may be the driving factor for the formation of a technology park in Sao Mateus do Sul, due to the city's economic dependence on PETROSIX. (author)

  16. Numerical simulation study of fracturing wells for shale gas with gas–water two-phase flow system under desorption and diffusion conditions

    Directory of Open Access Journals (Sweden)

    Jinzhou Zhao

    2016-06-01

    Full Text Available Hydraulic fracturing is an essential technology in developing shale gas reservoirs, not to mention, accurate prediction of productivity in fractured shale gas wells is the foundation of an efficient development in shale gas reservoirs. This paper establishes a gas–water two-phase flow percolation mathematical model by a determined numerical simulation and calculation method under desorption and diffusion conditions. By means of simulating for a post-frac performance of the shale gas reservoir, this paper devotes to a quantitative analysis the impact of fracture parameters, physical parameters, and desorption–diffusion parameters. The outcome of this research indicates that hydraulic fracturing can improve single well production and it's an effective measure in the development of shale gas. The conductivity of hydraulic fractures and the permeability of natural fractures are the main influences on shale gas production. The higher these factors are, the higher the gas and water productions are. In comparison, the matrix permeability and diffusion coefficients have minimal influences on production.

  17. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  18. Improvements in shale retorts

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, A C

    1915-05-01

    This invention has reference to shale retorts and particularly related to the discharge of the spent material from the bottom of retorts or gas producers for the destructive distillation of shale, coal or other bituminous substances. It consists in the combination of a blade and means for rocking the same, a bottom piece or table, holes or slots in the same, a passage in the front brick-work of the retort, and a hopper with discharge doors.

  19. Process for refining shale bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Plauson, H

    1920-09-19

    A process is disclosed for refining shale bitumen for use as heavy mineral oil, characterized by mixtures of blown hard shale pitch and heavy mineral oil being blown with hot air at temperatures of 120 to 150/sup 0/ with 1 to 3 percent sulfur, and if necessary with 0.5 to 3 percent of an aldehyde.

  20. Distilling shale and the like

    Energy Technology Data Exchange (ETDEWEB)

    Gee, H T.P.

    1922-02-23

    In distilling shale or like bituminous fuels by internal heating with hot gas obtained by the gasifying of the shale residues with air or steam or a mixture of these, the amount and temperature of the gaseous distilling medium is regulated between the gasifying and the distilling chambers, by the introduction of cold gas or air.

  1. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in

  2. Maquoketa Shale Caprock Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from

  3. Process for distilling shales, peats, etc

    Energy Technology Data Exchange (ETDEWEB)

    Felizat, G

    1922-01-09

    The invention has for its object: a process for the distillation of shales, peats, and analogous products characterized by injecting across the substance a very rapid stream of superheated steam under pressure in order to effect a rapid removal of the products of distillation, to lower also the temperature at which it distills, to equalize the temperature throughout the mass, to hydrogenate the heavy hydrocarbons. An apparatus is put into operation characterized by the combination of a retort receiving the material to be distilled with a superheater for the steam, the combustion products which escape from the hearth of the superheater going to encircle the retort while the steam which comes off the superheater traverses this retort, the pressure of the steam being regulated by a convenient regulator; the products of the distillation result from the simultaneous action of the hot gases and steam on the contents of the retort being, on the other hand, separated at the outlet of this retort by means of cooling in a gas separator, a condenser, and part of the gas after being separated serving to heat the mentioned superheater.

  4. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.

    2011-05-14

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even though the cost is substantially higher than traditional gas deposits. Recent advances in horizontal drilling and multistage hydraulic fracturing, which dramatically lower costs of developing shale gas fields, are key to renewed interest in shale gas deposits. Hydraulically induced fractures are quite complex in shale gas reservoirs. Massive, multistage, multiple cluster treatments lead to fractures that interact with existing fractures (whether natural or induced earlier). A dynamic approach to the fracturing process so that the resulting network of reservoirs is known during the drilling and fracturing process is economically enticing. The process needs to be automatic and done in faster than real-time in order to be useful to the drilling crews.

  5. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  6. Shale gas. Opportunities and challenges for European energy markets

    Energy Technology Data Exchange (ETDEWEB)

    De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)

    2013-02-15

    The outline of the presentation shows the following elements: Introduction (Shale gas revolution in US and the situation in the EU); What could be the impact of potential shale gas developments on the European gas market?; How may shale gas developments affect the role of gas in the transition of the power sector?; and Key messages. The key messages are (1) Prospects for European shale gas widely differ from US case (different reserve potential, different competition, different market dynamics); (2) Shale gas is unlikely to be a game changer in Europe; and (3) Impact of shale gas on energy transition in the medium and long term crucially depends on gas vs. coal prices and the 'penalty' on CO2 emissions.

  7. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  8. Features of the first great shale gas field in China

    Directory of Open Access Journals (Sweden)

    Ruobing Liu

    2016-04-01

    Full Text Available On the 28th of November 2012, high shale gas flow was confirmed to be 203 × 103 m3 in Longmaxi Formation; this led to the discovery of the Fuling Shale Gas Field. On the 10th of July in 2014, the verified geological reserves of the first shale gas field in China were submitted to the National Reserves Committee. Practices of exploration and development proved that the reservoirs in the Fuling Shale Gas Field had quality shales deposited in the deep-shelf; the deep-shelf had stable distribution, great thickness with no interlayers. The shale gas field was characterized by high well production, high-pressure reservoirs, good gas elements, and satisfactory effects on testing production; it's from the mid-deep depth of the quality natural gas reservoirs that bore high pressure. Comprehensive studies on the regional sedimentary background, lithology, micropore structures, geophysical properties, gas sources, features of gas reservoirs, logging responding features, and producing features of gas wells showed the following: (1 The Longmaxi Formation in the Fuling Shale Gas Field belongs to deep-shelf environment where wells developed due to organic-rich shales. (2 Thermal evolution of shales in Longmaxi Formation was moderate, nanometer-level pores developed as well. (3 The shale gas sources came from kerogens the Longmaxi Formation itself. (4 The shale gas reservoirs of the Fuling Longmaxi Formation were similar to the typical geological features and producing rules in North America. The findings proved that the shale gas produced in the Longmaxi Formation in Fuling was the conventional in-situ detained, self-generated, and self-stored shale gas.

  9. Subsurface geology of the upper Devonian-lower Mississippian black-shale sequence in eastern Kentucky

    International Nuclear Information System (INIS)

    Dillman, S.B.

    1980-01-01

    The Upper Devonian-Lower Mississippi black-shale sequence is an important source of natural gas in eastern Kentucky and with technological advances may be an important source of synthetic oil and uranium on the flanks of the Cincinnati arch. To enhance the understanding and development of these resources in the black-shale sequence, eight isopach maps, eight structure-contour maps and nine isopach maps of highly radioactive black shale were constructed. Structural features including the Rome trough, Rockcastle River uplift, Pine Mountain thrust fault, Kentucky River and Paint Creek fault zones and unnamed basinal areas in Greenup, Pike, and Knott counties were identified on the maps. Faults bounding the Rome trough and other structures were active intermittently throughout Late Devonian time. Other structures show only post-Devonian activity, whereas some show both Devonian and post-Devonian activity. Comparison of structure-contour and isopach maps allow the differentiation of syn- and post-sedimentray structural activity relative to the black-shale sequence. A north-south trending hinge line separates a broad platform area from an area of rapid eastward thickening into the Appalachian basin. Units 7 through 1 progressively onlap the Cincinnati arch; units 4 through 1 cover the arch

  10. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  11. Geothermal alteration of clay minerals and shales: diagenesis

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes

  12. Clean Fuel, Clean Energy Conversion Technology: Experimental and Numerical Investigation of Palm Oil Mill Effluent Biogas Flameless Combustion

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-08-01

    Full Text Available The combustion of effluent biogas from a palm oil mill is not feasible on a large scale because of its low calorific value (LCV. Therefore, the captured biogas is usually flared because of a lack of appropriate combustion technology. However, such biogas could be an excellent source of energy for combined heat and power (CHP generation in palm oil mills. In this paper, the feasibility of using biogas from palm oil mills in flameless combustion systems is investigated. In computational fluid dynamic (CFD modeling, a two-step reaction scheme is employed to simulate the eddy dissipation method (EDM. In such biogas flameless combustion, the temperature inside the chamber is uniform and hot spots are eliminated. The peak of the non-luminous flame volume and the maximum temperature uniformity occur under stoichiometric conditions when the concentration of oxygen in the oxidizer is 7%. In these conditions, as the concentration of oxygen in the oxidizer increases, the efficiency of palm oil mill effluent biogas flameless combustion increases. The maximum efficiency (around 61% in the experiment is achieved when the percentage of oxygen in the oxidizer is 7%.

  13. Sorption of cesium, strontium, and technetium onto organic-extracted shales

    International Nuclear Information System (INIS)

    Ho, P.C.

    1992-01-01

    The sorption of Cs(I), Sr(II), and Tc(VII) onto organic-extracted shales from synthetic brine groundwaters and from 0.03-M NaHCO 3 solution under oxid conditions at room temperature has been studied. The shale samples used in this study were Pumpkin Valley, Upper Dowelltown, Pierre and Green River Formation Shales. The organic content of these shales ranges from less than 2 wt% to 13 wt%. Soxhlet extraction with chloroform and a mixture of chloroform and methanol removed 0.07 to 5.9 wt% of the total organic matter from these shales. In comparison with the results of sorption of these three metal ions onto the corresponding untreated shales, it was observed that there were moderate to significant sorption decreases of Cs(I) and Sr(II) on all four organic-extracted shale samples and moderate sorption decrease of Tc(VII) on the organic-extracted Pumpkin Valley, Pierre, and Green River Shale samples, but only moderate sorption increases of Tc(VII) on the organic-extracted Upper Dowelltown Shale samples from the brine groundwaters. Nevertheless, sorption of Cs(I), Sr(II), and Tc(VII) on all four organic-extracted shale samples from the bicarbonate solution in most cases did not show a consistent pattern. (orig.)

  14. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. FY2016 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  17. Volatile characteristic of trace elements during microwave pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Kong, Ling-wen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Oil shale is abundant in the world. Today, the industry of oil shale retorting for producing shale oil is developing owing to high price of oil in the world. In order to study migratory behavior of trace elements in oil shale at microwave pyrolysis, tests were performed in laboratory with oil shale of the Huadian deposit of China at different powers from 400 to 700 W. The trace elements As, Cd, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, Ba, Co, Mn present in oil shale and shale char were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). By comparing the content of trace elements in oil shale and shale char, distribution characteristics of trace elements at retorting were studied. The overall trends of volatile ratio of trace elements are ascending with higher microwave power and higher than the conventional pyrolysis. The differences in the volatile ratio indicate that the trace elements investigated are bound with the oil shale kerogen and its mineral matter in different manner. So Float-sink experiments (FSE) were performed on oil shale. Huadian oil shale has more included mineral. The volatilization of organic matter is not the main reason for the volatilization of trace elements in oil shale. The trace elements combined with the mineral elements may be also certain volatility.

  18. The real hazards of shale gas

    International Nuclear Information System (INIS)

    Favari, Daniele; Picot, Andre; Durand, Marc

    2013-01-01

    This bibliographical sheet presents a book which addresses the issue of shale gas. A first part describes the origin of this gaseous hydrocarbon, the composition of shale gas and its extraction, the technique of hydraulic fracturing, and the environmental risks. A second part addresses the economic, ecologic and political issues. The authors outline that all signs are there to prove the alarming hazards of shale gas. One of the authors outlines the necessity of an energy transition, far from fossil and nuclear energy, in order to guarantee a high level of protection of human health and of the environment

  19. Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales

    Energy Technology Data Exchange (ETDEWEB)

    Godec, Michael [Advanced Resources International, Inc., Arlington, VA (United States)

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO2) storage in these formations. The potential storage of CO2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO2 storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO2 injection; (5) Identify and evaluate potential constraints to economic CO2 storage in gas shales, and propose development approaches that overcome these constraints

  20. Underground fires in oil shale mines: special traits of their spreading, extinguishing and liquidating of consequences

    International Nuclear Information System (INIS)

    Parakhonsky, E.

    1995-01-01

    Danger of catching fire in oil shale underground mines has considerably increased lately because of essential increase in mechanization level and frequent violation of fire-safety regulations. The largest underground fire in Estonia took place in the most mechanized mine 'Estonia' in the end of 1988 and lasted 81 days. The fire started in one of the conveyor drifts where two belt-conveyors with rubber-rope belts and a fire pipeline were installed. At the start of the fire and beginning of extinguishing work this pipeline contained no water. Driving heads of these conveyors were installed with automatic extinguishing equipment and with different primary means against fire. When the first group of the Johvi military mine-rescue squad reached the mine they established that the conveyor drift, pillars and a part of rail drift between them were caught by fire. The conveyor belt, oil shale and feeds of conveyor drives were burning. The flame had propagated about 350 metres along the rail and conveyor drifts but the smoke had spread 4 kilometres already. Air temperature near the burning area was about 40-60 deg C, rocks from the roof supported by pillars had crashed down. The mine air was polluted by combustion products. The fire caused a noticeable pollution of mine and surface waters with phenols formed at oil shale combustion. Their limit concentration was exceeded for more than 400 times. To decrease this number, an intensive saturation of waters with atmosphere air was started. For this purpose special dams were constructed on water-diversion ditches ensuring a 0.5-0.7 m difference in water levels. Nevertheless, the phenol concentration in Rannapungerya River and Lake Peipsi still exceeded the normal level 5-6 times. However, the actual maximum concentration of phenols was considerably lower than the lethal doses for fish and other water organisms. Their mass extinction in the river or in the lake was observed neither during nor after the fire. One may conclude the

  1. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  2. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  3. Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands : a 3D basin modelling study

    NARCIS (Netherlands)

    Bruns, B.; Littke, R.; Gasparik, M.; van Wees, J.-D.; Nelskamp, S.

    Sedimentary basins in NW-Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas

  4. ) Geochemistry and Hydrocarbon Potential of Cretaceous Shales in the Chad Basin

    International Nuclear Information System (INIS)

    Alalade, B.; Ogunyemi, A. T.; Abimbola, A.F.; Olugbemiro, R. O.

    2003-01-01

    The Chad Basin is the largest intracratonic basin in Africa and is filled with more than 400m of Cretaceous to Recent sediments. Geochemical and petrographic studies of Cretaceous shales form the Bima, Gongola and Fika Formations were carried out to establish their hydrocarbon potential and thermal maturity. Ditch cuttings of the shales were collected from the Wa di and Karen's exploration wells located in the Nigerian sector of the Chad Basin.The geochemical analysis of the shales indicate that, except for Si02 and K20, all other oxides (Mg O, Fe2O3, AL2O3, CaO) are more abundant in the Fika shale than the Gongola shale. This suggests a more marine condition for the Fika shale compared to the Gongola shale. The Fika and Gongola shales were further classified into Iron shale and shale respectively. Organic carbon contents of the Bima, Gongola and exceed the minimum (0.5wt%) usually required for siliciclastic petroleum source rock. However, the soluble organic matter (SOM) and saturated hydrocarbon (SHC) contents of the shales, which ranges from 108pm to 743ppm and 23ppm to 100ppm respectively, are generally low and are therefore, organically lean. The organic matter of the shales is predominantly terrestrially derived, vitrinite rich, Type III kerogen and are therefore, gas prone. Thermal maturity assessed from SOM/TOC, SHC/TOC ratios and spore color index (SCI) indicate that the Fika shale is immature while the Gongola and Bima shales are within the oil window

  5. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  6. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  7. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  8. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  9. Extraction of hydrocarbon products from shales and coals

    Energy Technology Data Exchange (ETDEWEB)

    Reed, V Z

    1918-05-17

    A process is disclosed of extracting hydrocarbon oil matter from petroleum-bearing shales and coals which comprises subjecting a mass of such shale or coal, before distillation to the solvent action of material containing an acid, permitting the solvent material to pass through the mass of shale or coal, and recovering the combined solvent and extracted matter.

  10. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  11. Prediction of shale prospectivity from seismically-derived reservoir and completion qualities: Application to a shale-gas field, Horn River Basin, Canada

    Science.gov (United States)

    Mo, Cheol Hoon; Lee, Gwang H.; Jeoung, Taek Ju; Ko, Kyung Nam; Kim, Ki Soo; Park, Kyung-sick; Shin, Chang Hoon

    2018-04-01

    Prospective shale plays require a combination of good reservoir and completion qualities. Total organic carbon (TOC) is an important reservoir quality and brittleness is the most critical condition for completion quality. We analyzed seismically-derived brittleness and TOC to investigate the prospectivity of the Horn River Group shale (the Muskwa, Otter Park, Evie shales) of a shale-gas field in the western Horn River Basin, British Columbia, Canada. We used the λρ-μρ brittleness template, constructed from the mineralogy-based brittleness index (MBI) and elastic logs from two wells, to convert the λρ and μρ volumes from prestack seismic inversion to the volume for the brittleness petrotypes (most brittle, intermediate, and least brittle). The probability maps of the most brittle petrotype for the three shales were generated from Bayesian classification, based on the λρ-μρ template. The relationship between TOC and P-wave and S-wave velocity ratio (VP/VS) at the wells allowed the conversion of the VP/VS volume from prestack inversion to the TOC volume, which in turn was used to construct the TOC maps for the three shales. Increased TOC is correlated with high brittleness, contrasting with the commonly-held understanding. Therefore, the prospectivity of the shales in the study area can be represented by high brittleness and increased TOC. We propose a shale prospectivity index (SPI), computed by the arithmetic average of the normalized probability of the most brittle petrotype and the normalized TOC. The higher SPI corresponds to higher production rates in the Muskwa and Evie shales. The areas of the highest SPI have not been fully tested. The future drilling should be focused on these areas to increase the economic viability of the field.

  12. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  13. Process for treating oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-22

    A process for treating oil shale is characterized in that the shale is first finely ground, then heated in the presence of steam in a high-pressure retort at 1 to 50 atmospheres pressure at a temperature of 200/sup 0/ to 450/sup 0/C and then with large amounts of water with or without materials forming emulsions with water or with oil. Solution medium suitable for bitumen or paraffin is beaten up in a rapid hammer mill until all or most all of the oil or bitumen is emulsified. The emulsion is separated by filter-pressing and centrifuging from the solid shale residue and the oil or bitumen is again separated from the emulsion medium by heating, acidulating, standing, or centrifuging, and then in known ways is further separated, refined, and worked up.

  14. Estimation of Potential Shale Gas Yield Amount and Land Degradation in China by Landcover Distribution regarding Water-Food-Energy and Forest

    Science.gov (United States)

    Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.

    2017-12-01

    Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the

  15. Shale gas boom in the US. Technology - economy - environmental effects; Schiefergas-Boom in den USA. Technologie - Wirtschaftlichkeit - Umwelteffekte

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Renschhausen, Martin; Klippel, Philipp

    2017-09-01

    There is hardly any other issue that polarizes the energy policy discussion so far as the production of shale gas and shale oil by means of fracking processes. For the advocates, the expansion of unconventional gas and oil production offers the opportunity to intensify competition in the oil and gas markets, to lower prices and to reduce the dependence on uncertain deliveries of OPEC and Russia by increased domestic production. The critics, on the other hand, emphasize the environmental risks associated with fracking and see the extension of the fossil energy base as an obstacle to the climatically required transition to renewable energies. The German legislature emphasizes the environmental risks associated with fracking and has de facto forbidden fracking with the fracking law package of 24 June 2016. Internationally, the advantages and disadvantages of fracking are, however, assessed very differently, so that a further expansion of unconventional oil and gas production is to be expected. Fracking currently focuses almost entirely on the USA. Numerous studies investigate the potentials, the profitability of the different methods of production as well as the environmental effects. Therefore, American shale gas production offers an excellent viewpoint in order to estimate the technology, its economic efficiency and its consequences. This book evaluates the current studies and data and contributes to the assessment of the long-term energy-economic and climatological significance of shale gas production in the international context. [German] Kaum ein anderes Thema polarisiert die energiepolitische Diskussion derzeit so stark wie die Gewinnung von Schiefergas und Schieferoel mit Hilfe von Frackingverfahren. Fuer die Befuerworter bietet der Ausbau der unkonventionellen Gas- und Oelfoerderung die Chance, den Wettbewerb auf den Maerkten fuer Oel und Gas zu intensivieren, die Preise zu senken und durch erhoehte einheimische Produktion die Abhaengigkeit von unsicheren

  16. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  17. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Towards the development of rapid screening techniques for shale gas core properties

    Science.gov (United States)

    Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert

    2013-04-01

    Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content

  19. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  20. Shale as a radioactive waste repository: the importance of vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Komarneni, S; Roy, D M; Pennsylvania State Univ., University Park; USA). Materials Research Labs.)

    1979-01-01

    Cesium sorption and fixation properties of thirty shale minerals and shales were investigated in search of a criterion for the suitability of shales for a radioactive waste repository. Shales and illites containing vermiculite fixed the largest proportion of total Cs sorbed (up to 91%) against displacement with 0.1 N KCl. For example, a slate sample fixed 33% of the total Cs sorbed while its weathered counterpart in which chlorite had altered to vermiculite fixed 89% of the total Cs sorbed. Since Cs is one of the most soluble and hazardous radioactive ions, its containment is of great importance in safe radioactive waste disposal. Presence of vermiculite in a shale body may therefore, serve as one criterion in the selection of a suitable shale for radioactive waste disposal if and when shales in geologically stable areas are selected for repositories.

  1. Survey of energy resources: focus on shale gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The energy sector around the world is undergoing major changes resulting from increasing competitive pressures and concerns about costs, security of supply and the environment. At the same time, 1.6 billion people, almost a quarter of the world population, do not have access to commercial energy and the need for energy infrastructure investment is huge. The energy challenges are not the same in all regions. While rapidly burgeoning economies in the developing world are focusing on expanding energy access to support their economic growth and provide basic energy services to their citizens, industrialised countries are focusing on securing energy supplies in a competitive environment and in a publicly and environmentally acceptable way. In recent years, shale gas has been making headlines as a potential solution for many of the energy-related challenges, in particular in the United States. A number of studies on shale gas have been conducted, the majority focusing on the assessment of the resource base and the role of emerging technologies, which can significantly increase the current reserve estimates.

  2. Chemistry of the Estonian oil-shale kukersite

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N

    1931-01-01

    Estonian oil shale is one of the oldest and richest oil shales in the world. The deposits occur in the Middle-Ordovician strata having a total thickness of 2.2 meters. The ultimate composition of the kerogen varied within the following limits: carbon 76.5 to 76.7 percent, hydrogen 9.1 to 9.2 percent, nitrogen 0.2 to 0.4 percent, sulfur 1.6 to 2.2 percent, chlorine 0.5 to 0.7 percent, and oxygen (by difference) 11.2 to 12.2 percent. The composition of kukersite kerogen corresponds nearly to the empirical formula (C/sub 8/H/sub 11/O)n. One of the most significant differences between kukersite, coal, and lignite is the amount of alkali-soluble substances present. Kukersite has almost no humic acids. Samples of kukersite were brominated and chlorinated. The halogenated shales showed a solubility in absolute alcohol of 26 percent compared to only 0.31 percent for untreated shale. Enriched shale (4.5 percent ash) did not react with chlorine as much as did raw shale. Apparently the mineral matter acted catalytically during chlorination. The amount of soluble extract obtained by solvent treatment of kukersite ranged from 0.22 percent with chloroform to 2.20 percent with tetrachloroethane. Heat was the most effective agent for the depolymerization of kukersite kerogen. The percentage loss of weight due to drying in air was much less than in the presence of carbon dioxide. The results indicated that on drying in air, the powdered shale loses water and a volatile substance, probably the oxides of carbon, up to 80/sup 0/C. Carbon dioxide was also found to be present in the gases eliminated at the temperature of initial decomposition. Pulverized shale, heated for 6 hours at 220/sup 0/C, lost 2.6 percent of its weight; its solubility in carbon disulfide was 2.11 percent. Kukersite kerogen was formed from compounds that were resistent to bacteriological decomposition, such as waxes and resins, plus decomposition products of proteins, cellulose, and putrefaction products of

  3. Analyzing the Learning Path of US Shale Players by Using the Learning Curve Method

    Directory of Open Access Journals (Sweden)

    Jong-Hyun Kim

    2017-12-01

    Full Text Available The US shale exploration and production (E&P industry has grown since 2007 due to the development of new techniques such as hydraulic fracturing and horizontal drilling. As a result, the share of shale gas in the US natural gas production is almost 50%, and the share of tight oil in the US crude oil production is almost 52%. Even though oil and gas prices decreased sharply in 2014, the production amounts of shale gas and tight oil increased between 2014 and 2015. We show that many players in the US shale E&P industry succeeded in decreasing their production costs to maintain their business activity and production. However, most of the companies in the US petroleum E&P industry incurred losses in 2015 and 2016. Furthermore, crude oil and natural gas prices could not rebound to their 2015 price levels. Therefore, many companies in the US petroleum E&P industry need to increase their productivity to overcome the low commodity prices situation. Hence, to test the change in their productivity and analyze their ability to survive in the petroleum industry, this study calculates the learning rate using the US shale E&P players’ annual report data from 2008 to 2016. The result of the calculation is that the long-term learning rate is 1.87% and the short-term learning rate is 3.16%. This indicates a change in the technological development trend.

  4. Shale gas characterization based on geochemical and geophysical analysis: Case study of Brown shale, Pematang formation, Central Sumatra Basin

    Science.gov (United States)

    Haris, A.; Nastria, N.; Soebandrio, D.; Riyanto, A.

    2017-07-01

    Geochemical and geophysical analyses of shale gas have been carried out in Brown Shale, Middle Pematang Formation, Central Sumatra Basin. The paper is aimed at delineating the sweet spot distribution of potential shale gas reservoir, which is based on Total Organic Carbon (TOC), Maturity level data, and combined with TOC modeling that refers to Passey and Regression Multi Linear method. We used 4 well data, side wall core and 3D pre-stack seismic data. Our analysis of geochemical properties is based on well log and core data and its distribution are constrained by a framework of 3D seismic data, which is transformed into acoustic impedance. Further, the sweet spot of organic-rich shale is delineated by mapping TOC, which is extracted from inverted acoustic impedance. Our experiment analysis shows that organic materials contained in the formation of Middle Pematang Brown Shale members have TOC range from 0.15 to 2.71 wt.%, which is classified in the quality of poor to very good. In addition, the maturity level of organic material is ranging from 373°C to 432°C, which is indicated by vitrinite reflectance (Ro) of 0.58. In term of kerogen type, this Brown shale formation is categorized as kerogen type of II I III, which has the potential to generate a mixture of gasIoil on the environment.

  5. Exploring support for shale gas extraction in the United Kingdom

    International Nuclear Information System (INIS)

    Andersson-Hudson, Jessica; Knight, William; Humphrey, Mathew; O’Hara, Sarah

    2016-01-01

    The development of shale gas in the United Kingdom (UK) using hydraulic fracturing, more commonly known as ‘fracking’, remains in its infancy. Yet understanding public attitudes for this fledgling industry is important for future policy considerations, decision-making and for industry stakeholders. This study uses data collected from the University of Nottingham, UK nationwide online survey (n=3823) conducted in September 2014, to consider ten hypothesises about the UK public's attitudes towards shale gas. From the survey data we can see that 43.11% of respondents support shale gas extraction in the UK. Furthermore, our results show that women, class DE respondents, non-Conservative party supporters, and respondents who positively associate shale gas with water contamination or earthquakes are less likely to support the extraction of shale gas in the UK. We also discuss potential policy implications for the UK government arising from these findings. - Highlights: • September 2014 survey of British attitudes towards allowing shale gas extraction. • Over 75% or respondents correctly identify shale gas. • 43.11% of respondents support shale gas extraction in the UK.

  6. NRG CO2NCEPT - Confirmation Of Novel Cost-effective Emerging Post-combustion Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Matthew [NRG Energy, Inc., Houston, TX (United States); Armpriester, Anthony [NRG Energy, Inc., Houston, TX (United States)

    2016-10-19

    Under DOE's solicitation DE-FOA-0001190, NRG and Inventys conceptualized a Large-Scale pilot (>10MWe) post-combustion CO2 capture project using Inventys' VeloxoThermTM carbon capture technology. The technology is comprised of an intensified thermal swing adsorption (TSA) process that uses a patented architecture of structured adsorbent and a novel process design and embodiment to capture CO2 from industrial flue gas streams. The result of this work concluded that the retrofit of this technology is economically and technically viable, but that the sorbent material selected for the program would need improving to meet the techno-economic performance requirements of the solicitation.

  7. Shale gas: how to progress. Report July 2014

    International Nuclear Information System (INIS)

    Clamadieu, Jean-Pierre; Aubagnac, Louis-Paul; Dolle, Julie; Lahet, Jean-Francois; Goffe, Bruno; Le Bihan-Graf, Christine; Rosenblieh, Laure; Puyfaucher, Laetitia

    2014-07-01

    This report proposes a multidisciplinary contribution to the debate on shale gas. It first shows that shale gas is already a reality at the international level, that the American economy has improved its competitiveness with direct consequences for the European economy, and notices that some countries which have been reluctant until now, are now evolving. The second part describes the potential of shale gas in France as important but with still uncertain resources. The authors outline that a status-quo would be a threat for the French industry on the short term. Then, the report proposes answers to some questions raised by the exploitation of shale gas in France in terms of risks related to hydraulic fracturing, to water resources, to methane emissions, to organic volatile compounds present in drilling waters, or in terms of noise and visual pollutions. In its last part, the report discusses how to progress in the assessment of the role of shale gas in the French and European energy mix, in the knowledge of the French underground, in the development of shale gas at the service of competitiveness, and with an ensured progressive and controlled evolution

  8. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale.

    Science.gov (United States)

    Rich, Alisa; Grover, James P; Sattler, Melanie L

    2014-01-01

    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1

  9. Groundwater management for pollution control: a case study for oil shale mining in Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.; Raukas, A.

    2001-01-01

    In Estonia oil shale is produced by underground and surface mining. The excavation methods used cause serious damage to the environment, especially to the topography, which hampers the further use of the mined-out areas. The oil shale mining has a serious impact on the environment also due to the pollution of surface and groundwater by polluted mine drainage waters, lowering of groundwater level, changing of soil properties and high air pollution rate. Decline in mining activities and the introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. (author)

  10. Employment Creation of Shale Gas Investment in China

    Science.gov (United States)

    Wang, Xuecheng; Zhang, Baosheng; Wu, Meiling; Li, Xiang; Lin, Yuying

    2018-01-01

    An ambitious shale gas extraction plan has been proposed. The huge investment of shale gas may put an effect on the whole China’s economy, especially for employment. However, there is few study to date has quantified these effects. The aim of this paper is to quantify these effects especially employment creation and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the employment creation in four different Chinese regions. Our findings show that shale gas investment will result in creating 660000, 370000, 140000 and 58000 equivalent jobs in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  11. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  12. Marcellus shale gas potential in the southern tier of New York

    Energy Technology Data Exchange (ETDEWEB)

    Faraj, B. [Talisman Energy Inc., Calgary, AB (Canada); Duggan, J. [Hunt Oil Canada, Calgary, AB (Canada)

    2008-07-01

    Marcellus shale is a significant, underexplored, shale gas target in the Appalachian Basin. Gas-in-place estimates in the Marcellus shale range from 200 to 100 billion cubic feet (bcf). The Devonian shales have favorable attributes such as high total organic content (TOC), high gas content, favorable mineralogy and over-pressured. Land owned by Fortuna Energy in the northern Appalachian Basin may contain significant shale gas with unrisked gas-in-place in excess of 10 trillion cubic feet. Unlocking the true shale gas potential requires innovative drilling and completion techniques. This presentation discussed Marcellus shale gas potential in the southern tier and a test program being conducted by Fortuna to test the potential. Several photographs were shown, including Taughannock Falls, Finger Lakes and the Ithaca Shale, Sherburne Sandstone, and Geneseo Shale; two orthogonal fracture sets in the Upper Devonian Geneseo Shale; and two orthogonal fracture sets in the Upper Devonian Rocks, near Corning, New York. Figures that were presented included the supercontinent Pangaea in the early Triassic; undiscovered gas resources in the Appalachian Basin; stratigraphy; and total gas production in New York since 1998. Fortuna's work is ongoing in the northern Appalachian Basin. tabs., figs.

  13. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  14. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  15. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  16. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  17. Wet separation processes as method to separate limestone and oil shale

    Science.gov (United States)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  18. Mathematical modelling of anisotropy of illite-rich shale

    Science.gov (United States)

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the

  19. Shale gas, a French speciality - These French who are successful in shale gas; In Texas, Total is running full gas throttle

    International Nuclear Information System (INIS)

    Cognasse, Olivier; Dupin, Ludovic; Chandes, Camille

    2013-01-01

    A first article illustrates the strong presence of French companies in the shale gas sector, from the exploitation to gas liquefaction. Some examples are evoked: Total (gas fields and petrochemical), CGG (seismic exploration), Vallourec (tube manufacturer), Nexans (cable manufacturer), Imery and Saint-Gobain (ceramic balls used to maintain cracks opened), Saltel (fracturing), SNF Floerger (extraction), GDF Suez (shale gas export). The interest of some foreign actors in the French shale gas is also evoked. A second article reports the activity of Total in Port Arthur, Texas, where it adapted a huge steam cracker to shale gas. This illustrates the renewal of the American petrochemical industry

  20. Total and the Algerian shale gas

    International Nuclear Information System (INIS)

    Chapelle, Sophie; Petitjean, Olivier; Maurin, Wilfried; Balvet, Jacqueline; Combes, Maxime; Geze, Francois; Hamouchene, Hamza; Hidouci, Ghazi; Malti, Hocine; Renaud, Juliette; Simon, Antoine; Titouche, Fateh

    2015-01-01

    This publication proposes a rather detailed and discussed overview of the movement of mobilisation of Algerian people (notably those living in the Sahara) against projects of exploration and exploitation of shale gases in Algeria by the Total group. The authors also recall and comment the long and heavy history of hydrocarbon management in Algeria, the role of international firms and of western interests (notably French interests) in this country, and the position of Total regarding the stake related to shale gases. The authors outline problems created by shale gas exploitation regarding water consumption and waste waters. They also notice that the safety of wells is at the centre of the protest. Problems raised by hydraulic fracturing are reviewed: seismic activity, chemical pollution, air pollution and greenhouse gases, landscape destruction. The attitude of the Algerian government is commented. Then, the authors try to identify and describe the action of Total in the Algerian shale gas sector, discuss the possible French influence, and outline the presence of Total all over the world in this sector

  1. An Integrated Approach to Water-Energy Nexus in Shale-Gas Production

    Directory of Open Access Journals (Sweden)

    Fadhil Y. Al-Aboosi

    2018-05-01

    Full Text Available Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas with renewables (e.g., solar energy. The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, the cogeneration process and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED exclusively (to be more feasible economically or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpose system to operate at steady-state by managing the dynamic variability of solar energy. Additionally, electric production is considered to supply a reverse osmosis plant (RO without connecting to the local electric grid. A multi-period mixed integer nonlinear program (MINLP is developed and applied to discretize the operation period to track the diurnal fluctuations of solar energy. The solution of the optimization program determines the optimal mix of solar energy, thermal storage and fossil fuel to attain the maximum annual profit of the entire system. A case study is solved for water treatment and energy management for Eagle Ford Basin in Texas.

  2. Oil shales of the Lothians. Part III. Chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  3. Rapid gas development in the Fayetteville shale basin, Arkansas

    Science.gov (United States)

    Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...

  4. New York Marcellus Shale: Industry boom put on hold

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Angelique

    2012-01-16

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana

  5. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  6. Shale Gas characteristics of Permian black shales (Ecca group, Eastern Cape, South Africa)

    Science.gov (United States)

    Geel, Claire; Booth, Peter; Schulz, Hans-Martin; Horsfield, Brian; de Wit, Maarten

    2013-04-01

    This study involves a comprehensive and detailed lithological, sedimentalogical, structural and geochemical description of the lower Ecca Group in the Eastern Cape, South Africa. The Ecca group hosts a ~ 245 million year old organic-rich black shale, which has recently been the focus of interest of petroleum companies worldwide. The shale was deposited under anoxic conditions in a setting which formed as a consequence of retro-arc foreland basin development related to the Cape Fold Belt. This sedimentary/tectonic environment provided the conditions for deeply buried black shales to reach maturity levels for development in the gas window. The investigation site is called the Greystone Area and is situated north of Wolwefontein en route to Jansenville. The area has outcrops of the Dwyka, the Ecca and the lower Beaufort Groups. The outcrops were mapped extensively and the data was used in conjunction with GIS software to produce a detailed geological map. North-south cross sections were drawn to give indication of bed thicknesses and formation depths. Using the field work, data two boreholes were accurately sited on the northern limb of a shallow easterly plunging syncline. The first borehole reached 100m and the second was drilled to 292m depth (100m percussion and 192m core). The second borehole was drilled 200m south of the first, to penetrate the formations at a greater depth and to avoid surface weathering. Fresh core from the upper Dwyka Group, the Prince Albert Formation, the Whitehill Formation, Collingham Formation and part of the Ripon Formation were successfully extracted and a detailed stratigraphic log has been drawn up. The core was sampled during extraction and the samples were immediately sent to the GFZ in Potsdam, Germany, for geochemical analyses. As suspected the black shales of the the Whitehill Formation are high in organic carbon and have an average TOC value of 4.5%, whereas the Prince Albert and Collingham Formation are below 1%. Tmax values

  7. Origin of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham-Craig, E H

    1915-01-01

    Kerogen was believed to be formed by the inspissation of petroleum. During this process nitrogen and sulfur compounds were concentrated in the most inspissated or weathered products. At a certain stage, reached gradually, the organic matter became insoluble in carbon-disulfide and ceased to be a bitumen. Oil shale was formed by the power of certain clays or shales to absorb inspissated petroleum, particularly unsaturated hydrocarbons. This adsorption apparently depended on the colloid content of the argillaceous rock. This rock retained these impregnated petroleum residues long after porous sandstones in the vicinity had lost all traces of petroleum by weathering and leaching.

  8. Regional Geologic Evaluations for Disposal of HLW and SNF: The Pierre Shale of the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting a geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).

  9. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    Science.gov (United States)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  10. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  11. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  12. Burning Poseidonian shale ash for production of cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-10-28

    A process is described for the burning of shale coke obtained by the deoiling of Poseidonian or the usual kind of shale for the preparation of brick, mortar, or cement, characterized in that the shale coke is thrown on a pile and completely covered with burnt material, so that the gases drawn through this cover will be sufficiently choked to hold the feed at a high temperature as long as possible.

  13. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  14. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.; Qin, Guan; Collier, Nathan; Gong, Bin

    2011-01-01

    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even

  15. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  16. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  17. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  18. Desulfurization of Jordanian oil shale

    International Nuclear Information System (INIS)

    Abu-Jdayil, B. M.

    1990-01-01

    Oxy desulfurization process and caustic treatment were applied in this work to remove sulfur from Jordanian oil shale. The oxy desulfurization process has been studied in a batch process using a high pressure autoclave, with constant stirring speed, and oxygen and water were used as desulfurizing reagents. Temperature, oxygen pressure, batch time, and particle size were found to be important process variables, while solid/liquid ratio was found to have no significant effect on the desulfurization process. The response of different types of oil shale to this process varied, and the effect of the process variables on the removal of total sulfur, pyritic sulfur, organic sulfur, total carbon, and organic carbon were studied. An optimum condition for oxy desulfurization of El-Lajjun oil shale, which gave maximum sulfur removal with low loss of carbon, was determined from the results of this work. The continuous reaction model was found to be valid, and the rate of oxidation for El-Lajjun oil shale was of the first order with respect to total sulfur, organic sulfur, total carbon, and organic carbon. For pyritic sulfur oxidation, the shrinking core model was found to hold and the rate of reaction controlled by diffusion through product ash layer. An activation energy of total sulfur, organic sulfur, pyritic sulfur, total carbon, and organic carbon oxidation was calculated for the temperature range of 130 -190 degrees celsius. In caustic treatment process, aqueous sodium hydroxide at 160 degrees celsius was used to remove the sulfur from El-Lajjun oil shale. The variables tested (sodium hydroxide concentration and treatment time) were found to have a significant effect. The carbon losses in this process were less than in the oxy desulfurization process. 51 refs., 64 figs., 121 tabs. (A.M.H.)

  19. Prospects for the exploitation of Jordan oil shale

    International Nuclear Information System (INIS)

    Jaber, J.O; Probert, S.D.; Badr, O.

    1997-01-01

    Oil shale is the major indigenous fossil-fuel in Jordan: its predicted reserves, of about 5·10 1 0 tonnes, should be sufficient to satisfy Jordan's energy requirements for several centuries. Jordanian oil shale has, on an average, a gross calorific value of between 5 and 7 MJ/kg, an oil yield of ∼ 10 %, and a sulfur content of approximately 3 % by weight of the raw shale (i.e. 7 to 9 % of the organic matter content). Using the oil shale as the input fuel, a multipurpose production process (i.e. retorting, electricity generation, thermal water-desalination, chemicals production as well as mineral extraction) could achieve high utilisation-factors of both its chemical and energy potentials. In the long-term, oil shale is the only indigenous energy resource that could reduce Jordan's dependence on imported crude oil and hence ease the pressure on the national economy. The conversion of oil shale into a liquid or gaseous fuel and raw materials will be of decisive importance in attempts to secure the future of energy supplies. So national efforts devoted to the exploration for, and harnessing more economically, this energy resource, while limiting the associated adverse environmental impacts, should be accelerated. (author)

  20. FY 1999 report on the result for research and development of instantaneously effective and innovative energy and environment technology. Development of technology to use combustible wastes as resources and fuels; 1999 nendo sokkoteki kakushinteki energy kankyo gijutsu kenkyu kaihatsu kanengomi saishigen nenryoka gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Manufacturing compressed fuel, or refuse paper and plastic fuel (RPF) from combustible wastes such as used papers and waste plastics to utilize them effectively as a fuel to substitute fossil fuels is regarded as a promising engagement. However, this process indispensably requires removal of chlorine contained in used papers and waste plastics to a degree that they do not impede the combustion. The present research and development is intended to develop a PRF pretreatment technology and a dechlorination technology, and establish a technology to utilize the materials as resources and fuels as thermal recycling of combustible wastes. The current fiscal year has performed research and development on the following themes: development of a sorting system and a crushing system in developing the pretreatment technology, whereas for the former system, sorting tests were carried out by using a vibration type wind power sorting machine and an inertia force wind power sorting machine, and for the latter system, data were obtained on the crushing characteristics; dechlorination tests, in which it was discovered that the mixing ratio of used paper in the material affects the chlorine concentration; research on combustion characteristics, in which fundamental combustion tests using a small fluidized bed, combustion tests using a bench scale fluidized bed, and stoker fired furnace combustion tests were performed; and demonstrative operation researches. (NEDO)

  1. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study

    Science.gov (United States)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian

    2013-04-01

    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  2. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  3. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  4. Geothermometry methods for determining the thermal history of shales

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-01-01

    When clays and muds are deposited, the clay mineral suite is usually not an equilibrium assemblage. With time and increased depth of burial and temperature, the clay mineral suite undergoes continuous chemical and mineral changes as it adjusts to increasingly higher temperatures. Significant changes are observed at temperatures as low as 50 0 C and continue to 400 0 C (beginning of metamorphism) and above. Once these clay-rich rocks are exposed to elevated temperatures and then later uplifted to areas of lower temperature, no significant changes occur unless the rock is exposed to weathering or to temperatures higher than that to which they have been exposed previously. An initial objective is to develop the ability to determine the mineral, chemical, and textural changes which are produced in shales by increased temperature. This will allow prediction of the diagenetic changes that occur in shales when they are exposed to the heat generated by radioactive waste. A second objective is to develop the ability to determine the maximum temperature to which a shale has been exposed. Once a shale has been exposed to temperatures of 200 to 400 0 C for thousands of years, an equilibrium assemblage is obtained which persists after the shale is elevated to near surface conditions and is only altered if the shale is exposed to temperatures higher than those of the maximum to which the shale was originally exposed. A proposal is made to select for initial study a thick Paleozoic shale, probably of Cambro-Ordovician or Devonian age, in the Appalachian region. A shale sequence will be selected which has rocks ranging from deeply buried geosynclinal environments (approx.300 to 400 0 C) to shallow shelf environments

  5. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    Science.gov (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  6. Comparative dermal carcinogenesis of shale and petroleum-derived distillates.

    Science.gov (United States)

    Clark, C R; Walter, M K; Ferguson, P W; Katchen, M

    1988-03-01

    Ten test materials derived from petroleum or hydrotreated shale oils were applied 3 times/week for up to 105 weeks to the shaved skin of 25 male and 25 female C3H/HeN mice per group. Mineral oil and benzo(a) pyrene (0.15%) were control materials. Clinical observations were recorded during the study. At death, histopathologic examination was conducted on skin, internal organs and any gross lesions. Exposures to some materials were ended midway in the study due to severe irritation. Chronic toxicity of all materials was limited to inflammatory and degenerative skin changes. Significant increases over control incidence of skin tumors (squamous cell carcinoma and fibrosarcoma) occurred with both petroleum and shale-derived naphtha (21%, 50%), Jet A (26%, 28%), JP-4 (26%, 50%), and crude oils (84%, 54%). Severely hydrotreated shale oil and petroleum and shale-derived diesel distillates were not considered tumorigenic. Results indicate that toxicity of comparable petroleum and shale-derived fractions was qualitatively similar and confirm earlier findings that hydrotreating reduces or eliminates carcinogenicity of raw shale oil.

  7. Phanerozoic environments of black shale deposition and the Wilson Cycle

    Directory of Open Access Journals (Sweden)

    J. Trabucho-Alexandre

    2012-02-01

    Full Text Available The spatial and temporal distribution of black shales is related to the development of environments in which they accumulate and to a propitious combination of environmental variables. In recent years, much has been done to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic and of the environmental variables that result in their deposition. However, the interpretation of ancient black shale depositional environments is dominated by an oversimplistic set of three depositional models that do not capture their complexity and dynamics. These three models, the restricted circulation, the (open ocean oxygen minimum and the continental shelf models, are an oversimplification of the variety of black shale depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of environments of black shale deposition and the position of black shales in the basin infill sequence strongly depend on basin evolution, which controls the development of sedimentary environments where black shales may be deposited. The nature of the black shales that are deposited, i.e. lithology and type of organic matter, also depends on basin evolution and palaeogeography. We propose that in studies of black shales more attention should be given to the sedimentary processes that have led to their formation and to the interpretation of their sedimentary environments.

  8. Technology assessment of thermal treatment technologies using ORWARE

    International Nuclear Information System (INIS)

    Assefa, G.; Eriksson, O.; Frostell, B.

    2005-01-01

    A technology assessment of thermal treatment technologies for wastes was performed in the form of scenarios of chains of technologies. The Swedish assessment tool, ORWARE, was used for the assessment. The scenarios of chains of thermal technologies assessed were gasification with catalytic combustion, gasification with flame combustion, incineration and landfilling. The landfilling scenario was used as a reference for comparison. The technologies were assessed from ecological and economic points of view. The results are presented in terms of global warming potential, acidification potential, eutrophication potential, consumption of primary energy carriers and welfare costs. From the simulations, gasification followed by catalytic combustion with energy recovery in a combined cycle appeared to be the most competitive technology from an ecological point of view. On the other hand, this alternative was more expensive than incineration. A sensitivity analysis was done regarding electricity prices to show which technology wins at what value of the unit price of electricity (SEK/kW h). Within this study, it was possible to make a comparison both between a combined cycle and a Rankine cycle (a system pair) and at the same time between flame combustion and catalytic combustion (a technology pair). To use gasification just as a treatment technology is not more appealing than incineration, but the possibility of combining gasification with a combined cycle is attractive in terms of electricity production. This research was done in connection with an empirical R and D work on both gasification of waste and catalytic combustion of the gasified waste at the Division of Chemical Technology, Royal Institute of Technology (KTH), Sweden

  9. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  10. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  11. Shale engineering application: the MAL-145 project in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Vassilellis, George D.; Li, Charles; Bust, Vivian K. [Gaffney, Cline and Associates (United States); Moos, Daniel; Cade, Randal [Baker Hughes Inc (United States)

    2011-07-01

    With the depletion of conventional fossil fuels and the rising energy demand, oil shale and shale gas are becoming an important component of the oil and gas markets in North America. The aim of this paper is to present a novel methodology for predicting production in shale and tight formations. This method, known as the shale engineering approach and modeling, provides reservoir simulations based on modeling the propagation of the simulated rock volume. This technique was applied to an Upper Devonian shale formation in West Virginia, United States, and was compared to available data such as production logs and downhole microseismic data. Results showed a good match between the shale engineering approach data and early well performance. This paper presented a new reservoir simulation methodology which is successful in forecasting production and which can also be used for field development design and optimization.

  12. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  13. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin

    Science.gov (United States)

    Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao

    2018-02-01

    In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.

  14. Research on the Possibility of Sorting Application for Separation of Shale and/or Gangue from the Feed of Rudna Concentrator

    Directory of Open Access Journals (Sweden)

    Grotowski Andrzej

    2017-01-01

    Full Text Available Shale, which occurs in the copper ore deposits belonging to KGHM Polska Miedź S.A., is the reason for a number of difficulties, at the stage of not only processing but also smelting. Gangue, in turn, getting in a feed during mining is a useless load of a concentrator and also contributes to lowering concentrating indexes. Its content in a feed is being evaluated at 15-30%. The multiple attempts to solve those issues by the methods of conventional mineral processing or even selective mining failed. In the range of work, research on the lithological composition and Cu content in 300 individual particles (selected from Rudna feed have been carried out. Using those results, the simulation of gangue separation with an application of sorting have been done. The positive results have been received: introduction of a sorting operation causes, theoretically, removing of approximately 20-30% sorting feed mass as final tailings with Cu losses not bigger than 5-10%. It means that the capacity of Rudna concentrator can be increased proportionally. To confirm those results, industrial sorting trials are necessary, when appropriate sorters will become available. Additionally, one should take also into account that the finest classes of feed (-12.5 mm could not be concentrated in a sorter. In the range of work, the preliminary tests of the industrial sorter (PRO Secondary Color NIR for separation of the shale concentrate from Rudna concentrator feed have been carried out. The shale concentrates were received both from 12.5-20 mm class and +20 mm class. The concentrates produced from the coarse classes, for both technological sides had shale content at the level of 48-49%, with recovery of 52.9-60%. In the case of the finer class, shale content in the concentrates for both technological sides amounts to 30.9-35%, at the slightly lower recoveries than for coarse classes. Cu and Corg behavior in the sorting process were checked also, however, the results turned

  15. Distillation of oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, G A

    1926-03-22

    To distill oil shales, cannel coals, and other carbonaceous materials for the extraction therefrom of hydrocarbons and volatile nitrogenous compounds, hard non-condensable gases from the condensers and scrubbers are withdrawn by blowers and admixed with burnt gases, obtained through conduits from the flues of heaters, and forced downwardly through horizontal chambers, connected by vertical conduits, of the heaters and delivered into the retort beneath the grate. Passing upwardly through the charge they vaporize the volatile substances in the shale, and a suction pump removes the vapors from the top of the retort. Immediately they are produced and at substantially the same temperature as that at which they emanate, thus preventing cracking of the oil vapors and condensation of the oil at the top of the retort. The amount of burnt flue gas admixed with the hard gases is regulated by two valves until a required uniform temperature is obtained. A generator supplies producer gas to a heater at the commencement of the retorting operation for circulation through the shale charge to initially produce oil vapors. The generator is connected by a pipe to the gas conduit leading to blowers.

  16. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  17. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  18. FY 2000 report on research and development of combustion technology utilizing microgravity conditions for fuel diversification; 2000 nendo bisho juryoku kankyo wo riyoshita nenryo tayoka nensho gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of optimum combustion technology with diversified fuels, e.g., naphtha and LCO, for gas turbines and others as power sources for topographical energy supply. The combustion under the microgravity is also investigated using the underground facilities at Japan Microgravity Center. Described herein are the FY 2000 results. For construction of combustion model and simulation, the combustion reactions for various liquid fuels are simplified to calculate ignition delay, adiabatic flame temperature and laminar burning velocity with an error less than about 3%. The microgravity combustion experiments are conducted for spray dispersed into a cylinder, to find flame propagation velocities changing with the vaporization characteristics of liquid fuels, and also to construct the combustion models. The premixed turbulent combustion simulation program is developed using a probability density function and analyzed. Development of new combustion technologies includes the study themes of flame propagation and combustion of the air mixture of the multi-component fuel in which the spray exists, combustion characteristics of the droplets of diversified fuels, and combustion of gas turbines with diversified fuels. A propane/air mixture shows different flame propagation characteristics whether it contains kerosene or LCO droplets. The effects of electrical field intensity in the combustion zone on combustion of fuel droplets are elucidated. (NEDO)

  19. Wellbore stability in shales considering chemo-poroelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B.; Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    Under compaction and low geothermal gradients are deep water characteristics. Both under compaction and low geothermal gradients generate considerable thickness of smectite-rich shales. These rocks are the major source of wellbore stability problems, because they are susceptible to adverse physico-chemical reactions when in contact with inadequate drilling fluids. Due shales are low permeability rocks diffusion processes dominate the changes of pore pressure around wellbore. Diffusion of fluids, ions and temperature occurs in shales during drilling and demand a fully coupled modelling taking account these factors. Despite temperature importance, in this paper wellbore stability in shales is analyzed through a model that considers only the coupling between poroelastic and physico-chemical effects. The coupled equations are solved analytically and have been implemented in a computational simulator with user-friendly interface. Time-dependent simulations of wellbore stability in shales are presented for a typical deep water scenario. The results show that physico-chemical effects change pore pressure around wellbore and have high impact on the wellbore stability. (author)

  20. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  1. Pengaruh Proses Pelapukan Clay Shale terhadap Perubahan Parameter Rasio Disintegritas (DR

    Directory of Open Access Journals (Sweden)

    Idrus M Alatas

    2017-04-01

    Full Text Available The background of this research because of the frequent occurrence of the failure in the geotechnical design of clay shale caused by weathering. Disintegration ratio is a comparison of physical changes due to weathering at certain times of the initial conditions. Changes in physical properties due to clay shale weathering determined by the disintegration ratio (DR.Clay shale weathering will occur more quickly as a result of wetting and drying cycles when compared with the drying process. While due to the increased number of cycles of wetting at the same time, causing weathering on clay shale will be faster again. Until the 80th day of drying time, the magnitude DRof Semarang-Bawenclay shaleand Hambalang are the same, namely DR = 0.916 (completelly durable. However, due to wetting and drying cycles on day 32, samples of Semarang-Bawenclay shale is DR = 0.000 or non durable completelly, while on Hambalang clay shale in same day DR between 0.2117 to 0.3344. Generally Semarang-Bawen clay shale will be faster weathered than Hambalang clay shale. It is caused by the mineralogy content of Semarang-Bawen clay shale has dominated by Smectite, and Hambalangclay shalehas dominated mineral Kaolinite and Illlite.

  2. Combustion of oil shale, fluidized coal and pyrolysis fuel oil in a gas turbine for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Korosi, A; Basler, B; Pepper, M W

    1984-04-01

    A combustion test programme has been carried out with a Brown, Boveri and Cie. (BBC) type 9, gas turbine, at the BBC works in Muenchenstein, Switzerland, in order to clarify the combustion possibilities of three unconventional fuels. The programme has been organized and financed by BBC, Stone and Webster and Exxon. Approximately 95,000 litres of each fuel at various turbine load conditions have been burned. At certain points water was injected for NOsub(x) reduction. The tests show that the commercially available gas turbine can be used without modification with these tested, unconventional fuels. They also show that direct application of inferior petrochemical materials, which are produced today, is possible.

  3. Problem of Production of Shale Gas in Germany

    OpenAIRE

    Nataliya K. Meden

    2014-01-01

    A bstract: Our magazine publishes a series of articles on shale gas in different countries. This article is about Germany, a main importer of Russian natural gas, so a perspective of exploitation of local shale gas resources is of a clear practical importance for Russia. We discuss external and internal factors which determine position of the German government concerning the shale gas excavation: policy of the USA and the EU, positions of German political parties, influence of the lobbying co...

  4. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  5. Oil shales of the Lothians, Part III, the chemistry of the oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Steuart, D R

    1912-01-01

    Tests were performed whereby fuller's earth and lycopodium spore dust were heated to retorting temperatures and the crude oil examined. Oil shale may be composed of the following: Vegetable matter that has been macerated and preserved by combining with salts, spores, and other such material that has been protected from decay, and a proportion of animal matter. Generally, oil shale may be considered as a torbanite that contains a large proportion of inorganic matter, or it may be a torbanite that has deteriorated with age. This supposition is based on the fact that oil yield decreases and the yield of ammonia increases with age.

  6. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    Science.gov (United States)

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance

  7. Thermal effects in shales: measurements and modeling

    International Nuclear Information System (INIS)

    McKinstry, H.A.

    1977-01-01

    Research is reported concerning thermal and physical measurements and theoretical modeling relevant to the storage of radioactive wastes in a shale. Reference thermal conductivity measurements are made at atmospheric pressure in a commercial apparatus; and equipment for permeability measurements has been developed, and is being extended with respect to measurement ranges. Thermal properties of shales are being determined as a function of temperature and pressures. Apparatus was developed to measure shales in two different experimental configurations. In the first, a disk 15 mm in diameter of the material is measured by a steady state technique using a reference material to measure the heat flow within the system. The sample is sandwiched between two disks of a reference material (single crystal quartz is being used initially as reference material). The heat flow is determined twice in order to determine that steady state conditions prevail; the temperature drop over the two references is measured. When these indicate an equal heat flow, the thermal conductivity of the sample can be calculated from the temperature difference of the two faces. The second technique is for determining effect of temperature in a water saturated shale on a larger scale. Cylindrical shale (or siltstone) specimens that are being studied (large for a laboratory sample) are to be heated electrically at the center, contained in a pressure vessel that will maintain a fixed water pressure around it. The temperature is monitored at many points within the shale sample. The sample dimensions are 25 cm diameter, 20 cm long. A micro computer system has been constructed to monitor 16 thermocouples to record variation of temperature distribution with time

  8. shales: a review of their classifications, properties and importance to ...

    African Journals Online (AJOL)

    DJFLEX

    In the Niger Delta petroleum province, the source rocks and seal rocks are the marine/deltaic, plastic and over-pressured shales of Akata and Agbada Formations. KEY WORDS: Shales, Classification, Strength, Composition, Petroleum Industry, Niger Delta. INTRODUCTION. Shales are fine-grained laminated or fissile.

  9. Study on geochemical occurrences of REE in Wangqing oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Tong; Wei, Yan-zhen; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Sequential chemical extraction experiment (SCEE) and Float- sink experiment (FSE) have been employed on oil shale research from Wangqing, Jilin province China, in order to determine the binding forms of rare earth elements (REE) in oil shale. The REE contents were determined by the inductively coupled plasma-mass spectrometry (ICP-MS). Wangqing oil shale was screened into specific gravity density level: <1.5g/cm{sup 3}, 1.5-1.6g/cm{sup 3}, 1.6-2.0g/cm{sup 3}, 2.0-2.4g/cm{sup 3}, >2.4g/cm{sup 3}. The mode of occurrences of rare earth elements in Wangqing oil shale was studied by six-step SCEE. FSE results show that REEs in Wangqing oil shale exist mainly in inorganic minerals and more in excluded mineral, while SCEE results show that REEs of Wangqing oil shale is primarily occurred in minerals, including carbonate, Fe-Mn oxide, sulfide, and Si-minerals. FSE and SCEE results fully illustrate excluded mineral is mainly mode of occurrence of REEs in Wangqing oil shale, whereas inorganic minerals and organic matter is not that. The REE distribution pattern curves of FSE density and SCEE fraction products are similar with that of raw oil shale. The REE in different densities products has a close connection with terrigenous clastic rock, and the supply of terrestrial material is stable.

  10. Thermocatalytical processing of coal and shales

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available The article investigates the questions of thermocatalytical conversion of organic mass of coal (OMC, it is shown that in the absence of a catalyst process is carried out by a radical process. Accumulated data on the properties for radicals of different structure and therefore different reaction capacity enables us to understand and interpret the conversion of OMC. Thermal conversion of OMC regarded as a kind of depolymerization, accompanied by decomposition of the functional groups with the formation of radicals, competing for hydrogen atom. Catalyst can change the direction and conditions of the process. Modern catalysts can reduce the process pressure up to 50 atm., with a high degree of coal conversion. We consider examples of simultaneous conversion of coal and shale, shale and masut, shale and tar.

  11. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  12. Investigating Rare Earth Element Systematics in the Marcellus Shale

    Science.gov (United States)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  13. Study of the O2/CO2 combustion technology; Sanso nensho gijutsu ni kakawaru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M [Center for Coal Utilization, Japan, Tokyo (Japan); Kiga, T; Yamada, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Arai, K [Nippon Sanso K.K., Tokyo (Japan); Mori, T [Inst. of Research and Innovation, Tokyo (Japan); Kimura, N; Okawa, M [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    This study is being progressed during a period from 1992 to 1999 as part of the NEDO`s clean coal technology program. This paper describes what has been discussed to date. The absorption method and the adsorption method may be used to recover CO2 as means to deal with the problem of global warming resulted from burning coals. These methods, however, have problems in economy caused from concentration of CO2 in flue gas being low. The present study is intended to raise the CO2 concentration in flue gas by using oxygen plus circulated flue gas in the place of combustion air, so that CO2 may be recovered as it is without being separated from the flue gas. Therefore, an oxygen-blown pulverized coal fired power generation plant having a cryogenic oxygen manufacturing equipment was designed to discuss the plant operability and economy, and the pulverized coal combustion technology by using a dynamic simulation. A large number of findings have been obtained already, and the study has reached a level at which grasping the whole image is now possible. 13 figs.

  14. Shale processing

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, W H

    1928-05-29

    The process of treating bituminiferous solid materials such as shale or the like to obtain valuable products therefrom, which comprises digesting a mixture of such material in comminuted condition with a suitable digestion liquid, such as an oil, recovering products vaporized in the digestion, and separating residual solid matter from the digestion liquid by centrifuging.

  15. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  16. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  17. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  18. Investigation of the dielectric properties of shale

    International Nuclear Information System (INIS)

    Martemyanov, Sergey M.

    2011-01-01

    The article is dedicated to investigation of the dielectric properties of oil shale. Investigations for samples prepared from shale mined at the deposit in Jilin Province in China were done. The temperature and frequency dependences of rock characteristics needed to calculate the processes of their thermal processing are investigated. Frequency dependences for the relative dielectric constant and dissipation factor of rock in the frequency range from 0,1 Hz to 1 MHz are investigated. The temperature dependences for rock resistance, dielectric capacitance and dissipation factor in the temperature range from 20 to 600°C are studied. Key words: shale, dielectric properties, relative dielectric constant, dissipation factor, temperature dependence, frequency dependence

  19. Effects of structural characteristics on the productivity of shale gas wells: A case study on the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2018-03-01

    Full Text Available For the sake of figuring out the influential mechanisms of structural characteristics on the productivity of shale gas wells, the structural characteristics of the Jiaoshiba Block in the Fuling shale gasfield, Sichuan Basin, were analyzed. Then, based on well test data of more than 190 horizontal wells, the effects of structures on shale gas well productivity were discussed systematically, and the main structural factors of different structural units in the Jiaoshiba Block that influence the productivity of shale gas wells were clarified. The following results were obtained. First, the structural units in the Jiaoshiba Block were obviously different in structural characteristics and their deformation strength is different. Second, the influence of structural characteristics on shale gas well productivity is directly manifested in gas-bearing property and fracturing effect. The stronger the structural deformation and the more developed the large faults and natural fractures, the more easily shale gas escapes and the poorer the gas bearing property will be, and vice versa. Third, The stronger the structural deformation, the more developed the fractures, the greater the burial depth and the higher the compressive stress of negative structures, the worse the fracturing effect will be, and vice versa. And fourth, Tectonics is the key factor controlling the difference of shale gas productivity between different structural units in the Jiaoshiba Block, but the main structural factors influencing the productivity are different in different structural units. Keywords: Sichuan Basin, Fuling shale gasfield, Jiaoshiba, Shale gas, Structural characteristics, Gas bearing property, Fracturing, Productivity

  20. Recent Developments Concerning Pellet Combustion Technologies - A Review of Austrian Developments

    International Nuclear Information System (INIS)

    Obernberger, I.; Thek, G.

    2006-01-01

    This paper gives an overview of recent developments concerning pellet combustion technologies in Austria. It covers basic information about the Austrian pellet market and market developments in recent years as well as about national framework conditions in Austria with regard to standards for Pellets, pellet furnaces and emission limits. A detailed overview is given of the state-of-the-art of Austrian pellet boiler technology, which is - from a technological point of view - probably the best developed market world-wide. Innovations, which have recently been developed and introduced into the market, are described. The most important innovations are new furnace developments based on CFD (Computational Fluid Dynamics) simulations, flue gas condensation systems for small-scale pellet boilers and multi-fuel concepts, where e.g. firewood and Pellets can be utilised in one boiler. Moreover, emissions from pellet furnaces are discussed and evaluated based on test stand and field measurements. In this respect, a focus is put on fine particulate emissions from pellet boilers. Finally, future developments based on ongoing research projects are described and discussed. The ongoing R and D activities focus on the further reduction of fine particulate emissions by primary and secondary measures, the utilisation of herbaceous biomass fuels and small or micro-scale CHP systems

  1. Market analysis of shale oil co-products. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  2. Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Xiong, Yongliang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Repository Performance; Criscenti, Louise J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Ho, Tuan Ahn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Storage and Transportation Technology; Ilgen, Anastasia G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geochemistry; Matteo, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Kruichak, Jessica N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Mills, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Nuclear Waste Disposal Research and Analysis; Dewers, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Geomechanics; Gordon, Margaret E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Materials, Devices and Energy Technologies; Akkutlu, Yucel [Texas A & M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2016-09-01

    The recent boom in shale gas production through hydrofracturing has reshaped the energy production landscape in the United States. Wellbore production rates vary greatly among the wells within a single field and decline rapidly with time, thus bring up a serious concern with the sustainability of shale gas production. Shale gas production starts with creating a fracture network by injecting a pressurized fluid in a wellbore. The induced fractures are then held open by proppant particles. During production, gas releases from the mudstone matrix, migrates to nearby fractures, and ultimately reaches a production wellbore. Given the relatively high permeability of the induced fractures, gas release and migration in low-permeability shale matrix is likely to be a limiting step for long-term wellbore production. Therefore, a clear understanding of the underlying mechanisms of methane disposition and release in shale matrix is crucial for the development of new technologies to maximize gas production and recovery. Shale is a natural nanocomposite material with distinct characteristics of nanometer-scale pore sizes, extremely low permeability, high clay contents, significant amounts of organic carbon, and large spatial heterogeneities. Our work has shown that nanopore confinement plays an important role in methane disposition and release in shale matrix. Using molecular simulations, we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~ 30 - 47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. The long-term production decline appears controlled by the second stage of gas release. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD

  3. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    African Journals Online (AJOL)

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway ... The study showed that Igumale shale is not suitable for use as base, subbase and filling materials in road construction.

  4. Mechanical Characterization of Mancos Shale

    Science.gov (United States)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  5. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.

    2015-01-01

    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and

  6. Shale Gas Exploration and Development Progress in China and the Way Forward

    Science.gov (United States)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  7. Electric property evidences of carbonification of organic matters in marine shales and its geologic significance: A case study of the Lower Cambrian Qiongzhusi shale in the southern Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2014-12-01

    Full Text Available Searching for some reliable evidences that can verify the carbonification of organic matters in marine shales is a major scientific issue in selecting shale gas fairways in old strata. To this end, based on core, logging and testing data, the electric property of two organic-rich shale layers in the Lower Cambrian Qiongzhusi Fm. and the Lower Silurian Longmaxi Fm. in the southern Sichuan Basin was compared to examine the carbonification signs of organic matters in the Qiongzhusi shale and its influence on gas occurrence in the shales. The following conclusions were reached: (1 the electric property experiment shows that the Qiongzhusi shale in the study area has had carbonification of organic matters. The low resistivity of dry samples from this highly mature organic-rich shale and ultra-low resistivity on downhole logs can be used to directly judge the degree of organic matter carbonification and the quality of source rocks; (2 in the Changning area, the Qiongzhusi shale shows low resistivity of dry samples and low to ultra-low resistivity on logs, indicating that organic matters are seriously carbonized, while in the Weiyuan area, the Qiongzhusi shale shows a basically normal resistivity on log curves, indicating its degree of graphitization between the Longmaxi Fm. and Qiongzhusi Fm. in the Changning area; (3 shale with medium-to-high resistivity is remarkably better than that with ultra-low resistivity in terms of gas generation potential, matrix porosity and gas adsorption capacity; (4 industrial gas flow has been tested in the organic shales with medium-to-high resistivity in the Jianwei–Weiyuan–Tongnan area in the north, where the Qiongzhusi shale is a favorable shale gas exploration target.

  8. Sweet spot identification and smart development -An integrated reservoir characterization study of a posidonia shale of a posidonia shale outcrop analogue

    NARCIS (Netherlands)

    Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.; Zijp, M.H.A.A.

    2014-01-01

    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  9. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  10. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension-fired po......The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension......-fired power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen....... The oxidant thus contains little or no nitrogen and a near-pure CO2 stream can be produced by cooling the flue gas to remove water. The change to the oxidant composition compared to combustion in air will induce significant changes to the combustion process. This Ph.D. thesis presents experimental...

  11. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    Science.gov (United States)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better

  12. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  13. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  14. Fracking the Debate : Frame Shifts and Boundary Work in Dutch Decision Making on Shale Gas

    NARCIS (Netherlands)

    Metze, T.A.P.

    2014-01-01

    The meaning of hydraulic fracturing for shale gas is contested worldwide: is it an energy game changer, a transition fuel, or a technology that poses severe environmental problems? In the Netherlands, a policy controversy developed in which fracturing was reframed from ‘business as usual’ to a

  15. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  16. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  17. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  18. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  19. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  20. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    Science.gov (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  1. Biogenic gas in the Cambrian-Ordovcian Alum Shale (Denmark and Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.M.; Wirth, R.; Biermann, S.; Arning, E.T. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany); Krueger, M.; Straaten, N. [BGR Hannover (Germany); Bechtel, A. [Montanuniv. Leoben (Austria); Berk, W. van [Technical Univ. of Clausthal (Germany); Schovsbo, N.H. [Geological Survey of Denmark and Greenland - GEUS, Copenhagen (Denmark); Crabtree, Stephen [Gripen Gas (Sweden)

    2013-08-01

    Shale gas is mainly produced from thermally mature black shales. However, biogenic methane also represents a resource which is often underestimated. Today biogenic methane is being produced from the Upper Devonian Antrim Shale in the Michigan Basin which was the most successfully exploited shale gas system during the 1990-2000 decade in the U.S.A. before significant gas production from the Barnett Shale started (Curtis et al., 2008). The Cambro-Ordovician Alum Shale in northern Europe has thermal maturities ranging from overmature in southern areas (Denmark and southern Sweden) to immature conditions (central Sweden). Biogenic methane is recorded during drilling in central Sweden. The immature Alum Shale in central Sweden has total organic carbon (TOC) contents up to 20 wt%. The hydrogen index HI ranges from 380 to 560 mgHC/gTOC at very low oxygen index (OI) values of around 4 mg CO{sub 2}/gTOC, Tmax ranges between 420 - 430 C. The organic matter is highly porous. In general, the Alum Shale is a dense shale with intercalated sandy beds which may be dense due to carbonate cementation. Secondary porosity is created in some sandy beds due to feldspar dissolution and these beds serve as gas conduits. Methane production rates with shale as substrate in the laboratory are dependent on the kind of hydrocarbon-degrading microbial enrichment cultures used in the incubation experiments, ranging from 10-620 nmol/(g*d). In these experiments, the CO{sub 2} production rate was always higher than for methane. Like the northern part of North America, also Northern European has been covered by glaciers during the Pleistocene and similar geological processes may have developed leading to biogenic shale gas formation. For the Antrim Shale one hypothesis suggests that fresh waters, recharged from Pleistocene glaciation and modern precipitation, suppressed basinal brine salinity along the northern margins of the Michigan Basin to greater depths and thereby enhancing methanogenesis

  2. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M.E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Quinten; Carone, A.; Liu, Y.; de Winter, D.A.M.; Peach, C.J.; Drury, M.R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  3. Fluid flow from matrix to fractures in Early Jurassic shales

    NARCIS (Netherlands)

    Houben, M. E.; Hardebol, N.J.; Barnhoorn, A.; Boersma, Q.D.; Carone, A.; Liu, Y.; de Winter, D. A.M.; Peach, C. J.; Drury, M. R.

    2017-01-01

    The potential of shale reservoirs for gas extraction is largely determined by the permeability of the rock. Typical pore diameters in shales range from the μm down to the nm scale. The permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural

  4. Fingerprinting Marcellus Shale waste products from Pb isotope and trace metal perspectives

    International Nuclear Information System (INIS)

    Johnson, Jason D.; Graney, Joseph R.

    2015-01-01

    Highlights: • Dry drilled, uncontaminated cuttings from Marcellus Shale and surrounding units. • Unoxidized and oxidized samples leached short and long term with H 2 O or dilute HCl. • Pb isotope ratios have distinctly different values from Marcellus Shale samples. • Mo and other trace metals can be used as Marcellus Shale environmental tracers. • Marcellus Shale leachate concentrations can exceed EPA contaminant screening levels. - Abstract: Drill cuttings generated during unconventional natural gas extraction from the Marcellus Shale, Appalachian Basin, U.S.A., generally contain a very large component of organic-rich black shale because of extensive lateral drilling into this target unit. In this study, element concentrations and Pb isotope ratios obtained from leached drill cuttings spanning 600 m of stratigraphic section were used to assess the potential for short and long term environmental impacts from Marcellus Shale waste materials, in comparison with material from surrounding formations. Leachates of the units above, below and within the Marcellus Shale yielded Cl/Br ratios of 100–150, similar to produced water values. Leachates from oxidized and unoxidized drill cuttings from the Marcellus Shale contain distinct suites of elevated trace metal concentrations, including Cd, Cu, Mo, Ni, Sb, U, V and Zn. The most elevated Mo, Ni, Sb, U, and V concentrations are found in leachates from the lower portion of the Marcellus Shale, the section typically exploited for natural gas production. In addition, lower 207 Pb/ 206 Pb ratios within the lower Marcellus Shale (0.661–0.733) provide a distinctive fingerprint from formations above (0.822–0.846) and below (0.796–0.810), reflecting 206 Pb produced as a result of in situ 238 U decay within this organic rich black shale. Trace metal concentrations from the Marcellus Shale leachates are similar to total metal concentrations from other black shales. These metal concentrations can exceed screening

  5. Application of binomial-edited CPMG to shale characterization.

    Science.gov (United States)

    Washburn, Kathryn E; Birdwell, Justin E

    2014-09-01

    Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen-bitumen discrimination. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.

    1979-01-01

    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  7. Multiphysical Testing of Soils and Shales

    CERN Document Server

    Ferrari, Alessio

    2013-01-01

    Significant advancements in the experimental analysis of soils and shales have been achieved during the last few decades. Outstanding progress in the field has led to the theoretical development of geomechanical theories and important engineering applications. This book provides the reader with an overview of recent advances in a variety of advanced experimental techniques and results for the analysis of the behaviour of geomaterials under multiphysical testing conditions. Modern trends in experimental geomechanics for soils and shales are discussed, including testing materials in variably saturated conditions, non-isothermal experiments, micro-scale investigations and image analysis techniques. Six theme papers from leading researchers in experimental geomechanics are also included. This book is intended for postgraduate students, researchers and practitioners in fields where multiphysical testing of soils and shales plays a fundamental role, such as unsaturated soil and rock mechanics, petroleum engineering...

  8. Process for recovering oil from shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1920-08-20

    A process is described for recovering oil from oil-shale and the like, by the direct action of the hot gases obtained by burning the carbonized shale residue. It is immediately carried out in separate adjacent chambers, through which the feed goes from one to the other intermittently, from the upper to the lower.

  9. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  10. Organic geochemistry: Effects of organic components of shales on adsorption: Progress report

    International Nuclear Information System (INIS)

    Ho, P.C.

    1988-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture of chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO 3 solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs

  11. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  12. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database and CUAHSI-Supported Data Tools

    Science.gov (United States)

    Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through open source tools that are developed and maintained by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through collection efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, CUAHSI-supported data tools have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing educational material, and the resources available to learn more.

  13. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  14. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  15. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...test_nC are sho’ T, in Trbl]e .3 d :: ab ffr stead..--staoe zerfrrmance was noted wcrh the snale fel. Wh’le a ..6 :o:n: = in Scecifiz Fuel Consumption...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine

  16. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    A study was made to determine whether retorted shale additions would significantly affect symbiotic N/sub 2/ fixation. Results indicate that small additions of the shale may stimulate plant growth but with higher concentrations plants are stressed, resulting in a decreased biomass and a compensatory effect of an increased number of nodules and N/sub 2/ fixation potential. (JMT)

  17. Heterogeneity of shale documented by micro-FTIR and image analysis.

    Science.gov (United States)

    Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-01

    In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal

  18. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  19. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  20. Some problems of oil shale retorting in Estonia

    International Nuclear Information System (INIS)

    Oepik, I.

    1994-01-01

    Oil shale in Estonia will be competitive in the long term as a primary resource for power generating. The price of energy of Estonian oil shale is at present approximately 4 times lower than of coal. The price of electricity is anticipated to grow up to EEK 1.0/kWh in year 2020. The electricity price EEK 0.2/kWh at present in Estonia does not include capital costs needed for refurbishing of Estonian oil-shale-consuming power stations between the years 2000-2010. While all the prices and calculations of the enterprise are presented with no inflation adjustment, the other operation costs of oil shale retorting are anticipated for the prognosed period to remain at the present level: power consumption kWh 280/t crude oils and other operation costs (excluding labour, raw material and power consumption) EEK 100/t of oil