WorldWideScience

Sample records for sfu physics department

  1. The SFU/TRIUMF Radiochemistry Institute

    International Nuclear Information System (INIS)

    Ruth, T.J.; D'Auria, J.M.

    1993-01-01

    An institute for the training of radiochemist was proposed in 1989 by scientists/educators from Simon Fraser University (SFU) and the TRIUMF Nuclear Research Facility in Canada. The intensive program spans 6 weeks and includes seminars and problem sessions as well as practical laboratory experience. Topics include health physics, synthesis of short lived radiopharmaceuticals, automation and quality control. The first offering was in May-June 1990. Based on this experience a textbook on Radiochemistry and Radiopharmaceutical Chemistry has been initiated. Parts of the program may be implemented into a credit course to be offered through the Department of Chemistry at SFU. (author) 6 refs.; 3 tabs

  2. From the Aldine Press to Aldus@SFU: Showcasing Simon Fraser University Library’s Aldines Online

    OpenAIRE

    Bordini, Alessandra

    2017-01-01

    This report stems from a joint commemoration in 2015 of the fiftieth anniversary of the opening of Simon Fraser University and the five-hundredth anniversary of the death of pioneering Renaissance publisher and scholar Aldus Manutius. To mark these occasions, Publishing@SFU and SFU Library Special Collections joined forces to create a web-based resource comprising an outstanding selection of Aldines from the Wosk–McDonald collection, one of the largest such in North America. This report detai...

  3. A Strategic Analysis for Successful Implementation of Social Media for SFU Business

    OpenAIRE

    Leung, Eric Yuk Wai

    2010-01-01

    Universities and other educational institutions are increasingly looking to leverage the power of social media to recruit new student, communicate with student, improve student services and collect feedback. Understanding social media is an important first step to ensure a successful implementation of social media as a communication strategy. This paper introduces social media and provides social media implementation strategies for SFU Business by focusing on the communication objectives of t...

  4. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2000-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research, yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five students are working for their Ph.D. or MSc degrees under supervision of the senior members from the Department. We continue our participation at the EC SOCRATES-ERASMUS educational programme which allows exchange of graduate students between our Department and the Department of Physics of the University of Durham in the UK. (author)

  5. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2002-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department successfully collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network which allows for the mobility of researchers. Several members of our Department have also participated in the research projects funded by the State Committee for Scientific Research. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute and at other academic institutions in Cracow. At present, eight students are working towards their Ph.D. degrees under the supervision of senior members of the Department. (author)

  6. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2001-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet more formal problems are also considered. A detailed summary of the research projects and of the results obtained in various field is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network, which stimulates the mobility of researchers. Several members of our Department also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). Besides pure research, members of our Department are also involved in graduate and up graduate teaching activity at our Institute as well as at other academic institution in Cracow. At present nine students are working on their Ph.D. degrees under the supervision of senior members of the Department. (author)

  7. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1999-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five PhD students are working for their degree under supervision of the senior members from the Department. In the last year we have completed our active participation in the educational TEMPUS programme funded by the European Communities. This programme has in particular allowed exchange of students between our Department and the Department of Physics of the University of Durham in the United Kingdom. In 1998 we joined the SOCRATES - ERASMUS project which will make it possible to continue this exchange. (author)

  8. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    1999-01-01

    Full text: The main activity of our Department is experimental high energy physics with accelerators. Experiments are carried using large facilities: - at CERN, the European Laboratory for Particle Physics in Geneva, - at Celsius Storage Ring in Uppsala and - in DESY laboratory in Hamburg, where several groups of physicists from our Department are members of international collaborations. They are listed below together with the main physics interests: At CERN - Delphi at LEP - tests of the Standard Model, b-quark physics, SUSY search, - NA48 - CP-violation in K 0 decays, rare decays, - SMC - spin dependent nucleon structure function, the Bjorken sum, - NA49 and WA98 - heavy ion physics. At CELSIUS - WASA - threshold production of light mesons, rare meson decays. At DESY - ZEUS - proton and photon structure functions, diffractive production. In most of these experiments our Department also contributed to the instrumentation of detectors and is presently involved in data collection, detector supervision and in data analysis. At the same time the Department is also involved in preparation of new experiments: - CMS (Compact Muon Solenoid) and ALICE at the LHC (Large Hadron Collider) at CERN, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - an upgrade of the present detector at Celsius, - hyperfragment experiment at JINR, Dubna. The department has small workshop which was recently involved in an upgrade of the WASA detector. In our Department there are also two physicists working on the phenomenology of a quark-gluon plasma and on the low energy hadron-hadron interactions. Physicist from our Department collaborate with the Department of the Experimental Physics of Warsaw University. They are also involved in teaching and in supervision of diploma students. There is a group of 9 PhD students. (author)

  9. Physics department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1980-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics, plasma physics, and meteorology. The principal activities in these fields are presented for the period from 1 January to 31 December 1980. (Auth.)

  10. Creating a Virtual Physics Department.

    Science.gov (United States)

    Suson, Daniel J.; Hewett, Lionel D.; McCoy, Jim; Nelson, Vaughn

    1999-01-01

    Describes a solution to alleviate the low numbers of students graduating from the majority of physics programs throughout the nation. Discusses the outcome of a virtual physics department. (Author/CCM)

  11. Physics Department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1981-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics; plasma physics; meteorology. The principal activities in these fields are presented in this report, which covers the period from 1 January to 31 December 1981. Introductions to the work in each of the main fields are given in the respective sections of the report. (Auth.)

  12. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  13. Department of Theoretical Physics. Annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The research done at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics concerns various theoretical problems of low, medium and high energy nuclear physics, elementary particle physics, astrophysics, general physics and mathematical physics. Both formal problems as well as more phenomenologically oriented ones are being considered. The details of the results obtained in various fields are summarised in the presented abstracts. (author)

  14. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  15. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  16. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  17. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2002-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: * At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. * At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. * At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. * Super-Kamiokande and Icarus - neutrino mass and oscillations study. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department, participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now

  18. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2003-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. - At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. - Super-Kamiokande and Icarus - neutrino mass and oscillation studies. The groups of our Department participated in the construction phase of the experiments, both in hardware and in the development of the software used in data analysis. Presently they take part in data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - the study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now a

  19. The case for biophysics super-groups in physics departments.

    Science.gov (United States)

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  20. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  1. Plasma Physics Department annual report, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The main fields in which researches have been carried out during 1990 at the Wills Plasma Physics Department are briefly discussed. These include investigations of shear Alfven waves at frequencies above the ion cyclotron frequency; the use of submillimetre lasers to detect by far forward scattering density fluctuation associated with waves in Tortus during Alfven wave heating experiments; basic physics of laser induced fluorescence in plasma and in particular the process which determine the population of excited states, as well as magnetron discharge studies and application of the vacuum arc as ion sources for accelerators and as sputtering device for producing thin film coating. A list of publications and papers presented at various conferences by the members of the Department is given in the Appendix

  2. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); nuclear physics (nuclear structure, nuclear reactions); solid state physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); solar energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  3. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985 within its three divisions: (1) Tandar Project; (2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and (3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.)

  4. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); Nuclear Physics (nuclear structure, nuclear reactions); Solid State Physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); Solar Energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  5. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985, within its three divisions: 1) Tandar Project; 2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and 3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.) [es

  6. Department of Theoretical Physics. Annual Report 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Abstracts of studies done in 1989 at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics in Cracow are given together with the lists of personnel, guests, conference papers, lectures, habilitations, ph.d. theses and publications. 45 refs. (A.S.)

  7. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2001-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation and rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition in the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold production of light mesons, and their decays. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN; - ALICE - experiment to study the heavy ion interactions at the LHC; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN; - WASA- 4π - commissioning of a new version of the WASA detector at CELSIUS in Uppsala; - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of

  8. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2004-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA4B - the CP-violation and rare K 0 decays; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon; - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At RHIC - study of pp elastic scattering. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-photon interactions. - Super-Kamiokande and K2 K - a study of neutrino oscillations. The groups from our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - search for optical flashes of cosmic origin: ''π of the sky'' project - search for optical counterparts of γ ray bursts, - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our

  9. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  10. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  11. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  12. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  13. Assessing the physical service setting: a look at emergency departments.

    Science.gov (United States)

    Steinke, Claudia

    2015-01-01

    To determine the attributes of the physical setting that are important for developing a positive service climate within emergency departments and to validate a measure for assessing physical service design. The design of the physical setting is an important and contributing factor for creating a service climate in organizations. Service climate is defined as employee perceptions of the practices, procedures, and behaviors that get rewarded, supported, and expected with regard to customer service and customer service quality. There has been research conducted which identifies antecedents within organization that promotes a positive service climate which in turn creates service-oriented behaviors by employees toward clients. The antecedent of the physical setting and its impact on perceptions of service climate has been less commonly explored. Using the concept of the physical service setting (which may be defined as aspects of the physical, built environment that facilitate the delivery of quality service), attributes of the physical setting and their relationship with service climate were explored by means of a quantitative paper survey distributed to emergency nurses (n = 180) throughout a province in Canada. The results highlight the validity and reliability of six scales measuring the physical setting and its relation to service. Respondents gave low ratings to the physical setting of their departments, in addition to low ratings of service climate. Respondents feel that the design of the physical setting in the emergency departments where they work is not conducive to providing quality service to clients. Certain attributes of the physical setting were found to be significant in influencing perceptions of service climate, hence service quality, within the emergency department setting. © The Author(s) 2015.

  14. Summary of Research 1998, Department of Physics

    OpenAIRE

    Faculty of the Department of Physics, Naval Postgraduate School

    1998-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Physics. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  15. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  16. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    Full text: The main activities of the Accelerator Physics and Technology Department were focused on following subjects: - contribution to development and building of New Therapeutical Electron Accelerator delivering the photon beams of 6 and 15 MeV, - study of the photon and electron spectra of narrow photon beams with the use of the BEAM/EGSnrc codes, - design and construction of special RF structures for use in CLIC Test Facility in CERN, - design and construction of 1:1 copper, room temperature models of accelerating superconducting 1.3 GHz structures for TESLA Project in DESY. In spite of drastic reduction of scientific and technical staff (from 16 to 10 persons) the planned works were successfully completed, but requested some extraordinary efforts. In realisation of 6/15 MeV Accelerator Project, the Department was responsible all along the project for calculations of all most important parts (electron gun, accelerating structure, beam focusing, achromatic deviation) and also for construction and physical modelling of some strategic subassemblies. The results of scientific and technical achievements of our Department in this work are documented in the Annex to Final Report on realisation of KBN Scientific Project No PBZ 009-13 and earlier Annual Reports 2000 and 2001. The results of Monte Carlo calculations of narrow photon beams and experimental verification using Varian Clinac 2003CD, Simens Mevatron and CGR MeV Saturn accelerators ended up with PhD thesis prepared by MSc Anna Wysocka. Her thesis: Collimation and Dosimetry of X-ray Beams for Stereotactic Radiotherapy with Linear Accelerators was sponsored by KBN scientific Project Nr T11E 04121. In collaboration with LNF INFN Frascati the electron beam deflectors were designed for CERN CLIC Test Facility CTF3. These special type travelling wave RF structures were built by our Department and are actually operated in CTF3 experiment. As the result of collaboration with TESLA-FEL Project in DESY, the set of RF

  17. Public Relations for Physics Departments: Convincing the Community that Quarks are Cool

    Science.gov (United States)

    Levine, Alaina G.

    2002-03-01

    A strong public relations program can be of great importance to a physics department. Not only can effective PR improve the reputation of an individual department, but it can also serve the greater physics community by convincing the public that quarks, quantum dots, and nanostructures are cool. Building a solid reputation with the many constituents that a physics department serves can lead to greater media exposure, improved quality of student applicants, community and industrial partnerships, and even financial support. It isn’t difficult to create a strategic PR program, but it does take planning and commitment of resources. I will discuss the techniques and tactics of effective media, community, alumni, and internal relations, with special emphasis placed on establishing connections with media outlets, creating and publicizing outreach programs for the community, initiating a newsletter, organizing an external board of advisors, and developing an effective alumni relations program. The University of Arizona Physics Department serves as a case study, but other physics departments with similar communications programs will also be incorporated.

  18. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is

  19. Physics department annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    Moller, H.B.; Lebech, B.

    1978-12-01

    Research in the Physics Department at Riso covers three main fields: Solid-state physics, Plasma physics, Meteorology. The principal activities in these fields are presented in this report that covers the period from 1 January to 31 December 1978. (Auth.)

  20. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  1. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  2. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2006-01-01

    The activities of the Department are centered around experiments performed at large accelerator laboratories: I. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - Data taking experiments: COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies of the gluon polarization in the nucleon; - Experiments that finished data taking but continue the analysis: NA49 and WA98 - heavy ion experiments, study hadronic and nuclear interactions, searching for the quark-gluon plasma. II. The 'Pi of the Sky' experiment, searching for optical flashes associated with Gamma Ray Bursts takes data with a set of CCD cameras mounted in the Chile Observatory Station, and works on an extension of the system. III. WASA experiment, recently transferred from the CELSIUS storage ring in Uppsala to Juelich, studies near threshold resonance production. IV. ZEUS experiment at HERA in Hamburg - studies of proton structure functions and diffractive interactions. V. Neutrino experiments at SuperKamiokande and K2K in Japan - studies of the neutrino oscillations. VI. Preparations for future experiments: a) ICARUS - in preparation for the neutrino beam from CERN, to study neutrino oscillations, b) Experiments at the future Large Hadron Collider at CERN: CMS - Compact Muon Solenoid, LHCb - study of b-quark production, ALICE - study of heavy ion collisions. A team of physicists, engineers and technicians, using our well equipped mechanical workshop, with 'clean room' (class 100 000) facilities has performed a large scale production of straw tube modules for the LHCb experiment. Preparations for LHC physics requires an active participation of the teams involved in the computer GRID implementation. There is also a small group involved in theoretical work on the phenomenology of quark-gluon plasma formation and the low energy hadronic reactions. Several physicists from our department are actively involved in science popularization. A close

  3. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  4. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  5. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  6. The ''Gent'' stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: Description and instructions for installation and use

    International Nuclear Information System (INIS)

    Maenhaut, W.; Francois, F.; Cafmeyer, J.

    1994-01-01

    This report contains a description and general instructions for the installation and use of the ''Gent'' Stacked Filter Unit (SFU) PM10 sampler. The sampler operates at a flow rate of 16 litres per min. It collects particulates which have an equivalent aerodynamic diameter (EAD) of less than 10 μm in separate ''coarse'' (2-10 μm EAD) and ''fine'' ( 10 μm EAD particles is accomplished by a PM10 pre-impaction stage upstream of the stacked filter cassette. The air is drawn through the sampler by means of a diaphragm vacuum pump, which is enclosed in a special housing together with a needle valve, vacuum gauge, flow meter, volume meter, time switch (for interrupted sampling) and hour meter. A list of manufacturers of the various components of the sampler is also given. (author). 4 figs, 1 tab

  7. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high-energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles - an estimation of the astrophysical conditions at the acceleration sites and/or the search for sources of Cosmic Rays, - properties of high-energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. - '' cosmic weather '' forecasting - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares/Coronal Mass Ejection events); these are important for large electricity networks, gas pipelines, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz and Poznan workshops on particle physics for high school students. This is a part of the European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimentally study's very high energy Cosmic Rays. Locally in Lodz we concentrate on methodological studies of the detection of neutrons correlated with EAS and the interpretation of this phenomenon. We have also performed two series of neutron background measurements in the deep underground Gran Sasso Laboratory in Italy (within the ILIAS-TA Project). In 2004, we began the Roland Maze Project, a network of EAS detectors placed on the roofs of high schools in Lodz. The pilot project is to equip 10 high schools, each with four 1m

  8. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  9. Improving Climate and Gender Equity in Physics Departments

    Science.gov (United States)

    Yennello, Sherry

    2010-02-01

    We need to open the door of science to women and minorities. We need to invite them in and encourage them to succeed. We need to teach them the secret handshake and transfer all the writing on the men's room walls and all-white country clubs into accessible places. We need to promote them to positions of national prominence. We need to do this out of respect to our mothers and the pioneering scientists who have come before us. We need to do this for our daughters and sons, so that our grandchildren may only know this discrimination as a piece of history. We need to do this now -- for the sake of our country, our science, our technical workforce, our economy and because it is the right thing to do. The Committee on the Status of Women in Physics (CSWP) has been helping physics departments improve their climate as a means to enhance gender equity. The CSWP site visit program has been giving departments valuable feedback on their climate for many years. In May 2007, a workshop on ``Gender Equity: Enhancing the Physics Enterprise in Universities and National Laboratories'' was held to address the issue of underrepresentation of women in physics by engaging the stake holders. This fall a new ``Conversation on Gender Equity'' has begun. Successful strategies for improving the climate and increasing the representation of women in physics will be presented. )

  10. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1992-01-01

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high T c superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  11. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  12. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  13. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  14. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1991-01-01

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high T c superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  15. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  16. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  17. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2009-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities At CERN SPS: The Compass experiment, ' a flagship of the CERN fixed target program ', studies the structure of the nucleon. Gluon polarization analysis was the main subject this year. Compass is an active experiment, and there is an ongoing effort in data taking and detector development. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. In 2008, important results on transverse momentum spectra were published. At COSY: The WASA experiment works with low energy (up to 3.7 GeV) beams of protons and deuterons, studying rare decays of eta mesons. New limits on branching ratios for such decays have been determined. This information is important for the theory of C and CP symmetry, and chiral perturbation theory. II. Preparations for soon-to-be-operating experiments at the LHC Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on resistive plate chambers RPC, has been installed and tested using cosmic ray muons. Simulations of physical processes predicted by some extensions of the Standard Model were performed. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with a P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations of neutral pion reconstruction were performed. Preparation of the computing base for future large experiments - work within the Worldwide LHC Computing Grid was actively pursued by a dedicated team. In 2008, many activities were directed at information and popularization of LHC physics. Our department members actively

  18. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  19. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  20. [Physical medicine in hospital. Minimum standards in a physical medical department in acute inpatient areas in rheumatology].

    Science.gov (United States)

    Reißhauer, A; Liebl, M E

    2012-07-01

    Standards for what should be available in terms of equipment and services in a department of physical medicine caring for acute inpatients do not exist in Germany. The profile of a department determines the therapeutic services it focuses on and hence the technical facilities required. The German catalogue of operations and procedures defines minimum thresholds for treatment. In the opinion of the authors a department caring for inpatients with acute rheumatic diseases must, as a minimum, have the facilities and equipment necessary for offering thermotherapeutic treatment. Staff trained in physical therapeutic procedures and occupational therapy is also crucial. Moreover, it is desirable that the staff should be trained in manual therapy.

  1. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  2. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  3. Forty years of the Department of Nuclear Physics, 1961-2001

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    A brief report of activities of the Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava during forty years of history is given. A review o personnel, research programmes, graduates and master thesis, curriculum of the master study, as well as of important scientific projects is given

  4. Wind Energy and Atmospheric Physics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...

  5. Progress Report for Period Ending December 1961. Department of Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Tell, B [ed.

    1962-08-15

    This is the second Progress Report from the Department for Reactor Physics of Aktiebolaget Atomenergi, which is issued for the information of institutions and persons interested in the progress of the work. In this report the activities of the General Physics Section have been included, since this section nowadays belongs to the department. This is merely an informal progress report, and the results and data presented must be taken as preliminary. Final results will be submitted for publication either in the regular technical journals or as monographs in the series AE-reports.

  6. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  7. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  8. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  9. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  10. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  11. Overview. Department of Theoretical Physics. Section 4

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy ππ and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S p (6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars

  12. The role of physics departments in the recruitment, preparation and support of pre-college teachers of physics

    Science.gov (United States)

    Seeley, Lane

    2008-05-01

    The United States faces a critical shortage of qualified physics and physical science teachers. The number of high school students taking physics is increasing but the number of physics majors pursuing careers in pre-college teaching is not nearly sufficient to meet the demand. College and university physics departments have content expertise and ready access to potential future teachers of physics. In order to address the crisis in physics and physical science education, APS, AAPT, and AIP have developed the PhysTEC project. Seattle Pacific University is one of six fully funded PhysTEC sites. The PhysTEC project also supports a coalition of more than one hundred institutions that are committed to improving K-12 physics and physical science education. This talk will describe the national PhysTEC project along with our local PhysTEC program. We will explore ways in which physics departments can more fully integrate the preparation of pre-college physics teachers within existing departmental priorities. We will discuss opportunities for regional partnerships between 2-year and 4-year colleges, school districts, and teacher preparation programs. We will also highlight ways in which our research on the learning and teaching of physics informs the development of tools that teachers and teacher educators can use to diagnose student ideas and to design subsequent instruction that capitalizes on these ideas. In collaboration with Stamatis Vokos, Seattle Pacific University and Pam Kraus, Facet Innovations LLC.

  13. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  14. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  15. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  16. Health Physics Department. Annual progress report 1 January - 31 December 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The report describes the work of the Health Physics Department at Risoe during 1988. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The emphasis in the report has been placed on basic research and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  17. Health Physics Department. Annual progress report 1 January - 31 December 1987

    International Nuclear Information System (INIS)

    1988-08-01

    The report describes the work of the Health Physics Department at Risoe during 1987. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  18. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1983-01-01

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN [fr

  19. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1987-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  20. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  1. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  2. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  3. Study of the calibration of the medical physics department - radon dosimeter in a radon facility

    International Nuclear Information System (INIS)

    Nikololpoulos, D.; Louizi, A.; Papadimitriou, D.; Proukakis, C.

    1997-01-01

    Several techniques have been developed to measure radon indoors.The use of a Solid State Nuclear Track Detector closed in a cup, has turned out to be the most appropriate for long term measurements. The Medical Physics Department of the Athens University is carrying out radon measurements in dwellings, apartments, outdoor air and mines since 1996. For this purpose a simple device, the so called Medical Physics Department radon dosimeter, has been constructed, which measures the radon concentration averaged over a long period of time. In the present paper the calibration technique introduced and the results of the calibration of the Medical Physics Department. (authors)

  4. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  5. Multidrug-resistant bacteria infection and nursing quality management application in the department of physical examination.

    Science.gov (United States)

    Xu, Li; Luo, Qiang; Chen, Liangzhen; Jiao, Lingmei

    2017-09-01

    The main problem of clinical prevention and control of multi drug resistant bacteria infection is to strengthen the monitoring of pathogenic bacteria spectrum, this study research on the multi drug-resistant bacteria infection and nursing quality management application in the department of physical examination. The results of this study showed that the number of patients with multiple drug resistant infections showed an increasing trend. Therefore, once the patients with multiple drug-resistant bacteria infection are found, the prevention and control of the patients with multiple drug-resistant bacteria should be strictly followed, and the patient's medication care should be highly valued. Also, the nurses need to be classified based on the knowledge and skill characteristics of the nurses in the department of physical examination, and compare the nursing effect before and after classification and grouping. The physicians and individuals receiving physical examinations in the department of physical examination had a higher degree of satisfaction for nursing effect after classification compared with those before classification. Classification and grouping management helps improve the nursing quality and overall quality of the nurses in the department of physical examination.

  6. Department of Physics

    International Nuclear Information System (INIS)

    Following a list of the academic staff of the Physics Dept., the coursesoffered, seminars held and lectures held by guests, the research activities are very briefly described. These cover nuclear physics, elementary particles and ionospheric physics. Participation by staff members in conferences etc. is listed, as are lectures given by staff members at other academic institutions and reports and articles published. (JIW)

  7. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  8. Examining the Values of Students in the Physical Education and Sport Departments

    Science.gov (United States)

    Gullu, Mehmet

    2016-01-01

    In this study, the values of students in the physical education and sport departments were examined according to their gender, age, grade, and departments. The questionnaire method was used in the study. As the data collection tool, the Portrait Values Questionnaire was applied. The study group consisted of a total of 389 students 126 of whom were…

  9. Health physics department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The report describes the work of the Health Physics Department at Risoe during 1983. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. A great deal of the work in the department is of minor interest to people outside Risoe as it represents service functions. Therefore, the main emphasis in the report has been placed on scientific and contractual work. (author)

  10. Investigation of Students' Multiple Intelligence Domains in Three Different Departments of the School of Physical Education and Sports

    Science.gov (United States)

    Ürgüp, Sabri; Aslan, Sinan

    2015-01-01

    The majority of the schools of physical education and sports in Turkey consist of three departments, which are physical education and sports teaching department, coaching education and sports management departments. All of these departments are applying similar entrance examinations, and mostly similar curriculum and learning styles to the…

  11. Wills Plasma Physics Department annual report, 1989

    International Nuclear Information System (INIS)

    1991-01-01

    An overview of the collaborative researches carried out during the 1989 at the Wills Plasma Physics Department is given. The main activities included the study of hydromagnetic surface waves and RF heating using the Tortus tokamak; the development of diagnostic techniques, particularly those based on submillimetre lasers and tunable gyrotrons; gas discharge studies and investigations of apparent cold nuclear fusion in deuterated palladium. The small research tokamak Tortus was upgraded during the year, thus enabling the machine to be routinely and reliably operated at toroidal currents around 40 kA. A list of papers published or presented at various conferences during the year is included in the Appendix

  12. Physics Department. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Juul Rasmussen, J.; Lebech, B.

    1990-02-01

    Research in the Physics Department covers two main fields: condensed matter physics and plasma physics. The principal activites in these fields are presented in this Progress Report covering the period from 1 January to 31 December 1989. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applied nature. The discovery of the high Tc superconductors in 1986 has opened an important new research area, where neutron and x-ray diffraction are used to elucidate the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses used in producing the materials. The plasma physics research is partly experimental and partly theoretical. The plasma physics programme is also of a wide scope ranging from fundamental studies of wave propagation, instabilities, solitons and turbulence in plasmas to refuelling a fusion reactor by deuterium-tritium pellets. (author) 4 tabs., 66 ills., 71 refs

  13. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2004-01-01

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  14. COMMUNICATION STRATEGY FOR A PHYSICAL EDUCATION AND SPORT DEPARTMENT

    OpenAIRE

    Cristiana Pop

    2013-01-01

    Communication strategy of physical education and sports departments in an institution of higher education is, ultimately, a form of adaptation to new and changing environmental conditions (legal, political, internal organization and financial) in which they operate. Developing a communication strategy is an approach that is based on the research group aims to be influenced and on the effort to build a message, an image and emotional state to determine a change in perception, attitude and beha...

  15. Forum: What Has Actually Changed in Physics Departments in the Situation for Women, Graduate Students and Other People?

    Science.gov (United States)

    Mulvey, Patrick; Ivie, Rachel; Campbell, David; Murnane, Margaret; Kirby, Kate; Catlla, Anne

    2006-03-01

    The decade of the 90's was a period of intense scrutiny of climate issues in physics departments, e.g. the status of women, the job situation for new Ph.D.'s and postdocs, and the preparation of physicists for careers inside and outside of physics. There were many conference sessions on these topics, and both APS members and leadership instigated important efforts to focus on specific areas. These efforts included the program of visiting committees to departments to examine the situation for women by the Committee on the Status of Women in Physics, the AIP's various studies of a statistical nature, and the creation by the APS of a Committee on Careers and the Forum on Graduate Student Affairs, as well as the recent APS-AAPT task force on graduate education. This forum patterned after similar sessions 10 years ago - will examine how physics departments have changed as a result of such efforts. It will begin with short (12-minute) talks by a panel of experts to describe what has happened in key areas. The greater part of the session will be a period of observations, questions, and discussion from the audience and the panel together. The purpose is to have an interchange on these interrelated topics from which we can all learn. THE TOPICS TO BE INTRODUCED IN THE SHORT TALKS AT THE BEGINNING OF THE SESSION ARE: 1) changes in graduate enrollment, composition, and subsequent jobs (Patrick Mulvey); 2) women in physics and astronomy departments 2005 (Rachel Ivie); 3) changes in graduate curricula and environment (David Campbell); 4) CSWP site visits to physics departments what’s been accomplished and learned (Margaret Murnane); 5) survey of ethical issues in physics departments and the physics profession: results and reactions (Kate Kirby); and (6) physics departments from the point of view of younger physicists (Anne Catlla). The bulk of the session will be a public forum, on these and related issues, among the audience and the panel.

  16. Study of author’s applied physical training program for military officers-graduates of reserve officers’ departments

    Directory of Open Access Journals (Sweden)

    A.I. Yavorskyy

    2016-04-01

    Full Text Available Purpose: to test effectiveness of applied physical training program for military officers, called up to military service after graduation from reserve officers’ departments. Material: the research was conducted on the base of Educational center 184 from June 2014 to December 2015. In the research 80 military officers participated (n=30 - graduates of military higher educational establishments; n=26, n=24 - graduates of reserve officers’ departments of 22-27 years’ age. Results: we fulfilled analysis of military officers’ physical fitness by exercises, which characterize general physical fitness and military applied skills (100 meters’ run, chin ups, 3000 meters’ run, passing obstacles course, grenade throws for distance and for accuracy, 5 km march-rush. We worked out the program, the essence of which implies ensuring of physical fitness and acceleration of reserve officers-graduates’ adaptation to professional (combat functioning. Conclusions: it was proved that implementation of the author’s program influenced positively on perfection of general physical qualities and military applied skills of military officers-graduated of reserve officers’ departments (р-0.05-0.001.

  17. Tumultuous atmosphere (physical, mental), the main barrier to emergency department inter-professional communication.

    Science.gov (United States)

    Jafari Varjoshani, Nasrin; Hosseini, Mohammad Ali; Khankeh, Hamid Reza; Ahmadi, Fazlollah

    2014-08-22

    A highly important factor in enhancing quality of patient care and job satisfaction of health care staff is inter-professional communication. Due to the critical nature of the work environment, the large number of staff and units, and complexity of professional tasks and interventions, inter-professional communication in an emergency department is particularly and exceptionally important. Despite its importance, inter-professional communication in emergency department seems unfavorable. Thus, this study was designed to explain barriers to inter-professional communication in an emergency department. This was a qualitative study with content analysis approach, based on interviews conducted with 26 participants selected purposively, with diversity of occupation, position, age, gender, history, and place of work. Interviews were in-depth and semi-structured, and data were analyzed using the inductive content analysis approach. In total, 251 initial codes were extracted from 30 interviews (some of the participants re-interviewed) and in the reducing trend of final results, 5 categories were extracted including overcrowded emergency, stressful emergency environment, not discerning emergency conditions, ineffective management, and inefficient communication channels. Tumultuous atmosphere (physical, mental) was the common theme between categories, and was decided to be the main barrier to effective inter-professional communication. Tumultuous atmosphere (physical-mental) was found to be the most important barrier to inter-professional communication. This study provided a better understanding of these barriers in emergency department, often neglected in most studies. It is held that by reducing environmental turmoil (physical-mental), inter-professional communication can be improved, thereby improving patient care outcomes and personnel job satisfaction.

  18. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    within the Worldwide LHC Computing Grid - was actively pursued by a dedicated team. In 2009 many activities were directed at information and popularization of LHC physics. III. Preparations for the neutrino physics experiments: The neutrino team works on preparations for the T2K experiment which will study neutrino oscillations. Local work concentrates on the Side Muon Range Detector, part of the near detector ND28O. This involves calculations of the trigger rates, simulations for the multi pixel photon counters and participation in the electronics tests and installation. IV. There is an opening into future diffraction physics experiment at RHIC, starting with participation in test runs of polarized proton beams. A future oriented project is an involvement in the studies of the MAPS vertex detector, for the ILC collider. 12 PhD students work under the supervision of our department members. (author)

  19. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    Full text: The main activities of the Department can be grouped into three parts: I. An ongoing analysis of data from large accelerator facilities. At CERN SPS: In the COMPASS experiment, the Warsaw team participated in the data taking and analysis related to the structure of the nucleon. 5 publications were prepared. The result concerning the polarization distribution of quarks and antiquarks in the nucleon with the flavour separation is new, important, and obtained with a significant contribution from the team. The collaboration is preparing for the next stage of the experiment, COMPASS , which will be realized in 2011. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. 4 publications have been published and one submitted. The wide purpose NA61 experiment has taken data, and the IPJ team worked on the measurement of the production cross sections of pions and kaons, which are important for the neutrino program. At COSY: The WASA experiment is dedicated to the search for a signal of the violations of basic chiral symmetries and testing perturbative theories in the light mesons decays produced in proton-proton, proton-deuteron and deuteron-deuteron collisions at different energies. A new limit of the extremely rare decay eta → e + e - within MS is being searched for. The branching ratio of the pi0→e + e - decay should be determined with better precision. 3 publications have been published and one submitted. II. Data taking and first analysis by the LHC experiments. Three teams work on LHC experiments: CMS, LHCb and ALICE. In 2010, the LHC accelerator provided proton-proton and Pb-Pb data and all LHC collaborations prepared dozens of publications on the detector performance and physics analysis, which have been published or submitted for publication. The CMS team worked on the muon trigger system, based on the resistive plate chamber RPC. The system was optimized and synchronized during data taking with high precision. The

  20. Verbal and physical violence in emergency departments: a survey of nurses in Istanbul, Turkey.

    Science.gov (United States)

    Pinar, Rukiye; Ucmak, Firdevs

    2011-02-01

    The aim of this study was to determine the perceived verbal and physical violence and related factors experienced by nurses in emergency settings. Studies on violence in emergency departments indicate an increasing frequency of these incidents. However, little is known about the violence experienced by the Turkish nurses working in emergency departments. Survey. The study population included 255 nurses. Data were collected using a questionnaire. Verbal violence was reported with a frequency of 91.4%. Of the nurses, 74.9% had been exposed to physical violence in at least several episodes during the previous 12 months. Patients' relatives were the main perpetrators, followed by patients, most of whom were male. After experiencing violence, most of the nurses reported that, they had felt fear and only 3% described that they took sick leave, while 80% did not report the incidences of violence they experienced. The nurses described that, after a violent incident, they sought support mainly from their colleagues in emergency departments rather than from the administration. Over half of the nurses (65%) felt safe 'none of the time' in emergency departments, and 89.8% of them described that patients and patient relatives may potentially exhibit violent behaviours towards the staff when they are first admitted to emergency department, while 73.7% believed that the staffing pattern and physical environment of their emergency departments were not adequate to prevent violence. Most of the nurses (83.5%) stated that they should be provided with the training that will help them prevent and manage violence as part of their in-service education, whereas 82.7% of them had not received any such training. The findings have implications for occupational health and safety from both employer and employee perspective. © 2010 Blackwell Publishing Ltd.

  1. List of selected publications from Risoe's Health Physics Department 1957-1989

    International Nuclear Information System (INIS)

    Heikel Vinther, F.

    1991-01-01

    This list includes scientific and technical papers written by staff members of the former Health Physics Department at Risoe National Laboratory. The first part includes papers in periodicals, proceedings etc. in order of chronology while the second and third part include Riso-R and Riso-M reports respectively arranged according to report numbers. (author)

  2. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1997-01-01

    In 1996 the main activities of Department P-5 (until December 1996 known as the Department of Thermonuclear Research) were concentrated on 5 topics: 1. Selected problems of plasma theory, 2. Studies of phenomena within high-current plasma concentrators, 3. Development of plasma diagnostic methods, 4. Studies in the field of fusion technology, 5. Research on new plasma-ion technologies. Theoretical studies mainly concerned elementary processes occurring within a plasma, and particularly those within near-electrode regions of microwave discharges as well as those within near-wall layers (SOL) of tokamaks. We also developed computational packages for parameter identification and modelling of physical phenomena in pulse plasma coaxial accelerators. Experimental studies were concentrated on the generation of a dense magnetized plasma in different high-current PF (Plasma Focus) facilities and small Z-Pinch devices. We carried out investigations of X-rays, relativistic electron beams (REBs), accelerated primary ions, and fast products of fusion reactions for deuterium discharges. Research on plasma diagnostics comprised the development of methods and equipment for studies of X-ray emission, pulsed electron beams, and fast ions, using special Cherenkov-type detectors of electrons and solid-state nuclear track detectors (SSNTDs) of ions. New diagnostic techniques were developed. Studies in the field of fusion technology concerned the design, construction, and testing of different high-voltage pulse generators. We also developed special opto-electronic systems for control and data transmission. Research on plasma-ion technology concentrated on the generation of pulsed high-power plasma-ion streams and their applications for the surface modification of semiconductors, pure metals and alloys. The material engineering studies were carried out in close collaboration with our P-9 Department and other domestic and foreign research centers

  3. PUBLIC COMMENT ON THE DEPARTMENT OF HEALTH AND HUMAN SERVICES 2018 FEDERAL PHYSICAL ACITIVTY GUIDELINES

    Science.gov (United States)

    Title: Public Comment on Department of Health and Human Services (DHHS) 2018 Physical Activity Guidelines Author: Wayne E. Cascio, Director, Environmental Public Health Division, US EPA Abstract: In the 2008 Physical Activity Guidelines, the effects of air pollution and advers...

  4. Physics Department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Lebech, B.

    1984-03-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: Condensed Matter Physics, Plasma Physics and Meteorology. The principal activities in these fields for the period from 1 January to 31 December 1983 are described. The condensed matters physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometeorology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  5. Physical violence among elderly: analysis of admissions to an emergency department.

    Science.gov (United States)

    Kılıç Öztürk, Yasemin; Düzenli, Erhan; Karaali, Cem; Öztürk, Faruk

    2017-01-01

    Physical violence is defined as deliberate use of physical force likely to result in trauma, bodily injury, pain, or impairment. Present study is pioneering effort to evaluate mechanisms and sociodemographic features of physical violence targeting the elderly in Turkey and to investigate preventive measures. Database records and forensic reports were analyzed in this retrospective study of 54 elderly patients with trauma as result of physical violence who were admitted to emergency department of Şanlıurfa Training and Research Hospital between January 2012 and July 2013. Of the 54 patients evaluated, 50 (92.4%) were male. History of experiencing previous violence was described by 55.6% (n=30) of the patients. Instances of repeat violence and firearm injuries most often occurred in the home (p=0.006, p=0.007). Need for surgical treatment was also greater among cases that occurred in the home (p=0.016). Firearm injury, recurrent violence, and surgical treatment rates were higher among cases that occurred in the home. Urgent preventive measures are especially needed for the elderly who have already been victims of physical violence.

  6. Health Physics Department annual progress report 1 January - 31 December 1984

    International Nuclear Information System (INIS)

    1985-05-01

    The report describes the work of the Health Physics Department at Risoe during 1984. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  7. Health Physics Department annual progress report 1 January - 31 December 1985

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the work of the Health Physics Department at Risoe during 1985. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  8. THE COMPARISON OF EMOTIONAL INTELLIGENCE AND HAPPINESS OF THE PRESERVICE TEACHERS IN THE DEPARTMENT OF PHYSICAL EDUCATION AND SPORTS TEACHING WITH SOME PRESERVICE TEACHERS IN OTHER DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Emre Ozan TİNGAZ

    2014-07-01

    Full Text Available The aim of this study is to compare the emotional intelligence and happiness of students who receive education in the departments of physical education and sports teaching, primary school mathematics teaching, music teaching and art teaching. This study was carried out via using relational screening model. The sample of the study was comprised of the students who received education in the departments of physical education and sports teaching, primary school mathematics teaching, music teaching and art teaching in Gazi University in the academic years of 2013 - 2014. The population of th is study included 434 students in total (N=434.The number of female students is (N=308 while the number of male students is (N=124. In this study, three different measure tools were used. These are Oxford Happiness Scale, Schutte Emotional Intelligence Scale and Personal Information Form. According to the result of the study, average of happiness values of the students in the department of physical education and sports teaching (114.33 ± 17.53 was found higher than the average values of the students in the department of primary school mathematics teaching. Average of use of Emotions and Evaluation of Emotions in the students who are in the department of music teaching (24,07±3,05 was found higher than the average values of the students in the department of primary school mathematics teaching.

  9. Graduate Physics Education Adding Industrial Culture and Methods to a Traditional Graduate Physics Department

    Science.gov (United States)

    Vickers, Ken

    2005-03-01

    The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.

  10. Physics Department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    1983-09-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: condensed matter physics, plasma physics and meteorology. The report is a progress report describing the principal activities in these fields for the period from 1 January to 31 December 1982. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons, X-rays, and synchrotron X-ray radiation. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometereology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  11. Becoming a Health and Physical Education (HPE) Teacher: Student Teacher "Performances" in the Physical Education Subject Department Office

    Science.gov (United States)

    Rossi, Tony; Sirna, Karen; Tinning, Richard

    2008-01-01

    This study considered how physical education teacher education students "perform" their "selves" within subject department offices during the practicum or "teaching practice". The research was framed by a conceptual framework informed by the work of Goffman on "performance" and "front". The findings revealed three common performances across the…

  12. Overview of experimental research on nuclear structure in department of modern applied physics

    International Nuclear Information System (INIS)

    Zhu Shengjiang

    1999-01-01

    The experimental research on nuclear structure in Department of Modern Applied Physics, Tsinghua University has been summarized. The main research results in high spin states of nuclear structure, as well as some low spin states, have been reported

  13. Educational, research and implementation activities in the Department of Atomic Physics at Plovdiv University

    International Nuclear Information System (INIS)

    Balabanov, N.; Antonov, A.; Hristov, H.

    2004-01-01

    The Department of Atomic Physics at Plovdiv University has 40 year long experience in educating students in Atomic and Subatomic Physics. We aim at making the knowledge gained in nuclear physics part of the culture of our students. At the core of our educational activities lies our long and successful experience in studying the characteristics of atomic nuclei. In cooperation with JINR-Dubna we have studied the nuclei of approximately 40 percent of the periodic table elements. These studies also serve as a basis for the diverse implementation activities of the Department, which have an impressive geographical spread. In recent years our research has been focusing more specifically on radio-ecological issues with the valuable support of the Nuclear Regulatory Agency (NRA). Future more intense support on behalf of NRA's together with more dynamic links with other specialized units, such as the Kozloduy NPP in the first place, would considerably contribute to optimizing the effect of our overall activity. (authors)

  14. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  15. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  16. Security Implications of Physical Design Attributes in the Emergency Department.

    Science.gov (United States)

    Pati, Debajyoti; Pati, Sipra; Harvey, Thomas E

    2016-07-01

    Security, a subset of safety, is equally important in the efficient delivery of patient care. The emergency department (ED) is susceptible to violence creating concerns for the safety and security of patients, staff, and visitors and for the safe and efficient delivery of care. Although there is an implicit and growing recognition of the role of the physical environment, interventions typically have been at the microlevel. The objective of this study was to identify physical design attributes that potentially influence safety and efficiency of ED operations. An exploratory, qualitative research design was adopted to examine the efficiency and safety correlates of ED physical design attributes. The study comprised a multimeasure approach involving multidisciplinary gaming, semistructured interviews, and touring interviews of frontline staff in four EDs at three hospital systems across three states. Five macro physical design attributes (issues that need to be addressed at the design stage and expensive to rectify once built) emerged from the data as factors substantially associated with security issues. They are design issues pertaining to (a) the entry zone, (b) traffic management, (c) patient room clustering, (d) centralization versus decentralization, and (e) provisions for special populations. Data from this study suggest that ED security concerns are generally associated with three sources: (a) gang-related violence, (b) dissatisfied patients, and (c) behavioral health patients. Study data show that physical design has an important role in addressing the above-mentioned concerns. Implications for ED design are outlined in the article. © The Author(s) 2016.

  17. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  18. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  19. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    , UJ) and use of Pu and Cs contaminations as tracers to follow-up natural processes in peat bog (University of Agriculture, Cracow); d) preparation of α-spectrometric sources by electrodeposition (other groups of the Department) and determination of 241 Pu in α-spectrometric Pu sources (Silesian University, Katowice, Poland); e) comparative measurements of γ-background dose rate, using the PMS station, TL detectors and Gamma-Tracer probe (Health Physics Section of the Institute). In recognition of his expertise in radioecology, Dr Mietelski has been admitted as a Regular Member of the U.I.R. (Union Internationale de Radioecologie). Mrs Jasinska, Mr Kozak and Dr Mietelski received the Prize of the President of the City of Cracow for ''Organising and conducting continuous radiological monitoring of the air in Cracow and for the researches at the radioactive contamination of the environment''. The project on construction of the internal target assembly for isotope production was continued in the Laboratory of Physical Chemistry, in cooperation with the Cyclotron Section and Division of Mechanical Constructions of the Institute, and with the JINR, Dubna. In the meantime, in pilot experiments on the internal beam of the AIC-144 cyclotron, small activities of 11 C PET tracer were obtained from proton irradiated B 2 0 3 targets. A joint project with the Silesian Medical Academy, on applications of 32 P sources pure (β - emitter) in intravascular brachytherapy (IVBT), was started. Chemical and ionic methods of preparation of 32 P sources and their TL dosimetry were tested in cooperation with the Laboratory of the Ion Implanter and with the Health Physics Section of the Institute. Measurements of the activity of selenoenzymes in the context of human thyroid health or disease were continued in cooperation with the Medical College of the Jagiellonian University, and with the Rowett Research Institute, Aberdeen, Scotland

  20. Facebook Addiction Levels of Students in the Physical Education and Sport Department

    OpenAIRE

    Cetin YAMAN

    2016-01-01

    Time spent using various technological equipment increases every day with rapid technology development. Unfortunately, technology addiction is becoming an important issue. Especially with the development and ubiquity of mobile technologies, social media addiction is expanding. The aim of this study is to measure the Facebook addiction levels of 274 students at the Physical Education and Sports Teaching Department in a public university in Turkey and to examine their Facebook ad...

  1. The Relationship between Application of Information, Communication Technology and Organizational Effectiveness in Physical Education Departments of Universities of Tehran

    OpenAIRE

    Hamid Ghasemi; Abolfazl Farahani; Maryam Mashatan

    2012-01-01

    The purpose of this study was to determine the relationship between use of information communication technology (ITC) and organizational effectiveness in physical education departments of the University of Tehran carried out through the correlation method and the field research. All employees of Physical Education departments comprised our statistical population of whom 114 were randomly taken as the survey sample. We administered researcher-made information and communication technology (α=0....

  2. An Investigation of the Class Management Profiles of Students of Physical Education and Sports Teaching Departments

    Science.gov (United States)

    Baydar, Hacer Özge; Hazar, Muhsin; Yildiz, Ozer; Yildiz, Mehtap; Tingaz, Emre Ozan; Gökyürek, Belgin

    2016-01-01

    The objective of this research is to examine and analyze the class management profiles of 3rd and 4th grade students of Physical Education and Sports Teaching Departments of universities in Turkey based on gender, grade level and university. The research population comprised 375 students (170 females and 205 males) of Physical Education and Sports…

  3. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  4. Department of Nuclear Methods in the Solid State Physics

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activity of the Department of Nuclear Methods in the Solid State Physics is focused on experimental research in condensed matter physics. Thermal neutron scattering and Moessbauer effect are the main techniques mastered in the laboratory. Most of the studies aim at better understanding of properties and processes observed in modern materials. Some applied research and theoretical studies were also performed. Research activities of the Department in 2001 can be summarized as follows: Neutron scattering studies concerned the magnetic ordering in TbB 12 and TmIn 3 and some special features of magnetic excitations in antiferromagnetic γ-Mn-alloys. Some work was devoted to optimization of the neutron single crystal monochromators and polarizers grown in Crystal Growth Laboratory. Small angle scattering studies on the surfactant - water ternary system were performed in cooperation with JINR Dubna. Moessbauer effect investigations of dysprosium intermetallic compounds yielded the new data for Pauling-Slater curves. The same technique applied to perovskites and ferrocene adduct to fullerene helped to resolve their structure. X-ray topographic and diffractometric studies were performed on hydrogen implanted semiconductor surfaces employing the synchrotron radiation sources. The X-ray method was applied also to investigations of plasma spraying process and phase composition of ceramic oxide coatings. Large part of studies concerned the structure of biologically active, pharmacologically important organic complexes, supported by modeling of their electron structure. Crystal growth of large size single-crystals of metals and alloys was used for preparation of specimens with mosaic structure suitable for neutron monochromator and polarizer systems. The construction work of the Neutron and Gamma Radiography Station has been completed. The results of first tests and studies proved the expected abilities of the systems. The possibility to visualize inner structures

  5. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  6. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  7. Annual progress report of the Department of Solid State Physics 1 January -31 December 1994

    International Nuclear Information System (INIS)

    Lindgaard, P.-A.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1995-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1994, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, and methods of data analysis. (au) (3 tabs., 116 ills., 181 refs.)

  8. Nuclear Physics Department: Progress report from the 1st October 1988 to the 30th September 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The work performed at the Nuclear Physics Department, from the 1st October 1988 to the 30th September 1990, are summarized. The investigations are carried out in the fields of heavy ion physics, intermediate energy physics and accelerators using superconducting cavities. Theoretical and experimental studies accomplished in the following fields are included: hot nuclei, exotic nuclei, giant resonances, fission, inelastic scattering, electroproduction of pions, polarization of deuterons, central collisions [fr

  9. The expanding world of physics at Manitoba : a hundred years of progress : Department of Physics and Astronomy, University of Manitoba

    International Nuclear Information System (INIS)

    Connor, R.D.

    2004-01-01

    The century covered by this book has seen scientific developments unprecedented in human history, so an endeavour has been made to describe something of the careers in physics of our departmental members past and present. The prologue tells of the lack of decisions, academic and governmental, which delayed until 1904 the arrival of the first university professors, who even then could be appointed only through a private benefaction. Chapters I-IV give the general development from 1904 to the present while Chapter V describes the work of the major groups in the department. A review of each group is followed by a brief selection of the work of the individual members. Few, if any, can hope to keep up with the many facets of the subject today, so a glimpse at what is going on at the cutting edge of the whole field may reveal something of the state of physics at the beginning of the twenty-first century. The final chapter (VI) tells of the department's service and outreach beyond the classroom and the honours and awards gained by the individual members.

  10. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  11. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    International Nuclear Information System (INIS)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-01-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative–quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM–learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison

  12. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    Science.gov (United States)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-09-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative-quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM-learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  13. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    Energy Technology Data Exchange (ETDEWEB)

    Kusumawati, Intan, E-mail: intankusumawati10@gmail.com [High School in Teaching and Education (STKIP) Singkawang Jl. STKIP–Ex. Naram, district. North Singkawang, Singkawang-79251 West Borneo (Indonesia); Marwoto, Putut, E-mail: pmarwoto@yahoo.com; Linuwih, Suharto, E-mail: suhartolinuwih@gmail.com [Department of Physics Education, State University of Semarang (Unnes) Campus Unnes Bendan Ngisor, Semarang 50233 Central Java (Indonesia)

    2015-09-30

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative–quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM–learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  14. Annual progress report of the Department of Solid State Physics 1 January -31 December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I

    1997-01-01

    Research in the department is concerned with `Materials with Distinct Physical and Chemical Properties`. The principal activities of the department in the period from 1 January to 31 December, 1996, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T{sub c} superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 6 tabs., 144 ills., 197 refs.

  15. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1995

    International Nuclear Information System (INIS)

    Joergensen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1996-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1995, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 5 tabs., 135 ills., 163 refs

  16. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1996-01-01

    Research in the department is concerned with `Materials with Distinct Physical and Chemical Properties`. The principal activities of the department in the period from 1 January to 31 December, 1995, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T{sub c} superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 5 tabs., 135 ills., 163 refs.

  17. Annual progress report of the Department of Solid State Physics 1 January -31 December 1996

    International Nuclear Information System (INIS)

    Joergensen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1997-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1996, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 6 tabs., 144 ills., 197 refs

  18. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  19. Progress report of the Nuclear Physics Department (1 Oct 1978 - 30 Sep 1979)

    International Nuclear Information System (INIS)

    1980-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1978 to September 30, 1979. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8,5 MV tandem Van de Graaff, with the 600 MeV electron linac, and with different accelerators belonging to other laboratories [fr

  20. Department of Physical Sciences

    African Journals Online (AJOL)

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  1. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    The activities of Department P-10 in 2006 were as follows: - continuation of development of radiographic 5-6 MeV electron accelerator, - study of very compact accelerating standing wave RF structures for electrons and ions, - Monte Carlo simulations applied to ion radiotherapy. The compact 6 MeV electron linac constructed in Department P-10 were further developed. Some equipment (low input impedance amplifier for beam transformer, up-to-date power supplies for beam position steering coils, magnetron frequency control unit) was added or replaced. The old control racks were replaced by a new single more compact control console. This will allow us to introduce a PLC based control system of accelerator (when money for necessary PLCs is granted). After additional amelioration of radiation shielding followed by Radiological Inspection, the permanent permission No D-15917 for routine operation of this accelerator in electron and X-ray mode was issued by the National Atomic Energy Agency. This allows us to render services to external customers. As it was already reported in 2005, two regimes of operation are actually possible: with X ray output beam or electron beam, depending on user demand. The triode gun, originally thought of as a part of the 6/15 MeV medical accelerator is still showing excellent performance on experimental stand; it was opened to air for about 2 hours to repair the broken wire of the beam scanner. This confirms the possibility of repeated formation of gun dispenser cathode. A new pulse modulator was routinely used in these tests. The special set-up, designed and made in our Department for the TiN coating of accelerator components, was routinely used for coating of various types of RF high power vacuum windows for conventional and superconducting 1.3 GHz accelerating structures. Cooperation with foreign enterprises is promising. Accel Instruments GmbH ordered the coating of two sets (in total 18 pieces) of coaxial and cylindrical vacuum windows for

  2. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2006-01-01

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  3. Inter-rater reliability of postnatal ultrasound interpretation in infants with congenital hydronephrosis.

    Science.gov (United States)

    Vemulakonda, V M; Wilcox, D T; Torok, M R; Hou, A; Campbell, J B; Kempe, A

    2015-09-01

    The most common measurements of hydronephrosis are the anterior-posterior (AP) diameter and the Society for Fetal Urology (SFU) grading systems. To date, the inter-rater reliability (IRR) of these measures has not been compared in the postnatal period. The objectives of this study were to compare the IRR of the AP diameter and the SFU grading system in infants and to determine whether ultrasound findings other than pelvicalyceal dilation are associated with higher SFU grades. Initial postnatal ultrasounds of infants seen from February 1, 2011, to January 31, 2012, with a primary diagnosis of congenital hydronephrosis were included for review. Ultrasound images were de-identified and reviewed by four pediatric urologists. IRR was calculated using the intraclass correlation (ICC) measure. A paired t test was used to compare ICCs. Associations between SFU grade and other ultrasound findings were tested using Chi-square or Fisher's exact tests. A total of 112 kidneys in 56 patients were reviewed. IRR of the SFU grading system was high (right kidney ICC = 0.83, left kidney ICC = 0.85); however, IRR of AP diameter measurement was higher (right kidney ICC = 00.97, left kidney ICC = 0.98; p hydronephrosis on bivariable and multivariable analysis. The SFU grading system is associated with excellent IRR, although the AP diameter appears to have higher IRR. Physicians may consider ultrasound findings that are not explicitly included in the SFU system when assigning hydronephrosis grade, which may lead to variability in use of this classification system.

  4. Six of one, half a dozen of the other: A measure of multidisciplinary inter/intra-rater reliability of the society for fetal urology and urinary tract dilation grading systems for hydronephrosis.

    Science.gov (United States)

    Rickard, Mandy; Easterbrook, Bethany; Kim, Soojin; Farrokhyar, Forough; Stein, Nina; Arora, Steven; Belostotsky, Vladamir; DeMaria, Jorge; Lorenzo, Armando J; Braga, Luis H

    2017-02-01

    The urinary tract dilation (UTD) classification system was introduced to standardize terminology in the reporting of hydronephrosis (HN), and bridge a gap between pre- and postnatal classification such as the Society for Fetal Urology (SFU) grading system. Herein we compare the intra/inter-rater reliability of both grading systems. SFU (I-IV) and UTD (I-III) grades were independently assigned by 13 raters (9 pediatric urology staff, 2 nephrologists, 2 radiologists), twice, 3 weeks apart, to 50 sagittal postnatal ultrasonographic views of hydronephrotic kidneys. Data regarding ureteral measurements and bladder abnormalities were included to allow proper UTD categorization. Ten images were repeated to assess intra-rater reliability. Krippendorff's alpha coefficient was used to measure overall and by grade intra/inter-rater reliability. Reliability between specialties and training levels were also analyzed. Overall inter-rater reliability was slightly higher for SFU (α = 0.842, 95% CI 0.812-0.879, in session 1; and α = 0.808, 95% CI 0.775-0.839, in session 2) than for UTD (α = 0.774, 95% CI 0.715-0.827, in session 1; and α = 0.679, 95% CI 0.605-0.750, in session 2). Reliability for intermediate grades (SFU II/III and UTD 2) of HN was poor regardless of the system. Reliabilities for SFU and UTD classifications among Urology, Nephrology, and Radiology, as well as between training levels were not significantly different. Despite the introduction of HN grading systems to standardize the interpretation and reporting of renal ultrasound in infants with HN, none have been proven superior in allowing clinicians to distinguish between "moderate" grades. While this study demonstrated high reliability in distinguishing between "mild" (SFU I/II and UTD 1) and "severe" (SFU IV and UTD 3) grades of HN, the overall reliability between specialties was poor. This is in keeping with a previous report of modest inter-rater reliability of the SFU system. This drawback is

  5. Multimedia Tutorial In Physics For Foreign Students Of the Engineering Faculty Preparatory Department

    Directory of Open Access Journals (Sweden)

    P. G. Matukhin

    2016-05-01

    Full Text Available Foreign students study physics and Russian as a foreign language at the preparatory Department. They are to be trained to study different courses. During only one year the teachers of physics and Russian should help students from Asia, Africa and Latin America to get ready to study in the university. To help students in a short time to learn physical terms, to understand physics by ear, to read and write, teachers are developing the online multimedia tutorial. It is placed on the cloud OneDrive. Tutorial includes the main themes in the Mechanics. They are physical processes and phenomena, units, physical quantities, kinematics, laws of mechanics and others. The Power Point presentation slides contain information on the topics. These slides help students learn to read Russian texts on physics. There are hyperlinks to sound files on slides. Listening to those recordings, students gain the skills of physical texts listening. After each module we placed the test. Students can prepare for it using the simulator. Tests and exercise equipment made in the form of EXCEL spreadsheets. We provide our students the opportunity to view, read and listen, the tutorial files via their own mobile devices. Thus they can study physics in Russian in the classroom, or at home, but in the library, in the Park etc. Also they have access to it when they are not in Russia, and in their native countries. The tutorial presented seems to be considered as the first attempt to develop the online multimedia aimed to assist foreign students to get success in their efforts to study physics in Russian. It helps our students to learn physics in Russian faster and better. Determined are the directions of further development and improvement of the tutorial.

  6. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    Science.gov (United States)

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency.

  7. Progress report of the Nuclear Physics Department (1.10.1980-30.9.1981)

    International Nuclear Information System (INIS)

    1982-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1980 to September 30, 1981. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  8. Analysis of prejudices and attitudes of students in the department of physical therapy against people with disabilities.

    Science.gov (United States)

    Park, Yung Keun; Kim, Je Ho

    2017-12-01

    [Purpose] The purpose of this study is to examine prejudices and attitudes of students in the department of physical therapy, in order to suggest basic data for constructing an effective program to develop a positive attitude toward people with disabilities and lower social distance from them. [Subjects and Methods] For this study, students in the department of physical therapy participate in the survey examining prejudices and attitude towards people with disabilities. [Results] First, there were statistically significant differences in the prejudice against people with disabilities among student groups divided by whether they had contact on a frequent basis currently with those who have disabilities. Second, there were statistically significant differences in the prejudice against people with disabilities among student groups divided by whether they had an experience of being harmed by people with disabilities. Third, there was a correlation among prejudices against people with disabilities with each other that is articulated in the eighth domain. Finally, as a result of regression analysis, the students' attitudes towards people with disabilities were explained appropriately by the prejudices about performance of daily tasks and NIMBY (Not In My Back Yard) syndrome. [Conclusion] It is crucial to create an environment where University students in the department of physical therapy can have positive interactions with people with disabilities, to reduce the overall prejudices, and specifically, the prejudices about performance of daily tasks and about NIMBY syndrome.

  9. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  10. Progress report of the Nuclear Physics Department (1.10.1983 - 30.9.1984)

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1983 to September 20, 1984. These studies concern the structure of nuclei and the nuclear reaction mechanisms. The experiments have been carried at the 9 MV tandem Van de Graaff, the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the secondary beams at CERN [fr

  11. Progress report 1986-1987 Department of Physics

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report 1986-1987 deals with the first two years operation of the TANDAR electrostatic accelerator and also describes the research work in the following fields: nuclear physics (nuclear structure, nuclear reactions, intermediate energies, applied nuclear physics); solid state physics (crystallography and phase transitions, Mossbauer spectroscopy, condensed matter theory, crystals growth, instrumentation); atomic physics and computational physics. Finally, the staff, a list of publications and activities related to international agencies is included [es

  12. The Ministry of the Russian Federation for Atomic Energy, the State Scientific Center of Russian Federation, A.I.Leipunsky Institute for Physics and Power Engineering, Nuclear Physics Department annual report 1998

    International Nuclear Information System (INIS)

    Kuzminov, B.D.

    1998-01-01

    The report contains 69 abstracts or short communications on the research activities in 1998 of the Nuclear Physics Department of the Institute for Physics and Power Engineering, Obninsk, Russian Federation. The papers are grouped in nine chapters: Nuclear fission (5), Nuclear structure and nuclear reactions (6), Nuclear data (14), Transmutation (4), Condensed matter physics (10), Mathematical modelling (14), Applied research (7), High-voltage accelerators (6), and Instruments and methods (4). A separate indexing was provided for each paper. The report also includes a presentation of the department structure, and accelerator complex, list of publications, participation in international and national conferences and meetings, cooperation

  13. Comparison of the reliability of two hydronephrosis grading systems: The Society for Foetal Urology grading system vs. the Onen grading system

    International Nuclear Information System (INIS)

    Kim, S.-Y.; Kim, M.-J.; Yoon, C.S.; Lee, M.S.; Han, K.H.; Lee, M.-J.

    2013-01-01

    Aim: To compare the reliability of the conventional ultrasonography grading system for hydronephrosis as suggested by the Society for Fetal Urology (SFU) in 1993 and that developed by Onen in 2007. Materials and methods: One hundred and eighty kidneys in 90 paediatric patients were assessed by four radiologists using each of the two grading systems twice. The SFU system was graded 0–4 (0 = no hydronephrosis; 1 = visualized only renal pelvis; 2 = plus a few caliceal dilatation; 3 = all calyceal dilatation; 4 = plus parenchymal thinning). The Onen system was graded 0–4 (0 = no hydronephrosis; 1 = only renal pelvic dilatation; 2 = plus caliceal dilatation; 3 = plus 50% renal parenchymal loss). Cohen's kappa statistic was used to estimate intra- and interobserver agreement. The weighted least-squares approach was used to compare the intra-observer agreement, and bootstrapping was used to compare the interobserver agreement between the two systems. Results: Intra-observer agreement was substantial to almost perfect in both the SFU (κ 0.79–0.95) and the Onen (κ 0.66–0.97) grading system without difference. The overall interobserver agreement was substantial in both the SFU (κ 0.61–0.68) and the Onen (κ 0.66–0.76) grading system. However, interobserver agreement was fair to moderate for SFU grades 1 and 2 and Onen grades 2 and 3. Conclusion: Both the SFU and Onen grading system are reliable with good intra- and interobserver agreement. However, decreased interobserver agreement was demonstrated for SFU grades 1 and 2 and Onen grades 2 and 3

  14. Progress report of the Nuclear Physics Department (1.10.1982 - 30.9.1983)

    International Nuclear Information System (INIS)

    1984-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1982 to September 30, 1983. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 9 MV tandem Van de Graaff, with the 700 MeV electron linac, at the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble and the secondary beams at CERN [fr

  15. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2006-01-01

    In 2005 research activities in Department P-V were concentrated on the continuation of previous studies in the field of plasma physics and CNF, but new investigations were also undertaken, particularly in the field of plasma technology. The main tasks were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. As to the first task, particular attention was paid to studies of X-ray pulses and pulsed electron beams, by means of different diagnostic techniques. Measurements of the polarization of the selected X-ray spectral lines and their correlation with pulsed e-beams were performed in the MAJA-PF facility. Taking into account microscopic irreproducibility of so-called 'hot-spots', particular efforts were devoted to the correlation of the X-ray emission from a single hot-spot with corresponding non-thermal electron pulses. Some observations of X-rays were performed also at the PF-1000 facility at IPPLM in Warsaw. Other studies concerned the correlation of fast-neutron pulses with X-rays and other corpuscular emissions. Results of experimental studies carried out in the IPJ-IPPLM collaboration were analyzed and summarized. New measurements, carried out in the MAJA-PF facility, determined the temporal correlation of X-rays pulses, fusion-neutrons, fast electron beams and high-energy ion beams. Other efforts concerned studies of fast (ripple-born) electrons in tokamaks. An analysis of the capability of special Cerenkov-type detectors (based on diamond-crystal radiators) was performed, and measuring heads for the CASTOR and TORE-SUPRA facilities have been designed. Concerning the development of plasma diagnostic techniques, characteristics of PM-355 nuclear track detectors were analyzed and the calibrated detectors (with appropriate absorption filters) were used for measurements of fast (> 3 Me

  16. Annual Report on Scientific Activities in 1997 of Department of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow

    International Nuclear Information System (INIS)

    Wolny, J.; Olszynska, E.

    1998-01-01

    The Annual Report 1997 is the review of scientific activities of the Department of Nuclear Physics and Techniques (DNPT) of the Academy of Mining and Metallurgy, Cracow. The studies connected with: radiometric analysis, nuclear electronics, solid state physics, elementary particle and detectors, medical physics, physics of environment, theoretical physics, nuclear geophysics, energetic problems, industrial radiometry and tracer techniques have been broadly presented. The fill list of works being published and presented at scientific conferences in 1997 by the staff of DNPT are also included

  17. Smoke-Free Universities Help Students Avoid Establishing Smoking by Means of Facilitating Quitting

    Directory of Open Access Journals (Sweden)

    Tatiana I Andreeva

    2015-12-01

    Full Text Available Background: This study aimed to clarify whether smoke-free policies affect the initiation or the quit­ting of smoking among young adults. Methods: In this natural quasi-experiment study, three universities with different enforcement of smoke-free policies were considered in Kazan City, Russian Federation. Exposure data were collected in 2008-2009 through measurement of particulate matter concentrations in typical sets of premises in each university to distinguish smoke-free universities (SFU and those not smoke-free (NSFU. All present third year students were surveyed in class in April-June 2011. Number of valid questionnaires equaled 635. The questionnaire was adapted from the Health Professions Students Survey and con­tained questions on smoking initiation, current tobacco use, willingness to quit, quit attempts, percep­tion of smoke-free policies enforcement, and the demographic data. Results: Among students of SFU, the percentage of current smokers was smaller than in NSFU: 42% vs. 64% in men and 32% vs. 43% in women. Prevalence of daily smoking was 11-12% in SFU, 26% in NSFU overall and 42% among male students. No advantage of SFU in limiting smoking initiation was found. Percentage of former smokers in SFU was 33% vs. 10% in NSFU. Among current smokers, 57% expressed willingness to quit in SFU and only 28% in NSFU. About 60% of current smokers in SFU attempted to quit within a year and only 36% did so in NSFU with 23% vs. 3% having done three or more attempts. Conclusion: Smoke-free universities help young adults to avoid establishing regular smoking by means of facilitating quitting smoking.

  18. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  19. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1993

    International Nuclear Information System (INIS)

    Skov Pedersen, J.; Almdal, K.; Feidenhans'l, R.; Clausen, K.N.; Bechgaard, K.

    1994-01-01

    Research in the department is concerned with ''Materials with Distinct Physical and Chemical Properties''. The principal activities of the department in the period from 1 January, to 31 December, 1993, are presented in this Progress Report. Neutrons and X-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nanoscale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigations of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. This report is organized in 13 categories with the following headings: Theory, Monte Carlo simulations, and methods of data analysis. Magnetic structures, magnetic phase transitions, and spin dynamics. High T c superconductivity. Structures and structural phase transitions. Inclusions and precipitates in alloys and metals. Interaction of particles and photons with surfaces. Surfaces, interfaces, and amorphous structures. Langmuir films. Polymers. Molecular science. Microemulsions and biological systems. Instrument developments. Other activities. (au) (4 tabs., 109 ills., 168 refs.)

  20. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  2. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  3. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  5. Annual progress report of the Department of Solid State Physics 1. January - 31 December 1992

    International Nuclear Information System (INIS)

    Skov Pedersen, J.; Lebech, B.; Lindgaard, P.-A.

    1993-01-01

    Research in the department is in the field of condensed matter physics. The principal activities of the department in the period from 1 january, to 31 December, 1992, are presented in this Progress Report. The department's research is predominantly experimental - utilising diffraction of neutrons and X-rays - and includes studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The major interest of the department is in basic research but projects of a more applied nature are often up, prompted by the applicability of the developed techniques and expertise. For clarity, the contributions to this report are organized into 12 categories with the following headings: Theory, Monte Carlo simulations, and methods for data analysis. Magnetic structures, magnetic phase transitions,and spin dynamics. High T c superconductivity. Structures and structural phase transitions. Inclusions and precipitates in alloys and metals. Interaction of particles and photons with surfaces. Surfaces, interfaces, and amorphous structures. Langmuir films. Polymers. Microemulsions and biological systems. Instrumental developments. Other activities. (au) (1 tab., 101 ills., 165 refs.)

  6. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  7. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  8. A Comparative Study of Students' Happiness Levels and Thinking Styles in Physical Education and Sport Teaching, and Other Departments, in Turkey

    Science.gov (United States)

    Tingaz, Emre Ozan; Hazar, Muhsin; Baydar, Hacer Özge; Gökyürek, Belgin; Çakiroglu, Temel

    2018-01-01

    The objectives of this research were to compare the happiness and thinking styles of undergraduate students in the Physical Education and Sports Teaching Department and different departments, and to examine the relations between the students' happiness levels and their thinking styles. Using the correlational study design 661, undergraduate…

  9. Leading by example: a local health department-community collaboration to incorporate physical activity into organizational practice.

    Science.gov (United States)

    Yancey, Antronette K; Lewis, Lavonna B; Sloane, David C; Guinyard, Joyce Jones; Diamant, Allison L; Nascimento, Lori M; McCarthy, William J

    2004-01-01

    A multisectoral model promoting sociocultural environmental change to increase physical activity levels among African Americans in Los Angeles County, California, was developed and implemented. This model represents a true collaboration between a local health department and a community lead agency. Community organizations serving targeted areas of the county participated in one or more interventions incorporating physical activity into routine organizational practice, which centered around modeling the behaviors promoted ("walking the talk"). In the current study, level of organizational support for physical activity integration was assessed, as reflected in the extent of organizational commitment associated with each intervention. Individual-level data, characterizing the sociodemography, health status, and health behaviors of organization staff, members, and clients, are presented to document the average risk burden in the targeted population. Nearly half of the more than 200 participating organizations actively embraced incorporating physical activity into their regular work routines, with more than 25 percent committed at the highest level of involvement. Broad capacity and support for organizational integration of physical activity was demonstrated, with the observed level of commitment varying by organization type. Similar to the successful evolution of tobacco control, some of the responsibility ("cost") for physical activity adoption and maintenance can and should be shifted from the individual to organizational entities, such as workplaces.

  10. Scientometric data. The Department of Nuclear Physics and the field of cluster radioactivities

    International Nuclear Information System (INIS)

    Poenaru, N.D.

    1999-01-01

    The first attempts to make a quantitative evaluation of scientific activity in the Department of Nuclear Physics date from the seventies. Progress Reports for two-year period have been published regularly since 1972. On this basis we are now able to follow the evolution of the number and visibility of the publications. The number of articles published in refereed journals per graduated person was around 0.4 per year; after 1990 it increases rapidly over unity, reflecting not only the local efforts but also the increased contributions of international cooperation. Similar evolution can be noticed for participation with invited talks, oral contributions and posters at various scientific international conferences, workshops, and summer schools. For the field of cluster radioactivities, which has been opened by a team of researchers from our Institute and the Institute of Theoretical Physics of the Frankfurt am Main University, we can give some specific examples of the most cited publications, showing that their impact during a certain period of time, has been much stronger than mean value of the impact parameter of the corresponding journals. (author)

  11. Development of an Easy-to-Use Tool for the Assessment of Emergency Department Physical Design

    Directory of Open Access Journals (Sweden)

    Alireza Majidi

    2014-03-01

    Full Text Available Physical design of the emergency department (ED has an important effect on its role and function. To date, no guidelines have been introduced to set the standards for the construction of EDs in Iran. In this study we aim to devise an easy-to-use tool based on the available literature and expert opinion for the quick and effective assessment of EDs in regards to their physical design. For this purpose, based on current literature on emergency design, a comprehensive checklist was developed.  Then, this checklist was analyzed by a panel consisting of heads of three major EDs and contradicting items were decided. Overall 178 crude items were derived from available literature. The Items were categorized in to three major domains of Physical space, Equipment, and Accessibility. The final checklist approved by the panel consisted of 163 items categorized into six domains. Each item was phrased as a “Yes or No” question for ease of analysis, meaning that the criterion is either met or not. 

  12. Screening injured children for physical abuse or neglect in emergency departments: a systematic review.

    Science.gov (United States)

    Woodman, J; Lecky, F; Hodes, D; Pitt, M; Taylor, B; Gilbert, Ruth

    2010-03-01

    Screening markers are used in emergency departments (EDs) to identify children who should be assessed for possible physical abuse and neglect. We conducted three systematic reviews evaluating age, repeat attendance and injury type as markers for physical abuse or neglect in injured children attending EDs. We included studies comparing markers in physically abused or neglected children and non-abused injured children attending ED or hospital. We calculated likelihood ratios (LRs) for age group, repeat attendance and injury type (head injury, bruises, fractures, burns or other). Given the low prevalence of abuse or neglect, we considered that an LR of 10 or more would be clinically useful. All studies were poor quality. Infancy increased the risk of physical abuse or neglect in severely injured or admitted children (LRs 7.7-13.0, 2 studies) but was not strongly associated in children attending the ED (LR 1.5, 95% CI: 0.9, 2.8; one study). Repeat attendance did not substantially increase the risk of abuse or neglect and may be confounded by chronic disease and socio-economic status (LRs 0.8-3.9, 3 studies). One study showed no evidence that the type of injury substantially increased the risk of physical abuse or neglect in severely injured children. There was no evidence that any of the markers (infancy, type of injury, repeated attendance) were sufficiently accurate (i.e. LR >or= 10) to screen injured children in the ED to identify those requiring paediatric assessment for possible physical abuse or neglect. Clinicians should be aware that among injured children at ED a high proportion of abused children will present without these characteristics and a high proportion of non-abused children will present with them. Information about age, injury type and repeat attendances should be interpreted in this context.

  13. Attitudes of Students Studying in Coaching And Sport Management Department Towards Playing Games Involving Physical Activity

    Directory of Open Access Journals (Sweden)

    Hüseyin ÖZTÜRK

    2016-12-01

    Full Text Available This study has been prepared to determine attitudes of students studying in Coaching and Sport Management departments towards playing game including physcical activity. The sample of study consists of 388 students having sudied in Gaziantep University Coaching and Sport Management Department in 2014-2015 academic year.So as to determine the attitudes of students, the’’Playfulnessscale" was used. Statistical analysis of the data obtained in this study was made by using the SPSS 22.0 software packages. While evaluating the data for statistical analyzes, for frequency, percentage, mean, standard deviation, and comparison of two independent groups the t-test was used and for comparison of more than two independent groups ANOVA and LSD multiple comparison tests were used. According to results of study, It seems that statistically there is no significant difference between student’s genders,ages and their attitudes towards palying game including physical activity and according to their departments there is no significant difference among their attitudes but there is a significant difference between the fundimension and social cohesion dimension.

  14. Electronics department

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes the activities in 1978 of some of the groups within the Electronics Department. The work covered includes plant protection and operator studies, reliability techniques, application of nuclear techniques to mineral exploration, applied laser physics, computing and, lastly, research instrumentation. (author)

  15. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  16. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  17. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  18. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  19. Determination of the Need for Surgical Intervention in Infants Diagnosed with Fetal Hydronephrosis in China.

    Science.gov (United States)

    Zhang, Lei; Liu, Chao; Li, Yan; Sun, Chao; Li, Xiang

    2016-11-06

    BACKGROUND Hydronephrosis is a common congenital condition. The detection of fetal hydronephrosis by ultrasound presents a treatment dilemma. This study aims to examine postnatal follow-up and treatment for hydronephrosis diagnosed prenatally. MATERIAL AND METHODS This was a retrospective study of 210 infants with hydronephrosis diagnosed at the Qilu Hospital (Shangdong, China) between January 2005 and January 2013. The patient cohort was divided into four groups based on prenatal ultrasound examinations using the Society for Fetal Urology (SFU) classification system. Data on follow-up investigations and treatment methods were extracted from the charts and analyzed. RESULTS Patients with SFU grade 1, 2, and 3 hydronephrosis (n=125, n=74, and n=11, respectively) were followed for two years. In all, 2.4%, 18.9%, and 90.9% of patients with SFU grade 1, 2, and 3 hydronephrosis, respectively, underwent surgery. SFU grade 3 (HR=9.23, 95% CI: 1.43-59.74, p=0.02), APD (HR=2.81, 95% CI: 1.11-7.10, p=0.03), and parenchymal thickness (HR=0.42, 95% CI: 0.24-0.71, p=0.001) were independently associated with the occurrence of surgery. For anterioposterior diameter, using a cut-off point of 1.1, the area under the curve was 0.86, Youden index was 0.556, sensitivity was 70.4%, and specificity was 85.3%. For parenchymal thickness, using a cut-off point of 5, AUC was 0.79, Youden index was 0.478, sensitivity was 74.1%, and specificity was 73.8%. CONCLUSIONS Patients with SFU grade 2 hydronephrosis require long-term follow-up. Surgery and close postsurgical observation may be necessary for patients with SFU grade 3 and 4 hydronephrosis. An initial B-mode ultrasound screening at 7-10 days after birth may help make an optimal diagnosis and treatment selection.

  20. The US Department of Energy Nuclear Data and Low Energy Physics Programs: Aspects of current operational status and future direction

    International Nuclear Information System (INIS)

    Whetstone, S.L.; Meyer, R.A.

    1991-01-01

    The Nuclear Data and Low-Energy Programs are operated within the Division of Nuclear Physics of the US Department of Energy. The data program supports a range of activities including large scale data measurements, nuclear cross section modelling, and nuclear data compilation and dissemination. The US nuclear data needs and prospects for the future of this effort are currently being addressed and its present status is reviewed. Possibilities for the next generation nuclear data accessibility will be discussed and examples presented. The Low-Energy Nuclear Physics Program supports investigations into low-energy nuclear structure and neutrino physics. Among examples of the latter that are covered is the Sudbury Neutrino Observatory

  1. EXAMINING OCCUPATIONAL ANXIETY LEVELS OF PHYSICAL EDUCATION AND SPORTS TEACHER DEPARTMENT STUDENTS

    Directory of Open Access Journals (Sweden)

    Ayşe Feray Özbal

    2017-12-01

    Full Text Available The aim of this study was to examine the occupational anxiety levels of physical education and sports teacher department students in terms of age, gender, university, grade level, mother’s and father’s educational levels and family income. A total of 511 students (208 female, 303 male from 6 different universities participated in the study. Independent samples t-test for gender and age variables; One-way Analysis of Variance (ANOVA was used for grade level, university, mother’s and father’s education levels and family income. Significant differences were found in Interaction With Students, Occupational Exam subscales in terms of gender; Interaction With Students and Individual Self-Development subscales in terms of age (p.05. As a result, It can be concluded that the significant difference between gender groups is derived from social values, and the difference in age groups is due to lack of occupational qualification.

  2. Radiation Research Department annual report 2002

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer. A.; Nielsen, S.P.

    2003-06-01

    The report presents a summary of the work of the Radiation Research Department in 2002. The departments research and development activities are organized in two research programmes: 'Radiation Physics' and 'Radioecology and Tracer Studies'. In addition the department is responsible for the task 'Dosimetry'. Lists of publications, committee memberships and staff members are included. (au)

  3. The Use of Computer Competencies of Students in the Departments of Physical Education and Sport Teaching, and School Teaching

    Science.gov (United States)

    Okan, Ilyas

    2016-01-01

    This study aims to reveal the levels of the use of computer, which is nowadays one of the most important technologies, of teacher candidate studying in the departments of Physical Education and Sport Teaching, and School teaching; also aims to research whether there is differences according to various criteria or not. In research, data were…

  4. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2007-01-01

    In 2006 research activity of the P-V Department was concentrated on the continuation of previous studies in the field of plasma physics and controlled nuclear fusion (CNF), but several new topics concerning plasma technology were also investigated. The main tasks of the research activities were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. In a frame of the first task particular attention was paid to studies of X-ray pulses and fast electron beams emitted from different Plasma-Focus (PF) facilities. The correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions (i.e. accelerated primary ions and fusion reaction products) was investigated in the PF-360 device in Swierk. The X-ray and corpuscular emission was also studied in a PF-1000 facility at IPPLM in Warsaw. Separate efforts were devoted to the investigation of fast electrons escaping from Tokamak-type facilities. Such studies were carried out in a frame of the EURATOM program, using special Cerenkov-type detectors within the CASTOR tokamak, operated at IPP in Prague. Signals from the Cerenkov detector were recorded and interpreted. Other studies concerned the design and construction of a new 4-channel Cerenkov detection system for a TORE-SUPRA facility at CEA-Cadarache. Since thermal loads upon the Cerenkov probe within the TORE SUPRA facility can amount to 1 MW/cm 2 , it was necessary to perform detailed computations of heat transfer in various materials (i.e. diamond-radiators and the probe body). Some efforts were devoted to the calibration of new nuclear track detectors (NTD) and their application for measurements of fusion-produced protons emitted from PF-360 and PF-1000 facilities. In frame of the EURATOM program the calibrated NTD were also applied for measurements of fusion-protons in a TEXTOR

  5. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  6. Forecasting E > 50-MeV proton events with the proton prediction system (PPS)

    Science.gov (United States)

    Kahler, Stephen W.; White, Stephen M.; Ling, Alan G.

    2017-11-01

    Forecasting solar energetic (E > 10-MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (≥50-MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E ≥ 50-MeV proton events >1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986-2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all ≥M5 solar X-ray flares; (2) all ≥200 sfu 8800-MHz bursts with associated ≥M5 flares; (3) all ≥500 sfu 8800-MHz bursts; and (4) all ≥5000 sfu 8800-MHz bursts. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude, and argue that the longitude-dependence employed by PPS does not match modern observations. Use of the radio fluxes as the PPS driver tends to result in too many false alarms at the 500 sfu threshold, and misses more events than the soft X-ray predictor at the 5000 sfu threshold.

  7. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    ' laboratory. Additional radiation shielding was constructed and the computer assisted system for dosimetric monitoring was installed. Three experimental set-ups for electron and photon beam diagnostics are in course of installation and running -at: 4-5 MeV, 10-15 MeV, and 20 MeV. The 20 MeV unit will also be used for generation and metrology of narrow photon beams applicable in stereotactic radiosurgery. Preliminary design works are advanced, oriented, undertaken on an important project - high-power electron accelerators for radiation technology (10 MeV, 20-50 kW). Financial support for this task is still pending. A substantial part of the Department's activity was oriented to an international collaboration with accelerator physics centres. Two works completed in 1997 were extended in 1998: microwave pulsed generator destined for short beam bunches diagnostics was installed and put in operation at INFN-Frascati; 27 pieces of polarized ''door-knob'' r.f. couplers for superconducting cavities in HERA ring were installed and put in operation. In the course of 1998 we got the message from DESY, that couplers are working well and brought desirable improvement in operation reliability. The new item of collaboration with DESY, is design, construction and r.f. measurements of a copper model of accelerating ''superstructure'' for TESLA collider. If successful, the use of niobium ''superstructure'' can shorten by about a few kilometres the length of the TESLA linear accelerator. First four 1 m sections of model structures were sent to DESY at the end of 1998. The next four are in preparation. Some results of work done in 1998 were presented at conferences in Caen, Stockholm and Cracow

  8. A Study on school experiences of physics department students

    International Nuclear Information System (INIS)

    Cerit, N.

    2005-01-01

    Bringing up the young people who are seen as the guaranty of the future depends on a better education. One of the best ways of forming a high in quality education is connected to developing the quality in teacher training. Most of the developed countries have been carrying on studies in order to develop teacher training. School experience classes are the ones which are planned for the candidate teachers to observe the school in learning and teaching period and to practice in classrooms. Beginning from candidate teachers first years at school, this class should be thought to be beneficial for identifying their future school atmosphere, and it should be run effectively. For this purpose, it has been identified what difficulties the physics undergraduate and physics (with no thesis) master students, who took part in School Experience classes at the practice schools of Konya at which faculty-school cooperation is applied, had during activities, and their success at overcoming these difficulties, and their ideas about the practice school and its teachers. The research was done by making a survey to the physics undergraduate and physics(with no thesis) master students in 2003 Spring semester. The results of the research were analyzed for both girls and boys separately. After analyzed, the results showed that the most striking activity which both the undergraduate physics and physics(with no thesis) master students had difficulty was group activities. Moreover, it showed that 90 percent of the two groups had the idea that school experience activities would be beneficial for being a good physics teacher. It has been also recognized that the physics undergraduate students had a more positive view than physics(with no thesis) master students on the matter of meeting lack of interest from practice teachers, and taking the same course from the same teacher

  9. Radiation Research Department annual report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P. (eds.)

    2003-06-01

    The report presents a summary of the work of the Radiation Research Department in 2002. The departments research and development activities are organized in two research programmes: 'Radiation Physics' and 'Radioecology and Tracer Studies'. In addition the department is responsible for the task 'Dosimetry'. Lists of publications, committee memberships and staff members are included. (au)

  10. Nuclear physics at Peking University

    International Nuclear Information System (INIS)

    Wang, Ruo Peng

    2009-01-01

    Full text: The teaching program of nuclear physics at Peking University started in 1955, in answer to the demand of China's nuclear program. In 1958, the Department of Atomic Energy was founded. The name of this department was changed to the Department of Technique Physics in 1961. Graduates in nuclear physics and technical physics had great contribution in China's nuclear program. The nuclear physics specialty from the Department of Technique Physics merged into the School of Physics in 2001. At present, nuclear physics is not any more a major for undergraduate students in the school of physics, but there are Master programs and Ph. D programs in nuclear physics, nuclear techniques and heavy ion physics. About 200 new students are admitted each year in the School of Physics at Peking University. About 20 graduates from the School of Physics work or continue to study in nuclear physics and related fields each year. (author)

  11. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1998-01-01

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  12. Department of Training and Consulting - Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2010-01-01

    Full text: The Department of Training and Consulting concentrates on the dissemination of knowledge on radiation phenomena: the origins, applications and health effects of ionizing radiation in particular. Its activity is open to the public. However, the main recipients are students of secondary schools and teachers. During about 12 years of such activity the number of visitors has exceeded 60 000 persons, while during last few years the average number of our visitors varies between 6 000 and 7 000 per year, which shows how much this kind of activity is needed. It should be noted that the term 'visitor' is not the most appropriate, because what the 'visitor' actually experiences in the Department is a series of lectures with demonstrations, visits to the MARIA reactor or regular experimenting in a specially designed Laboratory of Atomic and Nuclear Physics for schools, teachers and university students. The Department organized two permanent exhibitions. One is connected with the nuclear waste treatment and storage, another one displays a large model. 4x4x4 m. of a nuclear reactor of the WWER-type which was about to be installed at Zarnowiec about 20 years ago. The Department is equally active during annual Picnics and Festivals of Science in Warsaw and other Polish towns. Our staff is often asked to deliver lectures outside the Institute for Nuclear Studies, and participates in discussions on problems of teaching, in addition, the Department leads, together with the Institute of Physics of the Polish Academy of Sciences, Warsaw, the annual competition, named '' Physical Paths '', for high-school students. The competition is arranged in three categories: research, demonstration of physical phenomena, and essays on physics and its relation to civilization. This competition particularly stimulates small educational centers in Poland. This year, 2010, the competition was organized for the fifth time. The Department of Training and Consulting arranges regular courses

  13. Implementation of U.S. Department of Energy physical protection upgrades in Lithuania and Uzbekistan

    International Nuclear Information System (INIS)

    Haase, M.; Romesberg, L.; Showalter, R.; Soo Hoo, M.S.; Corey, J.; Engling, E.

    1996-01-01

    Since 1994, the U.S. Department of Energy (DOE) has provided cooperative assistance to the non-nuclear weapons states of the Former Soviet Union. This effort, within DOE's program of Material Protection, Control, and Accounting (MPC ampersand A), identified the Institute of Nuclear Physics (INP) in Uzbekistan and the Ignalina Nuclear Power Plant (INPP) in Lithuania as sites for cooperative MPC ampersand A projects. The INP, located just outside of Tashkent, is the site of a 10-megawatt WWR-SM research reactor. This reactor is expected to remain operational as a major nuclear research and isotope production reactor for Central Asia. The INPP, located 100 kilometers northeast of the capital city of Vilnius, consists of two Russian-made RBMK reactors with a combined power output of 3,000 megawatts (electric). This power plant has been the subject of international safety and security concerns, which prompted DOE's cooperative assistance effort. This paper describes U.S. progress in a multi-national effort directed at implementing physical protection upgrades in Lithuania and Uzbekistan. The upgrades agreed upon between DOE and the INP and between DOE and the INPP have been designed to interface with upgrades being implemented by other donor countries. DOE/INPP upgrade projects include providing training on U.S. approaches to physical protection, access control through the main vehicle portal, a hardened central alarm station, and improved guard force communications. DOE/INP upgrade projects in Uzbekistan include an access control system, a hardened fresh fuel storage vault, an interior intrusion detection and assessment system, and an integrated alarm display and assessment system

  14. Development of bio-gas using crop wastes and pig dung ...

    African Journals Online (AJOL)

    Effect of crop wastes on the production of pig dung bio-gas was investigated. Beans husks, peels of cassava, plantain and yam were processed with fresh dung of pig. Bacterial and fungal counts in the digesting materials ranged from 1.5 x 1011cfu/ml to 3.5 x 1011cfu/ml and 0.8 x 1011sfu/ml to 1.4 x1011sfu/ml respectively.

  15. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  16. Physics research 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research programmes at Oxford University are given for the year 1980 of the Clarendon Laboratory, Nuclear Physics Laboratory, Theoretical Physics Department and the Atmospheric Physics Department, together with provisional research programmes in Astrophysics, Metallurgy and the Science of Materials, and Archaeology and the History of Art. Items of interest to physicists are also included from Engineering Science, Geology and Mineralogy, Laboratory of Molecular Biophysics, Physical Chemistry Laboratory and the Chemical Crystallography Laboratory. (U.K.)

  17. NPP Engineering and Servicing / Design Analysis Department

    International Nuclear Information System (INIS)

    Sik, J.

    2006-01-01

    The article provides an overview of the activities of the SKODA JS's Design Analysis Department performed recently in the fields of reactor physics, shielding physics, thermal hydraulics and mechanical structure stresses and life analysis. (orig.)

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Radiation Application, Shahid Beheshti University, G.C., Tehran, Iran; Department of Physics, Talca University, Talca, Chile; Department of Physics, Zanjan University, Zanjan, Iran; Department of Physics, Amirkabir University, Tehran, Iran; Department of Physics, Firoozkooh Branch, Islamic Azad University, ...

  19. Department of Material Studies - Overview

    International Nuclear Information System (INIS)

    Werner, Z.

    2009-01-01

    Full text: The technology of modifying surfaces of technological materials by means of continuous and pulsed energy and particle beams has been intensely studied for more than 20 years. In some fields, it is currently utilized on a wide scale in industry. Continuous or pulsed ion and plasma beams play a significant role among various approaches used in this area. The research carried by Department P-IX is centered on applications of our two ion implantation facilities (ion implanters) of different kinds and unique sources of high-intensity intense plasma pulses, operated by the Department of Plasma Physics. The Department cooperates closely with Forschungszentrum Rossendorf (FZR, Dresden, Germany) in the field of analytical ion beam techniques and the use of unique ion implantation facilities. The main objectives of the Department are: · the search for new ways of modifying the surface properties of solid materials by means of continuous or pulsed ion and plasma beams and · the implementation of ion implantation techniques in national industries as a method of improving the lifetime of machine parts and tools utilized in industry. In 2008, research was focused on: · ion implantation/plasma treatment of ceramics aimed at improving their wettability in ceramic-metal joints, · ion beam synthesis and plasma pulse activation of superconducting MgB 2 phases, · cobalt and zirconium inclusions in conducting layers produced in oxide insulators (Al 2 O 3 ) by ion implantation and thermal annealing. Research was conducted in cooperation with Department P-V of IPJ, Institute of Nuclear Chemistry and Technology (Warsaw), Warsaw University of Technology, Institute of Technology of Materials for Electronics (Warsaw), Institute of Molecular Physics, Polish Academy of Sciences (Poznan), Institute of Chemical Physics PAS and Forschungszentrum Rossendorf FZR (Dresden, Germany), as well as with some industrial companies. (author)

  20. Transcriptional and Translational Regulatory Responses to Iron Limitation in the Globally Distributed Marine Bacterium Candidatus Pelagibacter ubique

    Science.gov (United States)

    Smith, Daniel P.; Kitner, Joshua B.; Norbeck, Angela D.; Clauss, Therese R.; Lipton, Mary S.; Schwalbach, Michael S.; Steindler, Laura; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-01-01

    Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Thus, we propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. We propose a model in which the RNA-binding activity of CspE and CspL selectively enables protein synthesis of the iron acquisition protein SfuC during transient growth-limiting episodes of iron scarcity. PMID:20463970

  1. Hazards Control Department annual technology review, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  2. Department of Training and Consulting - Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2010-01-01

    Full text: The Department of Training and Consulting regularly serves secondary schools pupils and teachers, university students and the public. As usual we have been visited by over 6400 visitors, mainly students from secondary schools in Poland. In the opinion of the teachers the outcome of all visits was very positive. In addition, special courses on radioactivity and nuclear energy dedicated to teachers were organized. Many lectures have been delivered outside of the Department, in schools, universities and institutes. The Department is constantly developing experiments that can be conducted by students of secondary schools and universities, as well as by professionals. At the moment there are about 28 experiments available for the guests of the Department. The list of experiments and their descriptions can be found on our home page http://dsid.ipj.gov.pl. They cover the measurement of lifetimes, essential elements of radioprotection, absorption of radiation in various materials, excitation of fluorescence radiation, influence of magnetic fields on beta radiation as well as on electrons emitted from a typical electron gun, Compton scattering and elements of gamma spectroscopy, the search for radioactive pollution, the basics of the wave-particle dualism of matter, and the recently added Frank-Hertz experiment and radioactive decay of thoron. For the fifth time the Department has organized (together with the Institute of Physics of the Polish Academy of Sciences, Warsaw) '' The Physical Pathways '' competition for students of secondary schools. The students could choose one of three possibilities (even all of them): either to submit a scientific paper, to present a demonstration of a physical phenomena, or to write an essay on the connection between physics and the development of civilization. They could also submit work prepared by a team of up to 3 persons. The level of the competition turned out to be very high. The competition apparently attracts more and

  3. Tablet Computer Literacy Levels of the Physical Education and Sports Department Students

    Directory of Open Access Journals (Sweden)

    Gulten HERGUNER

    2016-04-01

    Full Text Available Education systems are being affected in parallel by newly emerging hardware and new developments    occurring in technology daily. Tablet usage especially is becoming ubiquitous in the teaching‐learning processes in recent years. Therefore, using the tablets effectively, managing them and having a high level of tablet literacy play an important role within the education system. This study aimed at determining the tablet literacy levels of students in the Physical Education and Sports Teaching department at Sakarya University in Turkey, and examining this data with regard to various variables. Some 276 students participated in the study. Findings of the study suggest that the sample has a high tablet literacy level. While no significant difference was found in the tablet literacy  by gender, the students in the 2nd grade are noted to have higher levels of tablet literacy compared to the students in 3rd and 4th grades and tablet owners are more tablet literate when compared to non‐owners. A significant but low level correlation was found between the tablet usage time and tablet literacy.  

  4. PH Department: at the heart of CERN

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The Physics Department is where the Laboratory’s scientific activity takes place. Some 1000 members of the personnel and 11,000 users work together on CERN’s highly diversified experimental programme. The challenges for the coming years are twofold: maintain the level of excellence that led the Laboratory to the discovery of the Higgs boson, and preserve the diversity of the scientific programme. The new Department Head discusses his vision with us.   Livio Mapelli. “On paper, our plan for the next two years shows no surprises,” says Livio Mapelli, former Deputy Department Head and now, since January, Head of the Physics Department (PH). “We have to finish the completion, consolidation and initial upgrades of the experiments planned for LS1. In 2015, our core activity will be supporting the experiments during the restart of the accelerator complex. However, as physicists, the best reward for us would be to obtain new breakthroughs and importa...

  5. Perception of Physical Child Abuse Among Parents and Professionals in a French Emergency Department.

    Science.gov (United States)

    Bailhache, Marion; Alioum, Ahmadou; Salmi, Louis-Rachid

    2017-04-01

    France has not prohibited all forms of corporal punishment, and the point at which an act is regarded as physical abuse is not clearly determined. The aim of our study was to compare perception of a caregiver's violent behavior toward his child by professionals and parents in an emergency department and determine characteristics associated with that perception. A cross-sectional study was conducted from November 2013 to October 2014 in the emergency department of the pediatric university hospital in Bordeaux, France. An anonymous self-administered questionnaire, including vignettes describing hypothetical situations of violent interaction between a parent and child, and items related to sociodemographic and family characteristics, was administered to professionals and parents. Vignettes included varying child's age and behavior, frequency of caregiver's behavior, hitting with/without an object, and targeted child's body part. Violent behavior was restricted to hitting for reasons of feasibility. Respondents were asked to rate the acceptability of situations on a 100-mm visual analog scale. Analyses were multivariate mixed Poisson regressions. A total of 1,001 participants assessed the vignettes. Participants were predominantly females (64%), married or living with a partner (87%), with a median age of 34 years. Professionals assessed vignettes as acceptable significantly more than parents (mean rating 2.8 times higher; p children were less tolerant. Such findings indicate the need for additional research to better appreciate consequences and severity of violent behavior toward children, and the need to educate parents and professionals.

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Rangan Lahiri1 Arvind2 3 Anirban Sain4 5. Department of Physics, Indian Institute of Science, Bangalore 560 012, India; Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India; Department of Physics, University of ...

  7. Central Safety Department. Annual report 1986

    International Nuclear Information System (INIS)

    Kiefer, H.; Koenig, L.A.

    1987-03-01

    The Safety Officer and the Security Officer are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the safeguards of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH (KfK). To fulfill these functions they rely on the assistance of the Central Safety Department. The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of HT in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. The report gives details of the different duties, indicates the results of 1986 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  8. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  9. Electronics Department. Progress Report 1984

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    This report summarizes the activities in the Electronics Department in 1984. These include work under the headings of informatics, applied laser physics, nuclear geophysics, instrumentation and measuring techniques, and instrumentation consulting, registration and maintenance for the Danish...

  10. TEACHING PHYSICS: Connecting with Advancing Physics

    Science.gov (United States)

    Brown, L. M.

    2000-05-01

    A case is made for the Institute of Physics to provide services to back up physics courses in the first foundation year in British universities. There are several reasons why it is timely to consider such action. Firstly there are several physics departments in the country which are scarcely large enough to maintain a full four-year honours course while at the same time winning a lucrative research reputation. Secondly, if Advancing Physics, the new A-level initiative sponsored by the Institute of Physics, is successful, there will be a flood of new recruits into the subject, just at a time when the number of places available in universities is static or, more likely, falling. Thirdly, the new students will expect very high standards of presentation, for both practical and theoretical work: standards which, given the resources available to existing departments, will be very hard to provide under the present circumstances. It is proposed that the Standing Committee of Physics Professors should examine whether and in what ways the provision of IOP services to universities might be made. The SCPP is an appropriate body to manage such a resource.

  11. Optics and Plasma Research Department annual progress report for 2004

    OpenAIRE

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.; Petersen, Paul Michael; Skaarup, Bitten

    2005-01-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. Thedepartment has core competencies in optical sensors, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalib...

  12. Department of Training and Consulting - Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2009-01-01

    Full text: The Department of Training and Consulting regularly serves secondary schools pupils and teachers, university students and the public. Almost 6600 visitors, mainly students from secondary schools in Poland, visited the Department. In addition to regular lectures, demonstrations, visits to the reactor MARIA and two current exhibitions (on nuclear waste and the WWER reactor model), several laboratory experiments have been organized for secondary schools. A one-day summer workshop on '' Basics of nuclear radiation, its properties and use in science, technology and medicine '' offered secondary school teachers a general understanding of the problems connected with radioactivity. The Department is constantly developing experiments that can be conducted by students of secondary schools and universities, as well as by professionals. At the moment, there are about 25 experiments available for the guests of the Department. They cover the measurement of lifetimes, essential elements of radioprotection, absorption of radiation in various materials, excitation of fluorescence radiation, influence of magnetic fields on beta radiation as well as on electrons emitted from a typical electron gun, Compton scattering and elements of gamma spectroscopy, search for radioactive pollutions etc. Three experiments were modernized to enable them to be conducted over the Internet. This project is a bit delayed but should be finished by the end of April 2009. For the third time the Department organized (together with the Institute of Physics of the Polish Academy of Sciences, Warsaw) '' The Physical Pathways '' competition for secondary school students. The students could choose one of three possibilities (even all of them): either to submit a scientific paper, to present a demonstration of a physical phenomenon, or to write an essay on the connection between physics and the development of civilization. They could also submit work prepared by a team of up to three persons. The

  13. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  14. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    Energy Technology Data Exchange (ETDEWEB)

    Callan, Curtis G. [Princeton University; Gubser, Steven S. [Princeton University; Marlow, Daniel R. [Princeton University; McDonald, Kirk T. [Princeton University; Meyers, Peter D. [Princeton University; Olsen, James D. [Princeton University; Smith, Arthur J.S. [Princeton University; Steinhardt, Paul J. [Princeton University; Tully, Christopher G. [Princeton University; Stickland, David P. [Princeton University

    2013-04-30

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  15. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  16. Health Physics Department annual progress report 1 January - 31 December 1986

    International Nuclear Information System (INIS)

    1987-05-01

    The report describes the work of the Healths Physsics Department at Risoe during 1986. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The emphasis in the report has been placed on scientific and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  17. Electronics Department progress report 1983

    International Nuclear Information System (INIS)

    1984-05-01

    this report summarizes the Electronics Department's activities in 1983. These include work under the headings of man-machine system and operator studies, reliability techniques, application of nuclear techniques to mineral exploration, applied laser physics, computing and, lastly, research instrumentation. (author)

  18. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1999-01-01

    Full text: Work carried out in 1998 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. SEMICONDUCTOR DETECTORS: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The departmental objectives are: a search for new types of detectors; producing unique detectors tailored for physics experiments; manufacturing standard detectors for radiation measuring instruments; scientific development of the staff. These objectives were accomplished in 1998 particularly by: research on unique thin silicon detectors for identification of particles in E-ΔE telescopes, modernization of technology of manufacturing Ge(Li) detectors capable of detecting broader range of gamma energies, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishment of the above the Department co-operated with groups of physicists from IPJ, PAN Institute of Physics (Warsaw), and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Ray TUBE GENERATORS: The Department conducts research on design and technology of manufacturing X-ray generators as well as on imaging and dosimetry of X-ray beams. Various models of special construction X-ray tubes and their power supplies are under construction. In 1998 work concentrated on: completing laboratory equipment for manufacturing X-ray tubes and their components, developing technology of manufacturing X-ray tubes and their components, completing a laboratory set-up with

  19. Activities of JAERI's health physics department for the criticality accident of JCO

    International Nuclear Information System (INIS)

    Yamamoto, Katsumune; Kitano, Kyoshiro; Murakami, Hiroyuki; Yamaguchi, Takenori; Tsunoda, Masahiko

    2000-01-01

    This report describes early health physics activities from September 30 to October 1 taken by the authors' department after the JCO accident. They firstly knew the accident at around 12:20 (about 2 hr after the criticality). The activities involved the planning of schedule for ending the criticality; calculation of scheduled dose for the work to end it; dose measurement around JCO site; loaning out of devices for measuring neutron and of personal dose-meter; collection and radioactivity measurement of dust and soil, and of drinking water; and examination for contamination of people around the site, of their houses inside and of school gardens and equipments. The dose was scheduled to be firstly 20 mSv and then changed to 50 mSv due to the actual measurement at the accident site. The working time was to be 3 min at the site. The work was on either the dose or time. Radiation monitoring outside the JCO site revealed the presence of Na-24 and Cs-138: neutron dose was 10 times as high as γ-ray dose. The time course of dose rate change was found to be in parallel with the progress of works to end the criticality. (K.H.)

  20. Facebook Addiction Levels of Students in the Physical Education and Sport Department

    Directory of Open Access Journals (Sweden)

    Cetin YAMAN

    2016-04-01

    Full Text Available Time spent using various technological equipment increases every day with rapid technology development. Unfortunately, technology addiction is becoming an important issue. Especially with the development and ubiquity of mobile technologies, social media addiction is expanding. The aim of this study is to measure the Facebook addiction levels of 274 students at the Physical Education and Sports Teaching Department in a public university in Turkey and to examine their Facebook addiction levels against a number of variables. Descriptive method was used within the framework of the study and the “Facebook Addiction Survey” developed by Çam and İşbulan (2012 was used as the data collection instrument. The results of the study show the students had low levels of Facebook addiction. On the other hand, when the Facebook addiction level mean scores were compared, male students were seen to have higher scores than female students. Students in the 3rd grade had higher mean scores than those in the 1st and 2nd grades. Although Facebook addiction is not a problem among the students, proactive action is needed to enhance student awareness of the problem and ensure future teachers can be role models in an addiction‐free academic environment.  

  1. Physics department annual progress report, 1 Jan - 31 Dec 1975

    International Nuclear Information System (INIS)

    Bjeerum Moeller, H.; Lebech, B.

    1975-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics, nuclear spectroscopy and meteorology are presented. The main experimental and theoretical work in solid-state physics has involved: investigation of the static and dynamic properties of magnetic solids; studies of various kinds of phase transitions in solids and liquid-like systems; electronic energy band calculations of metals; and investigations of the structure and lattice dynamics of molecular crystals and adsorbed monolayers. The work of the plasma physics section is centered on technology of interest for future fusion reactors and on basic plasma physics. The technological aspects of plasma phsics are undertaken with one of the possible refuelling schemes for fusion reactors in mind. The main object of the basic research is investigations of waves and instabilites in a relatively cold steady state plasma. The activites in the field of nuclear spectroscopy have concerned an attempt to form the 236 U fission isomer with thermal neutrons and studies of the fine structure in the mass distribution for fission fragments. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  2. Department of Accelerator Physics And Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2009-01-01

    Full text: The activity of department P-10 is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. In 2008, the following topics were investigated and/or realized: 1. A linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy). Basically a proton linac of modified Alvarez type working at 3000 MHz frequency and delivering beams in the energy range from 65 MeV to 200 MeV. In 2005, a contract was signed between ENEA and SINS-Swierk for the design, manufacture and delivery to Frascati of the input section of a 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 16 MeV. In 2008, the field distribution in the manufactured structure was measured and optimized using available universal test stand. Measurements were also performed in ENEA/Frascati in October; a small difference in results, around 0.25%, is under investigation. Beam dynamics calculations using 3D codes have been started in parallel. 2. Preparation for participation in the international X-FEL project. Calculations of the parasitic Higher Order Modes (HOMs) induced in superconducting accelerating structures by very short electron bunches have been continued. Thanks to the special research grant received by department P-10 the design and completion of the HOM elements has been started for two accelerating modules, where each module consists of eight superconducting accelerating structures and focusing/correcting elements. 3. Superconducting layers; studies in INFN-Roma. Within the European CARE/JRA1/WP4-2 project, serious modification of the Nb-coating stand for the 1.3 GHz single-cell copper resonators using a vacuum arc was performed. Thanks to this stand the internal surface of the resonator was successfully coated. 4. TiN coating vacuum stand for RF components. At this stand the analysis of the TiN layer thickness as a function of reactive atmosphere pressure

  3. Department of Training And Consulting - Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2005-01-01

    Full text: The Department of Training and Consulting is regularly serving secondary school pupils and teachers, university students and the public. As usual we have been visited by more than 5000 visitors, mainly students from secondary schools. Since January 2003, the Department participated in an European program called NUPEX (from Nuclear Physics Experience) that aimed at creating an internet platform of educational material from nuclear physics and its applications. The platform was finally prepared in eight languages (English, French, German, Italian, Flemish, Greek, Hungarian and Polish) and is dedicated to pupils from secondary schools and to science teachers. The whole material can be found at http://www.nupex.org. The Polish part is displayed additionally at http://ipj.gov.pl/pl/szkolenia/nupex. It is worth mentioning that the Polish group played an important role in the whole project. Seven modules were fully prepared by us; we also were active in helping the other Project's participants to understand technicalities connected with preparation of the material for internet. New educational posters have been designed by the Department. The titles of these posters are: Energy and its transformations; typical electric power plants; Nuclear Power Plants; Nuclear Power Plants in Europe and in the World. The posters are offered to visiting schools. The number of possible experiments at our Laboratory of Atomic Physics is still increasing. Recently a computer simulation of the process of start-up of the nuclear reactor was prepared. Although it can be considered as a game, in fact the animation reflects the reality of the process and can be used for training of nuclear reactor's operators. For the first time one, of the leading secondary schools in Warsaw, the Stefan Batory School, participated in a Summer School of Physics organized at our Department, which lasted 10 days. Most of the educational program was filled with the basics of nuclear physics with emphasis

  4. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2001-01-01

    Full text: We deal with environmental physics and the radiation transport physics, both theoretically and experimentally. Some results find their way to practical applications. Our environmental physics research encompasses hydrogeological problems as well as measurements of trace elements in the atmosphere and in the water. Theoretical (analytical and numerical) and experimental issues of the radiation transport and radiation fields are our main field of research. The interest in radiation transport phenomena is stimulated by their importance for the environmental physics, industrial and nuclear facilities and methods of geophysical. Environmental isotopes and noble gases are used in the investigation of water-bearing geological formations in order to determine the origin and age of groundwater. The papers listed below and three ''Reports on research'' present recent achievements in this field. The gas chromatography methods are used for monitoring the anthropogenic trace gases (SF 6 and freons), which participate in the Earth green-house effect. A very high detection level of SF 6 in water, 0.0028 fg/cm 3 H 2 0, has been reached as required for hydrogeological purposes. A preliminary verification of the SF 6 tracer method for dating young groundwaters by the tritium method has been carried out. We carried on the work on a method of radon measurement in soil in connection with geological conditions. The national seminar ''Radon in Environment'' organized at the INP aroused an interest of Polish scientific centres in that field. The seminar gathered 60 participants who presented 24 oral reports and 8 posters. Within the scope of the radiation transport physics we studied thermal neutron transport in finite hydrogenous media. Advantages and limitations of a Monte Carlo code (MCNP) in thermal neutron transport simulations have been examined by both the analytical solution and the experiment on the INP pulsed neutron generator. An interesting contribution to the

  5. Looking for a Link : Comparing Faculty Citations Pre and Post Big Deals

    OpenAIRE

    Taylor, Donald

    2007-01-01

    Big Deals expand an institution’s access to scholarly literature, with usage statistics showing that previously unavailable journals receive significant usage. To determine if faculty use these new e-journals in their research, the Simon Fraser University (SFU) Library analyzed SFU citation data to journals from selected Big Deals for two years prior to signing a major Big Deal (1993 and 1998) and for two consecutive years following the Big Deal (2004 and 2005). Pre Big Deal, the percentage o...

  6. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy, Office of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000 Independence...

  7. Optics and Plasma Research Department. Annual progress report for 2004

    International Nuclear Information System (INIS)

    Bindslev, H.; Lynov, J.P.; Pedersen, C.; Petersen, P.M.; Skaarup, B.

    2005-03-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. The department has core competencies in optical sensors, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperature calibration, and infrared measurement techniques. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2004 is presented. (au)

  8. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Loskiewicz, J.

    2000-01-01

    Full text: The scope of scientific work of the Department is best characterized as Physics of the Earth. Our studies comprise the physics of the atmosphere, problems of groundwater systems, of outflows of gases (radon and thoron) from tectonic faults and caverns. We are studying the heterogeneity of rock formations and also working on problems of the nuclear geophysics. In the greater part of this research methods of nuclear physics are employed - neutrons as probing particles or radioactive and stable isotopes in tracer technologies. Concentrations of F-11, F-113 and CHCl 3 , CHCCl 3 , CCl 4 , F-12 and SF 6 in Cracow atmosphere were measured by gas chromatography (GS). The five-point interpolation-procedure for calculations of week weight-averaged concentrations of the above-mentioned gases was developed. At the Kasprowy Wierch Station (Tatra Mts.) the measurement of greenhouse effect gases (CH 4 , CO 2 and SF 6 ) has been continued. A method for measuring the SF 6 concentration in water as a hydrologic tracer was developed for determining the ages of young groundwater systems. Similar enrichment is being developed for such potential tracers as freon F-11 and F-12. Studies were continued on models for the interpretation of tracer data and transit time calculations in groundwater systems. Environmental tracer study of the Oligocene aquifer in the Mazovian basin has been completed. It has appeared that in the Late Glacial the recharge of groundwater systems in the Mazovian basin was, to a high degree, from paleolakes. Moderate concentrations of 4 He excess showed that the glacial waters cannot be older than those recharged at the end stages of the Last Glacial. The heterogeneity of a rock medium as: variable density, occurrence of concretions of high neutron absorbers etc. have been studied. The influence of the granulation change on the neutron absorption has been examined. A study of effective neutron parameters of an heterogeneous material containing highly

  9. Department of Energy multiprogram laboratories

    International Nuclear Information System (INIS)

    1982-09-01

    The Panel recommends the following major roles and missions for the laboratories: perform the Department's national trust fundamental research missions in the physical sciences, including high energy and nuclear physics, and the radiobiological sciences including nuclear medicine; sustain scientific staff core capabilities and specialized research facilities for laboratory research purposes and for use by other Federal agencies and the private sector; perform independent scientific and technical assessment or verification studies required by the Department; and perform generic research and development where it is judged to be in the public interest or where for economic or technical reasons industry does not choose to support it. Organizational efficiencies if implemented by the Department could contribute toward optimal performance of the laboratories. The Panel recommends that a high level official, such as a Deputy Under Secretary, be appointed to serve as Chief Laboratory Executive with authority to help determine and defend the research and development budget, to allocate resources, to decide where work is to be done, and to assess periodically laboratory performance. Laboratory directors should be given substantially more flexibility to deploy resources and to initiate or adapt programs within broad guidelines provided by the Department. The panel recommends the following actions to increase the usefulness of the laboratories and to promote technology transfer to the private sector: establish user groups for all major mission programs and facilities to ensure greater relevance for Department and laboratory efforts; allow the laboratories to do more reimbursable work for others (other Federal agencies, state and local governments, and industry) by relaxing constraints on such work; implement vigorously the recently liberalized patent policy; permit and encourage joint ventures with industry

  10. Correlation of Hydronephrosis Index to Society of Fetal Urology Hydronephrosis Scale

    Directory of Open Access Journals (Sweden)

    Krishnan Venkatesan

    2009-01-01

    Full Text Available Purpose. We seek to correlate conventional hydronephrosis (HN grade and hydronephrosis index (HI. Methods. We examined 1207 hydronephrotic kidneys by ultrasound. HN was classified by Society of Fetal Urology guidelines. HN was then gauged using HI, a reproducible, standardized, and dimensionless measurement of renal area. We then calculated average HI for each HN grade. Results. Comparing HI to standard SFU HN grade, average HI is 89.3 for grade I; average HI is 83.9 for grade II; average HI is 73.0 for grade III; average HI is 54.6 for SFU grade IV. Conclusions. HI correlates well with SFU HN grade. The HI serves as a quantitative measure of HN. HI can be used to track HN over time. Versus conventional grading, HI may be more sensitive in defining severe (grades III and IV HN, and in indicating resolving, stable, or worsening HN, thus providing more information for clinical decision-making and HN management.

  11. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  14. Theoretical physics department, june 96-may 98 status report

    International Nuclear Information System (INIS)

    1998-01-01

    This status report presents the work done at SPhT (service de physique theorique, CEA) from june 96 to may 98. The topics have been classified into 3 themes: - statistical physics, - mathematical physics and field theory, - astrophysics, nuclear and particle physics. In the first theme relevant contributions have been made to phase transitions, correlated electronic systems, polymers, membranes, proteins, disordered systems and out of equilibrium processes. The second theme collects various works, some works dedicated to aleatory matrices and quantum chaos aim at developing investigation methods, other works like cord theories use these methods. As for the third theme, the recent discovery of the fluctuations of background cosmological radiation has fomented a great activity at SPhT. Mean field approximation and effective strength have been the starting point of research in the field of nuclear structure. High energy quantum chromodynamics has been applied to deep inelastic scattering where the proton structure is studied through electron-proton collisions. A list of all the publications made by SPhT is given. (A.C.)

  15. Electronics Department progress report 1984

    International Nuclear Information System (INIS)

    1985-11-01

    This report summarizes the activities in the Electronics Department in 1984. These include work under the headings of informatics, applied laser physics, nuclear geophysics, instrumentation and measuring techniques, and instrumentation consulting, registration and maintenance for the Danish Research Council and Risoe National Laboratory. (author)

  16. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  17. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  18. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Matsuura, S.; Nakahara, Y.; Takano, H.

    1983-09-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  19. The chemical physics of surfaces

    CERN Document Server

    Morrison, Stanley Roy

    1990-01-01

    Even more importantly, some authors who have contributed substantially to an area may have been overlooked. For this I apologize. I have, however, not attempted to trace techniques or observa­ tions historically, so there is no implication (unless specified) that the authors referred to were or were not the originators of a given method or observation. I would like to acknowledge discussions with co-workers at SFU for input relative to their specialties, to acknowledge the help of students who have pointed out errors and difficulties in the earlier presentation, and to acknowledge the infinite patience of my wife Phyllis while I spent my sabbatical and more in libraries and punching computers. S. Roy Morrison 0 1 Contents Notation XV 1. Introduction 1 1. 1. Surface States and Surface Sites . 1 1. 1. 1. The Chemical versus Electronic Representation of the Surface. 1 1. 1. 2. The Surface State on the Band Diagram 4 1. 1. 3. The Fermi Energy in the Surface State Model. 6 1. 1. 4. Need for Both Surface...

  20. Progress report 1986-1987 Basic Research Department

    International Nuclear Information System (INIS)

    1988-01-01

    A report is presented of the activities performed by the Basic Research Department of the Bariloche Atomic Center during the period 1986-1987. In this report, works on different subjects related to physics are grouped: atomic collisions, low temperatures, magnetic resonance, metals, neutrons and reactors and theoretical physics (computational, elementary particles, nuclear physics and solid states). In addition, Appendix I and II regarding the staff and visiting scientists, respectively, and publications and conferences are included [es

  1. Department of Training and Consulting - Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2008-01-01

    Full text: The Department of Training and Consulting is regularly serving secondary schools' pupils and teachers, university students and the public. As usual, we have been visited by over 5000 visitors, mainly students from secondary schools in Poland. In this contest, it is worth to mention the organization of the two 3-days Workshops '' On the nuclear energy from the very basics '', aimed to offer the teachers of secondary schools general understanding of the problems connected with nuclear energy. The Workshops were organized in collaboration with the International Atomic Energy Agency and Polish Atomic Agency. Also two other one-day courses on the nuclear radiation were organized for teachers from rather remote parts of Poland. In the teachers' opinion all these events were very successful. The Department is constantly developing experiments that can be conducted by students of secondary schools and universities, as well as by professionals. At the moment there are about 20 experiments available for the guests of the Department. They cover the measurements of lifetimes, essential elements of radioprotection, absorption of radiation in various materials, excitation of fluorescence radiation, influence of magnetic field on beta radiation as well as on electrons emitted from a typical electron gun, Compton scattering and elements of gamma spectroscopy, search for radioactive pollutions etc. A new task of preparing some experiments to be driven through the internet was put forward. It is hoped that this project will end within 2008. For the second time the Department has organized (together with the Institute of Physics of the Polish Academy of Sciences, Warsaw) '' The Physical Pathways '' competition for the students of secondary schools. The students could choose one of three possibilities (even all of them): either to submit a scientific paper, or to present demonstration of a physical phenomena, or to write an essay on the connection between physics and the

  2. Physics department annual progress report, 1 Jan - 31 Dec 1976

    International Nuclear Information System (INIS)

    Bjerrum Moeller, H.; Lebech, B.

    1976-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics and meteorology are presented in this report that covers the period 1 January to 31 December 1976. In addition, research on nuclear spectroscopy was carried out up until March 31, 1976. The experimental and theoretical work in solid-state physics is roughly divided into the following main subject fields: investigations of the dynamic and static properties of magnetic and superconducting solids; studies of various kinds of phase transitions in magnetic and molecular systems; and investigations of the dynamic and static properties of molecular crystals and adsorbed monolayers. The main object of basic research in plasma physics is to investigate waves and instabilities in a relatively cold steady state plasma (produced in a Q-machine). Turbulence, ion cyclotron waves, and ion-acoustic waves in the presence of electron plasma waves are the chief phenomena investigated. Work on nuclear spectroscopy was concentrated on problems relating to fission. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  3. Michel Spiro is appointed director of the IN2P3 and the Department of Nuclear and Particle Physics of the CNRS

    CERN Multimedia

    2003-01-01

    "Michel Spiro was appointed director of the IN2P3, by order of the Minister of Youth, National Education and Research and the Minister of Research and New Technologies on February 17, 2003. He was also appointed director of the Department of Nuclear and Particle Physics of the CNRS by decision of the CNRS Director General on February 21, 2003" (1/2 page).

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  5. Optics and Fluid Dynamics Department annual progress report for 1993

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Michelsen, P.; Skaarup, B.

    1994-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials, (b) quasi-elastic light scattering and diagnostics in solids, fluids, and plasmas, and (c) optical and electronic information processing. Within continuum physics the activities are within (a) studies of non-linear dynamical processes in continuum systems, (b) investigations of problems with relevance to fusion plasma physics. The injection of pellets in fusion experiments has been investigated and pellet injectors to European fusion experiments are manufactured. The department is also responsible for the EURATOM collaboration within fusion plasma physics. A summary of activities in 1993 is presented. (au) (27 ills., 24 refs.)

  6. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  7. Department of Hadron Structure - Overview

    International Nuclear Information System (INIS)

    Eskreys, A.

    2000-01-01

    Full Text: The XII Department of the Institute of Nuclear Physics has been involved in 1999 in the following experiments and projects: -ZEUS experiment at HERA (DESY), which covered the main activity of the department. The group from department participating in this experiment consisted of physicists: J. Chwastowski, A. Eskreys, J. Figiel, K. Klimek, K. Olkiewicz, M.B. Przybycien, P. Stopa, M. Zachara, and L. Zawiejski and engineers and technicians: J. Andruszkow, W. Daniluk, B. Dabrowski, P. Jurkiewicz, A. Kotarba, K. Oliwa, W. Wierba, and A. Wlodarczyk; -D0 experiment at TEVATRON (FNAL), USA - one physicist: B. Pawlik from the department was involved in this experiment; -TESLA project at DESY - two engineers: J. Andruszkow and P. Jurkiewicz were participating in this project; -ATLAS project at LHC (CERN) - one physicist: K. Piotrzkowski from the department was participating in this project. 11 physicists and 8 engineers and technicians have been involved in carrying above programs. ZEUS experiment is the continuation of the investigation of e ± p interactions at HERA collider which has started over 10 years ago and has a perspective of another 5 years of activity. The upgrade of HERA and the expected 5-7 fold increase of luminosity makes the physics program very attractive. Cracow group is responsible for upgrade of the luminosity monitor to meet the new working conditions after HERA upgrade. An extended proposal for luminosity measurement after HERA upgrade, including the measurements of the Bremsstrahlung events rates by additional detectors apart from the photon calorimeter (i.e. 6m and 40m electron taggers and luminosity spectrometer), has been prepared and was accepted for realization by the ZEUS collaboration and the DESY Physics Research Committee (PRC). D0 is the (anti)pp experiment carried out at FNAL (Batavia), USA, and is now designed to deliver 100 times higher luminosity than has been achieved so far. In ATLAS project the preparation of the physics

  8. Workplace violence against nurses in Indonesian emergency departments.

    Science.gov (United States)

    Noorana Zahra, Anggri; Feng, Jui-Ying

    2018-02-01

    The objective of this study was to examine the experiences of violent incidents by nurses in Indonesian emergency departments. The World Health Organization's structured questionnaire on workplace violence in the health sector was modified and translated into Bahasa. The study participants were 169 nurses working in emergency departments in six hospitals in Jakarta and Bekasi, Indonesia. The gathered data were analyzed using descriptive and multivariate logistic regression. Ten percent of emergency nurses reported experiencing physical violence, perpetrated mostly by patients, whereas more than half of emergency nurses (54.6%) reported experiencing non-physical violence, with patients' relative as the main perpetrators. A majority of nurses (55.6%) did not have encouragement to report workplace violence, and very few nurses (10.1%) had received any information or training about workplace violence. The findings of this study highlighted the seriousness of violence in Indonesian emergency departments. Support from management, encouragement to report violence, and access to workplace violence training were expected to mitigate and manage violence against nurses in emergency departments. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  9. SFU-driven transparent approximation acceleration on GPUs

    NARCIS (Netherlands)

    Li, A.; Song, S.L.; Wijtvliet, M.; Kumar, A.; Corporaal, H.

    2016-01-01

    Approximate computing, the technique that sacrifices certain amount of accuracy in exchange for substantial performance boost or power reduction, is one of the most promising solutions to enable power control and performance scaling towards exascale. Although most existing approximation designs

  10. Optics and Plasma Research Department annual progress report for 2004

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.

    2005-01-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. Thedepartment has core competencies in optical sensors......, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalibration, and infrared measurement techniques. The research is supported by several EU programmes, including...

  11. Nuclear Safety Research Department annual progress report 1992

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1993-03-01

    The report describes the work of the Nuclear Safety Research Department during 1992. The activities cover health physics, reactor physics, operation of the Danish educational reactor DR1, and waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au)

  12. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  13. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Nowicki, L.

    2006-01-01

    In 2005 the Department held a steady course. Topics of nuclear physics, atomic physics and materials research that started in previous years were continued. Although our team was smaller than years ago, the scientific activity, estimated by number of published papers is still very high. Scientists of the Department are co-authors or authors of more than 50 papers. Nuclear physics, which is our main-stream activity, covered a wide energy range. It started close to the Coulomb barrier, where 6 He breakup on heavy nuclei were studied, and ended at zones of tens of GeV; such high energies were used to investigate spin structure of deuterons and to explore hadron leptoproduction. Traditionally, experimental investigations in the fields of atomic physics and of physics of materials completed the scene. Our old Van de Graaff accelerator Lech was used for studies of M-shell ionisation of heavy elements, for hardening of Ultra-High Molecular Weight Polyethylene and for characterisation of materials with RBS and NRA techniques. The VdG runs perfectly although it is over 40 years old. Two Ph.D. students finished their theses and were promoted. Izabela Fijal's work concerned multi-ionization and intrashell coupling effects for L-shell x-ray emission induced by heavy ions, while Sergiy Mezhevych showed studies on scattering of 11 B from carbon isotopes. It is obvious that contemporary works on physics do not arise in a single lab. Our contributions to many papers were possible due owing to collaborations involving many institutions. Some of them are listed: GSI, Darmstadt (PANDA Collaboration) DESY, Hamburg (HERMES Collaboration) Institut fuer Kernphysik, Forschungszentrum Juelich Forschungszentrum Rossendorf CSNSM, Orsay GANIL, Caen University of Huelva Institute of Nuclear Research, Kiev SLCJ, Warsaw ITME, Warsaw Some of our colleagues traditionally gave lectures and made physical demonstrations on Warsaw informal learning events: 9 th Science Picnic and 9 th Science Festival

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    APARNA SAHA1 B TALUKDAR1 UMAPADA DAS2 SUPRIYA CHATTERJEE3. Department of Physics, Visva Bharati University, Santiniketan 731 235, India; Department of Physics, Abhedananda College, Sainthia 731 234, India; Department of Physics, Bidhannagar College, EB-2, Sector-1, Salt Lake, Kolkata 700 064, ...

  15. Report 1984-1985. Department of Basic Research

    International Nuclear Information System (INIS)

    1986-01-01

    A report is presented of the activities performed by the Department of Basic research of the Bariloche Atomic Center during the period 1984-1985. In this report, works on different subjects related to Physics, are grouped in six sections: Low temperatures, Atomic collisions, Metals, Neutrons and Reactors, Magnetic Resonances and Theory. In addition, a list of publications, made by the Department during said period, is included. (M.E.L.) [es

  16. Department of Training and Consulting: Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2004-01-01

    Full text: The department of Training and Consulting is regularly serving secondary schools' pupils and teachers, university students and the public. The year 2003 set up a new record: the Department accepted a bout 7000 visitors, about 2000 more than during 2002. A truly great event was the opening of the permanent exhibition displaying the model of nuclear power plant originally planned to be built in Zarnowiec near Gdansk. The opening was combined with a short symposium on the ''Nuclear Physics and Technology - Today and Tomorrow's Social Education in European Union''. The opening was visited by many prominent guests from Polish Atomic Agency, local governments, universities and institutes. In addition, the Department participated in the organization of a symposium dedicated to the 100 th Anniversary of the first Nobel Prize awarded to Marie Curie-Sklodowska. This was also an occasion for a small exhibition based on photographs and exhibits borrowed from the Maria Curie-Sklodowska Museum in Warsaw, which was co-organiser of the symposium. The main organizer and proposer of the symposium was a social organization, the Interschool Committee of Promotion of the Educational Undertakings ''Europe 2000'', which promotes educational initiatives for the youth from Otwock, a town near to Swierk. It was our pleasure that our Department was chosen as the place for the organization of this symposium in which the best pupils, local authorities from Otwock, and sponsors of the activity of the aforementioned group were present. On the 15 th of October we celebrated the 5 th anniversary of our educational activity that started with the opening of the exhibition on ''Nuclear wastes: problems, solutions''. The exhibition is still displayed and attracts attention. It is a real pleasure to see how much the interest in our activity has grown through all those years. On the other hand, the educational efforts of the Department turned out to be worth our labor: in the all

  17. Nuclear Safety Research Department. Annual progress report 1990

    International Nuclear Information System (INIS)

    Heikel Vinther, F.

    1991-07-01

    The report describes the work of the Nuclear Safety Research Department during 1990. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) 3 ills., 30 refs

  18. Nuclear Safety Research Department. Annual progress report 1991

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Hoejerup, C.F.; Heikel Vinther, F.

    1992-03-01

    The report describes the work of the Nuclear Safety Research Department during 1991. The activities cover health physics, reactor physics, operation of the educational reactor DR 1, and waste management. Lists of staff and publications are included together with a summary of participation in international working groups etc. (au) (5 ills., 59 refs.)

  19. Prof. John Wood, Chief Executive Designate, Dr Gordon Walker, Directorate, Chief Executive, Prof. Ken J. Peach, Head of the Particle Physics Department, CLRC Rutherford Appleton Laboratory, United Kingdom

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    L. to. r.: Dr. Ian Wilson, CLIC Deputy Study Leader, Prof. Ken J. Peach, Head of the Particle Physics Department, Prof. John Wood, Chief Executive Designate, Dr. Gordon Walker, Directorate, Chief Executive

  20. Verbal abuse and physical assault in the emergency department: Rates of violence, perceptions of safety, and attitudes towards security.

    Science.gov (United States)

    Partridge, Bradley; Affleck, Julia

    2017-08-01

    Emergency Department (ED) workers are prone to occupational violence, however the extent and impact of this may not be evenly felt across all roles in the ED. Explore: 1) the rate of verbal abuse and physical assaults experienced by ED staff, 2) perceptions of safety, 3) attitudes towards security officers, and 4) formal reporting of incidents. 330 ED workers were surveyed at four public hospitals in one metropolitan health service district in Queensland, Australia, including 179 nurses, 83 medical staff, 44 administration staff, 14 allied health, and 9 operational. Nurses were more likely to have been physically assaulted in the last six months and were less likely to feel safe. Most ED staff across all roles experienced verbal abuse. Nurses were better than medical staff at reporting instances of occupational violence although overall reporting across all roles was low. Staff who thought that security officers respond to incidents quickly and are a visible presence in the ED were more likely to feel safe in the ED. Workers in the ED, particularly nurses, experience high rates of verbal abuse and physical aggression and there may be a case for having designated security guards in the ED. Copyright © 2017 College of Emergency Nursing Australasia. Published by Elsevier Ltd. All rights reserved.

  1. 1978 annual report of the safety department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.

    1979-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assitance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implementation of nuclear fuel safequarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1978 routine tasks, and reports about new results of investigations and developments of the working groups of the Department. (orig.) [de

  2. Annual Report 1979 of the Safety Department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1980-04-01

    The Safety Officer and the Security Officer, respectively, are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the security of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH. (KfK). To fulfill these functions they rely on the assistance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project and the Nuclear Safeguards Project. The centers of interest of r and d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, implemantation of nuclear fuel safeguarding systems, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1979 routine tasks, and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  3. Department of Leptonic Interactions - Overview

    International Nuclear Information System (INIS)

    Rybicki, K.

    2000-01-01

    Full text: Our Department evolved from the Laboratory of Electronic Particle Detectors (originally called the Laboratory of Filmless Detectors) founded in 1972. The department is involved in three running experiments (DELPHI at CERN, H1 at DESY and BELLE at KEK). In 1999, we joined the LHC-b experiment at CERN. In addition, three department members work part-time for the ATLAS collaboration at CERN and our technicians have been working for several years on the construction and testing of superconducting cavities for the TESLA project. This arrangement provides a neat equilibrium between data producing experiments (2000 is the last year of the DELPHI running) and future projects. The main results of work done in 1999 are covered in reports on research. Here we mention only a few highlights. The first runs of the BELLE experiment have shown that the apparatus and the software can cope with the luminosity of 6 x 10 31 cm -2 s -1 presently available at KEK-B. The DELPHI experiment measured the parameters of the W boson with an accuracy comparable to that of the Tevatron. This allowed still more precise tests of the Standard Model. Some of them, like the determination of the cross sections for the production of Z 0 Z 0 and q(anti)q pairs, were actually done in Cracow. A novel study of p-p and Λ-Λ correlations performed in Cracow showed that the size of the particle emitting region decreases with particle mass. The H1 experiment published the first results on open beauty production at HERA. The cross section seems to be higher than the predictions of Quantum Chromodynamics in the Next-to-Leading Order. The work on a prototype detector for the LHC-b has just started in Cracow. One should also mention high-quality carbon-carbon composites designed and produced in collaboration with the High Energy Physics Detector Construction Group. For the first time, there were as many as 47 papers (fulfilling the highest KBN standard) published in a single year, the members of our

  4. Nuclear Safety Research Department annual progress report 1993

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1994-02-01

    The report describes the work of the Nuclear Safety Research Department during 1993. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (2 tabs., 12 ills.)

  5. Nuclear Safety Research Department annual progress report 1994

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hoejerup, C.F.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff's participation in international committees. (au) (1 tab., 12 ills.)

  6. Nuclear Safety Research Department annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B; Brodersen, K; Damkjaer, A; Hoejerup, C F [eds.

    1995-03-01

    The report describes the work of the Nuclear Safety Research Department during 1994. The activities cover health physics, reactor physics, operation of the small reactor DR1, and radioactive waste management. Lists of staff and publications are included together with a summary of the staff`s participation in international committees. (au) (1 tab., 12 ills.).

  7. High School Physics, Two-Year Colleges, and Physics Majors

    Science.gov (United States)

    White, Susan C.

    2013-01-01

    We have just completed the data collection for our 2012-13 Nationwide Survey of High School Physics and expect to have results to report in the spring. In the interim, we will take a look at physics in two-year colleges (TYCs). In 2007, we surveyed undergraduate seniors in degree-granting physics departments, and we asked these students if they…

  8. Summary of activities of the Research Department 1984

    International Nuclear Information System (INIS)

    1989-01-01

    This annual report of the Research Department describes the activities performed during 1984 in the following fields: Physics, Reactor Chemistry, Radiobiology, Prospective and Special Studies, Biomathematics, Labelled Molecules and Radiochemistry. During this period the first heavy ion beam in the accelerator Tandar was obtained. A list of publications made by the Department this year is enclosed. (M.E.L.) [es

  9. Department of Energy ALARA implementation guide. Response to the Health Physics Society

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, J.M. [Dept. of Energy, Washington, DC (United States)

    1995-03-01

    In the August 1993 Health Physics Society (HPS) newsletter, the HPS Scientific and Public Issues Committee published a Position Statement entitled {open_quotes}Radiation Protection of the Public and the Environment.{close_quotes}. In this article, this HPS committee made the statement that they were deeply concerned by the trend for agencies to incorporate the ALARA concept as a regulatory requirements, without providing specific guidance as to what it means and how to implement it consistently. The HPS position paper was in response to the DOE notice on proposed rulemaking for Title 10 Code of Federal Regulations Part 834, {open_quotes}Radiation Protection of the Public and the Environment{close_quotes} (10 CFR 834). In the notice of proposed rulemaking for 10 CFR 834, the Department of Energy (DOE) defined ALARA as follows: {open_quotes}As used in this part, ALARA is not a dose limit, but rather a process which has the objective of attaining doses as far below the applicable limit of this part as is reasonably achievable{close_quotes} (10 CFR 834.2, p. 16283 of the Federal Register). The HPS position paper continues, {open_quotes}The section goes on to elaborate on what is meant by a process without providing sufficient guidance to assure uniform applicability of the process.{close_quotes}. Although this concern is directed towards the ALARA process as it relates to the environment, the Office of Health, which is responsible for occupational workers, shares the same definition for ALARA.

  10. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  11. Works Technical Department progress report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    None

    1961-04-19

    This document details the activities of the Savannah River Works Technical Department during the month of March 1961. Topics discussed are: Reactor Technology, Separations Technology, Engineering Assistance, Health Physics, Laboratories Overview, and Technical Papers Issued.

  12. Puzzles in B physics

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 67; Issue 5. Puzzles in physics. Hsiang-Nan Li ... Author Affiliations. Hsiang-Nan Li1 2. Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China; Department of Physics, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China ...

  13. 77 FR 64799 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25...

  14. Overview. Department of Nuclear Radiospectroscopy. Section 8

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, J.W. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research at the Department of Nuclear Radiospectroscopy of thr H. Niewodniczanski Institute of Nuclear Physics covers three areas: magnetic resonance, magnetic resonance imaging and solid state physics by computer simulation. In first of the mentioned above research directions, we apply magnetic resonance method in studies of molecular rotation in solids. Two ways of rotation have been distinguished: tunneling through the potential barriers and random jumps between distinct orientations. In the second one, the magnetic resonance microscope based on a 6.3 T superconducting magnet was completed. Each part of this system was tested and appropriate software has been written in the Laboratory and used for testing, optimization and running the experiment. In the field of solid state physics the work was concentrated around consequences of tetragonal-orthorhombic phase transition, experimentally observed in high temperature superconducting materials. In this section of the Annual Report, the detail descriptions of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  15. Overview. Department of Nuclear Radiospectroscopy. Section 8

    International Nuclear Information System (INIS)

    Hennel, J.W.

    1995-01-01

    Research at the Department of Nuclear Radiospectroscopy of thr H. Niewodniczanski Institute of Nuclear Physics covers three areas: magnetic resonance, magnetic resonance imaging and solid state physics by computer simulation. In first of the mentioned above research directions, we apply magnetic resonance method in studies of molecular rotation in solids. Two ways of rotation have been distinguished: tunneling through the potential barriers and random jumps between distinct orientations. In the second one, the magnetic resonance microscope based on a 6.3 T superconducting magnet was completed. Each part of this system was tested and appropriate software has been written in the Laboratory and used for testing, optimization and running the experiment. In the field of solid state physics the work was concentrated around consequences of tetragonal-orthorhombic phase transition, experimentally observed in high temperature superconducting materials. In this section of the Annual Report, the detail descriptions of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  16. 16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

    CERN Document Server

    Anna Pantelia

    2013-01-01

    16 December 2013 - Hooke Professor of Experimental Physics and Pro Vice Chancellor University of Oxford Prof. I. Walmsley visiting the ATLAS cavern with ATLAS Collaboration Deputy Spokesperson T. Wengler, Physics Department, ATLAS Collaboration P. Wells and Chair, CMS Collaboration Board, Oxford University and Purdue University I. Shipsey

  17. Statistical Physics

    CERN Document Server

    Mandl, Franz

    1988-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient

  18. 78 FR 69839 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-11-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  19. 75 FR 57463 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  20. 77 FR 4027 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  1. 76 FR 41234 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  2. 76 FR 8358 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  3. Summary of activities of the Research Department 1985

    International Nuclear Information System (INIS)

    1989-01-01

    This annual report of teh Research Department concerns the year 1985. It describes the work carried out in the following fields: Physics, Reactor Chemistry, Radiobiology, Prospective and Special Studies, Biomathematics and Radiochemistry. During the year the first experiments employing heavy ion beams of the new electrostatic accelerator Tandar were made. A list of publications of the Department is enclosed here. (M.E.L.) [es

  4. Reactor Engineering Department annual report (April 1, 1988 - March 31, 1989)

    International Nuclear Information System (INIS)

    1989-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1988 (April 1, 1988 - March 31, 1989). The Department has promoted cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and also to PNC's fast reactor project. Other major Department's programs are the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Application of a high energy accelerator to the nuclear engineering is also preliminarily assessed. The report also contains the latest progress in various basic researches as nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/ diagnosis and technical developments related to the reactor physics facilities. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  5. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Office of Science, Department of..., General Services Administration, notice is hereby given that the High Energy Physics Advisory Panel will... Sciences Directorate (NSF), on long-range planning and priorities in the national high-energy physics...

  6. Reactor Engineering Department annual report (April 1, 1986 - March 31, 1987)

    International Nuclear Information System (INIS)

    1987-08-01

    Research and development activities in the Department of Reactor Engineering in the fiscal year 1986 are described. The major activities of the Department are closely related to the reactor physics of very high temperature gas-cooled reactor, high conversion light water reactor and liquid metal fast breeder reactor and to blanket neutronics of fusion reactor. Contents of this report are divided into the activities on nuclear data and group constants, theoretical methods and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control, diagnosis and robotics. The activity of the Research Committee on Reactor Physics is also included. (author)

  7. Diagnostic accuracy of neonatal kidney ultrasound in children having antenatal hydronephrosis without ureter and bladder abnormalities.

    Science.gov (United States)

    Rianthavorn, Pornpimol; Limwattana, Sorawan

    2015-10-01

    To determine the diagnostic accuracy of anteroposterior renal pelvic diameter (APD) measurement and the society for fetal urology (SFU) grading in neonatal ultrasonography (USG) for detecting uropathy in newborns having antenatal isolated hydronephrosis (IH), characterized by hydronephrosis without ureter and bladder abnormalities, and to study time to resolution and factors predicting resolution of insignificant hydronephrosis. Ninety-six healthy newborns (129 kidneys) with IH, who underwent USG at age 7-30 days and voiding cystourethrography (VCUG) in conjunction with diuretic renography (DR) if APD > 10 mm or SFU grade 3-4 in neonatal USG, and at least a 12-month follow-up were divided into significant and insignificant hydronephrosis using the combined data of sequential USG, VCUG, and DR as the reference standard. Areas under the receiver operating characteristic plots (95 % CI) were 0.86 (0.79-0.94) versus 0.81 (0.73-0.89); p = 0.08, and 87.6 versus 79.8 % of cases were correctly classified, for APD ≥ 16 mm versus SFU grade 4, respectively. Ureteropelvic junction obstruction (UPJO) was the most common uropathy diagnosed. Of 85 kidneys with insignificant hydronephrosis, 57 underwent spontaneous resolution. The resolution rates were 24, 40, and 68 % at age 6, 12, and 24 months, respectively. APD was the only independent factor predicting resolution with the hazard ratio of 0.83 (95 % CI 0.74-0.92; p = 0.001). In IH, neonatal USG was a useful diagnostic tool to detect uropathy, mainly UPJO. Further investigation should be recommended when APD ≥ 16 mm or SFU grade 4.

  8. Annual report 1982 of the Central Safety Department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1983-04-01

    The Safety Officer and the Security Officer are responsible for radiation protection and technical safety, both conventional and nuclear, for the physical protection as well as the safeguards of nuclear materials and radioactive substances within the Kernforschungszentrum Karlsruhe GmbH (KfK). To fulfill these functions they rely on the assistance of the Safety Department. The duties of this Department cover tasks relative to radiation protection, safety and security on behalf of the institutes and departments of KfK and environmental monitoring for the whole Karlsruhe Nuclear Research Center as well as research and development work, mainly performed under the Nuclear Safety Project. The centers of interest of r + d activities are: investigation of the atmospheric diffusion of nuclear pollutants on the micro- and meso-scales, evaluation of the radiological consequences of accidents in reactors under probabilistic aspects, studies of the physical and chemical behavior of radionuclides with particularly high biological effectiveness in the environment, improvements in radiation protection measurement technology. This report gives details of the different duties, indicates the results of 1982 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  9. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  10. The national conference on theoretical physics. Abstracts

    International Nuclear Information System (INIS)

    Grecu, Dan; Visinescu, Anca;

    2002-01-01

    The first edition of the National Conference on Theoretical Physics held on September 13-16, 2002 in Bucharest, Romania was organized by the Theoretical Physics Department of the Horia Hulubei National Institute of Physics and Nuclear Engineering in cooperation with the Physics Department of the University of Bucharest . There were presented 51 communications grouped in five sections as follows: 1. Quantum Field Theory, Elementary Particles, Gravitation; 2. Atomic, Molecular and Nuclear Theory, Astrophysics; 3. Condensed Matter Theory, Statistical Physics; 4. Computational and Mathematical Physics, Nonlinear Phenomena; 5. Interdisciplinary Fields

  11. Department of Training and Consulting: Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2002-01-01

    The main activity of the Department is centered on the education of pupils, students and social groups interested in ionizing radiation. The number of visitors to our Department is steadily growing. Whereas in the year 2000 we were visited by about 2100 students from various secondary schools, this number more than doubled in 2001, when it passed 5200. One day was dedicated to a meeting with a group of science teachers-methodologists. A collaboration with the National Center for Supporting Vocational Education, Warsaw, has started and will hopefully bring interesting results. In addition, the Department organized professional courses on radiation protection for employees (accelerator operators and management personnel) of the Institute. An important innovation in our activity is the opening of the Laboratory of Atomic and Nuclear Physics dedicated mainly to high-schools. However, the equipment gathered in the laboratory permits one to conduct experiments on the level of the university students lab. First groups of both, secondary school pupils as well as students of physics, have already worked in our laboratory. The Department also arranged one month training for pupils from one of the technical schools of environmental protection in Konstancin near Warsaw. In addition to the experimental setups already in the Laboratory, a solid-state AMPTEK detector was put into operation in conjunction with X-ray scattering facility. Because of this innovation, one can now study not only the production of X-rays, their wave properties and transmission through various materials, but also observe Compton scattering, thus seeing the dual nature of X-rays. Because a new set-up which shows diffraction of electrons was also put into operation, one can additionally learn about the wave-particle duality for the case of massive particles. Scientific activity was quite varied which is illustrated by the titles of papers published. However, one should stress that the main experiments were

  12. Department of Particle Theory - Overview

    International Nuclear Information System (INIS)

    Jezabek, M.

    1999-01-01

    Full text: Research performed at the Department of Particle Theory is devoted to fundamental particles and their interactions. These studies are closely related to the current and future high energy experiments at e + e - and hadron-hadron colliders: LEP, TESLA, Tevatron and LHC. The papers reported below cover a wide range of particle physics from neutrino masses and oscillations to processes involving heavy particles like gauge and Higgs bosons or the top quark. An evidence of neutrino oscillations observed by the SuperKamiokande Collaboration was the most spectacular discovery of the year 1998. In a theoretical investigation performed at our department a relation has been found between the so called see-saw mechanism and the bi-maximal neutrino mixing. Since many years a very important and labour-consuming part of the research activities is related to precision tests of the Standard Model. In the last year successful runs of LEP2 stimulated an impressive progress in theoretical description of processes with two- and four-fermion final states in electron-positron annihilation. It is worth stressing that the results of the calculations have been distributed in the form of the computer programs (Monte Carlo and other types) which serve as an indispensable tool in the analysis of the experimental data. Although the whole scientific program is a natural continuation of the activities started earlier a few results obtained in the last year should be mentioned: Publication of the four-fermion Monte Carlo program KORALW for high energy e + e - colliders; Development of the exponentiation scheme at the spin amplitude level and studies of the anomalous couplings for the e + e - → f (anti)f (nγ) processes; Relation between QCD static potentials in momentum and position spaces, and its consequences for bottom and top quark pair production and spectroscopy; Participation in the preparation of the physics program of the pp experiments on LHC collider particularly for Higgs

  13. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  14. Enabling department-scale supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, D.S.; Hart, W.E.; Phillips, C.A.

    1997-11-01

    The Department of Energy (DOE) national laboratories have one of the longest and most consistent histories of supercomputer use. The authors summarize the architecture of DOE`s new supercomputers that are being built for the Accelerated Strategic Computing Initiative (ASCI). The authors then argue that in the near future scaled-down versions of these supercomputers with petaflop-per-weekend capabilities could become widely available to hundreds of research and engineering departments. The availability of such computational resources will allow simulation of physical phenomena to become a full-fledged third branch of scientific exploration, along with theory and experimentation. They describe the ASCI and other supercomputer applications at Sandia National Laboratories, and discuss which lessons learned from Sandia`s long history of supercomputing can be applied in this new setting.

  15. Analysis of Doctoral research at the Department of Physical ...

    African Journals Online (AJOL)

    Twelve (12) studies were reviewed over the 25-year period which cut across a broad spectrum of areas of study in Physical Education and Sport ranging from Anthropology and Sports History, Didactics, Sports Administration, Outdoor Education, Social-Psychology of Sports, fitness and health-related aspects. Soccer ...

  16. Diagnostic accuracy of history, physical examination, and bedside ultrasound for diagnosis of extremity fractures in the emergency department: a systematic review.

    Science.gov (United States)

    Joshi, Nikita; Lira, Alena; Mehta, Ninfa; Paladino, Lorenzo; Sinert, Richard

    2013-01-01

    Understanding history, physical examination, and ultrasonography (US) to diagnose extremity fractures compared with radiography has potential benefits of decreasing radiation exposure, costs, and pain and improving emergency department (ED) resource management and triage time. The authors performed two electronic searches using PubMed and EMBASE databases for studies published between 1965 to 2012 using a strategy based on the inclusion of any patient presenting with extremity injuries suspicious for fracture who had history and physical examination and a separate search for US performed by an emergency physician (EP) with subsequent radiography. The primary outcome was operating characteristics of ED history, physical examination, and US in diagnosing radiologically proven extremity fractures. The methodologic quality of the studies was assessed using the quality assessment of studies of diagnostic accuracy tool (QUADAS-2). Nine studies met the inclusion criteria for history and physical examination, while eight studies met the inclusion criteria for US. There was significant heterogeneity in the studies that prevented data pooling. Data were organized into subgroups based on anatomic fracture locations, but heterogeneity within the subgroups also prevented data pooling. The prevalence of fracture varied among the studies from 22% to 70%. Upper extremity physical examination tests have positive likelihood ratios (LRs) ranging from 1.2 to infinity and negative LRs ranging from 0 to 0.8. US sensitivities varied between 85% and 100%, specificities varied between 73% and 100%, positive LRs varied between 3.2 and 56.1, and negative LRs varied between 0 and 0.2. Compared with radiography, EP US is an accurate diagnostic test to rule in or rule out extremity fractures. The diagnostic accuracy for history and physical examination are inconclusive. Future research is needed to understand the accuracy of ED US when combined with history and physical examination for upper

  17. Reactor Engineering Department annual report (April 1, 1990 - March 31, 1991)

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1990 (April 1, 1990 - March 31, 1991). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  18. Reactor Engineering Department annual report (April 1, 1991-March 31, 1992)

    International Nuclear Information System (INIS)

    1992-08-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1991 (April 1, 1991-March 31, 1992). The major Department's programs promoted in the year are assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researchers on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative work to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  19. 21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

  20. Central Safety Department, annual report 1987

    International Nuclear Information System (INIS)

    Kiefer, H.; Koenig, L.A.

    1988-02-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behaviour of biologically particularly active radionuclides, behaviour of HT in the air/plan/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1987 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig./HP) [de

  1. 75 FR 6651 - Office of Science; High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-02-10

    ... DEPARTMENT OF ENERGY Office of Science; High Energy Physics Advisory Panel AGENCY: Department of... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Public Law 92- 463, 86 Stat. 770) requires...; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  2. The Impact of Physically Embedded Librarianship on Academic Departments

    Science.gov (United States)

    O'Toole, Erin; Barham, Rebecca; Monahan, Jo

    2016-01-01

    Academic librarians have been engaged in embedded librarianship for nearly 15 years, yet there are few published research studies on the impact of physically embedded librarians, who work alongside departmental faculty. This study leveraged a change in reference service to analyze what happened when subject librarians moved from the library…

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1998-01-01

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  4. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  5. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  6. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  7. Graduate Medical Education Funding and Curriculum in Physical Medicine and Rehabilitation: A Survey of Physical Medicine and Rehabilitation Department Chairs.

    Science.gov (United States)

    Perret, Danielle; Knowlton, Tiffany; Worsowicz, Gregory

    2018-03-01

    This national survey highlights graduate medical education funding sources for physical medicine and rehabilitation (PM&R) residency programs as well as perceived funding stability, alignment of the current funding and educational model, the need of further education in postacute care settings, and the practice of contemporary PM&R graduates as perceived by PM&R department/division chairs. Approximately half of the reported PM&R residency positions seem to be funded by Centers of Medicare and Medicaid Services; more than 40% of PM&R chairs believe that their residency program is undersized and nearly a quarter feel at risk for losing positions. A total of 30% of respondents report PM&R resident experiences in home health, 15% in long-term acute care, and 52.5% in a skilled nursing facility/subacute rehabilitation facility. In programs that do not offer these experiences, most chairs feel that this training should be included. In addition, study results suggest that most PM&R graduates work in an outpatient setting. Based on the results that chairs strongly feel the need for resident education in postacute care settings and that most graduates go on to practice in outpatient settings, there is a potential discordance for our current Centers of Medicare and Medicaid Services graduate medical education funding model being linked to the acute care setting.

  8. Classificatory multiplicity: intimate partner violence diagnosis in emergency department consultations.

    Science.gov (United States)

    Olive, Philippa

    2017-08-01

    To explore the naming, or classification, of physical assaults by a partner as 'intimate partner violence' during emergency department consultations. Research continues to evidence instances when intimate partner physical violence is 'missed' or unacknowledged during emergency department consultations. Theoretically, this research was approached through complexity theory and the sociology of diagnosis. Research design was an applied, descriptive and explanatory, multiple-method approach that combined qualitative semistructured interviews with service-users (n = 8) and emergency department practitioners (n = 9), and qualitative and quantitative document analysis of emergency department health records (n = 28). This study found that multiple classifications of intimate partner violence were mobilised during emergency department consultations and that these different versions of intimate partner violence held different diagnostic categories, processes and consequences. The construction of different versions of intimate partner violence in emergency department consultations could explain variance in people's experiences and outcomes of consultations. The research found that the classificatory threshold for 'intimate partner violence' was too high. Strengthening systems of diagnosis (identification and intervention) so that all incidents of partner violence are named as 'intimate partner violence' would reduce the incidence of missed cases and afford earlier specialist intervention to reduce violence and limit its harms. This research found that identification of and response to intimate partner violence, even in contexts of severe physical violence, was contingent. By lowering the classificatory threshold so that all incidents of partner violence are named as 'intimate partner violence', practitioners could make a significant contribution to reducing missed intimate partner violence during consultations and improving health outcomes for this population. This

  9. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. M K Singh1 2 3 A K Soma3 V Singh1 3 R Pathak2. Physics Department, Banaras Hindu University, Varanasi 221 005, India; Physics Department, Tilak Dhari Postgraduate College, Jaunpur 222 002, India; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan ...

  10. Prediction of Mobility Limitations after Hospitalization in Older Medical Patients by Simple Measures of Physical Performance Obtained at Admission to the Emergency Department

    DEFF Research Database (Denmark)

    Bodilsen, Ann Christine; Hedegaard Klausen, Henrik; Petersen, Janne

    2016-01-01

    Objective: Mobility limitations relate to dependency in older adults. Identification of older patients with mobility limitations after hospital discharge may help stratify treatment and could potentially counteract dependency seen in older adults after hospitalization. We investigated the ability...... of four physical performance measures administered at hospital admission to identify older medical patients who manifest mobility limitations 30 days after discharge. Design: Prospective cohort study of patients (≥65 years) admitted to the emergency department for acute medical illness. During the first...... included. Of those, 128 (40%) patients had mobility limitations at follow-up. Univariate analyzes showed that each of the physical performance measures was strongly associated with mobility limitations at follow-up (handgrip strength(women), OR 0.86 (0.81–0.91), handgrip strength(men), OR 0.90 (0...

  11. Four discourse models of physics teacher education

    OpenAIRE

    Larsson, Johanna; Airey, John

    2017-01-01

    In Sweden, as in many other countries, the education of high-school physics teachers is typically carried out in three different environments; the education department, the physics department and school itself during teaching practice. Trainee physics teachers are in the process of building their professional identity as they move between these three environments. Although much has been written about teacher professional identity (see overview in Beijaard, Meijer, & Verloop, 2004) little ...

  12. 75 FR 5105 - Notice of Inventory Completion: Western Michigan University, Anthropology Department, Kalamazoo, MI

    Science.gov (United States)

    2010-02-01

    ... University, Anthropology Department, Kalamazoo, MI AGENCY: National Park Service, Interior. ACTION: Notice... objects in the possession of Western Michigan University, Anthropology Department, Kalamazoo, MI. The... analysis. Dr. Robert Sundick, a physical anthropologist in the Anthropology Department at Western Michigan...

  13. Telemedicine Physical Examination Utilizing a Consumer Device Demonstrates Poor Concordance with In-Person Physical Examination in Emergency Department Patients with Sore Throat: A Prospective Blinded Study.

    Science.gov (United States)

    Akhtar, Moneeb; Van Heukelom, Paul G; Ahmed, Azeemuddin; Tranter, Rachel D; White, Erinn; Shekem, Nathaniel; Walz, David; Fairfield, Catherine; Vakkalanka, J Priyanka; Mohr, Nicholas M

    2018-02-22

    Telemedicine allows patients to connect with healthcare providers remotely. It has recently expanded to evaluate low-acuity illnesses such as pharyngitis by using patients' personal communication devices. The purpose of our study was to compare the telemedicine-facilitated physical examination with an in-person examination in emergency department (ED) patients with sore throat. This was a prospective, observational, blinded diagnostic concordance study of patients being seen for sore throat in a 60,000-visit Midwestern academic ED. A telemedicine and a face-to-face examination were performed independently by two advanced practice providers (APP), blinded to the results of the other evaluator. The primary outcome was agreement on pharyngeal redness between the evaluators, with secondary outcomes of agreement and inter-rater reliability on 14 other aspects of the pharyngeal physical examination. We also conducted a survey of patients and providers to evaluate perceptions and preferences for sore throat evaluation using telemedicine. Sixty-two patients were enrolled, with a median tonsil size of 1.0. Inter-rater agreement (kappa) for tonsil size was 0.394, which was worse than our predetermined concordance threshold. Other kappa values ranged from 0 to 0.434, and telemedicine was best for detecting abnormal coloration of the palate and tender superficial cervical lymph nodes (anterior structures), but poor for detecting abnormal submandibular lymph nodes or asymmetry of the posterior pharynx (posterior structures). In survey responses, telemedicine was judged easier to use and more comfortable for providers than patients; however, neither patients nor providers preferred in-person to telemedicine evaluation. Telemedicine exhibited poor agreement with the in-person physical examination on the primary outcome of tonsil size, but exhibited moderate agreement on coloration of the palate and cervical lymphadenopathy. Future work should better characterize the importance of

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... A Das3 S K Paranjpe3 4. Department of Physics, M.L. Sukhadia University, Udaipur 313 002, India; Department of Physics, University of Rajasthan, Jaipur 302 004, India; Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; NAPC, International Atomic Energy Agency, Vienna, Austria ...

  15. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  16. Building Undergraduate Physics Programs for the 21st Century

    Science.gov (United States)

    Hilborn, Robert

    2001-04-01

    Undergraduate physics programs in the United States are under stress because of changes in the scientific and educational environment in which they operate. The number of undergraduate physics majors is declining nationwide; there is some evidence that the "best" undergraduate students are choosing majors other than physics, and funding agencies seem to be emphasizing K-12 education. How can physics departments respond creatively and constructively to these changes? After describing some of the details of the current environment, I will discuss the activities of the National Task Force on Undergraduate Physics, supported by the American Institute of Physics, the America Physical Society, the American Association of Physics Teachers and the ExxonMobil Foundation. I will also present some analysis of Task Force site visits to departments that have thriving undergraduate physics programs, pointing out the key features that seem to be necessary for success. Among these features are department-wide recruitment and retention efforts that are the theme of this session.

  17. 75 FR 63450 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-10-15

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... 20852. FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  18. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    P V Jyothy1 P R Rejikumar2 Thomas Vinoy3 S Kartika1 N V Unnikrishnan1. School of Pure & Applied Physics, Mahatma Gandhi University, Kottayam 686 560, India; Department of Physics, T.K.M.M. College, Nangiarkulangara, Alapuzha 690 513, India; Department of Physics, Christian College, Chengannur 689 122, India ...

  19. Best Practices in Physics Program Assessment: Should APS Provide Accreditation Standards for Physics?

    Science.gov (United States)

    Hodapp, Theodore

    The Phys21 report, ``Preparing Physics Students for 21st Century Careers,'' provides guidance for physics programs to improve their degree programs to make them more relevant for student career choices. Undertaking such changes and assessing impact varies widely by institution, with many departments inventing assessments with each periodic departmental or programmatic review. American Physical Society has embarked on a process to integrate information from Phys21, the results of other national studies, and educational research outcomes to generate a best-practices guide to help physics departments conduct program review, assessment, and improvement. It is anticipated that departments will be able to use this document to help with their role in university-level accreditation, and in making the case for improvements to departmental programs. Accreditation of physics programs could stem from such a document, and I will discuss some of the thinking of the APS Committee on Education in creating this guide, and how they are advising APS to move forward in the higher education landscape that is increasingly subject to standards-based evaluations. I will describe plans for the design, review, and dissemination of this guide, and how faculty can provide input into its development. This material is based upon work supported by the National Science Foundation under Grant No. 1540570. Opinions expressed do not necessarily reflect those of the NSF.

  20. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  1. 78 FR 46330 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-07-31

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  2. 76 FR 19986 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S...

  3. A Department of Atmospheric and Planetary Sciences at Hampton University

    Science.gov (United States)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  4. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2002-01-01

    Full text:Due to financial shortages, the Extensive Research Program ''Isotopes and Accelerators'' did not come into effect. This in consequence limited the scope of new design and construction works. As the most important topic remained the continuation of work on Ordered Project for new therapeutical accelerator ''6/15''. It has to be emphasized that during realization of this task, several significant modifications were introduced to get a final solution better matched to future implementation of the prototype. The initially adopted ''classical'' solution of accelerating structure with separate bunching and accelerating sections, was replaced by a single mechanical unit with both incorporated functional subsystems. This solution is more convenient for future production and servicing, but in order to cover the broad range of energy variation is was necessary to recalculate the beam dynamics and to find the method for internal phase correction. Another important feature was an additional design of two possible injection systems, the first with a diode gun for 40 keV energy, and the second one with triode gun 15-20 keV. These solutions provide a contingency for - two production versions of an accelerator equipped with different RF power systems - klystron or magnetron. Substantial effort was directed to completion and operation of an experimental facility for testing accelerating structures. This facility is equipped with a RF high - power source in the form of 6 MW klystron, and high-vacuum pumping system. External apparatus connected to the facility are - magnetic spectrometer and computerized water phantom, which enable the diagnostics of accelerated electron beam. Several structure models were tested, and for the first time an electron energy in the vicinity of 15 MeV was registered. Other important subjects in (he Department's activity were: * Implementation of new versions of MC codes, for analysis of electron and photon beams distribution at the output of

  5. 78 FR 12043 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of...

  6. 77 FR 33449 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-06-06

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat..., Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown...

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. E C G Sudarshan1 I M Duck2. Department of Physics, Center for Particle Theory, University of Texas, Austin TX 78731, USA; Physics Department, T.W. Bonner Laboratory, Rice University, Houston, Texas 77251, USA ...

  8. Reactor Engineering Department annual report (April 1, 1987 - March 31, 1988)

    International Nuclear Information System (INIS)

    1988-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1987 (April 1, 1987 - March 31, 1988). The major activities in the Department concerns the programs of the high temperature gas-cooled reactor, the high conversion light water reactor, the advanced fission reactor system and the fusion reactor at JAERI and the fast breeder reactor at PNC. The report contains the latest progress in nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control/diagnosis and robotics, as well as the new topics from this fiscal year on advanced reactors system design studies and technique developments related the facilities in the Department. Also described are the activities of the Research Committee on Reactor Physics. (author)

  9. Activities report 1977--78. Applied mathematics department 5640

    International Nuclear Information System (INIS)

    1979-03-01

    This report is a compilation of independent articles highlighting some of the work done in the Applied Mathematics Department during the years 1977 and 1978. It is neither an exhaustive report on all activities in the department during this period nor a list of the most substantial mathematical contributions. Instead, it is a selection of topics which are thought to be of greatest interest because of their importance to Sandia. The report is divided into four principal sections which reflect the department's major areas of interest: Mathematical Physics, Computational Mathematics, Probability and Statistics, and Discrete Mathematics. To provide a smoother narrative, references are omitted from the text. However, a complete department bibliography of corporate and open publications as well as technical presentations for the period October 1977 through December 1978 is appended. 4 figures, 3 tables

  10. Obesity and physical activity.

    NARCIS (Netherlands)

    Westerterp, K.R.

    1999-01-01

    Department of Human Biology, Maastricht University, The Netherlands. k.westerterp@hb.unimaas.nl OBJECTIVES: Three aspects of obesity and physical activity are reviewed: whether the obese are inactive; how the activity level can be increased; and which are the effects of an increase in physical

  11. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1998-01-01

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3 H(d,n) 4 He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  12. Utility of the History and Physical Examination in the Detection of Acute Coronary Syndromes in Emergency Department Patients

    Directory of Open Access Journals (Sweden)

    Zachary DW Dezman

    2017-05-01

    Full Text Available Chest pain accounts for approximately 6% of all emergency department (ED visits and is the most common reason for emergency hospital admission. One of the most serious diagnoses emergency physicians must consider is acute coronary syndrome (ACS. This is both common and serious, as ischemic heart disease remains the single biggest cause of death in the western world. The history and physical examination are cornerstones of our diagnostic approach in this patient group. Their importance is emphasized in guidelines, but there is little evidence to support their supposed association. The purpose of this article was to summarize the findings of recent investigations regarding the ability of various components of the history and physical examination to identify which patients presenting to the ED with chest pain require further investigation for possible ACS. Previous studies have consistently identified a number of factors that increase the probability of ACS. These include radiation of the pain, aggravation of the pain by exertion, vomiting, and diaphoresis. Traditional cardiac risk factors identified by the Framingham Heart Study are of limited diagnostic utility in the ED. Clinician gestalt has very low predictive ability, even in patients with a non-diagnostic electrocardiogram (ECG, and gestalt does not seem to be enhanced appreciably by clinical experience. The history and physical alone are unable to reduce a patient’s risk of ACS to a generally acceptable level (<1%. Ultimately, our review of the evidence clearly demonstrates that “atypical” symptoms cannot rule out ACS, while “typical” symptoms cannot rule it in. Therefore, if a patient has symptoms that are compatible with ACS and an alternative cause cannot be identified, clinicians must strongly consider the need for further investigation with ECG and troponin measurement.

  13. Mechanical Engineering Department technical abstracts for the period January-June 1985

    International Nuclear Information System (INIS)

    Woo, H.H.

    1986-01-01

    This document contains the abstracts from 116 reports produced by the Mechanical Engineering Department of the Lawrence Livermore National Laboratory during the period January - June, 1985. The Mechanical Engineering Department is reponsible for the design, analysis, fabrication, testing, and field installation of all mechanical components and systems required by Defence Systems, Lasers, Magnetic Fusion Energy, Physics, and Biomedical and Environmental Research. Similar support is provided to the Chemistry and Computation Departments. Keyword, author, and report-number indices are included

  14. Violence in the Emergency Department: A Global Problem.

    Science.gov (United States)

    Tadros, Allison; Kiefer, Christopher

    2017-09-01

    Violence against health care workers is an unfortunately common event. Because of several inherent factors, emergency departments are particularly vulnerable. Once an incident occurs, it often goes unreported and leads to both physical and mental trauma. Health care workers should learn to recognize the cues that patients are escalating toward violence and be familiar with various options for sedating agitated patients. If sedation is not successful, physical restraint may become necessary. There are measures that can be taken that may help minimize the likelihood of violence toward health care workers. These measures include legislation, physical design, and increased security. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Environmental physics as a teaching concept

    International Nuclear Information System (INIS)

    Boeker, Egbert; Grondelle, Rienk van; Blankert, Piet

    2003-01-01

    Environmental physics is understood as the physics connected with analysing and mitigating environmental problems. It draws on most sub-disciplines of physics and provides a way of making physics relevant. In this paper the motivation of teaching environmental physics is discussed and examples of course content and supporting student work are given, based on work in the authors' department

  16. Annual Report on Scientific Activities in 1997 of Department of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow; Sprawozdanie z dzialalnosci naukowej w roku 1997, Wydzial Fizyki i Techniki Jadrowej, Akademia Gorniczo-Hutnicza, Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, J.; Olszynska, E. [eds.

    1998-12-31

    The Annual Report 1997 is the review of scientific activities of the Department of Nuclear Physics and Techniques (DNPT) of the Academy of Mining and Metallurgy, Cracow. The studies connected with: radiometric analysis, nuclear electronics, solid state physics, elementary particle and detectors, medical physics, physics of environment, theoretical physics, nuclear geophysics, energetic problems, industrial radiometry and tracer techniques have been broadly presented. The fill list of works being published and presented at scientific conferences in 1997 by the staff of DNPT are also included.

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Physics Department, University of Tokyo, Tokyo 113-0033, Japan; RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Physics, Waseda University, Tokyo 169-8555, Japan; Tokuyama Women's College, Tokuyama, Yamaguchi 745-8511, Japan; IMC, Hiroshima University, ...

  18. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  19. Reactor Engineering Department annual report, April 1, 1985 - March 31, 1986

    International Nuclear Information System (INIS)

    1986-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1985 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor, High Conversion Light Water Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, reactor decommissioning technology, and activities of the Committee on Reactor Physics. (author)

  20. Putting your human resource department to work for you.

    Science.gov (United States)

    McConnell, C R

    1991-06-01

    As a staff function, human resources is organized as a service activity. Service activities render no patient care; they do not advance the work of the organization. However, they support the performance of the organization's work and in a practical sense become necessary. For example, if a pure service, such as building maintenance, did not exist, the facility's physical plant would gradually self-destruct. Similarly, without human resources to see to the maintenance of the work force, the overall suitability and capability of that work force will steadily erode. Recognize human resources for what it is--an essential service function required to help the organization run as efficiently as possible. Learn what the HR department does, and especially learn why the department does what it does. Provide input to the human resource department. Forge a continuing working relationship with the HR department, making it clear that you expect service from this essential service department. Challenge the HR department to do more, to do better, and to continually improve service--and put the human resource department to work for you and your employees.

  1. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  2. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  3. Plasma physics studies in Singapore

    International Nuclear Information System (INIS)

    Jones, R.

    1982-01-01

    We briefly outline the plasma physics research program being conducted in the Department of Physics of the National University of Singapore. The work places particular emphasis on open system end plugging, ion source development, and anomalous transport studies. (author)

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Pukyong National University, Pusan 608-737, Korea; Department of Physics, Govt. Degree and P.G. College, Wanaparthy 509 103, India; Department of Physics, Sri Venkateswara University, Tirupati 517 502, India; Departamento de Fisica Fundamental y Experimental Electronica y Sistemas, Universidad de La Laguna, ...

  5. Forecasting E > 50-MeV Proton Events with the Proton Prediction System (PPS)

    Science.gov (United States)

    Kahler, S. W.; White, S. M.; Ling, A. G.

    2017-12-01

    Forecasting solar energetic (E > 10 MeV) particle (SEP) events is an important element of space weather. While several models have been developed for use in forecasting such events, satellite operations are particularly vulnerable to higher-energy (> 50 MeV) SEP events. Here we validate one model, the proton prediction system (PPS), which extends to that energy range. We first develop a data base of E > 50-MeV proton events > 1.0 proton flux units (pfu) events observed on the GOES satellite over the period 1986 to 2016. We modify the PPS to forecast proton events at the reduced level of 1 pfu and run PPS for four different solar input parameters: (1) all > M5 solar X-ray flares; (2) all > 200 sfu 8800-MHz bursts with associated > M5 flares; (3) all > 500 sfu 8800-MHz bursts; and (4) all > 5000 sfu 8800-MHz bursts. For X-ray flare inputs the forecasted event peak intensities and fluences are compared with observed values. The validation contingency tables and skill scores are calculated for all groups and used as a guide to use of the PPS. We plot the false alarms and missed events as functions of solar source longitude.

  6. Nuclear physics, neutron physics and nuclear energy. Proceedings

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Elenkov, D.

    1994-01-01

    The book contains of proceedings of XI International School on Nuclear Physics, Neutron Physics and Nuclear Energy organized traditionally every two years by Bulgarian Academy of Sciences and the Physics Department of Sofia University held near the city of Varna. It provides a good insight to the large range of theoretical and experimental results, prospects, problems, difficulties and challenges which are at the core of nuclear physics today. The efforts and achievements of scientists to search for new phenomena in nuclei at extreme circumstances as superdeformation and band crossing in nuclear structure understanding are widely covered. From this point of view the achievements and future in the field of high-precision γ-spectroscopy are included. Nuclear structure models and methods, models for strong interaction, particle production and properties, resonance theory and its application in reactor physics are comprised also. (V.T.)

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Ramazan Koç1 M Yakup Haciibrahimoğlu1 Mehmet Koca2. Department of Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey; Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman ...

  8. Physics Incubator at Kansas State University

    Science.gov (United States)

    Flanders, Bret; Chakrabarti, Amitabha

    Funded by a major private endowment, the physics department at Kansas State University has recently started a physics incubator program that provides support to research projects with a high probability of commercial application. Some examples of these projects will be discussed in this talk. In a parallel effort, undergraduate physics majors and graduate students are being encouraged to work with our business school to earn an Entrepreneurship minor and a certification in Entrepreneurship. We will discuss how these efforts are promoting a ``culture change'' in the department. We will also discuss the advantages and the difficulties in running such a program in a Midwest college town.

  9. Annual report 1988 of the Central Safety Department

    International Nuclear Information System (INIS)

    Koelzer, W.; Urban, M.

    1989-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1988 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig./HP) [de

  10. Annual report 1991 of the Central Safety Department

    International Nuclear Information System (INIS)

    Koelzer, W.

    1992-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1989 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  11. Annual report 1990 of the Central Safety Department

    International Nuclear Information System (INIS)

    Koelzer, W.; Urban, M.

    1991-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, behavior of tritium in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1989 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  12. Department of Training and Consulting: Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2003-01-01

    Full text: The Department of Training and Consulting is a training centre for high-school students and their teachers, for students of physics and natural sciences in general, last but not least for society broadly understood, including professionals dealing with nuclear radiation. In 2002 the Department was visited by about 5000 high-school students who could listen to the lectures, and take part in experimental demonstrations on ionising radiation, its role in everyday life, technical and medical applications. In addition, the Department led the radiation protection course for the accelerators' operators employed by the Institute for Nuclear Studies. One-day courses on physics of radiation were also arranged for teachers. The Laboratory of Atomic and Nuclear Physics for Schools is still developing. The Laboratory permits high-school students to make simple experiments of qualitative and quantitative character. Its main purpose is to teach the elements of experimental work. In addition, university students of physics can conduct quite complicated experiments. Indeed, the Laboratory is also used for this purpose. The actual list of experiments available to students includes: the behaviour of charged particles in electric and magnetic fields, excitation and properties of photoluminescence, production and properties of X-rays, wave-particle duality, properties of alpha, beta and gamma radiation, elements of gamma spectroscopy including identification of elements by means of induced X-ray fluorescence. The first experience gathered recently is positive although there is still some work to do in order to make the Laboratory more educational. In particular, one of the conclusions drawn from our meetings at the instruments is that although high-school students can follow instructions and understand briefly the physical processes, they are not prepared for reporting the results of the observations or experiments. It is clear that we have to help them in overcoming this

  13. Optics and fluid dynamics department annual progress report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S G; Lading, L; Lynov, J P; Michelsen, P

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.).

  14. Optics and fluid dynamics department annual progress report for 1994

    International Nuclear Information System (INIS)

    Hanson, S.G.; Lading, L.; Lynov, J.P.; Michelsen, P.

    1995-01-01

    Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials and electromagnetic propagation, (b) diagnostics and sensors, and (c) information processing. In continuum physics the activities are (a) nonlinear dynamics and (b) computer physics. The activities are supported by several EU programmes, including EURATOM, by research councils, and by industry. A special activity is the implementation of pellet injectors for fusion research. A summary of activities in 1994 is presented. (au) (27 ills., 44 refs.)

  15. Missed connections: A case study of the social networks of physics doctoral students in a single department

    Science.gov (United States)

    Knaub, Alexis Victoria

    Gender disparity is an issue among the many science, technology, engineering, and mathematics (STEM) fields. Although many previous studies examine gender issues in STEM as an aggregate discipline, there are unique issues to each of the fields that are considered STEM fields. Some fields, such as physics, have fewer women graduating with degrees than other fields. This suggests that women's experiences vary by STEM field. The majority of previous research also examines gender and other disparities at either the nationwide or individual level. This project entailed social network analysis through survey and interview data to examine a single physics department's doctoral students in order to provide a comprehensive look at student social experiences. In addition to examining gender, other demographic variables were studied to see if the results are truly associated with gender; these variables include race/ethnicity, year in program, student type, relationship status, research type, undergraduate institute, and subfield. Data were examined to determine if there are relationships to social connections and outcome variables such as persistence in completing the degree and the time to degree. Data collected on faculty were used to rank faculty members; data such as h-indices and number of students graduate over the past 5 years were collected. Fifty-five (55) of 110 possible participants completed the survey; forty-three are male, and twelve are female. Twenty-eight of the fifty-five survey participants were interview; twenty-three are male, and five are female. Findings for peer networks include that peer networks are established during the first year and do not change drastically as one progresses in the program. Geographic location within the campus affects socializing with peers. Connections to fellow students are not necessarily reciprocated; the maximum percentage of reciprocated connections is 60%. The number of connections one has varies by network purpose

  16. The Magnetohydrodynamic Generator A Physics Olympiad Problem

    Indian Academy of Sciences (India)

    The Magnetohydrodynamic Generator A Physics Olympiad Problem (2001). Vijay A Singh ... Magnetohydrodynamics; generator; power; efficiency; Faraday's law; Physics Olympiad . Author Affiliations. Vijay A Singh1 Manish Kapoor2. Physics Department Indian Institute of Technology Kanpur 208016, India. MPE College ...

  17. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  18. Physical exercise at the workplace reduces perceived physical exertion during healthcare work

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel

    2015-01-01

    BACKGROUND: High physical exertion during work is a risk factor for musculoskeletal pain and long-term sickness absence. Physical exertion (RPE) reflects the balance between physical work demands and physical capacity of the individual. Thus, increasing the physical capacity through physical......: 3.1 on a scale of 0 to 10, average WRPE: 3.6 on a scale of 0 to 10) from 18 departments at three participating hospitals. Participants were randomly allocated at the cluster level to 10 weeks of: (1) workplace physical exercise (WORK) performed in groups during working hours for 5×10 minutes per...... exercise may decrease physical exertion during work. This study investigates the effect of workplace-based versus home-based physical exercise on physical exertion during work (WRPE) among healthcare workers. METHODS: 200 female healthcare workers (age: 42.0, body mass index: 24.1, average pain intensity...

  19. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  20. What Works for Women in Undergraduate Physics and What We Can Learn from Women's Colleges

    Science.gov (United States)

    Whitten, Barbara L.; Dorato, Shannon R.; Duncombe, Margaret L.; Allen, Patricia E.; Blaha, Cynthia A.; Butler, Heather Z.; Shaw, Kimberly A.; Taylor, Beverley A. P.; Williams, Barbara A.

    We are studying the recruitment and retention of women in undergraduate physics by conducting site visits to physics departments. In this second phase of the project, we visited six physics departments in women's colleges. We compared these departments to each other and to the nine departments in coeducational schools that we visited in phase 1 of the project (Whitten, Foster, & Duncombe, 2003a; Whitten et al., 2003b; Whitten et al., 2004). We learned that women's colleges, much more than coed schools, try to recruit students into the physics major. This has led us to criticize the "leaky pipeline" metaphor often used to describe women in physics and to call attention to women dropping in to the physics pipeline. We discuss our results for students and pedagogy and for faculty and institutions, and we offer some advice on how to make a physics department more female friendly.

  1. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  2. Industrial Safety and Applied Health Physics Division, annual report for 1982

    International Nuclear Information System (INIS)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee

  3. Industrial Safety and Applied Health Physics Division, annual report for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee. (ACR)

  4. CONTRIBUTIONS OF 20TH CENTURY WOMEN TO PHYSICS

    Science.gov (United States)

    Annotated Photo Gallery In Her Own Words Some Physics History 500+ Books and Articles Field Editors Physical Society, the University of California, UCLA Physics and Astronomy Department, the Laboratories of , Vera Atomic, Molecular, and Optical Physics Bonnelle, Christiane Bramley, Jenny Cauchois, Yvette Connes

  5. Optics and Fluid Dynamics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter

    2001-01-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....

  6. 9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

  7. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  8. Building an undergraduate physics program with Learning Assistants

    Science.gov (United States)

    Price, Edward

    2013-04-01

    In 2007, the CSUSM Physics Department began offering a B.S. in Applied Physics, its first physics bachelors degree program. The program has grown from 11 majors in 2008 to over 80 in 2012, due in part to recruiting students from local high schools and community colleges. More broadly, because most CSUSM students come from the local region, the longer-term health of the Department is coupled with the vitality and strength of local high school physics education. In addition, establishing a new physics degree required curriculum development and offered the opportunity to incorporate recent innovations in physics education when developing courses. A Learning Assistants (LA) Program, established by the Department in 2008, has been a critical component in these efforts to recruit students, build local educational networks, and implement innovative curricula. In an LA Program, undergraduate Learning Assistants assist faculty in class, meet regularly with the course instructor, and participate in a weekly seminar on teaching and learning, which provides guidance on effective instruction and an opportunity to reflect on their experiences in the classroom. The LA program promotes course transformation, improved student learning, and teacher recruitment. This talk will describe the CSUSM LA Program and its role in support of our growing applied physics degree program.

  9. Consequences of peritonism in an emergency department setting

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Schmidt, Thomas A.

    2013-01-01

    Background: In patients who were referred to the emergency department (ED) with abdominal pain, it is crucial to determine the presence of peritonism to allow for appropriate handling and subsequent referral to stationary departments. We aimed to assess the incidence of perceived peritonism...... on the patients with abdominal pain. Following a physical examination, the patients with abdominal pain were divided into those who had clinical signs of peritonism and those who did not. Results: Among the 1,270 patients admitted to the ED, 10% had abdominal pain. In addition, 41% of these patients were found...... to have signs indicative of peritonism, and 90% were admitted to the Department of Surgery (DS). Also, 24% of those patients with signs of peritonism and admission to the DS underwent surgical intervention in terms of laparotomy/laparoscopy. Five of the patients without peritonism underwent surgery...

  10. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  11. Optics and Fluid Dynamics Department annual progress report for 2000

    International Nuclear Information System (INIS)

    Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B.

    2001-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh; Department of Applied Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh; Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh ...

  13. US nuclear physics funding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Because of restrictions in the federal budget, US science spending is coming under close scrutiny, with strong implications for the evolution of the nation's physics research. Recently the Witherell subpanel of the Department of Energy's High Energy Physics Advisory Panel (HEPAP) submitted recommendations on how the US research scene could evolve pending commissioning of the SSC Superconducting Supercollider

  14. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    International Nuclear Information System (INIS)

    Haase, M.; Hine, C.; Robertson, C.

    1996-01-01

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy''s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades

  15. Department of Nuclear Spectroscopy and Technique - Overview

    International Nuclear Information System (INIS)

    Sernicki, J.

    2005-01-01

    Full text:Research activities in our Department in the last year were focused on traditional domains of nuclear physics: heavy-ion reactions and nuclear spectroscopy, but also on medium-energy elementary particle physics, neutrino physics, as well as atomic physics. Along with the group of nuclear and atomic physicists, our Department encompasses a team working on medical physics and another team engaged in ecology and environmental physics. We maintain our collaboration with FZ Juelich (Germany) continuing experiments on the COSY storage ring, aimed at studying heavy hyperons produced in pp collisions. Recently, evidence for a new hyperon has been obtained. At PSI Villigen (Switzerland) rare pion- and muon decays have been studied using the large PIBETA detector. The branching ratio for the pion beta decay was measured with six times better accuracy than previously. From the precise measurements of the radiative pion decay the pion axial form factor was evaluated (four times more precisely). Some anomaly, which can not be explained by the Standard Model, was observed in this process. In the field of neutrino physics, data collected with the T600 module of the cosmic ray detector ICARUS in Pavia (Italy) have been analysed. In collaboration with the Department of Nuclear Theory, conditions to observe the fascinating process of neutrino-less double electron capture were further examined from the point of view of the fundamental question of the neutrino nature and mass. Our involvement in the CHIMERA/ISOSPIN Collaboration resulted in interesting studies of semi-peripheral nucleus-nucleus collisions at the Fermi energy range. In particular, a new method of determination of the time scale of the emission of intermediate mass fragments was developed. We continued the collaboration with LBNL Berkeley (USA) and IEP Warsaw University on a theoretical model of the synthesis of super-heavy elements. A comprehensive description of the model with extensive predictions of the

  16. Atmospheric aerosol studies using the 'Gent' stacked filter unit and other aerosol collectors, with multi-elemental analysis of the samples by nuclear-related analytical techniques. Appendix 4

    International Nuclear Information System (INIS)

    Maenhaut, Willy; Francois, Filip; Cafmeyer, Jan; Okunade, Olusola

    1995-01-01

    Our research within the core programme of the Co-ordinated Research Programme (CRP) on Air Pollution is described. This included the analysis of the analytical quality control Nuclepore filter samples, work on the calibration of the PM10 inlet of the 'Gent' stacked filter unit (SFU) sampler, and an aerosol study with this SFU sampler at an urban residential site in Gent. The calibration of the Gent PM10 inlet was done through intercomparisons with commercially available PM10 samplers, and quite reasonable agreement was obtained. For the study at the urban residential site, a total of 118 SFU samples were collected. The samples were analyzed for the particulate mass, black carbon and up to 29 elements. The elements were measured by PIXE and short-irradiation INAA. Median atmospheric concentrations and enrichment factors were calculated for the fine and coarse size fractions, and average FINE/COARSE ratios were derived. The median concentrations were compared with those from a study, done at the same site in the fall of 1986. The levels of the automotive elements Pb and Br had decreased by a factor of about three relative to 1986, but most other elements exhibited very similar concentrations. A brief overview is given of the status in our various regional and global scale aerosol studies. Finally, our plans for future work are given. (author)

  17. 34 CFR 300.108 - Physical education.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Physical education. 300.108 Section 300.108 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN WITH...

  18. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms

    Directory of Open Access Journals (Sweden)

    Zamani Sani SH

    2016-10-01

    Full Text Available Seyed Hojjat Zamani Sani,1 Zahra Fathirezaie,1 Serge Brand,2 Uwe Pühse,3 Edith Holsboer-Trachsler,2 Markus Gerber,3 Siavash Talepasand4 1Department of Motor Behavior, Faculty of Physical Education and Sport Science, University of Tabriz, Tabriz, Iran; 2Psychiatric Clinics of the University of Basel, Center for Affective, Stress and Sleep Disorders (ZASS, 3Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Basel, Switzerland; 4Department of Psychology and Educational Sciences, Semnan University, Semnan, Iran Abstract: In the present study, we investigated the relationship between physical activity (PA and self-esteem (SE, while introducing body mass index (BMI, perceived physical fitness (PPF, and body image (BI in adults (N =264, M =38.10 years. The findings indicated that PA was directly and indirectly associated with SE. BMI predicted SE neither directly nor indirectly, but was directly associated with PPF and both directly and indirectly with BI. Furthermore, PPF was directly related to BI and SE, and a direct association was found between BI and SE. The pattern of results suggests that among a sample of adults, PA is directly and indirectly associated with SE, PPF, and BI, but not with BMI. PA, PPF, and BI appear to play an important role in SE. Accordingly, regular PA should be promoted, in particular, among adults reporting lower SE. Keywords: physical activity, self-esteem, physical fitness, body image, adults

  19. Department of Leptonic Interactions - Overview

    International Nuclear Information System (INIS)

    Rybicki, K.

    2002-01-01

    Full text: Our Department has evolved from the Laboratory of Electronic Particle Detectors (originally called the Laboratory of Filmless Detectors) founded in 1972. The department is involved in two running experiments (H1 at DESY and Belle at KEK). In 2000 the DELPHI experiment has finished a decade of successful running. The analysis of collected data will continue for a couple of years. Since 1999 our group is a member of the LHC-b experiment at CERN. In addition, a few department members work part-time for the ATLAS collaboration at CERN, and our engineers as well as technicians have been working for several years on the construction and testing of superconducting cavities for the TESLA project. This arrangement provides a neat equilibrium between data analysis, running experiments and work on future projects. The main results of work done in 2001 are covered in reports on research. Here we mention only a few highlights: * The Belle experiment demonstrated a strong CP violation in B 0 d decays. The measured asymmetry was sin(2φ 1 ) 0:99 ±0:14±0:06. This is the first (together with the BaBar experiment at SLAC) observation of the CP violation outside the K 0 sector. * The DELPHI collaboration (together with other LEP experiments) determined very precisely the parameters of the Standard Model in the electroweak sector and showed the strongest limit on the direct Higgs search i.e. m H >114 GeV. * The H1 experiment has measured the cross section for the b quark production to be much larger than the NLO QCD predictions. This is especially surprising in Deep Inelastic ep Scattering where the predictions should be fairly solid. * The Cracow LHCb group has designed and tested the prototype of the outer tracker. One should also mention high-quality carbon-carbon composites designed and produced in collaboration with the High Energy Physics Detector Construction Group. In 2001 there were 43 papers (meeting the highest Polish State Committee for Scientific Research

  20. Paul Scherrer Institut annual report 1996. Annex I. PSI-F1-Newsletter 1996 nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D.; Kettle, P.R.; Buechli, C. [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, -applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1996, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1996. (author) figs., tabs., refs.

  1. Paul Scherrer Institut annual report 1996. Annex I. PSI-F1-Newsletter 1996 nuclear and particle physics. Muons in solid-state physics and chemistry

    International Nuclear Information System (INIS)

    Herlach, D.; Kettle, P.R.; Buechli, C.

    1997-02-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, -applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1996, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1996. (author) figs., tabs., refs

  2. Paul Scherrer Institut annual report 1995. Annex I: PSI-F1-Newsletter 1995. Nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D; Kettle, P R [eds.

    1996-09-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, - applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1995, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1995. (author) figs., tabs., refs.

  3. Paul Scherrer Institut annual report 1995. Annex I: PSI-F1-Newsletter 1995. Nuclear and particle physics. Muons in solid-state physics and chemistry

    International Nuclear Information System (INIS)

    Herlach, D.; Kettle, P.R.

    1996-01-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, - applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1995, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1995. (author) figs., tabs., refs

  4. Optics and Fluid Dynamics Department. Annual progress report for 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2002-03-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)

  5. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 Laser systems and optical materials (2 Optical diagnostics and information processing and (3 Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  6. Optics and Fluid Dynamics Department. Annual progress report for 2003

    International Nuclear Information System (INIS)

    Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.

    2004-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)

  7. Optics and Fluid Dynamics Department. Annual Progress Report for 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Hanson, S G; Lynov, J P; Petersen, P M; Skaarup, B

    2003-05-01

    The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)

  8. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Wronka, S.

    2010-01-01

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  9. Violence toward health workers in Bahrain Defense Force Royal Medical Services’ emergency department

    Directory of Open Access Journals (Sweden)

    Rafeea F

    2017-11-01

    Full Text Available Faisal Rafeea,1 Ahmed Al Ansari,2–4 Ehab M Abbas,1 Khalifa Elmusharaf,5 Mohamed S Abu Zeid1 1Emergency Department, Bahrain Defense Force Hospital, Riffa, Bahrain; 2Training and Education Department, Bahrain Defense Force Hospital, Riffa, Bahrain; 3Department of General Surgery, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain; 4Medical Education Department, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Bahrain; 5Graduate Entry Medical School, University of Limerick, Ireland Background: Employees working in emergency departments (EDs in hospital settings are disproportionately affected by workplace violence as compared to those working in other departments. Such violence results in minor or major injury to these workers. In other cases, it leads to physical disability, reduced job performance, and eventually a nonconducive working environment for these workers. Materials and methods: A cross-sectional exploratory questionnaire was used to collect data used for the examination of the incidents of violence in the workplace. This study was carried out at the ED of the Bahrain Defense Force (BDF Hospital. Participants for the study were drawn from nurses, support staff, and emergency physicians. Both male and female workers were surveyed.Results: The study included responses from 100 staff in the ED of the BDF Hospital in Bahrain (doctors, nurses, and support personnel. The most experienced type of violence in the workers in the past 12 months in this study was verbal abuse, which was experienced by 78% of the participants, which was followed by physical abuse (11% and then sexual abuse (3%. Many cases of violence against ED workers occurred during night shifts (53%, while physical abuse was reported to occur during all the shifts; 40% of the staff in the ED of the hospital were not aware of the policies against workplace violence, and 26% of the staff considered leaving their jobs

  10. Physics Teacher Preparation as a Means for Growth

    Science.gov (United States)

    Henderson, Ron

    2013-03-01

    Physics departments across the country are experiencing pressures to increase the number of graduates. One response is to improve marketing and recruiting efforts to add students to existing pipelines. A more innovative approach is to create new pathways tied to career paths that are alternatives to graduate school. One occupation that currently needs more graduates than physics departments are supplying is physics teaching. About 3 years ago, MTSU began implementing a strategy to prepare physics majors for careers in high school teaching. These efforts included developing coursework specifically related to physics teaching, creating relationships with the college of education, moving to pedagogies that reflect physics education research (PER)-validated best practices, hiring a tenure-track PER expert, implementing new ways to reach potential majors, and seeking external funding. The cumulative result has not only added a number of physics teaching majors to our roles, but has affected our existing programs in a manner that has yielded further growth. Support provided by the APS/AAPT PhysTEC project.

  11. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  12. African Americans & Hispanics among Physics & Astronomy Faculty: Results from the 2012 Survey of Physics & Astronomy Degree-Granting Departments. Focus On

    Science.gov (United States)

    Ivie, Rachel; Anderson, Garrett; White, Susan

    2014-01-01

    The United States is becoming more and more diverse, but the representation of some minority groups in physics and astronomy lags behind. Although 13% of the US population is African American or black, and 17% is Hispanic (US Census), the representation of these two groups in physics and astronomy is much lower. For this reason, African Americans…

  13. The European Physical Society Conference on High Energy Physics

    Science.gov (United States)

    2017-07-01

    The European Physical Society Conference on High Energy Physics (EPS- HEP) is one of the major international conferences that review the field. It takes place every other year since 1971. It is organized by the High Energy and Particle Physics Division of the European Physical Society in cooperation with an appointed European Local Institute of Research or an internationally recognized University or Academy Body. EPS-HEP 2017 was held on 5-12 July in Venice, Italy at Palazzo del Cinema and Palazzo del Casinò, located in the Lido island. The conference has been organized by the Istituto Nazionale di Fisica Nucleare (INFN) and by the Department of Physics and Astronomy of the University of Padova. Editorial Board: Paolo Checchia, Mauro Mezzetto, Giuseppina Salente, Michele Doro, Livia Conti, Caterina Braggio, Chiara Sirignano, Andrea Dainese, Martino Margoni, Roberto Rossin, Pierpaolo Mastrolia, Patrizia Azzi, Enrico Conti, Marco Zanetti, Luca Martucci, Sofia Talas Lucano Canton.

  14. Department of Leptonic Interactions - Overview

    International Nuclear Information System (INIS)

    Rybicki, K.

    1999-01-01

    Physics Detector Construction Group. The following events additionally marked the year 1998 in our department: - organization of the Cracow exhibition at DESY (February); - prestigious fellowship of the Foundation of Polish Science granted to Dr E. Lobodzinska (March); - organization of the H1 collaboration meeting at Cracow with about 120 participants (September); - bestowing of a title of honorary professor of our institute on Johann Bienlein, our long-term collaborator from DESY (November). It should be added that Assoc. Prof. A. Zalewska continues her work in the SPS Committee at CERN while Prof. J. Turnau is an acting chairman of the Cracow branch of the Society of Polish Physicists. In 1998, due to reorganization in the institute, four persons from the former Electronics Section joined the department. However, they can hardly be called newcomers since all of them have been working with us for quite a time. Now there are 29 people in the department. It should be added that Prof. B. Muryn from the Department of Nuclear Physics and Nuclear Techniques of the Mining and Metallurgy Academy has been working directly with us for a long time. Recently he was joined by Ph.D. student. An extensive information about the: - history of our team; - some of its members; - past and present experiments; - papers (including numbers of citations for most quoted ones), can be found in www.ifj.edu.pl/Dept5/pedc.html. (author)

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 2015 Page last updated: June 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National ... INFO U.S. Department of Health & Human Services HHS/Open USA.gov Top

  16. Applied Physics Education: PER focused on Physics-Intensive Careers

    Science.gov (United States)

    Zwickl, Benjamin

    2017-01-01

    Physics education research is moving beyond classroom learning to study the application of physics education within STEM jobs and PhD-level research. Workforce-related PER is vital to supporting physics departments as they educate students for a diverse range of careers. Results from an on-going study involving interviews with entry-level employees, academic researchers, and supervisors in STEM jobs describe the ways that mathematics, physics, and communication are needed for workplace success. Math and physics are often used for solving ill-structured problems that involve data analysis, computational modeling, or hands-on work. Communication and collaboration are utilized in leadership, sales, and as way to transfer information capital throughout the organization through documentation, emails, memos, and face-to-face discussions. While managers and advisors think a physics degree typically establishes technical competency, communication skills are vetted through interviews and developed on the job. Significant learning continues after graduation, showing the importance of cultivating self-directed learning habits and the critical role of employers as educators of specialized technical abilities through on-the-job training. Supported by NSF DGE-1432578.

  17. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  18. Max-Planck-Institute for Physics, Werner-Heisenberg-Institute. Annual report 1991

    International Nuclear Information System (INIS)

    1992-04-01

    The projects carried out by the department of theoretical physics comprise a broad spectrum of current and fundamental problems of elementary particle physics, especially the interaction of the two. The examinations carried out by the department of experimental physics concern themselves with the production and transformation processes of elementary particles, their features, interactions and their underlying physical laws. This includes the construction of detectors such as HEGRA for high-energy cosmic ray detection. Problems from the area of condensed matter were also dealt with. (DG) [de

  19. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  20. Research in high energy theoretical physics: Progress report

    International Nuclear Information System (INIS)

    Clavelli, L.J.; Harms, B.C.; Jones, S.T.

    1987-01-01

    This paper briefly discusses many papers submitted in theoretical High Energy Physics by the Physics Department of the University of Alabama. Most papers cover superstring theory, parity violations, and particle decay

  1. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  2. Preliminary analysis of radiologic consequence in accident cases with radiation sources in laboratories of the Physics Department of the IEN, cyclotrons and laboratories annexed

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Silva, J.J.G. da.

    1987-03-01

    The requirements necessaries to the elaboration of the situation of Emergency PLans of the Nuclear Engineering Institute (IEN), Brazil, in particular, cases of radiation emergency are presented. An estimate of radiation in the laboratories of the Physic Department of the IEN, in case of accident, are given. The results presented are based in some hypothesis, values of radionuclide activity furnished by Radioisotopes Division and values of activities estimated by Radiation Protection Section of the IEN in function of datas achieved with cyclotron Division. The dose calculations are done to the cases of radionuclides inhalation and immersion of person in a semi-infinite cloud of contaminants. (V.R.B.)

  3. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  4. Physics Enrollments in Two-Year Colleges: Results from the 2012 Survey of Physics in Two-Year Colleges. Focus On

    Science.gov (United States)

    White, Susan; Chu, Raymond

    2013-01-01

    This "Focus On" first considers the role two-year colleges (TYCs) play in post-secondary physics education. In their 2007 Survey of Undergraduate Seniors in degree-granting physics departments, the authors asked students if they had begun their post-secondary education at a TYC. Nine percent of the physics undergraduate seniors in 2007…

  5. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2002-01-01

    The scientific activity of the Department in 2001 can be summarised as follows. In the Environmental Physics Laboratory gas chromatography methods are being developed mainly for atmospheric investigations and hydrological applications. A method for measuring the SF 6 contents in water for determining the age of young groundwaters is well advanced. Reconnaissance measurements performed in two aquifers yielded a reasonable agreement with the ages obtained from the tritium method. A proper determination of trace gases dissolved in water requires the measurement of the so-called ''excess air'' resulting from the excessive dissolution of air bubbles at the groundwater table. For this purpose, a new method of analysing the concentrations of argon and neon in water was developed. The separation of argon from oxygen in gas samples, extracted from water, carried out with the help of the catalyst of NiO type. Neon is determined with the aid of a pulse discharge helium detector (type PI-2D, VALCO Ltd) doped with neon. The initial results are promising. Atmospheric investigations were continued by measurements of the concentrations of F-11, F-12, F-113, CHCl 3 , CHCCl 3 , CCl 4 , and SF 6 in the Cracow area. Incidentally, high concentrations of SF 6 are observed. The air flow trajectories available in the BADC Trajectory Service (http://cirrus.badc.rl.ac.uk/trajectory/) were used in an attempt to identify the emission source of these high SF 6 concentrations. So far only the north-west direction was identified. Hydrogeological investigations of the origin and ages of different interesting groundwater systems by environmental isotope methods were also continued, and the origin of chemically unique mineral water in Krynica Spa has been identified as related to dehydration of clay minerals in burial diagenesis. The Natural Radioactivity Laboratory has been involved in interdisciplinary projects on the measurements of radon concentration in soil gas in areas of different

  6. Diagnostic overshadowing and other challenges involved in the diagnostic process of patients with mental illness who present in emergency departments with physical symptoms--a qualitative study.

    Science.gov (United States)

    Shefer, Guy; Henderson, Claire; Howard, Louise M; Murray, Joanna; Thornicroft, Graham

    2014-01-01

    We conducted a qualitative study in the Emergency Departments (EDs) of four hospitals in order to investigate the perceived scope and causes of 'diagnostic overshadowing'--the misattribution of physical symptoms to mental illness--and other challenges involved in the diagnostic process of people with mental illness who present in EDs with physical symptoms. Eighteen doctors and twenty-one nurses working in EDs and psychiatric liaisons teams in four general hospitals in the UK were interviewed. Interviewees were asked about cases in which mental illness interfered with diagnosis of physical problems and about other aspects of the diagnostic process. Interviews were transcribed and analysed thematically. Interviewees reported various scenarios in which mental illness or factors related to it led to misdiagnosis or delayed treatment with various degrees of seriousness. Direct factors which may lead to misattribution in this regard are complex presentations or aspects related to poor communication or challenging behaviour of the patient. Background factors are the crowded nature of the ED environment, time pressures and targets and stigmatising attitudes held by a minority of staff. The existence of psychiatric liaison team covering the ED twenty-four hours a day, seven days a week, can help reduce the risk of misdiagnosis of people with mental illness who present with physical symptoms. However, procedures used by emergency and psychiatric liaison staff require fuller operationalization to reduce disagreement over where responsibilities lie.

  7. Public Outreach of the South Texas Health Physic Society and Texas A and M University Nuclear Engineering Department

    International Nuclear Information System (INIS)

    Berry, R. O.

    2003-01-01

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A and M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue

  8. Workplace violence in the emergency department in the Kingdom of Saudi Arabia

    OpenAIRE

    ALSHEHRI, WALEED MOHAMMED A.

    2017-01-01

    This study explored workplace violence among emergency department nurses and doctors in public hospitals in Saudi Arabia for the first time. Workplace violence is prevalent among nurses and doctors and it has physical, psychological and emotional impact. There is a lack of safety measures, precautions and management support for victims. Most staff feel vulnerable to violence in the next 12 months of employment. The findings will inform Emergency Department managements and the Ministry of H...

  9. Directory of Analytical Methods, Department 1820

    International Nuclear Information System (INIS)

    Whan, R.E.

    1986-01-01

    The Materials Characterization Department performs chemical, physical, and thermophysical analyses in support of programs throughout the Laboratories. The department has a wide variety of techniques and instruments staffed by experienced personnel available for these analyses, and we strive to maintain near state-of-the-art technology by continued updates. We have prepared this Directory of Analytical Methods in order to acquaint you with our capabilities and to help you identify personnel who can assist with your analytical needs. The descriptions of the various capabilities are requester-oriented and have been limited in length and detail. Emphasis has been placed on applications and limitations with notations of estimated analysis time and alternative or related techniques. A short, simplified discussion of underlying principles is also presented along with references if more detail is desired. The contents of this document have been organized in the order: bulky analysis, microanalysis, surface analysis, optical and thermal property measurements

  10. Department of Material Studies - Overview

    International Nuclear Information System (INIS)

    Werner, Z.

    2007-01-01

    The technology of modifying surfaces of practical-use materials by means of continuous and pulsed energy and particle beams has been intensely studied for more than 20 years. In some fields it is presently utilized on a wide scale in industry. Continuous or pulsed ion and plasma beams play a significant role among various approaches used in this area. The research carried by Department P-IX is centered around the use of two own ion implantation machines (ion implanters) of different kind and several world-wide unique sources of high-intensity intense plasma pulses, utilized jointly with Department P-V. The Department cooperates closely with Forschungszentrum Rossendorf (FZR, Dresden, Germany) in the field of ion-beam-based analytical techniques and the use of unique ion implantation facilities. The main objectives of the Department are: search for new ways of modifying surface properties of solid materials by means of continuous or pulsed ion and plasma beams and implementation of ion implantation technique in national industries as a method of improving the lifetime of machine parts and tools utilized in industry. In 2006 these objectives were accomplished in many ways, particularly by research on: formation of superconducting MgB 2 phases, electrical conductivity in metallic nano-layers produced in oxide insulators (Al 2 O 3 ) by ion implantation, ion implantation as a method of improving mechanical properties of stainless steels without degrading their corrosion resistance, ion implantation/plasma treatment of ceramics aimed at improving their wettability in ceramic-metal joints, methods of controlling wear of ceramic-polymer pairs used in bio-medical applications. The research was conducted in cooperation with Department P-V of IPJ, Institute of Nuclear Chemistry and Technology (Warsaw), Warsaw University of Technology, Institute of Technology of Materials for Electronics (Warsaw), and Institute of Molecular Physics Polish Academy of Sciences (Poznan

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Pabitra Nath1 Mridul Buragohain2. Department of Physics, Tezpur University, Napaam, Sonitpur 784 028, India; Department of Electronics and Communication Technology, Gauhati University, Guwahati 781 014, India ...

  12. Participation in the United States Department of Energy Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.

  13. Participation in the United States Department of Energy Reactor Sharing Program

    International Nuclear Information System (INIS)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Ankara University, Tandogan 06100, Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, Baku 370143, Azerbaijan ...

  15. Orbach urges renewed commitment to nuclear physics work

    CERN Multimedia

    Jones, D

    2002-01-01

    According to US Office of Science director Raymond Orbach, the Energy Department plans to issue a background paper in the coming months that will make the case for supporting the department's accelerator program for nuclear physics research (1 page).

  16. Annual report 1985 of the KfK Central Safety Department

    International Nuclear Information System (INIS)

    Kiefer, H.; Koelzer, W.; Koenig, L.A.

    1986-04-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The r+d work concentrates on the following aspects: physical and chemical behavior of biologically particularly active radionuclides, behavior of HT in the air/plant/soil system, biophysics of multicellular systems, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1985 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of the Table of Contents and of Chapter 1 describing the duties and organization of the Central Safety Department. (orig./HP) [de

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Valencia, Spain; Institute of High Energy Physics, Academia Sinica, Beijing, China; Departamento de Fisica Moderna, Universidad de Granada, Spain; Physics Department, Nara Women University, Nara, Japan; Laboratory of Theoretical Physics, JINR Dubna, Russia; Departament d'Estructura i Constituents de la Materia, ...

  18. Multifamily Housing Physical Inspection Scores

    Data.gov (United States)

    Department of Housing and Urban Development — HUD's Real Estate Assessment Center conducts physical property inspections of properties that are owned, insured or subsidized by HUD, including public housing and...

  19. Public Housing Physical Inspection Scores

    Data.gov (United States)

    Department of Housing and Urban Development — HUD's Real Estate Assessment Center conducts physical property inspections of properties that are owned, insured or subsidized by HUD, including public housing and...

  20. Max-Planck-Institute for Nuclear Physics, Heidelberg. Annual report 1991

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Kiko, J.

    1992-01-01

    The Institute's activities cover basic research work in nuclear physics and particle physics and in cosmophysics. The nuclear physics department reports experimental and theoretical investigations of the structure of atomic nuclei and hadrons, including technical developments on accelerators and storage rings and work on highly charged ions, particle detectors, ion implantations, ionometry and proton-induced X-ray spectroscopy. The cosmophysics department reports studies into the formation of the planetary system, of the comets, the interstellar medium, the cosmic radiation, the extraterrestrial matter, solar neutrions, planetary atmosphere, the chemistry of the stratosphere, and archeometry. (DG) [de

  1. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations

    Science.gov (United States)

    Gan, Quan; Du, Jian; Fomichev, Victor I.; Ward, William E.; Beagley, Stephen R.; Zhang, Shaodong; Yue, Jia

    2017-04-01

    A recent 31 year simulation (1979-2010) by extended Canadian Middle Atmosphere Model (eCMAM30) and the 14 year (2002-2015) observation by the Thermosphere Ionosphere Mesosphere and Dynamics/Sounding of the Atmosphere using Broadband Emssion Radiometry (TIMED/SABER) are utilized to investigate the temperature response to the 11 year solar cycle on the mesosphere. Overall, the zonal mean responses tend to increase with height, and the amplitudes are on the order of 1-2 K/100 solar flux unit (1 sfu = 10-22 W m-2 Hz-1) below 80 km and 2-4 K/100 sfu in the mesopause region (80-100 km) from the eCMAM30, comparatively weaker than those from the SABER except in the midlatitude lower mesosphere. A pretty good consistence takes place at around 75-80 km with a response of 1.5 K/100 sfu within 10°S/N. Also, a symmetric pattern of the responses about the equator agrees reasonably well between the two. It is noteworthy that the eCMAM30 displays an alternate structure with the upper stratospheric cooling and the lower mesospheric warming at midlatitudes of the winter hemisphere, in favor of the long-term Rayleigh lidar observation reported by the previous studies. Through diagnosing multiple dynamical parameters, it is manifested that this localized feature is induced by the anomalous residual circulation as a consequence of the wave-mean flow interaction during the solar maximum year.

  2. The Impact of the Louisiana State University Physics Entrance Requirement on Secondary Physics in Louisiana

    Science.gov (United States)

    McCoy, Michael Hanson

    State Department of Education data was examined to determine the number of students enrolled in physics, physics class number, physics teacher number, and physics teacher certification. Census data from public and nonpublic school teachers, principals, and superintendents was analyzed. Purposive sampling of seven public and four nonpublic schools was used for site visitation including observations of physics classes, interviews of teachers and principals, and document acquisition. The literature base was drawn from a call for an increase in academic requirements in the sciences by the National Commission on Excellence in Education, the Southern Regional Education Board, the American Association for Advancement in the Sciences, and numerous state boards of education. LSU is the only major state university to require physics as an academic admission standard. Curriculum changes which influenced general curriculum change were: leveling of physics classes; stressing concepts, algebra, and doing problems in level-one; stressing trigonometry and problem solving in level-two; and increased awareness of expectations for university admission. Certified physics teachers were positive toward the requirement. The majority adopted a "wait-and-see" attitude to see if the university would institute the physics standard. Some physics teachers, nonphysics majors, were opposed to the requirement. Those who were positive remained positive. Those who developed the wait-and-see adopted the leveled physics course concept in 1989 and were positive toward the requirement. College-bound physics was taught prior to the requirement. The State Department of Education leveled physics in 1989. Level-one physics was algebra and conceptual based, level-two physics was trigonometry based, and a level-three physics, advanced placement was added. Enrollment doubled in public schools and increased 40% in nonpublic schools. African-American enrollment almost doubled in public and nonpublic schools

  3. Gender and Physics: Feminist Philosophy and Science Education

    Science.gov (United States)

    Rolin, Kristina

    2008-01-01

    Physics education reform movements should pay attention to feminist analyses of gender in the culture of physics for two reasons. One reason is that feminist analyses contribute to an understanding of a "chilly climate" women encounter in many physics university departments. Another reason is that feminist analyses reveal that certain styles of…

  4. New HEPAP report outlines revolution in particle physics

    CERN Multimedia

    2004-01-01

    "The most compelling questions facing contemporary particle physics research and a program to address them have been distilled into a new report “Quantum Universe: The Revolution in 21st-Century Particle Physics,” adopted today by the Department of Energy/National Science Foundation High Energy Physics Advisory Panel (HEPAP)" (1 page)

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. M AMINA1 S A EMA2 A A MAMUN1. Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; Department of Electrical and Electronic Engineering, Sonargaon University, Dhaka 1215, Bangladesh ...

  6. Equal Opportunity Program Management for the Army Medical Department

    Science.gov (United States)

    2008-04-09

    applies to someone who has the physical, cultural, or linguistic characteristics of a national group. Personal Racism , Sexism , or Bigotry: The ...Management and Army Demographics and Statistics Departments. LTC Horrell arranged my VIP trip to the Defense Equal Opportunity Management Institute (DEOMI...harassment in the organization. Organizational productivity is maximized when illegal discrimination is eradicated. One theory of why discrimination

  7. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City); Determinacion de tamano de particula y contenido de metales en la atmosfera de la ZMCM (Zona Metropolitana de la Ciudad de Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Aldape U, F; Flores M, J; Diaz, R V; Garcia G, R [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: `Gross` mass from 2.5 to 1.5 {mu}m and `fine` mass for particles smallest than 2.5 {mu}m. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author).

  8. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City)

    International Nuclear Information System (INIS)

    Aldape U, F.; Flores M, J.; Diaz, R.V.; Garcia G, R.

    1994-01-01

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: 'Gross' mass from 2.5 to 1.5 μm and 'fine' mass for particles smallest than 2.5 μm. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author)

  9. [The evaluation of academic emergency department design].

    Science.gov (United States)

    Deniz, Turgut; Aydinuraz, Kuzey; Oktay, Cem; Saygun, Meral; Ağalar, Fatih

    2007-01-01

    In our study which was based upon a questionnaire, the inner and outer architectural designs of emergency services of Emergency Medicine Departments were investigated. In this descriptive study, a standard questionnaire was sent to 26 Emergency Medicine Departments which were operating at that time. In the questionnaire, the internal, external architectural and functional features were questioned. Answers of 22 Emergency Medicine Departments were analysed. Two Emergency Medicine Departments that were not operating at that time were not included in the study. The analysis of the replies revealed that only 59% (n=13) of the Emergency Medicine Departments were designed as an emergency service prior to the construction. The ambulance parking areas were not suitable in 77% of the emergency units while only 54.5% (n=12) had protection against adverse weather conditions. In only 59% (n=13) of the emergency units, a triage unit was present and in only one of the in only one (4.5%), a decontamination room was available. It was understood that only 32% (n=8) of the emergency units were appropriate in enlarging their capacity taking the local risk factors into consideration. There was a toilette for disabled patients in only 18% (n=4) of the units as well. Considering a 12-year of history of the Emergency Medicine in Turkey, the presence of a lecture room is still 68% (n=15) in emergency departments which reflects that academic efforts in this field is emerging in challenging physical conditions. The results of our study revealed that emergency service architecture was neglected in Turkey and medical care given was precluded by the insufficient architecture. The design of emergency services has to be accomplished under guidance of scientific data and rules taking advices of architects who have knowledge and experience on this field.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. R T Tagiyeva1. Institute of Physics, Azerbaijan National Academy of Sciences, Baku-AZ 1143, Azerbaijan Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara, Turkey ...

  11. Residential Stability Reduces Unmet Health Care Needs and Emergency Department Utilization among a Cohort of Homeless and Vulnerably Housed Persons in Canada.

    Science.gov (United States)

    Jaworsky, Denise; Gadermann, Anne; Duhoux, Arnaud; Naismith, Trudy E; Norena, Monica; To, Matthew J; Hwang, Stephen W; Palepu, Anita

    2016-08-01

    This study examined the association of housing status over time with unmet physical health care needs and emergency department utilization among homeless and vulnerably housed persons in Canada. Homeless and vulnerably housed individuals completed interviewer-administered surveys on housing, unmet physical health care needs, health care utilization, sociodemographic characteristics, substance use, and health conditions at baseline and annually for 4 years. Generalized logistic mixed effects regression models examined the association of residential stability with unmet physical health care needs and emergency department utilization, adjusting for potential confounders. Participants were from Vancouver (n = 387), Toronto (n = 390), and Ottawa (n = 396). Residential stability was associated with lower odds of having unmet physical health needs (adjusted odds ratio (AOR), 0.82; 95 % confidence interval (CI), 0.67, 0.98) and emergency department utilization (AOR, 0.74; 95 % CI, 0.62, 0.88) over the 4-year follow-up period, after adjusting for potential confounders. Residential stability is associated with fewer unmet physical health care needs and lower emergency department utilization among homeless and vulnerably housed individuals. These findings highlight the need to address access to stable housing as a significant determinant of health disparities.

  12. Progress report 1 January - 31 December 1988. Department of Information Technology

    International Nuclear Information System (INIS)

    1989-04-01

    This progress report describes the work carried out in the Department of Information Technology. The department comprises three sections. The Applied Laser Physics Section works in the areas of holographic optical elements, optical image processing, and the photorefractive effect. The Computer Section is primarily responsible for the central computer facilities and computer networks at Risoe. The Section for Information Processing and Cognitive Science, Sicos, is concerned with cognitive science, decision support, knowledge-based systems, and process simulation. Information given may be preliminary. (author) 1 tab., 9 ills., 46 refs

  13. Promoting physical activity for elders with compromised function: the Lifestyle Interventions and Independence for Elders (LIFE Study physical activity intervention

    Directory of Open Access Journals (Sweden)

    Rejeski WJ

    2013-09-01

    Full Text Available W Jack Rejeski,1 Robert Axtell,2 Roger Fielding,3 Jeffrey Katula,1 Abby C King,4 Todd M Manini,5 Anthony P Marsh,1 Marco Pahor,5 Alvito Rego,6 Catrine Tudor-Locke,7 Mark Newman,8 Michael P Walkup,9 Michael E Miller9  On behalf of the LIFE Study Investigator Group 1Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, 2Exercise Science Department, Southern Connecticut State University, New Haven, CT, 3Nutrtion, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 4Department of Health Research and Policy and Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, 5Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 6Department of Internal Medicine, Northwestern School of Medicine, Chicago, IL, 7Pennington Biomedical Research Center, Baton Rouge, LA, 8Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 9Department of Biostatistical Sciences, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, NC, USA Abstract: The Lifestyle Interventions and Independence for Elders (LIFE Study is a Phase III randomized controlled clinical trial (Clinicaltrials.gov identifier: NCT01072500 that will provide definitive evidence regarding the effect of physical activity (PA on major mobility disability in older adults (70–89 years old who have compromised physical function. This paper describes the methods employed in the delivery of the LIFE Study PA intervention, providing insight into how we promoted adherence and monitored the fidelity of treatment. Data are presented on participants' motives and self-perceptions at the onset of the trial along with accelerometry data on patterns of PA during exercise training. Prior to the onset of training, 31.4% of

  14. Physics Teacher Quality

    Science.gov (United States)

    Wallace, Andrew; Bixler, David

    2010-03-01

    Physics Teacher Quality at Angelo State University (ASU) and Education Service Center Region XV is funded through a US Department of Education grant. In this program secondary science teachers from local and rural districts within Region XV learn and practice physics and principles of technology concepts emphasized in the Texas Essential Knowledge and Skills (TEKS), improve practice of 5E model of guided inquiry, and complete activity-based laboratories and field investigations. Investigations include field and laboratory safety, environmental responsibility, ethical practices, application of scientific methods to open-ended problems encountered in the physical sciences, and critical thinking and problem solving. Teachers are assessed through pre- and post- testing, lab practicum, and classroom observation over a two-year cycle. Assessment data from 2004 through 2008 indicates Physics Teacher Quality is changing teaching behavior in the secondary classroom.

  15. Overview. Health Physics Laboratory. Section 10

    Energy Technology Data Exchange (ETDEWEB)

    Waligorski, M.P.R. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  16. Overview. Health Physics Laboratory. Section 10

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    1995-01-01

    The activities of the Health Physics Laboratory at the Niewodniczanski Institute of Nuclear Physics are presented and namely: research in the area of radiation physics and radiation protection of the employees of the Institute of Nuclear Physics, theoretical research concerns radiation detectors, radiation protection and studies of concepts of radiation protection and experimental research concerns solid state dosimetry. In this report, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given

  17. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    Science.gov (United States)

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  18. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    International Nuclear Information System (INIS)

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  19. Who breaches the four-hour emergency department wait time target? A retrospective analysis of 374,000 emergency department attendances between 2008 and 2013 at a type 1 emergency department in England.

    Science.gov (United States)

    Bobrovitz, Niklas; Lasserson, Daniel S; Briggs, Adam D M

    2017-11-02

    The four-hour target is a key hospital emergency department performance indicator in England and one that drives the physical and organisational design of the ED. Some studies have identified time of presentation as a key factor affecting waiting times. Few studies have investigated other determinants of breaching the four-hour target. Therefore, our objective was to describe patterns of emergency department breaches of the four-hour wait time target and identify patients at highest risk of breaching. This was a retrospective cohort study of a large type 1 Emergency department at an NHS teaching hospital in Oxford, England. We analysed anonymised individual level patient data for 378,873 emergency department attendances, representing all attendances between April 2008 and April 2013. We examined patient characteristics and emergency department presentation circumstances associated with the highest likelihood of breaching the four-hour wait time target. We used 374,459 complete cases for analysis. In total, 8.3% of all patients breached the four-hour wait time target. The main determinants of patients breaching the four-hour wait time target were hour of arrival to the ED, day of the week, patient age, ED referral source, and the types of investigations patients receive (p target were older, presented at night, presented on Monday, received multiple types of investigation in the emergency department, and were not self-referred (p target including patient age, ED referral source, the types of investigations patients receive, as well as the hour, day, and month of arrival to the ED. Efforts to reduce the number of breaches could explore late-evening/overnight staffing, access to diagnostic tests, rapid discharge facilities, and early assessment and input on diagnostic and management strategies from a senior practitioner.

  20. Department of Energy Emergency Management Functional Requirements Study

    International Nuclear Information System (INIS)

    1987-05-01

    This Study, the Emergency Management Functional Requirements Study (EMFRS), identifies the physical environment, information resources, and equipment required in the DOE Headquarters Emergency Operations Center (EOC) to support the DOE staff in managing an emergency. It is the first step toward converting the present Forrestal EOC into a practical facility that will function well in each of the highly diverse types of emergencies in which the Department could be involved. 2 figs

  1. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    Science.gov (United States)

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  2. Towards an integrated management of health physics and medical physics

    International Nuclear Information System (INIS)

    Mommaert, Chantal; Rogge, Frank; Cortenbosch, Geert; Schmitz, Frederic

    2007-01-01

    AVN is a licensed body that performs health physics control in different types of installations, from large nuclear facilities to small dentist cabinets. AVN can also provide medical physics services for the quality control of, for instance, medical devices used in a radiology or nuclear medicine department. Radiation protection for personnel and environment (health physics) and radiation protection for the patient (medical physics) are usually treated separately, using different referential documents, such as the European Directives 96/29/Euratom for health physics and 97/43/Euratom for medical physics. This difference is also clearly reflected in the Belgium legislation (two types of accreditation/licence for inspectors, different chapters in the law,..) From a practical point of view it is sometimes rather difficult to split the task 'on site' during an inspection. An RX system not complying with radiation protection criteria can definitively affect the patient as well as the workers. On the other hand, the hospitals, cannot easily differentiate these two tasks because they are not fully aware of the legislation and they are mixing both. Taking into account the health physics guidelines as well as medical physics guidelines, we have decided to move to an integrated approach of these two concepts. (orig.)

  3. Physical fitness testing of students did not specialized departments in the selection and admission to the department of military-sports-round

    Directory of Open Access Journals (Sweden)

    Buryanovaty A.N.

    2012-09-01

    Full Text Available Modern progress of military-sports-round trends are considered. Influence of informing tests is rotined on a selection and put in the separation of military-sports-round. 180 (n = 180 students of the not special faculties took part in research. On results testing 18 students which rotined the level of preparedness above average were selected. 72 students were yet selected with a low level, 54 - below the average and to 36 middle. The optimum distributing has testing and it is counted on two days. It is set that the selection of these tests helps to define the level of physical preparedness of students and take away physically geared-up for future fruitful work. Directions and examples of planning of educational training process are rotined for achievement of certain results.

  4. Methods to Implement Innovation and Entrepreneurship in Physics

    Science.gov (United States)

    Arion, Douglas

    2015-03-01

    The physics community is beginning to become aware of the benefits of entrepreneurship and innovation education: greater enrollments, improved students satisfaction, a wider range of interesting research problems, and the potential for greater return from more successful alumni. This talk will suggest a variety of mechanisms by which physics departments can include entrepreneurship and innovation content within their programs - without necessarily requiring earth-shattering changes to the curriculum. These approaches will thus make it possible for departments to get involved with entrepreneurship and innovation, and grow those components into vibrant activities for students and faculty.

  5. Physics Research Integrated Development Environment (PRIDE)

    International Nuclear Information System (INIS)

    Burton, J.; Cormell, L.

    1993-12-01

    Past efforts to implement a Software Engineering approach to High Energy Physics computing have been met with significant resistance and have been, in many cases, only marginally successful. At least a portion of the problem has been the Lick of an integrated development environment, tailored to High Energy Physics and incorporating a suite of Computer Aided Software Engineering tools. The Superconducting Super Collider Physics Research Division Computing Department is implementing pilot projects to develop just such an environment

  6. Optics and fluid dynamics department annual progress report for 1992

    International Nuclear Information System (INIS)

    Lading, L.; Lynov, J.P.; Skaarup, B.

    1993-01-01

    Research in the Optics and FLuid Dynamics Department is performed within two sections. The Optics Section has activities within (a) optical materials, (b) quasielastic light scattering and diagnostics in solids, fluids and plasmas, and (c) optical and electronic information processing. The Continuum Physics Section performs (a) studies of nonlinear dynamical processes in continuum systems, (b) investigations of other problems in fusion plasma physics, and (c) develops pellet injectors for fusion experiments. Most of these activities are done in connection with the Euratom Association. A summary of activities in 1992 is presented. (au) (25 ills., 36 refs.)

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Shibi Thomas1 George Varghese1 István Lagzi2 3. Department of Physics, University of Calicut, Malappuram 673 635, India; Department of Meteorology, Eötvös University, H-1117 Pázmány sétány 1/A, Budapest, Hungary; Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, ...

  8. Astronomy Enrollments and Degrees: Results from the 2009 & 2010 Surveys of Physics & Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Nicholson, Starr; Mulvey, Patrick

    2011-01-01

    The Statistical Research Center of the American Institute of Physics conducts an annual census from October through February of all departments that offer degrees in astronomy (78) in the United States. Astronomy departments consist of stand-alone degree-granting departments (39) and departments that are administered along with a physics program…

  9. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author).

  10. Reactor Engineering Department annual report. April 1, 1997 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Masaaki; Ohnuki, Akira; Ono, Toshihiko [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1997 (April 1, 1997 - March 31, 1998). The major Department`s programs promoted in the year are the achievement of the world-strongest lasing of Free Electron Laser and the verification of the core thermal integrity during design basis events in PWRs. Other Major tasks of the Department are various basic researches on the advanced reactor system design studies, the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  11. Reactor engineering department annual report. April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1995 (April 1, 1995 - March 31, 1996). The major Department`s programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermalhydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermalhydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC`s fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  12. Violence in the emergency department: a survey of health care workers.

    Science.gov (United States)

    Fernandes, C M; Bouthillette, F; Raboud, J M; Bullock, L; Moore, C F; Christenson, J M; Grafstein, E; Rae, S; Ouellet, L; Gillrie, C; Way, M

    1999-11-16

    Violence in the workplace is an ill-defined and underreported concern for health care workers. The objectives of this study were to examine perceived levels of violence in the emergency department, to obtain health care workers' definitions of violence, to determine the effect of violence on health care workers and to determine coping mechanisms and potential preventive strategies. A retrospective written survey of all 163 emergency department employees working in 1996 at an urban inner-city tertiary care centre in Vancouver. The survey elicited demographic information, personal definition of violence, severity of violence, degree of stress as a result of violence and estimate of the number of encounters with violence in the workplace in 1996. The authors examined the effects of violence on job performance and job satisfaction, and reviewed coping and potential preventive strategies. Of the 163 staff, 106 (65%) completed the survey. A total of 68% (70/103) reported an increased frequency of violence over time, and 60% (64/106) reported an increased severity. Most of the respondents felt that violence included witnessing verbal abuse (76%) and witnessing physical threats or assaults (86%). Sixty respondents (57%) were physically assaulted in 1996. Overall, 51 respondents (48%) reported impaired job performance for the rest of the shift or the rest of the week after an incident of violence. Seventy-seven respondents (73%) were afraid of patients as a result of violence, almost half (49%) hid their identities from patients, and 78 (74%) had reduced job satisfaction. Over one-fourth of the respondents (27/101) took days off because of violence. Of the 18 respondents no longer working in the emergency department, 12 (67%) reported that they had left the job at least partly owing to violence. Twenty-four-hour security and a workshop on violence prevention strategies were felt to be the most useful potential interventions. Physical exercise, sleep and the company of

  13. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  14. Nuclear energy system department annual report. April 1, 2001 - March 31, 2002

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Ohnuki, Akira; Kunii, Katsuhiko

    2003-03-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2001 (April 1, 2001 - March 31, 2002). The Department has been organized from April 1998. The main research activity is aimed to build the basis of the development of future nuclear energy systems. The research activities of the Department cover basic nuclear data evaluation, conceptual design of a reduced-moderation water reactor, reactor physics experiments and development of the reactor analysis codes, experiment and analysis of thermal-hydrodynamics, energy system analysis and assessment, development of advanced materials for a reactor, lifetime reliability assessment on structural material, development of advanced nuclear fuel, design of a marine reactor and the research for a nuclear ship system. The maintenance and operation of reactor engineering facilities belonging to the Department are undertaken. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  15. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  16. ANALYSIS OF THE SOCIAL PHYSICAL ANXIETY STATUS OF THE STUDENTS ATTENDING TO PHYSICAL EDUCATION AND SPORT COLLEGES

    Directory of Open Access Journals (Sweden)

    Fatih YAŞARTÜRK

    2014-07-01

    Full Text Available In this study it was aimed to examine the social - physical anxiety situations of the students who have been studying in Physical Education and Sport Department of Sakarya University. This study is a descriptive assessment study. A total number of 120 volunteer students who study at Sakarya University participated in the study. Of those 120 students, 60 of them represent the Training Department and 60 of them represent the Teaching Department. As the material of collecting data, a personal demographic form and to determine their physique anxiety levels , the social physique anxiety scale developed by Leary and Rejeski (1989 and adapted to Turkish by Balli and Ascı (2006 was applied. The collected data was analyzed using the SPSS “1 5.0” statistical analysis software, mean values, standard deviation and the T - Test was used for observing the difference between two groups. In statistical comparisons the meaningful level is p<.05. As a result, while there is no significant difference fo und in comparison of the social physique anxiety scores according to the department variable, there is a significant(0,49 difference with regards to gender variable.

  17. Science Academies' Refresher Course in Experimental Physics

    Indian Academy of Sciences (India)

    2017-12-18

    Dec 18, 2017 ... A Refresher Course in Experimental Physics will be held at the Department of Physics, Panjab. University, Chandigarh held from 18 December 2017 to 2 January 2018 for the benefit of faculty involved in teaching undergraduate and postgraduate courses. The Course aims to familiarize the teachers with a ...

  18. Evaluation of emergency department nursing services and patient satisfaction of services.

    Science.gov (United States)

    Mollaoğlu, Mukadder; Çelik, Pelin

    2016-10-01

    To identify nursing services and assess patient satisfaction in patients who present to the emergency department. Emergency nursing care is a significant determinant of patient satisfaction. Patient satisfaction is often regarded as a reliable indicator of the quality of services provided in the emergency department. This is a descriptive study. Eighty-four patients who presented to the university emergency department were included in the study. The study data were collected by the Patient Information Form and the Satisfaction Level Form. Emergency nursing services, including history taking, assessing vital signs, preparing the patient for an emergency intervention, oxygen therapy, drug delivery and blood-serum infusion were shown to be more commonly provided compared with other services such as counselling the patients and the relatives about their care or delivering educational and psychosocial services. However, 78·6% of the patients were satisfied with their nursing services. The highest satisfaction rates were observed in the following sub-dimensions of the Satisfaction Level Form: availability of the nurse (82·1%), behaviour of the nurse towards the patient (78·6%) and the frequency of nursing rounds (77·4%). The most common practices performed by nurses in the emergency department were physical nursing services. Patient satisfaction was mostly associated with the availability of nurses when they were needed. Our results suggest that in addition to the physical care, patients should also receive education and psychosocial care in the emergency department. We believe that this study will contribute to the awareness and understanding of principles and concepts of emergency nursing, extend the limits of nursing knowledge and abilities, and improve and maintain the quality of clinical nursing education and practice to train specialist nurses with high levels of understanding in ethical, intellectual, administrative, investigative and professional issues.

  19. Old Testament Studies: The story of a department

    Directory of Open Access Journals (Sweden)

    Jurie le Roux

    2009-12-01

    Department to cutting-edge research, sound scholarship and excellent teaching. This story is told here by focusing on the physical contexts in which the Department had to exist, and then on the scholars who made things happen.

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. R P Singh1 R P Patel1 Ashok K Singh1 D Hamar2 J Lichtenberger2. Atmospheric Research Laboratory, Physics Department, Banaras Hindu University, Varanasi 221 005, India; Department of Geophysics, Eotvos University, Budapest, Hungary ...

  1. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. I N Askerzade1 2. Department of Physics, Faculty of Sciences, Ankara University, 06100-Tandoğan-Ankara, Turkey; Institute of Physics, Azerbaijan National Academy of Sciences, H-Cavid 33, Baku-370143, Azerbaijan ...

  2. Annual report 1995 of the Central Safety Department, Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Koelzer, W.

    1996-04-01

    The Central Safety Department is responsible for supervising, monitoring and, to some extent, also executing measures of radiation protection, industrial health and safety as well as physical protection and security at and for the institutes and departments of the Karlsruhe Research Center (Forschungszentrum Karlsruhe GmbH), and for monitoring liquid effluents and the environment of all facilities and nuclear installations on the premises of the Research Center. In addition, research and development work is carried out in the fields of behavior of tritium in the air/soil/plant system, tritium balances for nuclear fusion fuel cycles, and assessments of mining and ore dressing spoils. This report gives details of the different duties and reports the results of 1995 routine tasks, investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  3. Reactor engineering department annual report. April 1, 1993-March 31, 1994

    International Nuclear Information System (INIS)

    1994-11-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1993 (April 1, 1993-March 31, 1994). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees organized by the Department are also summarized in this report. (author)

  4. Reactor Engineering Department annual report (April 1, 1996 - March 31, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This report summarizes the research and development activities in the Reactor Engineering Department of JAERI during the fiscal year of 1996 (April 1, 1996 - March 31, 1997). The major Department`s programs promoted in the year are the design activities of advanced reactor system and the development of a high power proton linear accelerator to construct an intense neutron source for innovative neutron science. Other Major tasks of the Department are various basics researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analysis, the fusion neutronics, the radiation shielding, the reactor instrumentation, the reactor control/diagnosis, the thermal hydraulics and the technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal hydraulic facilities. The cooperative works to JAERI`s major projects such as the high temperature gas cooled reactor, the fusion reactor and PNC`s fast reactor project were also progressed. The 99 papers are indexed individually. (J.P.N.)

  5. Reactor engineering department annual report. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    1995-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1994 (April 1, 1994 - March 31, 1995). The major Department's programs promoted in the year are the design activities of advanced reactor system and development of a high intensity proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor engineering facilities, the accelerator facilities and the thermal-hydraulic facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the research committees to which the Department takes a role of secretariat are also summarized in this report. (author)

  6. Consolidating Pre-Service Physics Teachers' Subject Matter Knowledge Using Didactical Reconstructions

    Science.gov (United States)

    Mäntylä, T.; Nousiainen, M.

    2014-01-01

    In the Department of Physics, University of Helsinki, there are advanced physics courses designed for the needs of pre-service physics teachers. The starting point is that after introductory and intermediate physics courses, pre-service physics teachers know laws and definitions but the knowledge is quite fragmented and does not form coherent…

  7. Pre-K Physical Education: Universal Initiatives and Teacher Preparation Recommendations

    Science.gov (United States)

    Ross, Susan M.

    2013-01-01

    The "National Physical Activity Plan", as well as professional and government agencies (NASPE, 2008a; US Department of Health and Human Services, 2000) acknowledge pre-kindergarten (pre-K) children should be part of comprehensive school physical activity initiatives anchored in quality physical education programming. These…

  8. Department of Defense Physical Strength and Job Performance Survey: Report on the Ability of First-Term Enlisted Personnel to Perform Physically Demanding Work

    National Research Council Canada - National Science Library

    Cooper, Barrie

    2002-01-01

    ... to perform physically demanding tasks. Within each service, 10 occupational specialties with moderate to high strength requirements were identified as the target populations for the DOD Physical Strength mid Job Performance Survey...

  9. A New Grading System for the Management of Antenatal Hydronephrosis.

    Science.gov (United States)

    Dos Santos, Joana; Parekh, Rulan S; Piscione, Tino D; Hassouna, Tarek; Figueroa, Victor; Gonima, Paula; Vargas, Isis; Farhat, Walid; Rosenblum, Norman D

    2015-10-07

    Standard clinical assessments do not predict surgical intervention in patients with a moderate degree of upper tract hydronephrosis. This study investigated whether combined measures of renal calyceal dilation and anteroposterior diameter (APD) of the renal pelvis at the first postnatal ultrasound better predict surgical intervention beyond standard assessments of the APD or Society of Fetal Urology (SFU) grading system. A retrospective cohort of 348 children with antenatal hydronephrosis followed from 2003 to 2013 were studied. Using Cox regression, the risk for surgery by APD, SFU, and combined grading on the basis of the first postnatal ultrasound was calculated. The predictive capability of each grading system for surgery was determined by calculating the positive likelihood ratio (LR+). The combination of APD≥6-9 mm and diffuse caliectasis had a hazard ratio (HR) of 19.5 (95% confidence interval [95% CI], 3.94 to 96.9) versus 0.59 (95% CI, 0.05 to 6.53) for APD≥6-9 mm alone and a similar risk of 8.9 for SFU grade 3 (95% CI, 3.84 to 20.9). The combination of APD≥9-15 mm and diffuse caliectasis had an HR of 18.7 (95% CI, 4.36 to 80.4) versus 1.75 (95% CI, 0.29 to 10.5) for APD≥9-15 mm alone. The LR+ for surgery for diffuse caliectasis and APD≥6-9 mm was higher than for APD≥6-9 mm alone (HR=2.62; 95% CI, 0.87 to 7.94 versus HR=0.04; 95% CI, 0.01 to 0.32) and was higher for APD≥9-15 mm and diffuse caliectasis than APD≥9-15 mm alone (HR=2.0; 95% CI, 1.15 to 3.45 versus HR=0.14; 95% CI, 0.04 to 0.43). Both combined groups of moderate hydronephrosis (APD≥6-9 mm or ≥9-15 mm with diffuse caliectasis) had only slightly higher LR+ than SFU grade 3 (HR=1.89; 95% CI, 1.17 to 3.05). These results suggest a grading system combining APD and diffuse caliectasis distinguishes those children with moderate degrees of upper tract hydronephrosis that are at higher risk of surgery. Copyright © 2015 by the American Society of Nephrology.

  10. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  11. Thallium myocardial scanning in the emergency department evaluation of chest pain

    International Nuclear Information System (INIS)

    Mace, S.E.

    1989-01-01

    Chest pain is a common complaint of patients seen in the emergency department. The causes are legion, and range from the non-life threatening to the potentially catastrophic. Thallium heart scanning was done prospectively in 20 patients with a ''classic'' history for myocardial infarction (eight patients) or atypical chest pain and/or associated symptoms plus an abnormal ECG (12 patients) to discern a subset of patients from whom thallium scintography may be indicated in the emergency department. Although further investigation is needed, our preliminary study suggests that myocardial scanning with thallium can be a safe, fairly rapid, and useful objective parameter in the emergency department detection of suspected myocardial infarction, and in differential diagnosis of chest pain when other data such as the history, physical examination, ECG, or enzymes are inconclusive

  12. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2012

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  13. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2013

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  14. Pramana – Journal of Physics | News

    Indian Academy of Sciences (India)

    Three nonlinear models of physical significance, i.e. the Cahn–Hilliard equation, ... Department of Applied Mathematics, Faculty of Mathematical Science, University ... Proceedings of the International Workshop/Conference on Computational ...

  15. Department of Training and Consulting: Overview

    International Nuclear Information System (INIS)

    Dobrzynski, L.

    2000-01-01

    Full text: The educational activities, started in 1998 were successfully continued. About 1000 pupils, age 15 - 20, from high schools and students of various universities from all over Poland visited our Centre of Education and Information (bldg. 67) where the exhibition ''Nuclear wastes: problems, solutions'' is displayed. In addition to the problems specific to nuclear wastes, the visits offer special chance to talk about more general questions connected with environmental radioactivity, radiation risks as well as very basis of the atomic and nuclear radiation. Our staff also helps the pupils (and their teachers as well) visit the most important experimental sites at SINS. In addition to our permanent interest in education on the level of secondary school, the Department organised series of courses which belonged to the continuous education of some professional groups. About 150 officers of the Boarder Guard from all over Poland were trained in the basis of radiological protection, dosimetry and rules which govern the transport of radioactive materials. Almost the same problems were of interest to a group from Polish airline company LOT-CARGO. Another course, which concerned the production of radiopharmaceuticals for nuclear medicine and problems of radiation field in which the mankind lives, was organised for about 70 technicians of nuclear medicine. Last but not least, a new educational program in the high schools caused an interest of the chemistry teachers in the physics and chemistry of radioactive materials. We had the pleasure to organise appropriate course for a group of about 26 teachers from one of Polish counties (siedleckie). One can also mention that a group of 60 students from the University of Warsaw (Interfaculty Study of Environmental Protection) finished training in ecoradiology, which started in 1998. Step by step, in spite of more or less permanent lack of appropriate funds, the Department completes some educational experimental units which

  16. A new colour constancy algorithm based on automatic determination ...

    Indian Academy of Sciences (India)

    Another well-known approach in colour constancy is based on Gray-Edge hypothesis ..... where x is the edge responses in a single colour channel, C is normalization ..... on SFU Gray-Ball data set as well as the results of the Wilcoxon Sign.

  17. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  18. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K Murali1 Sudeshna Sinha2 William L Ditto3. Department of Physics, Anna University, Chennai 600 025, India; The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India; Department of Biomedical Engineering, University of Florida, Gainesville, FL 326611-6131, USA ...

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DEBMALYA DAS1 RITABRATA SENGUPTA2 ARVIND 1. Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Manauli 140 306, India; Department of Mathematical Sciences, Indian Institute of Science Education and Research, Berhampur, Govt. ITI, Berhampur (Transit Campus), ...

  1. Safeguards and Physics Measurements: Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2000-01-01

    SCK-CEN's department of Safeguards and Physics Measurements provides a wide variety of internal and external services including dosimetry, calibration, instrumentation, whole body counting, safeguards and non-destructive analysis. Main developments in these areas in 1999 are described

  2. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  3. The physics of the low-temperature plasma in Czechoslovakia

    International Nuclear Information System (INIS)

    Kracik, J.

    1985-01-01

    A survey is given of low-temperature plasma research in Czechoslovakia since 1954 and its main results are pointed out. In the first years, various processes in electric discharges and electromagnetic acceleration of plasma clusters were studied at Czechoslovak universities and in the Institute of Physics. In the study of ionization waves, Czechoslovak physicists achieved world priority. Later on, low-temperature plasma investigation began in the Institute of Plasma Physics, founded in 1959. The issues of plasma interaction with the solid state and plasma applications in plasma chemistry were studied mainly by its Department of Applied Plasma Physics. The main effort of this group, transferred recently to the Institute of Physics, is aimed at thin film production and plasma-surface interactions; similar experimental studies are also carried out at universities in Brno and Bratislava. Last but not least, arc spraying of powder materials using water-cooled plasmatrons is being developed by the Department of Plasma Technology of the Institute of Plasma Physics. (J.U.)

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. AI-PING ZHOU1 XIAO-QING LI2. School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Department of Physics, Nanjing Normal University, Nanjing, People's Republic of China ...

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2014-04-02

    Apr 2, 2014 ... Author Affiliations. T K Jha1 Keshab C Panda2. Department of Physics, BITS Pilani K K Birla Goa Campus, Goa 403 726, India; School of Physics, Sambalpur University, Jyoti Vihar 768 019, India ...

  6. Long-term observations of regional aerosol composition at two sites in Indonesia

    International Nuclear Information System (INIS)

    Maenhaut, Willy; De Ridder, Dirk J.A.; Fernandez-Jimenez, Maria-Teresa; Hooper, Martin A.; Hooper, Bev; Nurhayati, Ms

    2002-01-01

    Aerosol samples were collected with Gent PM10 stacked filter unit (SFU) samplers at Bukit Tinggi, a mountain site on Sumatra, and at Pontianak, a sea-level site on Kalimantan. The Gent PM10 SFU sampler provides two size fractions: coarse (2-10 μm equivalent aerodynamic diameter (EAD)) and fine ( 3 at Bukit Tinggi and Pontianak, respectively. For the fine fraction, the corresponding numbers were 4.5 (2.6-9.1) and 9.4 (6.5-13) μg/m 3 . Principal component analysis was applied to the fine fraction data sets in order to identify the contributing sources (source types). At Bukit Tinggi, five components were identified, i.e., a crustal component, a biomass burning component (with loadings of 0.7-0.9 for BC, K, Br, Rb and I), an oil combustion component (with S and V), a pollution component (with Sb and Pb), and a Na component

  7. Fast drift kilometric radio bursts and solar proton events

    Science.gov (United States)

    Cliver, E. W.; Kahler, S. W.; Cane, H. V.; Mcguire, R. E.; Vonrosenvinge, T. T.; Stone, R. G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times 20 min (median duration approximately 35 min).

  8. Fast drift kilometric radio bursts and solar proton events

    International Nuclear Information System (INIS)

    Cliver, E.W.; Kahler, S.W.; Cane, H.V.; Mcguire, R.E.; Vonrosenvinge, T.T.; Stone, R.G.

    1985-01-01

    Initial results of a comparative study of major fast drift kilometric bursts and solar proton events from Sep. 1978 to Feb. 1983 are presented. It was found that only about half of all intense, long duration ( 40 min above 500 sfu) 1 MHz bursts can be associated with F 20 MeV proton events. However, for the subset of such fast drift bursts accompanied by metric Type 2 and/or 4 activity (approximately 40% of the total), the degree of association with 20 MeV events is 80%. For the reverse association, it was found that proton events with J( 20 MeV) 0.01 1 pr cm(-2)s(-1)sr(-1)MeV(-1) were typically (approximately 80% of the time) preceded by intense 1 MHz bursts that exceeded the 500 sfu level for times of approx. 20 min (median duration approximately 35 min)

  9. United States Department of Energy Nuclear Materials Stewardship

    International Nuclear Information System (INIS)

    Newton, J. W.

    2002-01-01

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials

  10. Department of Nuclear Theory: Overview

    International Nuclear Information System (INIS)

    Wilk, G.

    1999-01-01

    Full text: The Department of Nuclear Theory consists of 18 physicists and 3 graduate students working on different aspects of low energy, high energy, plasma and nonlinear physics. Most of the effort is phenomenologically oriented. Close collaboration with SMC, LEAR and ALICE Collaborations at CERN must be also emphasized. The specific topics are: Studies of strangeness in nuclei stem from a long Warsaw tradition of hypernuclear physics. These include attempts to understand the elusive Σ-hypernuclei, studies of nuclear bound states of η-mesons that introduce hidden strangeness into nuclei. Some studies have been devoted to the structure of superheavy elements, which resulted in predicting properties of deformed superheavy nuclei. They are continued with calculations of collective motion, neutron haloes and energy dissipation in heavy ion collisions. An increasing effort is also devoted to research on nuclear collisions at high energies. Much attention is paid to the study of the mass of exotic nuclei. Studies in high energy physics are devoted to understanding deep inelastic lepton scattering, formal properties of the contour gauge theories, the phenomenology of high energy multiparticle and production processes in both hadronic and nuclear collisions, (especially the systematics of leading particle production in these processes). A new approach to the standard model via conformed unification of general relativity has been attempted. The new attempt at quantization of nonlinear theories has been undertaken and first positive and interesting results obtained. Theoretical studies of soliton solutions in several branches of physics are performed. Methods of testing the stability and metamorphosis of these soliton solutions have been developed. Results have implications in solid state physics as well as for plasmas and hydrodynamics. Collaborations with several universities have been maintained. These include the Universities of Warsaw, Bucharest, Kielce, T.U. Munich

  11. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  12. After an Attempt: A Guide for Taking Care of Your Family Member After Treatment in the Emergency Department

    Science.gov (United States)

    ... a doctor will evaluate the person’s physical and mental health. Emergency department staff should look for underlying physical problems that may have contributed to the suicidal behavior, such as side effects from medications, untreated medical conditions, or the presence ...

  13. Physics overview of AVLIS

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1985-02-01

    Atomic vapor laser isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention within the chemical physics community. For over a decade the US Department of Energy has funded an aggressive program in AVLIS at Lawrence Livermore National Laboratory. After extensive research, the underlying physical principles have been identified and optimized, the major technology components have been developed, and the integrated enrichment performance of the process has been tested under realistic conditions. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws that can be used to scope out new applications are fomulated. The two primary applications of major interest to the Department of Energy are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. In FY 1984 the total AVLIS funding level for these two missions was approximately $150M. In addition to these primary missions, a variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radio-thermal mechanical generators. We will see that the ability to rapidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology

  14. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2007-01-01

    The scientific activity of our department is traditionally focused on nuclear physics, atomic physics and material research. Our interest in nuclear physics is broad, ranging from the structure of a nucleon to the structure of the nucleus. The spin structure of a nucleon has been investigated within the HERMES Collaboration which comprises 32 institutions from 11 countries. The collaboration performs experiments at Deutches Elektronen-Synchrotron in Hamburg. Another large-scale international collaboration we are participating in is PANDA. The PANDA (antiProton ANnihilation at DArmstadt) experiment will be installed at the High Energy Storage Ring for antiprotons of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. Our colleagues, led by Dr. B. Zwieglinski, have been working on the concept of a calorimeter, testing different scintillators. Many experiments in low energy nuclear physics were performed in collaboration with University of Jyvaeskylae, the Institute of Nuclear Research of the Ukrainian Academy of Science and Heavy Ion Laboratory of the Warsaw University. They were devoted to studying nucleus-nucleus interactions near the Coulomb barrier. This year, atomic studies focused on the L-shell ionisation of some heavy elements by silicon ions accelerated to the energy of 8.5-36 MeV. The results are presented in this report and are compared to different model calculations. Finally, I take great pleasure in congratulating Dr. L. Nowicki, whose study of uranium oxide structure, performed in collaboration with Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse in Orsay, was chosen as an important scientific achievement of our Institute in 2006. Apart from purely scientific activities, a few of our colleagues have been involved in education, giving lectures to students from high schools in Warsaw and Warsaw University. R. Ratajczak contributed to the 10 th Science Festival, an event organized for the general public every year

  15. Moscow State University physics alumni and the Soviet Atomic Project

    International Nuclear Information System (INIS)

    Kiselev, Gennadii V

    2005-01-01

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics. (from the history of physics)

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. P Udomsamuthirun1 C Kumvongsa2 A Burakorn1 P Changkanarth1. Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Department of Basic Science, School of Science, The University of the Thai Chamber of Commerce, Dindaeng, Bangkok 10400, Thailand ...

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Aarti Girdhar1 2. Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chatnaag Road, Jhunsi, Allahabad 211 019, India; Department of Physics, Dr B R Ambedkar National Institute of Technology, Jalandhar 144 011, India ...

  18. Science Academies' 82nd Refresher Course on Experimental Physics

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Experimental Physics will be held at Department of Physics, ... the participants to gain hands on experience with set of new experiments developed as a low cost kit by the Indian Academy of Sciences, Bangalore, Indian ...

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 3 ... 12–14 data points are used to study the viability of the model in late time. ... Department of Physics, Surendra Institute of Engineering & Management, Siliguri 734 009, India ...

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. A Cooper-Sarkar1 P Mertsch2 S Sarkar2. Department of Particle Physics, University of Oxford, Keble Road, Oxford OX1 3RQ, UK; Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK ...