WorldWideScience

Sample records for seyfert galaxies ii

  1. An evolutionary link between Seyfert I and II galaxies

    International Nuclear Information System (INIS)

    Penston, M.V.; Perez, E.

    1984-01-01

    First spectra from the newly sited Isaac Newton Telescope show NGC 4151 and 3C 390.3 to have taken on a classification very close to Seyfert II. It is proposed that Seyfert II galaxies are Seyfert Is in which the continuum source is temporarily off. (author)

  2. The group environment of Seyfert galaxies. II. Spectrophotometry of galaxies in groups

    International Nuclear Information System (INIS)

    Fricke, K.J.; Kollatschny, W.

    1989-01-01

    Medium-resolution spectrophotometric data of 104 galaxies have been obtained. These galaxies are members of 22 loose groups of < 1 Mpc size. Thirteen of these groups contain Seyfert galaxies. In this paper we present calibrated emission-line data and absolute optical spectra of the individual galaxies as well as plates of each group

  3. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  4. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  5. Evolutionary behaviour of AGN: Investigations on BL Lac objects and Seyfert II galaxies

    Science.gov (United States)

    Beckmann, V.

    2000-12-01

    The evolution and nature of AGN is still one of the enigmatic questions in astrophysics. While large and complete Quasar samples are available, special classes of AGN, like BL Lac objects and Seyfert II galaxies, are still rare objects. In this work I present two new AGN samples. The first one is the HRX-BL Lac survey, resulting in a sample of X-ray selected BL Lac objects. This sample results from 223 BL Lac candidates based on a correlation of X-ray sources with radio sources. The identification of this sample is 98% complete. 77 objects have been identified as BL Lac objects and form the HRX-BL Lac complete sample, the largest homogeneous sample of BL Lac objects existing today. For this sample, redshifts are now known for 62 objects (81 %). In total I present 101 BL Lac objects in the enlarged HRX-BL Lac survey, for which redshift information is available for 84 objects. During the HRX-BL Lac survey I found several objects of special interest. 1ES 1517+656 turned out to be the brightest known BL Lac object in the universe. 1ES 0927+500 could be the first BL Lac object with a line detected in the X-ray region. RX J1211+2242 is probably the the counterpart of the up to now unidentified gamma-ray source 3EG J1212+2304. Additionally I present seven candidates for ultra high frequency peaked BL Lac objects. RX J1054+3855 and RX J1153+3517 are rare high redshift X-ray bright QSO or accreting binary systems with huge magnetic fields. For the BL Lac objects I suggest an unified scenario in which giant elliptical galaxies, formed by merging events of spiral galaxies at z > 2, start as powerful, radio dominated BL Lacs. As the jet gets less powerful, the BL Lacs start to get more X-ray dominated, showing less total luminosities (for z definition to objects with a calcium break up to 40%, but do not support for the HBL the idea of allowing emission lines in the spectra of BL Lac galaxies. A way to find high redshift BL Lac objects might be the identification of faint X

  6. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.

    2005-01-01

    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability ...... are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request....

  7. Demographics of Starbursts in Nearby Seyfert Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  8. Spectrophotometry of the Seyfert galaxy NGC 4593

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Williams, G.A.; Lewis, D.W.

    1979-01-01

    Spectrophotometry of the bright class 1 Seyfert galaxy NGC 4593 is presented. The emission-line characteristics are briefly discussed and compared with those of other Seyfert galaxies. The measured hydrogen Balmer-line ratios are reasonably consistent with expected recombination values, and the emission intensities of Fe II, He I 5876, and forbidden O III 4363 relative to other lines are stronger than average in NGC 4593

  9. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  10. Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1

    Science.gov (United States)

    Bruhweiler, F.; Verner, E.

    2008-03-01

    We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.

  11. Connection between Seyfert galaxies and clusters

    International Nuclear Information System (INIS)

    Petrosyan, A.R.

    1988-01-01

    To identify Seyfert galaxies that are members of clusters, the sample of known Seyfert galaxies (464 objects) is tested against the Zwicky, Abell, and southern clusters. On the basis of the criteria adopted in the paper, 67 Seyfert galaxies are selected as probable members of Zwicky clusters, 15 as members of Abell clusters, and 18 as members of southern clusters. Lists of these objects are given

  12. Properties of Narrow line Seyfert 1 galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line 10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  13. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties

    Science.gov (United States)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.

    1987-01-01

    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  14. Spectroscopy of the galaxy components of N and Seyfert galaxies

    International Nuclear Information System (INIS)

    Boroson, T.A.; Oke, J.B.; Palomar Observatory, Pasadena, CA)

    1987-01-01

    Nuclear and off-nuclear spectra of nine active galaxies are presented. The sample consists of four Seyfert galaxies, two N galaxies, one Seyfert radio galaxy, and one liner/Seyfert 2 galaxy. All of the objects show continuum emission off the nucleus. Four clearly show absorption features from a stellar population. Velocities have been measured for the off-nuclear emission and absorption lines. In the case of I Zw 1, the absorption-line velocities are inconsistent with 21-cm H I measurements of this object. 26 references

  15. The circumnuclear environment of nearby non-interacting Seyfert galaxies

    International Nuclear Information System (INIS)

    Pogge, R.W.

    1988-01-01

    An investigation into the physical conditions prevailing in the regions immediately surrounding the active nuclei in 20 nearby, non-interacting Seyfert galaxies is reported. CCD interference-band images isolating the bright emission lines of Hα + [N II] λλ6548, 6583 and [O III] λ5007 have been obtained to search for spatially extended circumnuclear emission regions. Long-slit, low resolution spectrophotometry of interesting cases was used to probe the ionization state of the extended emission regions. For comparison, a CCD Hα + [N II] interference-band imaging survey of a statistically significant sample of 91 bright non-Seyfert spiral galaxies meeting the same non-interaction criteria has been carried out. Only three out of nine Seyfert 1s have spatially extended ionized gas regions compared with eight out of eleven Seyfert 2s. Enhanced circumnuclear star formation is uncommon to both Seyfert 1s and 2s. Extended emission in Seyfert 1s has essentially the same morphology in both Hα + [N II] and [O III] emission. In the Seyfert 2s, the Hα + [N II] and [O III] images show different extended emission morphologies. The [O III] emission regions appear as either one- or two-sided structures, four of which are resolved into two distinct cones of high-ionization gas emanating from the active nucleus. The morphology and ionization of these regions suggest collimation of the nuclear ionizing radiation field. The 91 non-interacting non-Seyfert spiral galaxies exhibit a rich variety of nuclear and circumnuclear emission-line structures ranging from no emission detected to bright stellar nuclei with complicated circumnuclear emission regions extending for many kiloparsecs

  16. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S. [Indian Institute of Astrophysics, Koramangala 2 B Block, Bangalore 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, CNRS, UMR 8112, 61 Avenue de l’Observatoire, F-75014 Paris (France); Jin, Chichuan [Qian Xuesen Laboratory for Space Technology, Beijing (China); Banfield, Julie [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 Australia (Australia); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square South, New York, NY 10012 (United States); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Srivastava, Shweta, E-mail: Michael.Dopita@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  18. H α IMAGING OF NEARBY SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Theios, Rachel L.; Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Ross, Nathaniel R., E-mail: rtheios@astro.caltech.edu [Raytheon Space and Airborne Systems, 2000 E El Segundo Boulevard, El Segundo, CA 90245 (United States)

    2016-05-01

    We used narrowband (Δ λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby ( z < 0.03) Seyfert galaxies in the 12 μ m active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10{sup −15} erg cm{sup −2} s{sup −1} arcsec{sup −2}, and corrected these images for [N ii] emission and extinction. We separated the H α emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended H α emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μ m polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The H α luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear H α emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of H α emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log( L {sub Hα}/erg s

  19. The Occurence of Nuclear Starbursts in Seyfert 1 Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.

    2001-05-01

    Medium resolution H and K band spectra with high angular reesolution were obtained for a small sample of nearby Seyfert galaxies using NIRSPEC at the Keck telescope. Recent studies with medium resolution have found evidence for a lack of powerful starbursts in Seyfert1 galaxies. Differences between the two Seyfert types might provide a challenge for the unified scheme proposed for Seyfert galaxies. A preliminary analysis indicates that most of the Seyfert1 galaxies do indeed show signs of circumnuclar star formation. Detailed modelling using population synthesis in conjunction with NIR spectral synthesis will allow to estimate the age, star formation history and mass of these stellar population.

  20. Line profile variations in selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Kollatschny, W; Zetzl, M; Ulbrich, K

    2010-01-01

    Continua as well as the broad emission lines in Seyfert 1 galaxies vary in different galaxies with different amplitudes on typical timescales of days to years. We present the results of two independent variability campaigns taken with the Hobby-Eberly Telescope. We studied in detail the integrated line and continuum variations in the optical spectra of the narrow-line Seyfert galaxy Mrk 110 and the very broad-line Seyfert galaxy Mrk 926. The broad-line emitting region in Mrk 110 has radii of four to 33 light-days as a function of the ionization degree of the emission lines. The line-profile variations are matched by Keplerian disk models with some accretion disk wind. The broad-line region in Mrk 926 is very small showing an extension of two to three light-days only. We could detect a structure in the rms line-profiles as well as in the response of the line profile segments of Mrk 926 indicating the BLR is structured.

  1. Broad line regions in Seyfert-1 galaxies

    International Nuclear Information System (INIS)

    Groningen, E. van.

    1984-01-01

    To reproduce observed emission profiles of Seyfert galaxies, rotation in an accretion disk has been proposed. In this thesis, the profiles emitted by such an accretion disk are investigated. Detailed comparison with the observed profiles yields that a considerable fraction can be fitted with a power-law function, as predicted by the model. The author analyzes a series of high quality spectra of Seyfert galaxies, obtained with the 2.5m telescope at Las Campanas. He presents detailed analyses of two objects: Mkn335 and Akn120. In both cases, strong evidence is presented for the presence of two separate broad line zones. These zones are identified with an accretion disk and an outflowing wind. The disk contains gas with very high densities and emits predominantly the lower ionization lines. He reports on the discovery of very broad wings beneath the strong forbidden line 5007. (Auth.)

  2. A new southern Seyfert 1 galaxy

    CERN Document Server

    West, R M; Danks, A C

    1978-01-01

    ESO 140-G43 (Fairall-51) is confirmed as a 14/sup m/ type 1 Seyfert galaxy at V/sub 0/=4150 km s/sup -1/. M/sub V/=-20.8; largest diameter 40 kpc (H/sub 0/=55 km s/sup -1/ Mpc/sup -1/). It has two open spiral arms. R.A.=18/sup h/40/sup m/.2; Decl.=-62 degrees 25' (1950). (8 refs).

  3. The Frequency of Circumnuclear Starbursts in Seyfert Galaxies --- Testing the Starburst-AGN Connection

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T. M.

    We obtained sub-arcsecond medium resolution near-infrared spectra of a sample of nearby bright Seyfert galaxies (8 Seyfert 1s, 11 Seyfert 2s) using the KeckII telescope. The stellar absorption lines present in the spectra were used in conjunction with population synthesis models to determine the age of the circumnuclear stellar population. Initial analysis of a sub-sample of the Seyfert galaxies has provided no evidence for a connection between the age of the circumnuclear stellar population and the Seyfert type. The derived ages for the circumnuclear stellar population are in the range of 10 Myr to < 0.5 Gyr assuming an instantaneous starburst (using the STARBURST99 models).

  4. Optical variability of the Seyfert galaxy nuclei

    International Nuclear Information System (INIS)

    Lyutyj, V.M.

    1979-01-01

    The results of the UBV observations of compact Seyfert galaxies during 1968-78 are given. The full amplitude ΔB approximately 2sup(m) of the variability of the nucleus of 3C 120 is considerably larger than that of any other Seyfert galaxy. The minimum brightness of 3C 120 in 1978, B=16sup(m).25 was observed for the first time during the photometric history of the object since 1900. The time delay Δt < or approximately 70sup(d) of the variability of colour index U-B of the nucleus of 3C 120 relatively to that of B and B-V have been discovered. This time delay is interpreted as the variability of the Balmer continuum. The nucleus of 2 Zw 136 appears to show such a variability also. The location of 3C 120 and 2 Zw 136 on two-colour diagram corresponds to the combined colours of hot (05) and cold (K-M) stars, if the time delay of U-B variability is taken into account. The colour indices of the nucleus of 3C 120 during the minimum of 1978 (B=16sup(m).25) correspond to those of the ring between the 7''-30'' apertures. This indicates to a very small contributions of the variable source during the 1978 minimum

  5. VLA Observation of Seyfert Galaxy MRK 6

    Science.gov (United States)

    Xu, C.; Baum, S. A.; O'Dea, C.; Colbert, E. J. M.

    1997-12-01

    We have obtained deep radio observation of the Seyfert 1.5 galaxy Mrk6 with all VLA configurations at 6 and 20 cm. We confirm the existence of two pairs of diffuse low surface brightness radio lobes at different scales and orientations. The larger pair of lobes extend ( ~ 40" or 20 kpc) ~ 30(deg) NW-SE, and is evidence of starburst-driven superwind as suggested in Baum et. al (1993). The outer lobes are roughly perpendicular to a set of inner lobes which extend ( ~ 4" or 2 kpc) E-W and are in turn perpendicular to the inner jets imaged by Kukula et. al (1996). Both pairs of lobes appear to have shell-like structures, as implied by the observed anti-symmetric emission morphology which might be due to limb brightening as a result of increasing optical depth at the line of sight. The width of each structure is comparable to the length of the next smaller structure suggesting a "self-similar" (and possibly dynamical) relationship between these structures. These nested "bubble-like" structures with different orientations pose a challenge to the current paradigm of energy transport in Seyfert galaxies.

  6. Inclination effects on the recognition of Seyfert galaxies

    International Nuclear Information System (INIS)

    Keel, W.C.

    1980-01-01

    Axial ratios have been measured from images of 91 Seyfert galaxies thought to be disk systems, and their distribution as a function of axial ratio compared to that of field spirals similarly distributed in distance. There is a deficiency of nearly edge-on Seyfert 1 galaxies relative to the comparison sample. Examination of the visibility of nuclei in a sample of nearby spirals indicates that the effect is too large to be caused by absorption in the disks of normal spiral galaxies, while no absorption other than that expected from such disks is found in non-Seyfert Markarian spirals with bright, condensed nuclei

  7. The origin of coronal lines in Seyfert galaxies

    International Nuclear Information System (INIS)

    Korista, K.T.; Ferland, G.J.

    1989-01-01

    This paper examines the possibility that the coronal line region in Seyfert galaxies may be the result of an interstellar medium (ISM) exposed to, and subsequently photoionized by, a 'bare' Seyfert nucleus. It is shown that a 'generic' AGN continuum illuminating the warm-phase of the ISM of a spiral galaxy can produce the observed emission. In this picture the same UV-radiation cone that is responsible for the high-excitation extended narrow-line emission clouds observed out to 1-2 kpc or farther from the nuclei of some Seyfert galaxies also produces the coronal lines. Soft X-rays originating in the nucleus are Compton-scattered off the ISM, thus producing extended soft X-ray emission, as observed in NGC 4151. The results of the calculations show a basic insensitivity to the ISM density, which explains why similar coronal line spectra are found in many Seyfert galaxies of varying physical environments. 60 refs

  8. Infrared observations of Seyfert galaxies and quasars

    International Nuclear Information System (INIS)

    Neugebauer, G.

    1978-01-01

    The infrared energy distributions of the Seyfert galaxies apparently contain three components: a galactic stellar component, a thermal component from heated dust, plus a nonthermal component. The appearance of the infrared energy distribution depends on which component dominates. There is also a correlation observed between the infrared energy distribution and the Khachikian Weedman class. Preliminary data on bright quasars are given. The infrared energy distributions generally increase into the infrared with a power law slope of approximately 1. In detail they differ from power laws with a significant fraction emitting most of their energy near 3μm. No differences in radio loud and radio quiet are obvious from the infrared energy distributions. The variability of the quasars in the infrared is generally correlated with the variability in the visible, although significant exceptions have been observed. (Auth.)

  9. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    International Nuclear Information System (INIS)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R. J.; Bord, D. J.

    2014-01-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 10 7 M ☉ , consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  10. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 298409 (Russian Federation); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015 Tokyo (Japan); Siverd, R. J. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J., E-mail: peterson.12@osu.edu [Department of Natural Sciences, The University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  11. On the driver of relativistic effect strength in Seyfert galaxies

    Czech Academy of Sciences Publication Activity Database

    Guainazzi, M.; Bianchi, S.; de La Calle, I.; Dovčiak, Michal; Longinotti, A. L.

    2011-01-01

    Roč. 531, July (2011), A131/1-A131/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * relativistic processes * nuclei galaxies * Seyfert galaxy * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  12. Seyfert Galaxies: Radio Continuum Emission Properties and the ...

    Indian Academy of Sciences (India)

    sample of Seyfert galaxies in the framework of the unification scheme. Key words. Galaxies: ... 25/49 sub-fields. Self-calibration is used iteratively to improve the image quality. 4. ... Antonucci, R. R. J., Miller, J. S. 1985, Astrophys. J., 297, 621.

  13. POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Sargent, Wallace L. W.

    2004-05-01

    We describe new optical images and spectra of POX 52, a dwarf galaxy with an active nucleus that was originally detected in the POX objective-prism survey. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with broad components to the permitted line profiles, and we classify POX 52 as a Seyfert 1 galaxy. The host galaxy appears to be a dwarf elliptical, and its brightness profile is best fit by a Sérsic model with an index of 3.6+/-0.2 and a total magnitude of MV=-17.6. Applying mass-luminosity-line width scaling relations to estimate the black hole mass from the broad Hβ line width and nonstellar continuum luminosity, we find MBH~1.6×105Msolar. The stellar velocity dispersion in the host galaxy, measured from the Ca II λ8498, 8542 lines, is 36+/-5 km s-1, also suggestive of a black hole mass of order 105Msolar. Further searches for active nuclei in dwarf galaxies can provide unique constraints on the demographics of black holes in the mass range below 106Msolar.

  14. Narrow-Line Seyfert 1 Galaxies

    OpenAIRE

    Komossa, S.

    2007-01-01

    Presento una revisión breve de las propiedades conocidas de las galaxias Seyfert 1 con líneas angostas (NLS1) en todo el espectro electromagnético y de los modelos propuestos para explicarlas. Sus propiedades de continuo y de emisión de líneas manifiestan una forma extrema de la actividad Seyfert. Las galaxias NLS1 en sí pueden ofrecer pistas importantes para discernir los parámetros que impulsan la actividad nuclear. Sus tasas de acreción altas y cercanas a la tasa de Eddington proveen...

  15. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample

    Science.gov (United States)

    Liu, He-Yang; Yuan, Weimin; Dong, Xiao-Bo; Zhou, Hongyan; Liu, Wen-Juan

    2018-04-01

    A new sample of 204 low-mass black holes (LMBHs) in active galactic nuclei (AGNs) is presented with black hole masses in the range of (1–20) × 105 M ⊙. The AGNs are selected through a systematic search among galaxies in the Seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS), and careful analyses of their optical spectra and precise measurement of spectral parameters. Combining them with our previous sample selected from SDSS DR4 makes it the largest LMBH sample so far, totaling over 500 objects. Some of the statistical properties of the combined LMBH AGN sample are briefly discussed in the context of exploring the low-mass end of the AGN population. Their X-ray luminosities follow the extension of the previously known correlation with the [O III] luminosity. The effective optical-to-X-ray spectral indices α OX, albeit with a large scatter, are broadly consistent with the extension of the relation with the near-UV luminosity L 2500 Å. Interestingly, a correlation of α OX with black hole mass is also found, with α OX being statistically flatter (stronger X-ray relative to optical) for lower black hole masses. Only 26 objects, mostly radio loud, were detected in radio at 20 cm in the FIRST survey, giving a radio-loud fraction of 4%. The host galaxies of LMBHs have stellar masses in the range of 108.8–1012.4 M ⊙ and optical colors typical of Sbc spirals. They are dominated by young stellar populations that seem to have undergone continuous star formation history.

  16. Quasars, Seyfert galaxies and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1987-01-01

    This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented

  17. Optical polarization position angle versus radio structure axis in Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R R.J. [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1983-05-12

    The hypothesis that there are two polarization classes of Seyfert galaxies, analogous to the perpendicular and parallel radio galaxy groups, is investigated by examining optical polarimetry data. In the sample considered it is shown that all the Seyfert 1 galaxies have roughly parallel polarization while all the Seyfert 2 galaxies have roughly perpendicular polarizations. These alignment effects can be interpreted as being due to thin and thick scattering disks, respectively, surrounding the continuum sources. This would represent a fundamental difference between the two types of Seyfert galaxies.

  18. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    International Nuclear Information System (INIS)

    Ulvestad, J.S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle. 39 references

  19. Infrared studies of Seyfert galaxies and of the irregular galaxy M82

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.

    1985-01-01

    Middle and far infrared studies of the irregular galaxy M82 and of Seyfert galaxies are presented. M 82 was observed spectrophotometrically from 8 to 13 microns at 6 different positions selected across its 10μm emitting region. The observations show that the mid-IR emitting region is fairly homogeneous and that similar physical processes are responsible for the emission observed throughout the central region of M82. A model is proposed to explain the 8 to 13μm spectrum of M82. A model accumulates 10 5 orion units in the central region of M82. The proposed model explains satisfactorily most of the observed properties of M82 from x-ray to radio wavelengths. It is also suggested that a similar model may be applied to other active nuclei, like the emission line galaxy NGC 1614 and the classical Seyfert 1 galaxy NGC 7469. For Seyfert galaxies, the dat analyzed are drawn from the recently released IRAS catalog. It is found that Seyfert galaxies are strong far infrared sources but, unlike the near and mid-IR emission from these sources, the far-IR emission does not appear to be produced by the active nucleus. Rather it is shown that the observed far-IR properties of Seyfert galaxies are consistent with their far-IR emission being produced in intense episodes of star formation taking place in or near the central regions of these galaxies

  20. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  1. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  2. Extended Narrow-Line Region in Seyfert Galaxies

    International Nuclear Information System (INIS)

    Congiu, Enrico; Contini, Marcella; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  3. NEAR-INFRARED SPECTROSCOPY OF NEARBY SEYFERT GALAXIES: IS THERE EVIDENCE FOR SHOCK EXCITATION IN NARROW-LINE REGIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Terao, K. [Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Nagao, T.; Toba, Y. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Hashimoto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan (China); Yanagisawa, K. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata-cho, Asaguchi, Okayama 719-0232 (Japan); Matsuoka, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ikeda, H. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, 181-8588 (Japan); Taniguchi, Y., E-mail: terao@cosmos.phys.sci.ehime-u.ac.jp [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan)

    2016-12-20

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257  μ m and [P ii]1.188  μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition to our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.

  4. Multiwavelength Observations of the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Rutledge, R. E.; Greene, J. E.

    2006-12-01

    POX 52 is an unusual narrow-line Seyfert 1 galaxy, having an estimated black hole mass of order 105 solar masses and a dwarf host galaxy with an absolute magnitude of only MV = -17.6, which gives us a unique opportunity to study black hole-bulge relations in the low-mass regime. We present new observations from a multiwavelength campaign to study its active nucleus and host galaxy. The data include observations from the Chandra and XMM-Newton Observatories, the Hubble Space Telescope, and the Very Large Array. Chandra data show a highly variable point source with a 2.0 10.0 keV luminosity of 0.7 * 1042 ergs/s. We will also describe the X-ray spectral shape, the structure of the host galaxy as determined from GALFIT modeling of the HST ACS/HRC images, and the spectral energy distribution of the active nucleus.

  5. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    International Nuclear Information System (INIS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-01-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ∼0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L bol lower limit of ≥0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved

  6. A millimeter-wave survey of CO emission in Seyfert galaxies

    International Nuclear Information System (INIS)

    Heckman, T.M.; Blitz, L.; Wilson, A.S.; Armus, L.; Miley, G.K.

    1989-01-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years. 129 refs

  7. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NARCIS (Netherlands)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-01-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio

  8. Einstein SSS+MPC observations of Seyfert type galaxies

    Science.gov (United States)

    Holt, S. S.; Turner, T. J.; Mushotzky, R. F.; Weaver, K.

    1989-01-01

    The X-ray spectra of 27 Seyfert galaxies measured with the Solid State Spectrometer (SSS) onboard the Einstein Observatory is investigated. This new investigation features the utilization of simultaneous data from the Monitor Proportional Counter (MPC) and automatic correction for systematic effects in the SSS. The new results are that the best-fit single power law indices agree with those previously reported, but that soft excesses are inferred for at least 20 percent of the measured spectra. The soft excesses are consistent with either an approximately 0.25 keV black body or Fe-L line emission.

  9. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    Science.gov (United States)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  10. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, C. S.

    2017-06-01

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  11. PHYSICAL CONDITIONS IN THE INNER NARROW-LINE REGION OF THE SEYFERT 2 GALAXY MARKARIAN 573

    International Nuclear Information System (INIS)

    Kraemer, S. B.; Trippe, M. L.; Crenshaw, D. M.; Fischer, T. C.; Melendez, M.; Schmitt, H. R.

    2009-01-01

    We have examined the physical conditions within a bright emission-line knot in the inner narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573 using optical spectra and photoionization models. The spectra were obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph, through the 0.''2 x 52.''0 slit, at a position angle of -71. 0 2, with the G430L and G750M gratings. Comparing the spatial emission-line profiles, we found [Fe X] λ 6734 barely resolved, [O III] λ5007 centrally peaked, but broader than [Fe X], and [O II] λ3727 the most extended. Spectra of the central knot were extracted from a region 1.''1 in extent, corresponding to the full width at zero intensity in the cross-dispersion direction, of the knot. The spectra reveal that [Fe X] is broader in velocity width and blueshifted compared with lines from less ionized species. Our estimate of the bolometric luminosity indicates that the active galactic nucleus (AGN) is radiating at or above its Eddington luminosity, which is consistent with its identification as a hidden Narrow-Line Seyfert 1. We were able to successfully match the observed emission-line ratios with a three-component photoionization model. Two components, one to account for the [O III] emission and another in which the [Fe X] arises, are directly ionized by the AGN, while [O II] forms in a third component, which is ionized by a heavily absorbed continuum. Based on our assumed ionizing continuum and the model parameters, we determined that the two directly ionized components are ∼55 pc from the AGN. We have found similar radial distances for the central knots in the Seyfert 2 galaxies Mrk 3 and NGC 1068, but much smaller radial distances for the inner NLR in the Seyfert 1 galaxies NGC 4151 and NGC 5548. Although in general agreement with the unified model, these results suggest that the obscuring material in Seyfert galaxies extends out to at least tens of parsecs from the AGN.

  12. NICMOS POLARIMETRY OF 'POLAR-SCATTERED' SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Batcheldor, D.; Robinson, A.; Axon, D. J.; Young, S.; Quinn, S.; Smith, J. E.; Hough, J.; Alexander, D. M.

    2011-01-01

    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six 'polar-scattered' Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus ( 2μm ) is consistent with the average for the optical spectrum(θ v ), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between θ 2μm and θ v off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (∼60 0 ) in θ 2 μ m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.

  13. A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles

    Science.gov (United States)

    Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.

    2006-11-01

    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.

  14. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  15. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  18. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2017-06-20

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  19. Some implications of excess soft X-ray emission from Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Fabian, A.C.; Guilbert, P.W.; Arnaud, K.A.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.

    1986-01-01

    The X-ray spectrum of Seyfert 1 galaxies is characterized by a hard power-law spectrum. It is often postulated that this maintains a Compton-heated two-phase Broad-Line Region (BLR) around the central source. It is shown here that the strong excess soft X-ray emission observed in MKN 841 and other Seyfert galaxies invalidates this model if the BLR is spherically symmetric. Alternatives are proposed. (author)

  20. Interpretation of the X-ray variability of type 1 Seyfert galaxy nuclei and quasars

    International Nuclear Information System (INIS)

    Zentsova, A.S.

    1985-01-01

    The hypothesis is analyzed that the X-ray variability of type 1 Seyfert galaxies ad quasars causes the absorption of the central object X radiation by emission clouds. It is shown that this hypothesis can explain the characteristic time scale of the X-ray variability and its amplitude. It is indicated that systematic X-ray observations of Seyfert galaxies and quasars for the investigation of the physical conditions in the emission clouds are important

  1. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015, Tokyo (Japan); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J. [Department of Natural Sciences, The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2012-08-10

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 A continuum and the H{beta} broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M{sub BH} and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  2. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R.; Bord, D. J.; Che, X.

    2012-01-01

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 Å continuum and the Hβ broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M BH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  3. X-ray spectral variability of Seyfert 2 galaxies

    Science.gov (United States)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319

  4. MULTI-WAVELENGTH PROBES OF OBSCURATION TOWARD THE NARROW-LINE REGION IN SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Kraemer, S. B.; Schmitt, H.R.; Crenshaw, D. M.; Melendez, M.; Turner, T.J.; Guainazzi, M.; Mushotzky, R.F.

    2011-01-01

    We present a study of reddening and absorption toward the narrow line regions (NLRs) in active galactic nuclei (AGNs) selected from the Revised Shapley-Ames, 12 μm, and Swift/Burst Alert Telescope samples. For the sources in host galaxies with inclinations of b/a > 0.5, we find that the mean ratio of [O III] λ5007, from ground-based observations, and [O IV] 28.59 μm, from Spitzer/Infrared Spectrograph observations, is a factor of two lower in Seyfert 2s than Seyfert 1s. The combination of low [O III]/[O IV] and [O III] λ4363/λ5007 ratios in Seyfert 2s suggests more extinction of emission from the NLR than in Seyfert 1s. Similar column densities of dusty gas, N H ∼ several x 10 21 cm -2 , can account for the suppression of both [O III] λ5007 and [O III] λ4363, as compared to those observed in Seyfert 1s. Also, we find that the X-ray line O VII λ22.1 A is weaker in Seyfert 2s, consistent with absorption by the same gas that reddens the optical emission. Using a Hubble Space Telescope/Space Telescope Imaging Spectrograph slitless spectrum of the Seyfert 1 galaxy NGC 4151, we estimate that only ∼30% of the [O III] λ5007 comes from within 30 pc of the central source, which is insufficient to account for the low [O III]/[O IV] ratios in Seyfert 2s. If Seyfert 2 galaxies have similar intrinsic [O III] spatial profiles, the external dusty gas must extend further out along the NLR, perhaps in the form of nuclear dust spirals that have been associated with fueling flows toward the AGN.

  5. NGC 985 - Extended ionized regions and the far-infrared luminosity of a ring-shaped Seyfert galaxy

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.; Stanga, R.M.

    1990-01-01

    Narrow-band H-alpha images and long-slit spectroscopy of the Seyfert galaxy NGC 985 are presented. Large-scale extended ionized zones are seen to cover a significant fraction of the ring of this object. These ionized zones are responsible for a considerable fraction (greater than 35 percent) of the far-infrared emission of NGC 985. These ionized zones are interpreted as giant H II region complexes, formed in a recent burst of star formation. It is also argued that that starburst was triggered by a galaxy interaction. 41 refs

  6. 3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    NARCIS (Netherlands)

    Mundell, C. G.; Dumas, G.; Schinnerer, E.; Nagar, N.; Wilcots, E.; Wilson, A. S.; Emsellem, E.; Ferruit, P.; Peletier, R. F.; De Zeeuw, P. T.; Haan, S.

    Abstract: We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study

  7. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  8. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    Science.gov (United States)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-05-01

    We derive a new relation between the metallicity of Seyfert 2 active galactic nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2 = log([N II] λ6584/[O II] λ3727). The calibration of this relation was performed by determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the cloudy code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission-line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that the narrow-line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z⊙ ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density and the colour excess E(B - V) with the metallicity in this kind of objects, we do not find correlations between them.

  9. CORRELATION ANALYSIS OF A LARGE SAMPLE OF NARROW-LINE SEYFERT 1 GALAXIES: LINKING CENTRAL ENGINE AND HOST PROPERTIES

    International Nuclear Information System (INIS)

    Xu Dawei; Komossa, S.; Wang Jing; Yuan Weimin; Zhou Hongyan; Lu Honglin; Li Cheng; Grupe, Dirk

    2012-01-01

    We present a statistical study of a large, homogeneously analyzed sample of narrow-line Seyfert 1 (NLS1) galaxies, accompanied by a comparison sample of broad-line Seyfert 1 (BLS1) galaxies. Optical emission-line and continuum properties are subjected to correlation analyses, in order to identify the main drivers of the correlation space of active galactic nuclei (AGNs), and of NLS1 galaxies in particular. For the first time, we have established the density of the narrow-line region as a key parameter in Eigenvector 1 space, as important as the Eddington ratio L/L Edd . This is important because it links the properties of the central engine with the properties of the host galaxy, i.e., the interstellar medium (ISM). We also confirm previously found correlations involving the line width of Hβ and the strength of the Fe II and [O III] λ5007 emission lines, and we confirm the important role played by L/L Edd in driving the properties of NLS1 galaxies. A spatial correlation analysis shows that large-scale environments of the BLS1 and NLS1 galaxies of our sample are similar. If mergers are rare in our sample, accretion-driven winds, on the one hand, or bar-driven inflows, on the other hand, may account for the strong dependence of Eigenvector 1 on ISM density.

  10. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    Science.gov (United States)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  11. MASS OUTFLOW IN THE SEYFERT 1 GALAXY NGC 5548

    International Nuclear Information System (INIS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Kaastra, J. S.; Arav, N.; Gabel, J. R.; Korista, K. T.

    2009-01-01

    We present a study of the intrinsic UV absorption and emission lines in an historically low-state spectrum of the Seyfert 1 galaxy NGC 5548, which we obtained in 2004 February at high spatial and spectral resolution with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We isolate a component of emission with a width of 680 km s -1 that arises from an 'intermediate-line region' (ILR), similar to that we discovered in NGC 4151, at a distance of ∼1 pc from the central continuum source. From a detailed analysis of the five intrinsic absorption components in NGC 5548 and their behavior over a span of eight years, we present evidence that most of the UV absorbers only partially cover the ILR and do not cover an extended region of UV continuum emission, most likely from hot stars in the circumnuclear region. We also find that four of the UV absorbers are at much greater distances (greater than 70 pc) than the ILR, and none have sufficient N V or C IV column densities to be the ILR in absorption. At least a portion of the UV absorption component 3, at a radial velocity of -530 km s -1 , is likely responsible for most of the X-ray absorption, at a distance less than 7 pc from the central source. The fact that we see the ILR in absorption in NGC 4151 and not in NGC 5548 suggests that the ILR is located at a relatively large polar angle (∼45 deg.) with respect to the narrow-line region outflow axis.

  12. HE I triplet line emission in class 1 Seyfert galaxies

    International Nuclear Information System (INIS)

    Feldman, F.R.

    1979-01-01

    The equation of statistical equilibrium were solved for an 11-level helium atom, including all important radiative and collisional transitions and allowing for self-absorption from any level. Gas physical conditions considered are 5 x 10 8 cm -3 less than or equal to N less than or equal to 5 x 10 10 cm -3 , 5000 K less than or equal to T less than or equal to 20,000 K and a range of optical depth in the lambda 10830 line (10 less than or equal to tau(lambda 10830) less than or equal to 500) as a free parameter. For a photoionized, optically thick cloud, tau(lambda 10830) is shown to be nearly proportional to a measure of the ratio of photoionizing flux to cloud density (U 1 ), provided that photoionization from excited He 0 levels can be neglected. Calculated triplet line intensities as a function of tau(lambda 10830) are presented in graphical form, illustrating the significance of collisional excitation from 2 3 S and 2 3 P as well as self-absorption in lines terminating on 2 3 P. The possible importance of photoionization from the n = 2 levels by continuum and resonance-line radiation was investigated. This process may significantly influence triplet line strengths for small photoionizing-source/cloud separations (high U 1 ), unless most scattered hydrogen Lα and C IV lambda 1549 photons are destroyed by dust grains (or by some other mechanism). New spectrophotometric observations of 3C 120, Mrk 618, NGC 7469, and Mrk 335 are compared to the theoretical results. It appears that class 1 Seyfert galaxies with strong helium lines may be characterized by N approx. = 5 x 10 9 cm -3 , T approx. = 15,000 K and tau(lambda 10830) approx. = 100, assuming no photoionization from n = 2

  13. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Popović, L. Č.; Kovačević, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilić, D.; Kovačević, A.; Kollatschny, W.; Bochkarev, N. G.; León-Tavares, J.; Mercado, A.; Benítez, E.; Dultzin, D.; De la Fuente, E.

    2012-01-01

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Hα, Hβ, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hβ and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F max /F min ) of Ark 564 is between 1.5 for Hα and 1.8 for the Fe II lines. The correlation between the Fe II and Hβ flux variations is of higher significance than that of Hα and Hβ (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  14. Anisotropic ionizing radiation in Seyfert galaxies. I - The extended narrow-line region in Markarian 573

    Science.gov (United States)

    Tsvetanov, Zlatan; Walsh, J. R.

    1992-01-01

    The morphology, kinematics, and ionization state of the nuclear extended narrow-line region (ENLR) of the Seyfert 2 galaxy Mrk 573 are studied using narrow-band images of a grid of long-slit spectra. The entire ENLR is mapped spectroscopically, and velocity structure is studied. The velocity field map shows a typical galactic rotation picture with some important deviations. A simple geometric model, in accordance with the 'unified schemes', is employed to study the effects of various parameters of the observed picture. The best match is achieved when a biconical radiation field illuminates the ISM of the host galaxy that takes part in a normal galaxy rotation but also has radial motions close to the nucleus. The emission-line images reveal an ENLR elongated along the radio axis in the northwest-southeast direction, but a map of the flux ratio forbidden O III 5007/(H-alpha + forbidden N II) shows a different structure, with the highest excitation peak offset by about 4 arcsec along the radio axis to the southeast.

  15. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-01

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10 4  cm –3 . Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions

  16. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bowyer, S.; Grewing, M.; California Univ., Berkeley; Tuebingen Universitaet, West Germany)

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations. 21 references

  17. An Intermediate-Mass Black Hole in the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Barth, A.; Ho, L.; Sargent, W.

    2004-06-01

    We describe new observations of POX 52, a previously known but nearly forgotten example of a dwarf galaxy with an active nucleus. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with clear broad components to the permitted line profiles. The host galaxy appears to be a dwarf elliptical; this is the only known case of a Seyfert nucleus in a galaxy of this type. Applying scaling relations to estimate the black hole mass from the broad Hβ linewidth and continuum luminosity, we find MBH ≈ 1.6×105 M⊙. The stellar velocity dispersion in the host galaxy is 36 km s-1, also suggestive of a black hole mass of order 105 M⊙. Further searches for AGNs in dwarf galaxies can provide crucial constraints on the demographics of black holes in the mass range below 106 M⊙.

  18. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results

  19. Distribution of surface brightness in Seyfert galaxies. III. Analysis of data

    International Nuclear Information System (INIS)

    Afanas'ev, V.L.; Doroshenko, V.T.; Terebizh, V.Yu.

    1987-01-01

    The observational data on the distribution of the surface brightness μ(r) in normal and Seyfert galaxies given in the first two parts of the study [1,2] are considered. The general form of μ(r) for r ≤ approximately equals 2 kpc is the same for the two groups of galaxies. The values of the parameters that characterize the central part of the spherical component are found, namely, the surface brightness μ 1 /sup (0)/, the brightness, the brightness gradient n 1 , and the color indices (U-B) 1 /sup (0)/ and (B-V) 1 /sup (0)/ at distance 1 kpc from the center. The range of variation of the basic parameters and the correlations of the parameters with each other and with the absolute magnitudes M/sub B//sup (0)/ of the galaxies find a natural explanation in the framework of the standard models of the spherical subsystems of galaxies. The relationships have approximately the same form for normal and Seyfert galaxies. The photometric characteristics of the central regions of Sy 1 and Sy 2 type galaxies are similar. The obtained results do not contradict the idea that all sufficiently bright spiral galaxies can pass through a Seyfert stage with a characteristic time of ∼10 8 yr

  20. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI

    Science.gov (United States)

    Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.

    2004-04-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.

  1. The extreme flare in III Zw 2:. Evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teräsranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise to a few muas. The spectral and spatial evolutions of the source are closely linked, and these observations allowed us to

  2. The extreme flare in III Zw 2: evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teraesranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise on a level of a few microarcseconds. Spectral and spatial evolution of the source are closely linked and these

  3. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-01-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r ∼ 20 ) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  4. Relativistic jets in narrow-line Seyfert 1 galaxies. New discoveries and open questions

    Directory of Open Access Journals (Sweden)

    D’Ammando F.

    2013-12-01

    Full Text Available Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the γ-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic γ-ray sky, but the discovery of γ-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-γ-rays properties of the γ-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.

  5. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  6. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    Science.gov (United States)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  7. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  8. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  9. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  10. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Popovic, L. C.; Kovacevic, J. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L. [Instituto Nacional de Astrofisica, Optica y Electronica, Apartado Postal 51-216, 72000 Puebla (Mexico); Ilic, D.; Kovacevic, A. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kollatschny, W. [Institut fuer Astrophysik, Georg-August-Universitaet, Goettingen (Germany); Bochkarev, N. G. [Sternberg Astronomical Institute, Moscow (Russian Federation); Leon-Tavares, J. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Mercado, A. [Universidad Politecnica de Baja California, Av. de la Industria 291, 21010 Mexicali, B.C. (Mexico); Benitez, E.; Dultzin, D. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, Mexico, D.F. 04510 (Mexico); De la Fuente, E., E-mail: ashap@sao.ru [Instituto de Astronomia y Meteorologia, Dpto. de Fisica CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, 44130 Guadalajara, Jalisco (Mexico)

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  11. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Dasyra, Kalliopi M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014, Paris (France); Calzoletti, Luca [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Malkan, Matthew A. [Astronomy Division, University of California, Los Angeles, CA 90095-1547 (United States); Tommasin, Silvia, E-mail: luigi.spinoglio@iaps.inaf.it [Weizmann Institute of Science, Department of Neurobiology, Rehovot 76100 (Israel)

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  12. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Esquej, P. [Centro de Astrobiología, INTA-CSIC, Villafranca del Castillo, E-28850, Madrid (Spain); Alonso-Herrero, A.; Hernán-Caballero, A. [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M. [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea, E-38205, La Laguna (Spain); Hönig, S. F. [UCSB Department of Physics, Broida Hall 2015H, Santa Barbara, CA (United States); Roche, P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku, HI 96720 (United States); Díaz-Santos, T. [Spitzer Science Center, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Levenson, N. A. [Gemini Observatory, Casilla 603, La Serena (Chile); Aretxaga, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  13. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  14. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  15. Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    OpenAIRE

    Tran, Hien D.

    2001-01-01

    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the H...

  16. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  17. Serendipitous discovery of warm absorbers in the Seyfert 2 galaxy IRAS 18325-5926

    International Nuclear Information System (INIS)

    Zhang Shuinai; Gu Qiusheng; Peng Zhixin; Ji Li

    2011-01-01

    Warm absorption is a common phenomenon in Seyfert 1s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity ∼ 400 km s -1 was found, which is contributed by two warm absorbers with FWHM of 570 km s -1 and 1360 km s -1 , respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity ∼ 6000 km s -1 . (research papers)

  18. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-09-01

    POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  19. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-05-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  20. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    Science.gov (United States)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  1. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    Science.gov (United States)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  2. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  3. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  4. Galaxy S II

    CERN Document Server

    Gralla, Preston

    2011-01-01

    Unlock the potential of Samsung's outstanding smartphone with this jargon-free guide from technology guru Preston Gralla. You'll quickly learn how to shoot high-res photos and HD video, keep your schedule, stay in touch, and enjoy your favorite media. Every page is packed with illustrations and valuable advice to help you get the most from the smartest phone in town. The important stuff you need to know: Get dialed in. Learn your way around the Galaxy S II's calling and texting features.Go online. Browse the Web, manage email, and download apps with Galaxy S II's 3G/4G network (or create you

  5. The Different Nature in Seyfert 2 Galaxies With and Without Hidden Broad-Line Regions

    OpenAIRE

    Wu, Yu-Zhong; Zhang, En-Peng; Liang, Yan-Chun; Zhang, Cheng-Min; Zhao, Yong-Heng

    2011-01-01

    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic nuclei (AGNs), and if non-HBLR Sy2s are dominated by starbursts. We show that: (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger \\Nev $\\lambda 14.32$/\\Neii $\\lambda 12.81$ and \\oiv $\\lambda 25.89$/\\Neii $\\lam...

  6. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    Science.gov (United States)

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  7. Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective

    International Nuclear Information System (INIS)

    Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang

    2017-01-01

    The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.

  8. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Ajello, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Comastri, A. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cusumano, G.; Parola, V. La; Segreto, A., E-mail: smarche@clemson.edu [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2017-02-10

    We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.

  9. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    Science.gov (United States)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  10. A mid- to far-infrared variability study of the intermediate Seyfert galaxy, Mk 6

    International Nuclear Information System (INIS)

    Clement, R.; Sembay, S.; Coe, M.J.; Hanson, C.G.

    1988-01-01

    A mid- to far-infrared (MFIR) variability study of the intermediate Seyfert galaxy, Mk 6, is presented using data from the Infrared Astronomical Satellite (IRAS). We have analysed 25 observations of this source covering a period of about 1 month. Within the expected errors, the source shows no evidence for variability and this may be an indication that there is a strong contribution to the MFIR emission from thermal re-radiation by dust. This interpretation is consistent with previous studies which suggest that the bulk of the far-infrared (30 -100 μm) emission in Seyfert galaxies originates from cool (35 - 75 K) dust associated with star formation regions in the surrounding envelope of the active nucleus. The lack of variability at 12 and 25 μm can also be readily explained by dust emission. However, in this case, the dust temperatures required to produce emission at these wavelengths makes the narrow-line region a more feasible location for the dust grains. (author)

  11. Variable blurred reflection in the narrow-line Seyfert 1 galaxy Mrk 493

    Science.gov (United States)

    Bonson, K.; Gallo, L. C.; Wilkins, D. R.; Fabian, A. C.

    2018-04-01

    We examine a 200 ks XMM-Newton observation of the narrow-line Seyfert 1 galaxy Mrk 493. The active galaxy was half as bright as in a previous 2003 snapshot observation and the current lower flux enables a study of the putative reflection component in detail. We determine the characteristics of the 2015 X-ray continuum by first analyzing the short-term variability using model-independent techniques. We then continue with a time-resolve analysis including spectral fitting and modelling the fractional variability. We determine that the variability arises from changes in the amount of primary flux striking the accretion disk, which induces changes in the ionization parameter and flux of the blurred reflection component. The observations seem consistent with the picture that the primary source is of roughly constant brightness and that variations arise from changes in the degree of light bending happening in the vicinity of the supermassive black hole.

  12. Survey of Milliarcsec Structure in Eight Seyfert Galaxies: Results on NGC 1068 and NGC 4151

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Wilson, A. S.; Norris, R. P.

    We are surveying eight nearby Seyfert galaxies (four Sy1s and four Sy2s) that have compact radio cores, using the VLBA. We are interested in parsec-scale morphology and low-frequency absorption effects, and so are observing four frequencies (1.6, 4.8, 8.4 and 15 GHz) to get spectral-index diagnostics. In this paper, we present results on two galaxies, NGC 1068 and NGC 4151. NGC 4151 shows a curved radio jet on the sub-parsec scale, with the smallest scale structure misaligned by $55^\\circ$ from the jet on scales of parsecs to hundreds of parsecs. NGC 1068 contains several components in the inner tens of parsecs, with those components showing a variety of absorption and resolution effects.

  13. Parsec-scale jets and tori in seyfert galaxies

    Science.gov (United States)

    Roy, A. L.; Wrobel, J. M.; Wilson, A. S.; Ulvestad, J. S.; Norris, R. P.; Mundell, C. G.; Krichbaum, T. P.; Falcke, H.; Colbert, E. J. M.

    2001-01-01

    H. Falcke, T.P. Krichbaum, C.G. Mundell, J.S. Ulvestad, A.S. Wilson, J.M. Wrobel Active galaxies tend to be powerful or weak radio sources, and we still do not understand the underlying cause. Perhaps the engine is the same in both systems and the jet gets disrupted by dense interstellar medium in radio-quiet objects, or else the difference is intrinsic with jet power scaling with black hole spin. To distinguish, one can look for signs of interaction between the jet and the narrow-line region, and to measure the jet speed close to the jet base, before environmental effects become important. We find one-sided parsec-scale jet structures in Mrk 348, Mrk 231, NGC 4151, and NGC 5506 using VLBI, and we measure low jet speeds (typically = 2 × 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  14. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    Science.gov (United States)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  15. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 2

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We discuss the wavelength dependence (0.44-2.2 μm) of polarization of the sample of 71 Seyfert and three broad-line radio galaxies presented in a previous paper. For four galaxies, 3A 0557-383, Fairall 51, IC 4392A and NGC 3783, we also present spectropolarimetry covering the wavelength range of 0.4-0.6 μm. (author)

  16. The ultraviolet spectrum of the Seyfert galaxy NGC 4151

    International Nuclear Information System (INIS)

    Boksenberg, A.; Penston, M.V.

    1976-01-01

    Spectra at 1.3 A resolution of the spectral region lambda lambda 3100 to 4000 have been obtained. Identifications and equivalent widths of emission lines are presented. The He I lambda 3889 absorption varied by a factor 3.5 in 37 days and He I lambda 3188 absorption was seen when lambda 3889 was strong. The [N I] line ratio lambda 5199 to 3466 is consistent with nsub(e) approximately 10 4 cm -2 in the region emitting the forbidden lines. Several short-wavelength lines are identified including the He II lambda 3203 and several lines of [Fe V] multiplet 3F. (author)

  17. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    Science.gov (United States)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  18. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  19. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  20. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  1. The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Bentz, Misty C.; Peterson, Bradley M.

    2006-01-01

    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve...... reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results....

  2. A catapult model for the narrow-line region in Seyferts and radio galaxies

    International Nuclear Information System (INIS)

    Smith, M.D.

    1984-01-01

    The kinematics and stability of clouds falling radially into a supersonic wind are studied. A critical parameter is found, the ejection coefficient, which separates clouds which continue to gravitate inwards from those which are catapulted out by the ram pressure of the wind. This leads to a maximum size for ejected clouds. The clouds are partially broken up by fluid dynamic instabilities and the fragments expelled with enhanced velocities. This model is applied to the narrow-line region of Seyferts and radio galaxies. A quasi-steady picture may be established for the wind-ambient medium interaction zone. The wind is shocked and escapes through jets or bubbles; the ambient medium cools, forming the clouds which gravitate inwards. (author)

  3. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  4. REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Comins, M. L.; Dietrich, M.; Eastman, J. D.; Adair, A.; Au-Yong, K.; Chisholm, E.; Ewald, S.; Ferbey, S.; Jackson, K.; Brokofsky, D. J.; Gaskell, C. M.; Hedrick, C. H.; Doroshenko, V. T.; Efimov, Y. S.

    2010-01-01

    We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.

  5. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  6. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  7. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    International Nuclear Information System (INIS)

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc –3 at z ∼ 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240–0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 10 43 erg s –1 , this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  8. Large-Scale Environment Properties of Narrow-Line Seyfert 1 Galaxies at z < 0.4

    Energy Technology Data Exchange (ETDEWEB)

    Järvelä, Emilia [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Lähteenmäki, A. [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Tartu Observatory, Tõravere (Estonia); Lietzen, H., E-mail: emilia.jarvela@aalto.fi [Tartu Observatory, Tõravere (Estonia)

    2017-11-30

    The large-scale environment is believed to affect the evolution and intrinsic properties of galaxies. It offers a new perspective on narrow-line Seyfert 1 galaxies (NLS1) which have not been extensively studied in this context before. We study a large and diverse sample of 960 NLS1 galaxies using a luminosity-density field constructed using Sloan Digital Sky Survey. We investigate how the large-scale environment is connected to the properties of NLS1 galaxies, especially their radio loudness. Furthermore, we compare the large-scale environment properties of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to shed light on their possible relations. In general NLS1 galaxies reside in less dense large-scale environments than any of our comparison samples, thus supporting their young age. The average luminosity-density and distribution to different luminosity-density regions of NLS1 sources is significantly different compared to BLS1 galaxies. This contradicts the simple orientation-based unification of NLS1 and BLS1 galaxies, and weakens the hypothesis that BLS1 galaxies are the parent population of NLS1 galaxies. The large-scale environment density also has an impact on the intrinsic properties of NLS1 galaxies; the radio loudness increases with the increasing luminosity-density. However, our results suggest that the NLS1 population is indeed heterogeneous, and that a considerable fraction of them are misclassified. We support a suggested description that the traditional classification based on the radio loudness should be replaced with the division to jetted and non-jetted sources.

  9. A FANAROFF-RILEY TYPE I CANDIDATE IN NARROW-LINE SEYFERT 1 GALAXY Mrk 1239

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Hagiwara, Yoshiaki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Inoue, Makoto, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2015-01-10

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  10. THE MOLECULAR WIND IN THE NEAREST SEYFERT GALAXY CIRCINUS REVEALED BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Walter, Fabian; Farina, Emanuele P.; Kruijssen, J. M. Diederik [Max Planck Institute für Astronomie—Königstuhl 17, D-69117 Heidelberg (Germany); Bolatto, Alberto; Veilleux, Sylvain [Department of Astronomy and Joint Space Science Institute, University of Maryland, College Park, MD 20642 (United States); Leroy, Adam [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Ott, Jürgen, E-mail: zschaechner@mpia.de [National Radio Astronomy Observatory—P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2016-12-01

    We present ALMA observations of the inner 1′ (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1–0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5 × 10{sup 5}−5.1 × 10{sup 6} M {sub ⊙}, yielding a molecular outflow rate of 0.35–12.3 M {sub ⊙} yr{sup −1}. The values within this range are comparable to the star formation (SF) rate in Circinus, indicating that the outflow indeed regulates SF to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth by Cicone et al., including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate versus bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C{sup 17}O.

  11. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    Science.gov (United States)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  12. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  13. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  14. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    International Nuclear Information System (INIS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Fumagalli, Michele; Gates, Elinor L.; Gerke, Brian F.

    2011-01-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86 +0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σ line = 1590 ± 47 km s -1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00 +0.19 -0.24 x 10 7 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  15. Modeling time delays in the X-ray spectrum of the Seyfert galaxy MCG-6-30-15

    Czech Academy of Sciences Publication Activity Database

    Goosmann, René; Czerny, B.; Karas, Vladimír; Ponti, G.

    2007-01-01

    Roč. 466, č. 3 (2007), s. 865-873 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA AV ČR IAA300030510 Grant - others:GAUK(CZ) GAUK 299/2004; EU(XE) ESA-PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : accretion disks * galaxie s: Seyfert * active galaxie s * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  16. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  17. Exploring the physics of the accretion and jet in nearby narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Yao, Su; Qiao, Erlin; Wu, Xue-Bing; You, B.

    2018-06-01

    In this paper, we explore the physics of the accretion and jet in narrow-line Seyfert 1 (NLS1) galaxy. Specifically, we compile a sample composed of 16 nearby NLS1 with Lbol/LEdd ≳ 0.1. We investigate the mutual correlation between their radio luminosity LR, X-ray luminosity LX, optical luminosity L5100, and black hole mass MBH. By adopting partial correlation analysis, we find (1) a positive correlation between LX and MBH and (2) a weak positive correlation between LR and L5100. However, we don't find significant correlations between LR and LX or between LX and L5100 after considering the effect of the black hole mass, which leads to a finding that LX/LEdd is independent of L5100/LEdd. Interestingly, the findings that LX is correlated with MBH and LX/LEdd is not correlated with L5100/LEdd support that the X-ray emission is saturated with increasing \\dot{M} for Lbol/LEdd ≳ 0.1 in NLS1, which may be understood in the framework of slim disc scenario. Finally, we suggest that a larger NLS1 sample with high-quality radio and X-ray data is needed to further confirm this result in the future.

  18. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  19. SBS 0846+513: a New Gamma-ray Emitting Narrow-line Seyfert 1 Galaxy

    Science.gov (United States)

    D'Ammando, F.; Orienti, M.; Finke, J.; Raiteri, C. M.; Angelakis, E.; Fuhrmann, L.; Giroletti, M.; Hovatta, T.; Max-Moerbeck, W.; Perkins, J. S.; hide

    2012-01-01

    We report Fermi-LAT observations of the radio-loud AGN SBS 0846+513 (z=0.5835), optically classified as a Narrow-Line Seyfert 1 galaxy, together with new and archival radio-to-X-ray data. The source was not active at ?-ray energies during the first two years of Fermi operation. A significant increase in activity was observed during 2010 October-2011 August. In particular a strong gamma-ray flare was observed in 2011 June reaching an isotropic ?-ray luminosity (0.1-300 GeV) of 1.0×10(sup 48) erg s(sup -1), comparable to that of the brightest flat spectrum radio quasars, and showing spectral evolution in gamma rays. An apparent superluminal velocity of (8.2+/-1.5)c in the jet was inferred from 2011-2012 VLBA images, suggesting the presence of a highly relativistic jet. Both the power released by this object during the flaring activity and the apparent superluminal velocity are strong indications of the presence of a relativistic jet as powerful as those of blazars. In addition, variability and spectral properties in radio and gamma-ray bands indicate blazar-like behaviour, suggesting that, except for some distinct optical characteristics, SBS 0846+513 could be considered as a young blazar at the low end of the blazar's black hole mass distribution.

  20. Multi-wavelength study of the Seyfert 1 galaxy NGC 3783 with XMM-Newton

    CERN Document Server

    Blustin, A J; Behar, E; Kaastra, J S; Kahn, S M; Page, M J; Sako, M; Steenbrugge, K C

    2002-01-01

    We present the analysis of multi-wavelength XMM-Newton data from the Seyfert galaxy NGC 3783, including UV imaging, X-ray and UV lightcurves, the 0.2-10 keV X-ray continuum, the iron K-alpha emission line, and high-resolution spectroscopy and modelling of the soft X-ray warm absorber. The 0.2-10 keV spectral continuum can be well reproduced by a power-law at higher energies; we detect a prominent Fe K-alpha emission line, with both broad and narrow components, and a weaker emission line at 6.9 keV which is probably a combination of Fe K-beta and Fe XXVI. We interpret the significant deficit of counts in the soft X-ray region as being due to absorption by ionised gas in the line of sight. This is demonstrated by the large number of narrow absorption lines in the RGS spectrum from iron, oxygen, nitrogen, carbon, neon, argon, magnesium, silicon and sulphur. The wide range of iron states present in the spectrum enables us to deduce the ionisation structure of the absorbing medium. We find that our spectrum contai...

  1. Variability of the soft excess in the Seyfert I galaxy Mkn 335

    International Nuclear Information System (INIS)

    Turner, T.J.; Pounds, K.A.

    1988-01-01

    The luminous Seyfert 1 galaxy Mkn 335 was observed by EXOSAT on six occasions between 1983 November 5 and 1985 December 24. A previous analysis of the 1984 December 6 observation revealed a two-component spectrum, with a hard power law dominant above ∼ 2 keV on which was superimposed a strong soft X-ray excess in the 0.1-2 keV band of the EXOSAT low-energy (LE) detectors. The hard X-ray component was seen to vary strongly over time-scales of 1-2 hr in this 1984 observation. The more recent observations of Mkn 335, reported here, have shown the soft spectral excess to be a persistent feature, and the continuing presence of rapid variability in the hard X-ray component. An extended observation on 1985 July 21-22 has also revealed a strong variation in the LE band on a time-scale of ∼ 10 hr. This is the first report of distinctive short-term variability in the soft X-ray excess of an AGN, strengthening its proposed identification with the thermal emission from an accretion disc. (author)

  2. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-01-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  3. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block-II, Koramangala, Bangalore-560034 (India); Sahayanathan, S. [Astrophysical Science Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Anjum, Ayesha [Department of Physics, Christ University, Bangalore-560029 (India); Pandey, S. B., E-mail: vaidehi@iiap.res.in [Aryabhatta Research Institute of Observational Sciences, Manora peak, Nainital-263129 (India)

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  4. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India); Ravikumar, C. D., E-mail: vaidehi@iiap.res.in [Department of Physics, University of Calicut, Malappuram-673635 (India)

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  5. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  6. Correlated X-ray/UV/optical emission and short-term variability in a Seyfert 1 galaxy NGC 4593

    Science.gov (United States)

    Pal, Main; Naik, Sachindra

    2018-03-01

    We present a detailed multifrequency analysis of an intense monitoring programme of Seyfert 1 galaxy NGC 4593 over a duration of nearly for a month with Swift observatory. We used 185 pointings to study the variability in six ultraviolet/optical and two soft (0.3-1.5 keV) and hard X-ray (1.5-10 keV) bands. The amplitude of the observed variability is found to decrease from high energy to low energy (X-ray to optical) bands. Count-count plots of ultraviolet/optical bands with hard X-rays clearly suggest the presence of a mixture of two major components: (i) highly variable component such as hard X-ray emission, and (ii) slowly varying disc-like component. The variations observed in the ultraviolet/optical emission are strongly correlated with the hard X-ray band. Cross-correlation analysis provides the lags for the longer wavelengths compared to the hard X-rays. Such lags clearly suggest that the changes in the ultraviolet/optical bands follow the variations in the hard X-ray band. This implies that the observed variation in longer wavelengths is due to X-ray reprocessing. Though, the measured lag spectrum (lag versus wavelength) is well described by λ4/3 as expected from the standard disc model, the observed lags are found to be longer than the predicted values from standard disc model. This implies that the actual size of the disc of NGC 4593 is larger than the estimated size of standard thin disc as reported in active galactic nuclei such as NGC 5548 and Fairall 9.

  7. The variability of the Seyfert galaxy NGC 2992: the case for a revived AGN

    Science.gov (United States)

    Gilli, R.; Maiolino, R.; Marconi, A.; Risaliti, G.; Dadina, M.; Weaver, K. A.; Colbert, E. J. M.

    2000-03-01

    We report the transition to an active state of the nucleus in the Seyfert 1.9 galaxy NGC 2992, discovered by means of new hard X-ray data. While the 2-10 keV flux declined by a factor of ~ 20 from 1978 to 1994, two recent BeppoSAX observations in 1997 and in 1998 caught the nuclear emission raising back to the same level of activity observed in 1978. In both BeppoSAX observations the X-ray spectrum of the source is well represented by a power law with spectral index Gamma =~ 1.7, absorbed by a column density of N_H =~ 1022 cm-2 and characterized by a prominent iron Kalpha line. While in the second BeppoSAX data set the line properties appear to be consistent with those expected from accretion disc models, in the first BeppoSAX data set the iron feature is rather peculiar. The broadening is not significant and the line energy is E_Kalpha =6.62+/-0.07 keV, indicating emission from highly ionized iron. The line has too high equivalent width ( ~ 700 eV) to be produced by a hot scattering medium. By comparing these data with data previously in the literature, we interpret the spectral and flux changes in terms of different phases of rebuilding an accretion disc. The timescale for the disc rebuilding is estimated to range between 1 and 5 years. The X-ray data are complemented with optical and near-infrared followup spectra taken 1.5 months after the discovery of the X-ray burst. The spectra are characterized by prominent broad emission lines. There is also evidence for hot dust emission in the H and K bands that, however, is probably still in the process of increasing.

  8. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    Science.gov (United States)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  9. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    International Nuclear Information System (INIS)

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-01-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution σ torus , and the average number of clouds along radial equatorial rays N 0 . We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P esc ∼ 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L bol (AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L bol (AGN) ∼ 10 43 -10 47 erg s -1 , we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f 2 ∼ 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f 2 ∼ 0.9-1 at ∼10 43 -10 44 erg s -1 ). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger σ torus ) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to contamination by extended dust structures not associated with the dusty torus at low AGN luminosities

  10. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  11. Intra-night optical variability properties of X-ray bright Narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Ojha, Vineet; Chand, Hum; Gopal-Krishna

    2018-04-01

    We present Intra Night Optical Variability (INOV) study of the 9 Narrow-line Seyfert 1 (NLSy 1) galaxies which are detected in X-ray at more than 3σ level. Our observations cover a total of 9 nights ( 36 hr) with each NLSy 1 monitored for ≥ 3.5 hr in each night. After applying F-test to assess variability status of these sources, we found none of these sources to be variable. Such non-variability nature of X-ray detected NLSy 1 galaxies suggests the lack of jet dominance as far as X-ray emission is concerned. Higher photometric accuracy for these faint sources, achievable with the newly installed ARIES 3.6m DOT will be helpful.

  12. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-07-01

    We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  13. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  14. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J.; Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R.; Bendo, George J.; Madden, Suzanne C.; Wolfire, Mark G.; Boselli, Alessandro; Cooray, Asantha; Page, Mathew J.

    2012-01-01

    The first complete submillimeter spectrum (190-670 μm) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J up = 4-13), lines from H 2 O, the fundamental rotational transition of hydrogen fluoride, two o-H 2 O + lines, and one line each from CH + and OH + have been detected, together with the two [C I] lines and the [N II] 205 μm line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H 2 ) = 10 4.5 and 10 2.9 cm –3 and temperatures of T kin = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H 2 ) ∼ 10 4 cm –3 and an X-ray flux of 9 erg s –1 cm –2 , consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T kin ∼ 40 K) and high density (n(H 2 ) in the range 10 6.7 -10 7.9 cm –3 ). The emission of H 2 O + and OH + are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N II] 205 μm line is consistent with previous photoionization models of the starburst.

  15. SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Schirm, Maximilien R. P.; Wilson, Christine D.; Parkin, Tara J. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Glenn, Jason; Kamenetzky, Julia; Rangwala, Naseem; Maloney, Philip R. [Center for Astrophysics and Space Astronomy, 389-UCB, University of Colorado, Boulder, CO 80303 (United States); Bendo, George J. [UK ALMA Regional Centre Node, Jordell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Wolfire, Mark G. [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Boselli, Alessandro [Laboratoire d' Astrophysique de Marseille-LAM, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Cooray, Asantha [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Page, Mathew J., E-mail: luigi.spinoglio@iaps.inaf.it [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2012-10-20

    The first complete submillimeter spectrum (190-670 {mu}m) of the Seyfert 2 galaxy NGC 1068 has been observed with the SPIRE Fourier transform spectrometer on board the Herschel Space Observatory. The sequence of CO lines (J {sub up} = 4-13), lines from H{sub 2}O, the fundamental rotational transition of hydrogen fluoride, two o-H{sub 2}O{sup +} lines, and one line each from CH{sup +} and OH{sup +} have been detected, together with the two [C I] lines and the [N II] 205 {mu}m line. The observations in both single pointing mode with sparse image sampling and in mapping mode with full image sampling allow us to disentangle two molecular emission components, one due to the compact circumnuclear disk (CND) and one from the extended region encompassing the star-forming ring (SF-ring). Radiative transfer models show that the two CO components are characterized by densities of n(H{sub 2}) = 10{sup 4.5} and 10{sup 2.9} cm{sup -3} and temperatures of T {sub kin} = 100 K and 127 K, respectively. A comparison of the CO line intensities with the photodissociation region (PDR) and X-ray-dominated region (XDR) models, together with the other observational constraints, such as the observed CO surface brightness and the radiation field, indicates that the best explanation for the CO excitation of the CND is an XDR with a density of n(H{sub 2}) {approx} 10{sup 4} cm{sup -3} and an X-ray flux of 9 erg s{sup -1} cm{sup -2}, consistent with illumination by the active galactic nucleus, while the CO lines in the SF-ring are better modeled by a PDR. The detected water transitions, together with those observed with the Herschel PACS spectrometer, can be modeled by a large velocity gradient model with low temperature (T {sub kin} {approx} 40 K) and high density (n(H{sub 2}) in the range 10{sup 6.7}-10{sup 7.9} cm{sup -3}). The emission of H{sub 2}O{sup +} and OH{sup +} are in agreement with PDR models with cosmic-ray ionization. The diffuse ionized atomic component observed through the [N

  16. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang, Jin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xue, Zi-Wei; Zhang, Shuang-Nan, E-mail: zhang.jin@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  17. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    Science.gov (United States)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  18. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    International Nuclear Information System (INIS)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-01-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.

  19. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    International Nuclear Information System (INIS)

    Singh, K.P.; Garmire, G.P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption. 34 references

  20. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    Science.gov (United States)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  1. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  2. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  3. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  4. Contribution of parsec-scale material onto the polarized X-ray spectrum of type-1 Seyfert galaxies

    Science.gov (United States)

    Marin, F.; Dovčiak, M.; Kammoun, E. S.

    2018-04-01

    Type-1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have traveled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type-1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material onto the polarized X-ray spectrum of type-1 Seyfert galaxies using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disk-corona system. For unpolarized and parallelly polarized photons (parallel to the disk), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or over-estimating the X-ray polarization by 0.1 - 1 percentage points.

  5. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  6. Probing the physics of Seyfert galaxies using their emission-line regions

    Energy Technology Data Exchange (ETDEWEB)

    Shastri, P., E-mail: prajval.shastri@gmail.com; Kharb, P.; Jose, J.; Ramya, S.; Bhatt, H. C.; Gupta, M. [Indian Institute of Astrophysics, Bangalore (India); Dopita, M.; Kewley, L.; Davies, R.; Sutherland, R.; Hampton, E. [RSAA, Australian National University, Canberra (Australia); Scharwächter, J. [LERMA, Paris Observatory (France); Banfield, J. [CSIRO Astronomy and Space Science, Epping (Australia); Srivastava, S. [Department of Physics, DDU Gorakhpur University, Gorakhpur (India); Jin, J. [Department of Physics, University of Durham (United Kingdom); Basurah, H. [Astronomy Department, King Abdulaziz University, Jeddah (Saudi Arabia); Fischer, S. [German Aerospace Center, Bonn (Germany); Panda, S. [National Institute of Technology, Rourkela (India); Indian Institute of Astrophysics, Bangalore (India); Sundar, M. N. [Jain University, Bangalore (India); Radhakrishnan, V. [Broadcom Corporation, Bangalore (India)

    2015-12-31

    Active galaxies have powerhouses of radiation in their nuclear regions that are driven by accreting super-massive black holes. The accretion system also generates outflows of ionized gas and synchrotron-emitting bipolar jets of plasma, which could have a significant impact on the host galaxy. We have initiated an investigation into the physics of nearby active galaxies by studying the morphology, kinematics, excitation abundance structure, and radio structure of about 120 nearby targets. We present a few early results from this investigation.

  7. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng; Pan, Xiang; Ji, Tuo; Jiang, Peng; Wang, Shufen [Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136 (China); Liu, Wenjuan [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Jiang, Ning, E-mail: zhangshaohua@pric.org.cn, E-mail: zhouhongyan@pric.org.cn [Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Sciences and Technology of China, Chinese Academy of Sciences, Hefei, Anhui, 230026 (China)

    2017-08-20

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those of narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.

  8. The discovery of an O VII emission line in the ASCA spectrum of the Seyfert galaxy NGC 3783

    Science.gov (United States)

    George, I. M.; Turner, T. J.; Netzer, H.

    1995-01-01

    We report the first observation of an O VII 0.57 keV emission line in a Seyfert 1 galaxy. NGC 3783 was observed by ASCA twice over a period of 4 days in 1993 December. The source exhibited a approximately 30% change in intensity between the two observations, with most of the variability taking place as a result of steepening of the continuum less than or approximately equal to 1 keV. Spectra from both observations show intense absorption features in the 0.5-1.5 keV band, which can be well fitted by an ionized absorber model of solar composition, column density of 10(exp 22.2)/sq cm and ionization parameter of approximately 7-8; the strongest absorption features being due to O VII and O VIII. Two emission features are also seen in the spectra which we identify as O VII 0.57 keV (equivalent width approximately equals 36 eV) and O VIII 0.65 keV (equivalent width approximately equals 11 eV). We also show that the 3-6 keV continuum of the source is well fitted by a Gamma = 1.3-1.4 power-law continuum, a narrow neutral iron K-shell fluorescence line and a strong iron K-shell absorption edge, possibly corresponding to highly ionized iron.

  9. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    Science.gov (United States)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  10. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  11. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  12. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    Science.gov (United States)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  13. Detection of Faint BLR Components in the Starburst/Seyfert Galaxy NGC 6221 and Measure of the Central BH Mass

    Energy Technology Data Exchange (ETDEWEB)

    La Franca, Fabio [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma (Italy); Onori, Francesca [Netherlands Institute for Space Research, SRON, Utrecht (Netherlands); Ricci, Federica; Bianchi, Stefano [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Roma (Italy); Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Sani, Eleonora [European Southern Observatory, Santiago (Chile); Vignali, Cristian, E-mail: lafranca@fis.uniroma3.it [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy)

    2016-04-18

    In the last decade, using single epoch virial based techniques in the optical band, it has been possible to measure the central black hole mass on large type 1 Active Galactic Nuclei (AGN) samples. However, these measurements use the width of the broad line region (BLR) as a proxy of the virial velocities and are therefore difficult to be carried out on those obscured (type 2) or low luminosity AGN where the nuclear component does not dominate in the optical. Here we present the optical and near infrared spectrum of the starburst/Seyfert galaxy NGC 6221, observed with X-shooter/VLT. Previous observations of NGC 6221 in the X-ray band shows an absorbed (N{sub H}=8.5±0.4×10{sup 21}cm{sup -2}) spectrum typical of a type 2 AGN with luminosity log(L{sub 14−195}/ergs{sup −1}) = 42.05, while in the optical band its spectrum is typical of a reddened (A{sub V} = 3) starburst. Our deep X-shooter/VLT observations have allowed us to detect faint broad emission in the Hα, HeI, and Paβ lines (FWHM ~1400–2300 km s{sup −1}) confirming previous studies indicating that NGC 6221 is a reddened starbust galaxy which hosts an AGN. We use the measure of the broad components to provide a first estimate of its central black hole mass (M{sub BH}=10{sup 6.6±0.3}M{sub ⊙}, λ{sub Edd} = 0.01−0.03), obtained using recently calibrated virial relations suitable for moderately obscured (N{sub H} < 10{sup 24} cm{sup −2}) AGN.

  14. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    Science.gov (United States)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  15. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  16. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  17. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  18. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    Science.gov (United States)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  19. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  20. Complex optical/UV and X-ray variability of the Seyfert 1 galaxy 1H 0419-577

    Science.gov (United States)

    Pal, Main; Dewangan, Gulab C.; Kembhavi, Ajit K.; Misra, Ranjeev; Naik, Sachindra

    2018-01-01

    We present detailed broad-band UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ∼4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor of ∼7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ∼2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10 per cent level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behaviour is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behaviour of the variations.

  1. Long term X-ray variability characteristics of the narrow-line Seyfert 1 galaxy RE J1034+396

    Science.gov (United States)

    Chaudhury, K.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.; Bhattacharyya, Sudip; Dewangan, G. C.; Chakraborty, S.; Chandra, S.; Stewart, G. C.; Mukerjee, K.; Dey, R. K.

    2018-05-01

    We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be ˜3 × 106 M⊙, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.

  2. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    Science.gov (United States)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  3. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay, E-mail: bentz@astro.gsu.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 600, Atlanta, GA 30303 (United States)

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  4. Probing the Physics of Narrow-line Regions in Active Galaxies. IV. Full Data Release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Adam D.; Dopita, Michael A.; Davies, Rebecca; Hampton, Elise; Kewley, Lisa; Banfield, Julie; Groves, Brent; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Sairam, Lalitha [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Garching (Germany); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Kharb, Preeti [National Centre for Radio Astrophysics—Tata Institute of Fundamental Research, Pune University Campus, Post Bag 3, Ganeshkhind Pune 411007 (India); Scharwächter, Julia [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, Hawaii 96720 (United States); Shalima, P. [Regional Institute of Education, Manasagangotri, Mysore 570006 (India); Sundar, M. N. [Jain University, 3rd Block Jayanagar, Bengaluru 560011 (India); Zaw, Ingyin, E-mail: adam.thomas@anu.edu.au [New York University (Abu Dhabi), 70 Washington Sq. S, New York, NY 10012 (United States)

    2017-09-01

    We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R  = 7000 in the red (540–700 nm) and R  = 3000 in the blue (350–570 nm), over an integral field of 25 × 38 arcsec{sup 2} with 1 × 1 arcsec{sup 2} spatial pixels. The S7 contains both the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ 6087 is shown to be correlated with [O iii]/H β . Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.

  5. STRONG UV AND X-RAY VARIABILITY OF THE NARROW LINE SEYFERT 1 GALAXY WPVS 007-ON THE NATURE OF THE X-RAY LOW STATE

    Energy Technology Data Exchange (ETDEWEB)

    Grupe, Dirk; Barlow, Brad N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Scharwaechter, Julia [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Dietrich, Matthias [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Leighly, Karen M.; Lucy, Adrian, E-mail: dxg35@psu.edu, E-mail: julia.scharwaechter@obspm.fr, E-mail: leighly@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2013-10-01

    We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between 2005 October and 2013 July, after it had previously undergone a dramatic drop in its X-ray flux. For the first time, we are able to repeatedly detect this NLS1 in X-rays again. This increased number of detections in the last couple of years may suggest that the strong absorber that has been found in this active galactic nucleus (AGN) is starting to become leaky and may eventually disappear. The X-ray spectra obtained for WPVS 007 are all consistent with a partial covering absorber model. A spectrum based on the data during the extreme low X-ray flux states shows that the absorption column density is of the order of 4 Multiplication-Sign 10{sup 23} cm{sup -2} with a covering fraction of 95%. WPVS 007 also displays one of the strongest UV variabilities seen in NLS1s. The UV continuum variability anti-correlates with the optical/UV slope {alpha}{sub UV}, which suggests that the variability may be primarily due to reddening. The UV variability timescales are consistent with moving dust ''clouds'' located beyond the dust sublimation radius of R{sub sub} Almost-Equal-To 20 lt-days. We present for the first time near-infrared JHK data of WPVS 007, which reveal a rich emission-line spectrum. Recent optical spectroscopy does not indicate significant variability in the broad permitted and Fe II emission lines, implying that the ionizing continuum seen by those gas clouds has not significantly changed over the last decades. All X-ray and UV observations are consistent with a scenario in which an evolving broad absorption line (BAL) flow obscures the continuum emission. As such, WPVS 007 is an important target for our understanding of BAL flows in low-mass AGNs.

  6. Broad Paschen-alpha emission in two extremely infrared luminous Seyfert 2 galaxies

    International Nuclear Information System (INIS)

    Hines, D.C.

    1991-01-01

    The Paschen-alpha emission line in the extremely luminous IRAS-selected galaxies IRAS 20460 + 1925 and IRAS 23060 + 0505 is observed. The observed width of H-α of Pa-α in IRAS 20460 + 1925 is 3300 km/s, with a possible broader component of about 3860 km/s, while the observed width of H-α of Pa-α in IRAS 23060 + 0505 is 3270 km/s, with a possible broader component of about 4780 km/s. Considering these results as well as their bolometric luminosities, IRAS 20460 + 1925 and IRAS 23060 + 0505 are proposed to be classified as QSO's. It is suggested that there is a population of obscured QSO's, and that they can be selected by their warmth infrared energy distributions and QSO-like luminosities. 17 refs

  7. A Search for Blazar-Like Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Directory of Open Access Journals (Sweden)

    Hugh R. Miller

    2017-03-01

    Full Text Available We report the results of an observational program to investigate the gamma-ray and optical variability properties of the vRL NLSY1 galaxies listed in the Yuan et al. sample. We have identified 17 members of the Yuan et al. sample possibly associated with gamma-ray sources based on a combination of their optical polarization and optical variability and their gamma-ray properties. Eight have previously been associated with gamma-ray sources. We find nine additional members that we predict are excellent candidates to be associated with gamma-ray sources in the future. All 17 sources have many properties in common with flat spectrum radio quasars (FSRQs, suggesting that they may, in fact, constitute a new subclass of FSRQs.

  8. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    Science.gov (United States)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  9. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  10. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  11. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC γ-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.; Sambruna, Rita M.; Davis, David S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R X,BAT where radio-loud objects have log R X,BAT > –4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be ∼2 × 10 –11 photons cm –2 s –1 , approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the γ-ray (1-100 GeV) luminosity of ∼ 41 erg s –1 . In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  12. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  13. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    Science.gov (United States)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  14. X-ray monitoring of the radio and γ-ray loud Narrow-Line Seyfert 1 Galaxy PKS2004–447

    Directory of Open Access Journals (Sweden)

    Kreikenbohm A.

    2013-12-01

    Full Text Available We present preliminary results of the X-ray analysis of XMM-Newton and Swift observations as part of a multi-wavelength monitoring campaign in 2012 of the radio-loud narrow line Seyfert 1 galaxy PKS 2004–447. The source was recently detected in γ-rays by Fermi/LAT among only four other galaxies of that type. The 0:5 – 10 keV X-ray spectrum is well-described by a simple absorbed powerlaw (Γ ∼ 1.6. The source brightness exhibits variability on timescales of months to years with indications for spectral variability, which follows a “bluer-when-brighter” behaviour, similar to blazars.

  15. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-01-01

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s −1 , detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase

  16. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  17. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    Science.gov (United States)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  18. SUZAKU MONITORING OF THE SEYFERT 1 GALAXY NGC 5548: WARM ABSORBER LOCATION AND ITS IMPLICATION FOR COSMIC FEEDBACK

    International Nuclear Information System (INIS)

    Krongold, Y.; Andrade-Velazquez, M.; Binette, L.; Jimenez-Bailon, E.; Elvis, M.; Nicastro, F.; Brickhouse, N. S.; Liu, Y.; Wilkes, B.; Mathur, S.; Reeves, J. N.; Grupe, D.; McHardy, I. M.; Minezaki, T.; Yoshii, Y.

    2010-01-01

    We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of ∼30 ks each), separated by ∼1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of ∼4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U X ∼ -0.85), and high outflow velocity (v out ∼ 1040 km s -1 ), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U X ∼ -2.8), low velocity (v out ∼ 590 km s -1 ) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n e 7 cm -3 for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R>0.033 pc; R>5000R S ). If the variations in the low ionization, low velocity component are real, they imply n e >9.8 x 10 4 cm -3 and R 1.2 x 10 56 erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.

  19. H II region-like galaxies

    International Nuclear Information System (INIS)

    French, H.B.

    1979-01-01

    Line fluxes in the region 3700 to 7100A are presented for 14 galaxies with strong, sharp, H II region-like emission lines. Ten of these galaxies are low luminosity objects (M > -17); the others have M approx. < -20. Ratios of the line fluxes are used to derive electron temperatures and densities, and the abundances of helium, oxygen, nitrogen, neon, and sulfur relative to hydrogen. The low luminosity galaxies are generally found to have oxygen abundances about 30% of normal, while the high luminosity ones generally have about 60% of normal. These galaxies are found to be almost certainly photoionized by hot main sequence stars. The velocity dispersion has been measured for one object; the mass of stars derived for it is several times smaller than the mass of neutral hydrogen which has previously been found in an extended halo around this object. The continuum colors of these galaxies are very blue, and are indistinguishable from those of extragalactic H II regions. No older red population has been convincingly detected. Galactic chemical evolution is investigated through a comparison of the relative abundances in these galaxies with their normal values. It is found that: (i) there is a primary contribution to the nitrogen abundance ((N/O)/sub p = 0.019), but that 80% of the nitrogen in the Galaxy today is of secondary origin; (ii) Ne/O appears to be constant for all objects (Ne/O = 0.23); and (iii) S/O decreases with increasing oxygen abundance, implying that most sulfur is produced in the most massive stars

  20. Which observational differences are still left between Seyfert 1 and Seyfert 2 nuclei?

    CERN Document Server

    Alloin, D

    1979-01-01

    Reviews the different observational properties used, up to now, to discriminate between Seyfert 1 and Seyfert 2: emission lines widths, Fe II lines, intensity ration (OIII) 500.7 nm/H beta , radio, infrared, visible, UV and X-emission. Most of these parameters exhibit a more or less continuous distribution from the less powerful Seyfert 2 up to the Seyfert 1 nuclei (except in the radio range). (0 refs).

  1. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles

    Science.gov (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.

    2018-02-01

    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  2. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    International Nuclear Information System (INIS)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Dalla Bontà, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Ciroi, S.

    2013-01-01

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n e ∼ 10 5 cm –3 ) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  3. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 610, Atlanta, GA 30303 (United States); Vestergaard, M.; Kilerci-Eser, E. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dalla Bontà, E.; Ciroi, S. [Dipartimento di Fisica e Astronomia " G. Galilei," Università di Padova, Vicolo dell' Osservatorio 3 I-35122, Padova (Italy)

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  4. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    Science.gov (United States)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  5. DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki; Doi, Mamoru; Kikuchi, Yuki [Institute of Astronomy, School of Science, University of Tokyo, Mitaka, Tokyo 181-0015 (Japan); Itoh, Ryosuke [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Akitaya, Hiroshi; Tanaka, Yasuyuki T.; Kawabata, Koji S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tominaga, Nozomu [Department of Physics, Faculty of Science and Engineering, Konan University, Kobe, Hyogo 658-8501 (Japan); Saito, Yoshihiko; Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Stawarz, Łukasz [Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210 (Japan); Gandhi, Poshak [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Ali, Gamal; Essam, Ahmad; Hamed, Gamal [National Research Institute of Astronomy and Geophysics, Helwan, Cairo (Egypt); Aoki, Tsutomu [Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, Kiso, Nagano 397-0101 (Japan); Contreras, Carlos; Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Iwata, Ikuru, E-mail: masaomi.tanaka@nao.ac.jp [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); and others

    2014-10-01

    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ∼10{sup 7} M {sub ☉} implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ≅ 4 × 10{sup 2}-3 × 10{sup 3}, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.

  6. RAPID INFRARED VARIABILITY OF THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES: A VIEW FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ning; Zhou Hongyan; Wang Tinggui; Dong Xiaobo; Jiang Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Science, Hefei, Anhui 230026 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Yuan Weimin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji Tuo; Tian Qiguo, E-mail: jnac@mail.ustc.edu.cn [Polar Research Institute of China, 451 Jinqiao Road, Pudong, Shanghai 200136 (China)

    2012-11-10

    Using newly released data from the Wide-field Infrared Survey Explorer, we report the discovery of rapid infrared variability in three radio-loud narrow-line Seyfert 1 galaxies (NLS1s) selected from the 23 sources in the sample of Yuan et al. J0849+5108 and J0948+0022 clearly show intraday variability, while J1505+0326 has a longer measurable timescale within 180 days. Their variability amplitudes, corrected for measurement errors, are {approx}0.1-0.2 mag. The detection of intraday variability restricts the size of the infrared-emitting region to {approx}10{sup -3} pc, significantly smaller than the scale of the torus but consistent with the base of a jet. The three variable sources are exceptionally radio-loud, have the highest radio brightness temperature among the whole sample, and all show detected {gamma}-ray emission in Fermi/LAT observations. Their spectral energy distributions resemble those of low-energy-peaked blazars, with a synchrotron peak around infrared wavelengths. This result strongly confirms the view that at least some radio-loud NLS1s are blazars with a relativistic jet close to our line of sight. The beamed synchrotron emission from the jet contributes significantly to and probably dominates the spectra in the infrared and even optical bands.

  7. MINUTE-SCALE RAPID VARIABILITY OF THE OPTICAL POLARIZATION IN THE NARROW-LINE SEYFERT 1 GALAXY PMN J0948+0022

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Tanaka, Yasuyuki T.; Fukazawa, Yasushi; Kawaguchi, Kenji; Takaki, Katsutoshi; Ueno, Issei [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kawabata, Koji S.; Moritani, Yuki; Uemura, Makoto; Akitaya, Hiroshi; Yoshida, Michitoshi; Ohsugi, Takashi [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hanayama, Hidekazu; Miyaji, Takeshi [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Kawai, Nobuyuki, E-mail: itoh@hep01.hepl.hiroshima-u.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-09-20

    We report on optical photopolarimetric results of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy PMN J0948+0022 on 2012 December to 2013 February triggered by flux enhancements in the near infrared and γ-ray bands. With the one-shot polarimetry of the Hiroshima One-shot Wide field Polarimeter installed on the Kanata Telescope, we detected very rapid variability in the polarized-flux (PF) light curve on MJD 56281 (2012 December 20). The rise and decay times were about 140 s and 180 s, respectively. The polarization degree (PD) reached 36% ± 3% at the peak of the short-duration pulse, while the polarization angle remained almost constant. In addition, temporal profiles of the total flux and PD showed highly variable but well correlated behavior and discrete correlation function analysis revealed that no significant time lag of more than 10 minutes was present. The high PD and minute-scale variability in PF provides clear evidence of synchrotron radiation from a very compact emission region of ∼10{sup 14} cm size with a highly ordered magnetic field. Such micro-variability of polarization is also observed in several blazar jets, but its complex relation between total flux and PD are explained by a multi-zone model in several blazars. The implied single emission region in PMN J0948+0022 might reflect a difference of jets between RL-NLSy1s and blazars.

  8. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Asada, Keiichi; Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fujisawa, Kenta [The Research Institute of Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Nagai, Hiroshi; Hagiwara, Yoshiaki [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wajima, Kiyoaki, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China)

    2013-03-01

    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.

  9. The Taxonomy of Blue Amorphous Galaxies. II. Structure and Evolution

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.

    1999-09-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution, and starbursts are believed to affect the structure and evolution of dwarf galaxies strongly. We have therefore embarked on a systematic study of 12 of the nearest dwarf galaxies thought to be undergoing bursts of star formation. These were selected primarily by their morphological type (blue ``amorphous'' galaxies). We show that these blue amorphous galaxies are not physically distinguishable from dwarfs selected as starbursting by other methods, such as blue compact dwarfs (BCDs) and H II galaxies. All these classes exhibit surface brightness profiles that are exponential in the outer regions (r>~1.5re) but often have a predominantly central blue excess, suggesting a young burst in an older, redder galaxy. Typically, the starbursting ``cores'' are young (~107-108 yr) events compared to the older (~109-1010 yr) underlying galaxy (the ``envelope''). The ratio of the core to envelope in blue light ranges from essentially zero to about 2. These starbursts are therefore modest events involving only a few percent of the stellar mass. The envelopes have surface brightnesses that are much higher than typical dwarf irregular (dI) galaxies, so it is unlikely that there is a straightforward evolutionary relation between typical dIs and dwarf starburst galaxies. Instead we suggest that amorphous galaxies may repeatedly cycle through starburst and quiescent phases, corresponding to the galaxies with strong and weak/absent cores, respectively. Once amorphous galaxies use up the available gas (either through star formation or galactic winds) so that star formation is shut off, the faded remnants would strongly resemble dwarf elliptical galaxies. However, in the current cosmological epoch, this is evidently a slow process that is the aftermath of a series of many weak, recurring bursts. Present-day dE's must have experienced more rapid and intense evolution than this in the distant past.

  10. Short-term radio variability and parsec-scale structure in A gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    Wajima, Kiyoaki [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Xuhui District, Shanghai 200030 (China); Fujisawa, Kenta [The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8511 (Japan); Hayashida, Masaaki [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Isobe, Naoki [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishida, Takafumi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Yonekura, Yoshinori, E-mail: kwajima@shao.ac.cn [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan)

    2014-02-01

    We made simultaneous single-dish and very long baseline interferometer (VLBI) observations of a narrow-line Seyfert 1 galaxy 1H 323+342, showing gamma-ray activity revealed by Fermi/Large Area Telescope observations. We found significant variation of the total flux density at 8 GHz on the timescale of one month by the single-dish monitoring. The total flux density varied by 5.5% in 32 days, which is comparable to the gamma-ray variability timescale, corresponding to the variability brightness temperature of 7.0 × 10{sup 11} K. The source consists of central and southeastern components on the parsec (pc) scale. Only the flux of the central component decreased in the same way as the total flux density, indicating that the short-term radio variability, and probably the gamma-ray-emitting region, is associated with this component. From the VLBI observations, we obtained brightness temperatures of greater than (5.2 ± 0.3) × 10{sup 10} K and derived an equipartition Doppler factor of greater than 1.7, a variability Doppler factor of 2.2, and an 8 GHz radio power of 10{sup 24.6} W Hz{sup –1}. Combining them, we conclude that acceleration of radio jets and creation of high-energy particles are ongoing in the central engine and that the apparent very radio-loud feature of the source is due to the Doppler boosting effect, resulting in the intrinsic radio loudness being an order of magnitude smaller than the observed values. We also conclude that the pc-scale jet represents recurrent activity from the spectral fitting and the estimated kinematic age of pc- and kpc-scale extended components with different position angles.

  11. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    Science.gov (United States)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  12. A Survey of X-Ray Variability in Seyfert 1 Galaxies with XMM-Newton to study the soft excess and the broad Fe lines

    Science.gov (United States)

    Ponti, Gabriele

    The nature of the soft excess and the presence of the broad Fe lines is still nowadays highly debated because the different absorption/emission models are degenerate. Spectral variability studies have the potential to break this degeneracy. I will present the results of a spectral variability RMS survey of the 36 brightest type 1 Seyfert galaxies observed by XMM-Newton for more than 30 ks. More than 80 as already measured, on longer timescales, with RXTE (Markowitz et al. 2004). About half of the sample show lower variability in the soft energy band, indicating that the emission from the soft excess is more stable than the one of the continuum. While the other sources show a soft excess that is as variable as the continuum. About half of the sample do not show an excess of variability where the warm absorber component imprints its stronger features, suggesting that for these sources the soft excess is not produced by a relativistic absorbing wind. In a few bright and well exposed sources it has been possible to measure an excess of variability at the energy of the broad component of the Fe K line, in agreement with the broad emission line interpretation. For the sources where more than one observation was available the stability of the shape of the RMS spectrum has been investigated. Moreover, it will be presented the results of the computation of the excess variance of all the radio quiet type 1 AGN of the XMM-Newton database. The relations between variability, black hole mass, accretion rate and luminosity are investigated and their scatter measured.

  13. MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Murphy, Michael T., E-mail: nnielsen@nmsu.edu [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We describe the Mg II Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 ≤ z ≤ 1.1) galaxies with measurements of Mg II λλ2796, 2803 absorption from their circumgalactic medium within projected distances of 200 kpc from background quasars. In this work, we present 'isolated' galaxies, which are defined as having no spectroscopically identified galaxy within a projected distance of 100 kpc and a line of sight velocity separation of 500 km s{sup –1}. We standardized all galaxy properties to the ΛCDM cosmology and galaxy luminosities, absolute magnitudes, and rest-frame colors to the B- and K-band on the AB system. We present galaxy properties and rest-frame Mg II equivalent width, W{sub r} (2796), versus galaxy redshift. The well-known anti-correlation between W{sub r} (2796) and quasar-galaxy impact parameter, D, is significant to the 8σ level. The mean color of MAGIICAT galaxies is consistent with an Sbc galaxy for all redshifts. We also present B- and K-band luminosity functions for different W{sub r} (2796) and redshift subsamples: 'weak absorbing' [W{sub r} (2796) < 0.3 Å], 'strong absorbing' [W{sub r} (2796) ≥ 0.3 Å], low redshift (z < (z)), and high redshift (z ≥ (z)), where (z) = 0.359 is the median galaxy redshift. Rest-frame color B – K correlates with M{sub K} at the 8σ level for the whole sample but is driven by the strong absorbing, high-redshift subsample (6σ). Using M{sub K} as a proxy for stellar mass and examining the luminosity functions, we infer that in lower stellar mass galaxies, Mg II absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  14. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    International Nuclear Information System (INIS)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas

    2017-01-01

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  15. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas, E-mail: maialen.arrieta@obspm.fr [Laboratoire Univers et Theories, Observatoire de Paris, CNRS, Université Paris-Diderot, PSL Research University, Meudon (France)

    2017-12-08

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  16. THE RISE OF AN IONIZED WIND IN THE NARROW-LINE SEYFERT 1 GALAXY Mrk 335 OBSERVED BY XMM-NEWTON AND HST

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Kriss, G. A.; Ely, J.; Gallo, L.; Grupe, D.; Komossa, S.; Mathur, S.; Pradhan, A.

    2013-01-01

    We present the discovery of an outflowing ionized wind in the Seyfert 1 galaxy Mrk 335. Despite having been extensively observed by most of the largest X-ray observatories in the last decade, this bright source was not known to host warm absorber gas until recent XMM-Newton observations in combination with a long-term Swift monitoring program have shown extreme flux and spectral variability. High-resolution spectra obtained by the XMM-Newton Reflection Grating Spectrometer (RGS) detector reveal that the wind consists of three distinct ionization components, all outflowing at a velocity of ∼5000 km s –1 . This wind is clearly revealed when the source is observed at an intermediate flux state (2-5 × 10 –12 erg cm –2 s –1 ). The analysis of multi-epoch RGS spectra allowed us to compare the absorber properties at three very different flux states of the source. No correlation between the warm absorber variability and the X-ray flux has been determined. The two higher ionization components of the gas (log ξ ∼ 2.3 and 3.3) may be consistent with photoionization equilibrium, but we can exclude this for the only ionization component that is consistently present in all flux states (log ξ ∼ 1.8). We have included archival, non-simultaneous UV data from Hubble Space Telescope (FOS, STIS, COS) with the aim of searching for any signature of absorption in this source that so far was known for being absorption-free in the UV band. In the Cosmic Origins Spectrograph (COS) spectra obtained a few months after the X-ray observations, we found broad absorption in C IV lines intrinsic to the active galactic nucleus and blueshifted by a velocity roughly comparable to the X-ray outflow. The global behavior of the gas in both bands can be explained by variation of the covering factor and/or column density, possibly due to transverse motion of absorbing clouds moving out of the line of sight at broad line region scale.

  17. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, R.; Lilly, S. J. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Kacprzak, G. G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, C. W., E-mail: rongmonb@phys.ethz.ch [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with

  18. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  19. Accretion Properties of a Sample of Hard X-Ray (<60 keV) Selected Seyfert 1 Galaxies

    Science.gov (United States)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2009-02-01

    We examine the accretion properties in a sample of 42 hard (3-60 keV) X-ray selected nearby broad-line active galactic nuclei (AGNs). The energy range in the sample is harder than that usually used in similar previous studies. These AGNs are mainly complied from the RXTE All Sky Survey, and complemented by the released INTEGRAL AGN catalog. The black hole masses, bolometric luminosities of AGN, and Eddington ratios are derived from their optical spectra in terms of the broad Hβ emission line. The tight correlation between the hard X-ray (3-20 keV) and bolometric/line luminosity is well identified in our sample. Also identified is a strong inverse Baldwin relationship of the Hβ emission line. In addition, all of these hard X-ray AGNs are biased toward luminous objects with a high Eddington ratio (mostly between 0.01 and 0.1) and a low column density (Simbol-X, and NeXT. Finally, the correlation between RFe (= optical Fe II/Hβ) and disk temperature as assessed by T vprop (L/L Edd)M -1 BH leads us to suggest that the strength of the Fe II emission is mainly determined by the shape of the ionizing spectrum.

  20. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  1. LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores

    Science.gov (United States)

    Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.

    2018-05-01

    We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.

  2. A close look at Seyfert 2 nuclei

    International Nuclear Information System (INIS)

    Fischer, Sebastian; Smajic, S; Valencia-S, M; Vitale, A; Zuther, J; Eckart, A

    2012-01-01

    We present SINFONI adaptive optics assisted and seeing limited NIR integral field spectroscopy of the central hundreds of pc of ten z < 0.01 Seyfert 2 galaxies. The main goal of this study is to assess the significance of star formation and extinction in the circumnuclear region of Seyfert 2s. The immediate surroundings of the nuclei are resolved at linear scales of about 50-100 parsecs for most of the observed sources. The intensity and line-of-sight velocity distribution of different species is derived from the 3D SINFONI data by calculating the higher order moments of the emission lines. As part of this work in progress, the resulting maps are currently analyzed following the approach of generalized surface photometry, which allows us to identify the multiple kinematical components in the circumnuclear region of Seyfert 2s.

  3. The ionizing radiation of Seyfert 2 galactic nuclei

    Science.gov (United States)

    Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.

    1993-01-01

    We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.

  4. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneously covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.

  5. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  6. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Antognini, Joe; Bird, Jonathan; Martini, Paul

    2012-01-01

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 × 10 8 yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 × 10 37 W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  7. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    Science.gov (United States)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  8. Chemical evolution of two-component galaxies. II

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    In order to confirm and refine the results obtained in a previous paper the chemical evolution of two-component (spheroid + disk) galaxies is derived rejecting the instantaneous recycling approximation, by means of numerical computations, accounting for (i) the collapse phase of the gas, assumed to be uniform in density and composition, and (ii) a birth-rate stellar function. Computations are performed relatively to the solar neighbourhood and to model galaxies which closely resemble the real morphological sequence: in both cases, numerical results are compared with analytical ones. The numerical models of this paper constitute a first-order approximation, while higher order approximations could be made by rejecting the hypothesis of uniform density and composition, and making use of detailed dynamical models. (Auth.)

  9. THE LIFETIME AND POWERS OF FR IIs IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Antognini, Joe; Bird, Jonathan; Martini, Paul, E-mail: antognini@astronomy.ohio-state.edu, E-mail: bird@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States)

    2012-09-10

    We have identified and studied a sample of 151 FR IIs found in brightest cluster galaxies (BCGs) in the MaxBCG cluster catalog with data from FIRST and NVSS. We have compared the radio luminosities and projected lengths of these FR IIs to the projected length distribution of a range of mock catalogs generated by an FR II model and estimate the FR II lifetime to be 1.9 Multiplication-Sign 10{sup 8} yr. The uncertainty in the lifetime calculation is a factor of two, primarily due to uncertainties in the intracluster medium (ICM) density and the FR II axial ratio. We furthermore measure the jet power distribution of FR IIs in BCGs and find that it is well described by a log-normal distribution with a median power of 1.1 Multiplication-Sign 10{sup 37} W and a coefficient of variation of 2.2. These jet powers are nearly linearly related to the observed luminosities, and this relation is steeper than many other estimates, although it is dependent on the jet model. We investigate correlations between FR II and cluster properties and find that galaxy luminosity is correlated with jet power. This implies that jet power is also correlated with black hole mass, as the stellar luminosity of a BCG should be a good proxy for its spheroid mass and therefore the black hole mass. Jet power, however, is not correlated with cluster richness, nor is FR II lifetime strongly correlated with any cluster properties. We calculate the enthalpy of the lobes to examine the impact of the FR IIs on the ICM and find that heating due to adiabatic expansion is too small to offset radiative cooling by a factor of at least six. In contrast, the jet power is approximately an order of magnitude larger than required to counteract cooling. We conclude that if feedback from FR IIs offsets cooling of the ICM, then heating must be primarily due to another mechanism associated with FR II expansion.

  10. Composition gradients across spiral galaxies II. The stellar mass limit

    International Nuclear Information System (INIS)

    Shields, G.A.; Tinsley, B.M.

    1976-01-01

    The equivalent width of the Hβ emission from H ii regions in spiral galaxies increases with distance from the nucleus. This W (Hβ) gradient is interpreted in terms of a radial gradient in the temperature of the hottest exciting stars. (T/subu/). From Searle's observations of M101, an increase Δ log T/subu/=0.02--0.13 from the intermediate to outermost spiral arms of M101 is inferred. There is also a radial decrease in the metal abundance (Z) across M101, and the T/subu/ gradient is consistent with the prediction of Kahn's recent theory that the upper mass limit for star formation should be smaller in regions of high Z. It is noted also that, even in the absence of changes in the upper mass limit, a T/subu/ gradient is expected because metal-rich stars of given mass have smaller effective temperatures. Several observational and theoretical improvements are needed before firm conclusions can be drawn, but it is clear that the presence of a T/subu/ gradient may lead to several important systematic changes in the interpretation of gradients in the properties of H ii regions across galaxies. A T/subu/ gradient reduces the Z gradient that is inferred from emission-line ratios, and it may help to explain why O ii is strong in the innermost regions where O iii is weak. A T/subu/ gradient may also partly camouflage a helium abundance gradient

  11. Observations of ultraviolet spectra of H II regions and galaxies with IUE

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1982-08-01

    The ultraviolet spectra, obtained with the International Ultraviolet Explorer, of a sample of H II regions and the nuclear regions of spiral and elliptical galaxies are described. The star formation rates in the nuclei of spiral galaxies are similar to the star formation rate in the solar neighbourhood. The data indicate that the current thinking on the synthesis of carbon and nitrogen in galaxies has to be revised and the K-corrections determined from the ultraviolet spectra of galaxies when compared with the photometry of distant galaxies suggests colour evolution of galaxies at z > 0.3. (author)

  12. Was the Narrow Line Seyfert 1 RGB J0044+193 ever radio loud?

    NARCIS (Netherlands)

    Maccarone, T.J.; Miller-Jones, J.C.A.; Fender, R.P.; Pooley, G.G.

    2005-01-01

    We show new radio data and a re-analysis of old data for the Narrow Line Seyfert 1 (NLSy1) galaxy RGB J0044+193. This galaxy has previously been suggested to be both radio loud, and highly variable in the radio. As most NLSy 1 galaxies are radio quiet, this was interpreted as possible evidence that

  13. INTEGRAL observations of the GeV blazar PKS 1502+106 and the hard X-ray bright Seyfert galaxy Mkn 841

    Czech Academy of Sciences Publication Activity Database

    Pian, E.; Ubertini, P.; Bazzano, A.; Beckmann, V.; Eckert, D.; Ghisellini, G.; Pursimo, T.; Tagliaferri, G.; Tavecchio, F.; Türler, M.; Bianchi, S.; Bianchin, V.; Hudec, René; Maraschi, L.; Raiteri, C.M.; Soldi, S.; Treves, A.; Villata, M.

    2011-01-01

    Roč. 526, February (2011), A125/1-A125/7 ISSN 0004-6361 Grant - others:ESA(XE) ESA PECS project No.98023; GA ČR(CZ) ga102/09/0997 Institutional research plan: CEZ:AV0Z10030501 Keywords : active galaxies * blazar PKS 1502+106 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  14. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  15. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  16. Emissão de hidrogênio molecular e [FeII] em núcleos Seyfert

    Science.gov (United States)

    Rodríguez-Ardila, A.; Pastoriza, M. G.; Viegas, S.

    2003-08-01

    Um dos problemas fundamentais em núcleos ativos de galáxias (AGN) é determinar os mecanismos de excitação dominantes do gás emissor de linhas estreitas, seja este excitado por mecanismos não-estelares (fotoionização por uma fonte central ou choques produzidos por um jato rádio no gás circumnuclear) ou estelares (fotoionização por estrelas OB ou choques originados por um remanescente de supernova em expansão). Essa ambiguedade se faz mais evidente ao intepretar o espectro de espécies tais como H2 e [FeII]. Na primeira, fluorescência UV, processos térmicos (choques e/ou aquecimento por fótons) ou illuminação por raios-x, podem ser responsáveis pelo espectro observado enquanto que na segunda, os dois últimos mechanismos seriam relevantes. Neste trabalho, utilizando espectroscópia JHK de média resolução para uma amostra de AGN encontramos que o H2 observado é gerado principalmente por processos térmicos associados à presença de episódios de formação estelar circumnuclear. No entanto, em galáxias tais como NGC4151 as observações mostram que o hidrogênio molecular origina-se, principalmente, da interação entre o jato radio e o gás da NLR. Esses resultados baseiam-se nos valores das razões de linhas H2 2.24/2.12 mm e H2 2.03/2.22 mm. H2 2.24/2.12 separa claramente processos não-térmicos dos térmicos enquanto H2 2.03/2.22 serve como indicador de temperatura da componente térmica, e portanto, discrimina entre choques e associações OB. Já para o [FeII], as observações são compatíveis com excitação produzida diretamente pela fonte central ou choques associados com o jato rádio. A comparação da largura dos perfis de linhas observados permite concluir que não há correlação entre a emissão de H2 e [FeII]. Em praticamente todos os casos analisados, os perfis das linhas de H2 são não-resolvidos, enquanto que os perfis de [FeII] indicam, em alguns casos, velocidades de até 600 km/s.

  17. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    International Nuclear Information System (INIS)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan; Finkelstein, K.; Finkelstein, Steven; Carilli, Chris; Combes, Françoise; Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole; Frye, Brenda; Gerin, Maryvonne; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10 7 L ⊙ to 3.7 × 10 9 L ⊙ (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  18. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, K.; Finkelstein, Steven [University of Texas, Austin, TX 78712 (United States); Carilli, Chris [National Radio Astronomy Observatory, Socorro, NM (United States); Combes, Françoise [Observatoire de Paris, LERMA, CNRS, 61 Avenue de l’Observatoire, F-75014 Paris (France); Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay (France); Frye, Brenda [Steward Observatory, University of Arizona, Tucson, AZ (United States); Gerin, Maryvonne [LERMA,24 rue Lhomond, F-75231 Paris Cedex 05 (France); Rigby, Jane [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Shin, Min-Su [Oxford University, Oxford, OX1 3PA (United Kingdom); Spaans, Marco [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Papovich, Casey, E-mail: malhotra@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-20

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  19. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  20. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  1. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    Science.gov (United States)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  2. Galaxy mergers and active nuclei. II. Cosmological evolution

    International Nuclear Information System (INIS)

    Roos, N.

    1985-01-01

    Galaxy mergers may produce active galactic nuclei (AGNs) by repopulating stellar loss-cone orbits around a central black hole. In the companion paper we derived a local bolometric luminosity function of AGNs based on this process. In this paper we interpret the observed cosmological evolution of the luminosity function of AGNs as due to evolution of the merging rate among galaxies after their formation at a redshift of approx.3. An important difference between our model and previous (empirical) models is that the evolution depends on galactic (stellar) luminosity instead of central nonthermal luminosity. The radio counts at 1.4 GHz and optical counts are reproduced by the model if the merging rate of the galaxies at the bright end of the galaxy luminosity function evolves considerably faster than the merging rate of the smaller galaxies. The theoretical and observed luminosity functions at high redshift have similar characteristics: (i) at high luminosity the evolution is best described by luminosity evolution, and (2) the luminosity function has a maximum at approx.10 3 Gpc -3 , which is the space density of the most massive galaxies. A large fraction of these galaxies are presumably formed in the precursors of rich clusters. Their merger rate is high initially and declines rapidly on a time scale of a few billion years. If the initial density fluctuation spectrum for protoclusters of mass M/sub cl/ has the form deltarho/rhoproportionalM/sup( -1+n//3)/2/sub cl/, then the steep evolution of the most luminous galaxies suggests nroughly-equal-1.3 at a redshift of approx.3, which is consistent with the observed clustering of galaxies

  3. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  4. PHYSICAL AND MORPHOLOGICAL PROPERTIES OF [O II] EMITTING GALAXIES IN THE HETDEX PILOT SURVEY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Gronwall, Caryl; Ciardullo, Robin; Hagen, Alex; Zeimann, Greg; Malz, A. I.; Schneider, Donald P.

    2015-01-01

    The Hobby-Eberly Dark Energy Experiment pilot survey identified 284 [O II] λ3727 emitting galaxies in a 169 arcmin 2 field of sky in the redshift range 0 < z < 0.57. This line flux limited sample provides a bridge between studies in the local universe and higher-redshift [O II] surveys. We present an analysis of the star formation rates (SFRs) of these galaxies as a function of stellar mass as determined via spectral energy distribution fitting. The [O II] emitters fall on the ''main sequence'' of star-forming galaxies with SFR decreasing at lower masses and redshifts. However, the slope of our relation is flatter than that found for most other samples, a result of the metallicity dependence of the [O II] star formation rate indicator. The mass-specific SFR is higher for lower mass objects, supporting the idea that massive galaxies formed more quickly and efficiently than their lower mass counterparts. This is confirmed by the fact that the equivalent widths of the [O II] emission lines trend smaller with larger stellar mass. Examination of the morphologies of the [O II] emitters reveals that their star formation is not a result of mergers, and the galaxies' half-light radii do not indicate evolution of physical sizes

  5. Mapping Seyfert and LINER Excitation Modes in the Inner kpc of NGC 3393

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2016-09-01

    We mapped the extended narrowline region (ENLR) of NGC 3393 on scales of r≲ 4\\prime\\prime (˜ 1 kpc) from the nucleus using emission line images of Hα λ6563, [O III]λ 5007, and [S II]λ λ 6717,6731, taken with the Hubble Space Telescope as part of the CHandra survey of Extended Emission line Regions in nearby Seyfert galaxies (CHEERS). By mapping these lines onto a spatially resolved Baldwin-Phillips-Terlevich diagram, we investigate the impact of feedback from a Compton-thick active galactic nucleus on its circumnuclear ISM. We find that the expected Seyfert-like emission within the ionization bicone (≲ 3\\prime\\prime ; 770 pc). We also find a new, figure-8-shaped low ionization emission line region (LINER) cocoon enveloping the bicone and defining a sharp (≲ 100 pc) transition between higher and lower-ionization zones. These data illustrate the morphological dependence of ionization states of the ENLR relative to bicone and host gas geometries.

  6. The Origins of [C ii] Emission in Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 W. 18th Avenue, Columbus, OH, 43210 (United States); Smith, J. D. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pellegrini, E. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bolatto, A.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Herrera-Camus, R. [Max-Planck-Institut für extraterrestrische Physik, Giessen-bachstr., D-85748 Garching (Germany); Sandstrom, K. M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Boquien, M. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dale, D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Galametz, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, 91191, Gif-sur-Yvette (France); Hunt, L., E-mail: jd.smith@utoledo.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); and others

    2017-08-20

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  7. Confusion-limited galaxy fields. II. Classical analyses

    International Nuclear Information System (INIS)

    Chokshi, A.; Wright, E.L.

    1989-01-01

    Chokshi and Wright presented a detailed model for simulating angular distribution of galaxy images in fields that extended to very high redshifts. Standard tools are used to analyze these simulated galaxy fields for the Omega(O) = 0 and the Omega(O) = 1 cases in order to test the discriminatory power of these tools. Classical number-magnitude diagrams and surface brightness-color-color diagrams are employed to study crowded galaxy fields. An attempt is made to separate the effects due to stellar evolution in galaxies from those due to the space time geometry. The results show that this discrimination is maximized at near-infrared wavelengths where the stellar photospheres are still visible but stellar evolution effects are less severe than those observed at optical wavelenghts. Rapid evolution of the stars on the asymptotic giant branch is easily recognized in the simulated data for both cosmologies and serves to discriminate between the two extreme values of Omega(O). Measurements of total magnitudes of individual galaxies are not essential for studying light distribution in galaxies as a function of redshift. Calculations for the extragalactic background radiation are carried out using the simulated data, and compared to integrals over the evolutionary models used. 29 refs

  8. FHILs in Seyferts and Liners in the optical spectra

    Science.gov (United States)

    Vera, R. J. C.; Rodriguez, A. M.; Portilla, J. G.

    2014-10-01

    We present the main results from a selection of optical spectra of Seyfert and LINER galaxies taken from the 9^{th} release of the SDSS with detectable emission of forbidden high ionization lines (FHILs), better known as coronal lines. A catalog of 345 Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies with FHILs emission is presented. By analyzing their spectra and utilizing data from the literature we found the following results: (1) The flux ratios between FHILs suggests anisotropy of emission between Sy1 and Sy2 galaxies, which agrees with the results found by Nagao et al. (2002) and Portilla (2012). Sy1 seems to emit more FHILs than Sy2. (2) This anisotropy suggests the idea that an important, but not the majority, of the emission of FHILs comes from the inner part of the obscuring torus. (3) We present diagnostic diagrams between FHILs lines which indicate clear correlations between the flux ratios. (4) It is observed that the ratio of Ne V/Fe VII is of the order of 3 to 10, while the ratios between iron lines (i.e., Fe VII, Fe X, Fe XI) are roughly around the unity. (5) At least in the optical spectra, the present study continues to support the general idea that LINERs are not energetic enough to present FHILs. A complete version of this study including the catalog with the objects of study, and diagnosis diagrams using only this kind of lines can be found in Vera & Portilla (in prep).

  9. Observations of the Galaxy NGC 3077 in the Narrow-Band [S II] and Hα Filters

    Directory of Open Access Journals (Sweden)

    Andjelić M.

    2011-09-01

    Full Text Available We present observations of the H I tidal arm near a dwarf galaxy NGC 3077 (member of the M81 galaxy group in the narrow-band [S II] and Hα filters. Observations were carried out in 2011 March with the 2 m RCC telescope at the NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [S II] emission relative to their Hα emission in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant Hα emission that probably represent uncatalogued, low brightness H II regions.

  10. Studying the Interstellar Medium of H II/BCD Galaxies Using IFU Spectroscopy

    Directory of Open Access Journals (Sweden)

    Patricio Lagos

    2013-01-01

    Full Text Available We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of H ii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show He ii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all H ii/BCD galaxies studied thus far with integral-field unit spectroscopy.

  11. Simultaneous NuSTAR and XMM-Newton 0.5-80 keV spectroscopy of the narrow-line Seyfert 1 galaxy SWIFT J2127.4+5654

    DEFF Research Database (Denmark)

    Marinucci, A.; Matt, G.; Kara, E.

    2014-01-01

    We present a broad-band spectral analysis of the joint XMM-Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 ks performed during three XMM-Newton orbits. We detect a relativistic broadened iron Kα line...

  12. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. THE CARNEGIE-IRVINE GALAXY SURVEY. II. ISOPHOTAL ANALYSIS

    International Nuclear Information System (INIS)

    Li Zhaoyu; Ho, Luis C.; Barth, Aaron J.; Peng, Chien Y.

    2011-01-01

    The Carnegie-Irvine Galaxy Survey (CGS) is a comprehensive investigation of the physical properties of a complete, representative sample of 605 bright (B T ≤ 12.9 mag) galaxies in the southern hemisphere. This contribution describes the isophotal analysis of the broadband (BVRI) optical imaging component of the project. We pay close attention to sky subtraction, which is particularly challenging for some of the large galaxies in our sample. Extensive crosschecks with internal and external data confirm that our calibration and sky subtraction techniques are robust with respect to the quoted measurement uncertainties. We present a uniform catalog of one-dimensional radial profiles of surface brightness and geometric parameters, as well as integrated colors and color gradients. Composite profiles highlight the tremendous diversity of brightness distributions found in disk galaxies and their dependence on Hubble type. A significant fraction of S0 and spiral galaxies exhibit non-exponential profiles in their outer regions. We perform Fourier decomposition of the isophotes to quantify non-axisymmetric deviations in the light distribution. We use the geometric parameters, in conjunction with the amplitude and phase of the m = 2 Fourier mode, to identify bars and quantify their size and strength. Spiral arm strengths are characterized using the m = 2 Fourier profiles and structure maps. Finally, we utilize the information encoded in the m = 1 Fourier profiles to measure disk lopsidedness. The databases assembled here and in Paper I lay the foundation for forthcoming scientific applications of CGS.

  14. nIFTy galaxy cluster simulations II: radiative models

    CSIR Research Space (South Africa)

    Sembolini, F

    2016-04-01

    Full Text Available Valerio 2, I-34127 Trieste, Italy 12Physics Department, University of the Western Cape, Cape Town 7535, Sotuh Africa 13Physics Department, University of Western Cape, Bellville, Cape Town 7535, South Africa 14South African Astronomical Observatory, PO Box...IFTy cluster comparison project (Sembolini et al., 2015): a study of the latest state-of- the-art hydrodynamical codes using simulated galaxy clusters as a testbed for theories of galaxy formation. Simulations are indis- pensable tools in the interpretation...

  15. Contamination of the Th II line and the age of the Galaxy

    International Nuclear Information System (INIS)

    Lawler, J.E.; Whaling, W.; Grevesse, N.

    1990-01-01

    The age of the Galaxy may be estimated from observations of the ratio of stellar abundances of thorium, which has only one long-lived isotope with a half-life comparable to the suspected age of the Galaxy, and neodymium, a stable element. The Th/Nd abundance ratio in a sample of G-dwarf stars of different ages was derived from the intensities of one Th II and one Nd II absorption line, and indicated a rather young galactic age of 9.6 Gyr. But the Th II line is blended with a Co I line. Here we determine the transition probability of the Co I line by combining radiative lifetime and branching-ratio measurements. We show that the Co I contribution cannot be neglected in deriving Th/Nd ratios. By comparing our results with predictions based on models of galactic chemical evolution, we suggest a revised age of the Galaxy of 15-20 Gyr. (author)

  16. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  17. H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. S.; Liu, Z. W. [Center for Astrophysics, Guangzhou University, Guangzhou, 510006 (China); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. Z. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Coldwell, G. V., E-mail: jszhang@gzhu.edu.cn [FCEFyN-UNSJ-CONICET, San Juan (Argentina)

    2017-02-20

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.

  18. H2O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Science.gov (United States)

    Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.

    2017-02-01

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.

  19. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  20. Central structures of Seyfert galaxy NGC 1672

    Science.gov (United States)

    Firpo, V.; Díaz, R.; Dottori, H.; Aguero, M. P.; Bosch, G.; Hagele, G.; Cardaci, M.; Dors, O.

    2017-10-01

    We present the velocity field of the inner 4"(350 pc) of NGC1672, observed with Gemini GMOS/IFU with a spatial sampling of 0.2", spatial resolution of 0.4", and spectral resolution 6000. We determine an upper limit for the mass of the SMBH in the LINER core using the ionized gas radial velocity field, and we confirmed that the active galactic nucleus is located off-center respect to the circumnuclear disk rotation symmetry center.

  1. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  2. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Katherine L.; Salzer, John J.; Haurberg, Nathalie C.; Van Sistine, Angela; Young, Michael D. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, Saint Paul, MN 55105 (United States); Skillman, Evan D.; McQuinn, Kristen B. W., E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: betsey@astro.cornell.edu, E-mail: jcannon@macalester.edu, E-mail: skillman@astro.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States)

    2013-06-15

    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V{sub o} {approx} 25. We also use narrowband H{alpha} imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  3. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Retzlaff, Jörg [ESO, D-85748 Garching (Germany); Meisenheimer, Klaus [Max-Planck-Institut für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schartel, Norbert [ESAC, Camino Bajo del Castillo, Villanueva de la Cañada, E-28692 Madrid (Spain)

    2017-05-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  4. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    International Nuclear Information System (INIS)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim; Retzlaff, Jörg; Meisenheimer, Klaus; Schartel, Norbert

    2017-01-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10 −12 erg s −1 cm −2 (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ 8 and Ω m , yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  5. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, R. Scott; Comerford, Julia M. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Pooley, David, E-mail: Robert.Barrows@Colorado.edu [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  6. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Science.gov (United States)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  7. Colliding and merging galaxies. II. S0 galaxies with polar rings

    International Nuclear Information System (INIS)

    Schweizer, F.; Whitmore, B.D.; Rubin, V.C.

    1983-01-01

    We first present a detailed optical study of A0136-0801, a 16 1/2 -mag ''spindle'' galaxy girdled by a ring of gas, dust, and young stars. The spindle is a normal S0 disk seen nearly edge-on, as shown by its photometric profile and fast rotation (v/sub rot//sigma/sub v/ = 2.2); a prolate structure seems to be ruled out. The surrounding ring runs over the poles of this S0 disk and serves as a probe of the vertical potential. The ring motions suggest that a massive halo extends far beyond the S0 disk (out to 3R 25 ) and that this halo is more nearly spherical than flat. We then list 22 related galaxies and derive that a few percent of all field S0's possess near-polar rings or disks. We suggest that these structures are due to a second event, most likely the transfer of mass from a companion galaxy during a close encounter and occasionally also the merger of a companion. Although accretion occurs presumably at random angles, polar rings are favored statistically because of their slow differential precession and consequent longevity. Alternate evolutionary schemes are also discussed. Finally, we suggest that M82 may be forming a polar ring from former M81 material, and predict that the ''tilted bulge'' of UGC 7576 is an S0 disk seen nearly edge-on

  8. ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6

    Science.gov (United States)

    Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa

    2016-12-01

    We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.

  9. EXTENDED [C II] EMISSION IN LOCAL LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Díaz-Santos, T.; Armus, L.; Surace, J. A.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Evans, A. S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Mazzarella, J. M.; Xu, C. K.; Lu, N.; Howell, J. H.; Van der Werf, P. P.; Meijerink, R.

    2014-01-01

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ∼1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios ≥4 × 10 –3 , larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] ''deficits'' found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, Σ IR , for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ∼6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and Σ IR with measurements of high-redshift starbursting IR-luminous galaxies

  10. The binary fraction of stars in dwarf galaxies: the case of Leo II

    OpenAIRE

    Spencer, Meghin; Mateo, Mario; Walker, Matthew; Olszewski, Edward; McConnachie, Alan; Kirby, Evan; Koch, Andreas

    2017-01-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determ...

  11. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  12. Search for [C II] emission in z = 6.5-11 star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    González-López, Jorge; Infante, Leopoldo [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Riechers, Dominik A., E-mail: jgonzal@astro.puc.cl, E-mail: linfante@astro.puc.cl [Astronomy Department, Cornell University 220 Space Sciences Building, Ithaca, NY 14853 (United States); and others

    2014-04-01

    We present the search for the [C II] emission line in three z > 6.5 Lyα emitters (LAEs) and one J-dropout galaxy using the Combined Array for Research in Millimeter-wave Astronomy and the Plateau de Bure Interferometer. We observed three bright z ∼ 6.5-7 LAEs discovered in the Subaru Deep Field (SDF) and the multiple imaged lensed z ∼ 11 galaxy candidate found behind the galaxy cluster MACSJ0647.7+7015. For the LAEs IOK-1 (z = 6.965), SDF J132415.7+273058 (z = 6.541), and SDF J132408.3+271543 (z = 6.554) we find upper limits for the [C II] line luminosity of <2.05, <4.52, and <10.56 × 10{sup 8} L {sub ☉}, respectively. We find upper limits to the far-IR (FIR) luminosity of the galaxies using a spectral energy distribution template of the local galaxy NGC 6946 and taking into account the effects of the cosmic microwave background on the millimeter observations. For IOK-1, SDF J132415.7+273058, and SDF J132408.3+271543 we find upper limits for the FIR luminosity of <2.33, 3.79, and 7.72 × 10{sup 11} L {sub ☉}, respectively. For the lensed galaxy MACS0647-JD, one of the highest-redshift galaxy candidates to date with z{sub ph}=10.7{sub −0.4}{sup +0.6}, we put an upper limit in the [C II] emission of <1.36 × 10{sup 8} × (μ/15){sup –1} L {sub ☉} and an upper limit in the FIR luminosity of <6.1 × 10{sup 10} × (μ/15){sup –1} L {sub ☉} (where μ is the magnification factor). We explore the different conditions relevant for the search for [C II] emission in high-redshift galaxies as well as the difficulties for future observations with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Cerro Chajnantor Atacama Telescope (CCAT).

  13. Tidal disruption of dwarf spheroidal galaxies: the strange case of Crater II

    Science.gov (United States)

    Sanders, Jason L.; Evans, N. W.; Dehnen, W.

    2018-05-01

    Dwarf spheroidal galaxies of the Local Group obey a relationship between the line-of-sight velocity dispersion and half-light radius, although there are a number of dwarfs that lie beneath this relation with suppressed velocity dispersion. The most discrepant of these (in the Milky Way) is the `feeble giant' Crater II. Using analytic arguments supported by controlled numerical simulations of tidally-stripped flattened two-component dwarf galaxies, we investigate interpretations of Crater II within standard galaxy formation theory. Heavy tidal disruption is necessary to explain the velocity-dispersion suppression which is plausible if the proper motion of Crater II is (μα*, μδ) = ( - 0.21 ± 0.09, -0.24 ± 0.09)mas yr-1. Furthermore, we demonstrate that the velocity dispersion of tidally-disrupted systems is solely a function of the total mass loss even for weakly-embedded and flattened systems. The half-light radius evolution depends more sensitively on orbital phase and the properties of the dark matter profile. The half-light radius of weakly-embedded cusped systems rapidly decreases producing some tension with the Crater II observations. This tension is alleviated by cored dark matter profiles, in which the half-light radius can grow after tidal disruption. The evolution of flattened galaxies is characterised by two competing effects: tidal shocking makes the central regions rounder whilst tidal distortion produces a prolate tidally-locked outer envelope. After ˜70% of the central mass is lost, tidal distortion becomes the dominant effect and the shape of the central regions of the galaxy tends to a universal prolate shape irrespective of the initial shape.

  14. OBSERVATIONS OF Mg II ABSORPTION NEAR z ∼ 1 GALAXIES SELECTED FROM THE DEEP2 REDSHIFT SURVEY

    International Nuclear Information System (INIS)

    Lovegrove, Elizabeth; Simcoe, Robert A.

    2011-01-01

    We study the frequency of Mg II absorption in the outer halos of galaxies at z = 0.6-1.4 (with median z = 0.87), using new spectra obtained of 10 background quasars with galaxy impact parameters of b r = 0.15-1.0 A, though not all absorbers correlate with DEEP galaxies. We find five unique absorbers within Δv = 500 km s -1 and b r > 1.0 A, consistent with other samples of galaxy-selected Mg II systems. We speculate that Mg II systems with 0.3 r r are more likely to reflect the more recent star-forming history of their associated galaxies.

  15. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  16. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  17. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    International Nuclear Information System (INIS)

    Sapone, Domenico; Kunz, Martin; Amendola, Luca

    2010-01-01

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c s < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  18. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Submillimeter Array/Plateau de Bure Interferometer Multiple Line Observations of the Nearby Seyfert 2 Galaxy NGC 1068: Shock-related Gas Kinematics and Heating in the Central 100 pc?

    Czech Academy of Sciences Publication Activity Database

    Krips, M.; Martin, S.; Eckart, A.; Neri, R.; Garcia-Burillo, S.; Matsushita, S.; Peck, A.; Stoklasová, Ivana; Petitpas, G.; Usero, A.; Combes, F.; Schinnerer, E.; Humphreys, L.; Baker, A.

    2011-01-01

    Roč. 736, 1-4 (2011), 37/1-37/27 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxies * active galaxies * NGC 1068 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  20. Triangulum II: Possibly a Very Dense Ultra-faint Dwarf Galaxy

    Science.gov (United States)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.; Guhathakurta, Puragra

    2015-11-01

    Laevens et al. recently discovered Triangulum II (Tri II), a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 {L}⊙ . Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.‧2 of the center of Tri II, and we found a velocity dispersion of {σ }v={5.1}-1.4+4.0 {km} {{{s}}}-1. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Tri II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center ({v}{{GSR}}=-262 {km} {{{s}}}-1). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, =-382.1+/- 2.9 {km} {{{s}}}-1, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey stellar stream. If Tri II is in dynamical equilibrium, then it would have a mass-to-light ratio of {3600}-2100+3500 {M}⊙ {L}⊙ -1, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3D half-light radius would be {4.8}-3.5+8.1 {M}⊙ {{{pc}}}-3, even higher than Segue 1. Hence, Tri II is an excellent candidate for the indirect detection of dark matter annihilation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. A two-point diagnostic for the H II galaxy Hubble diagram

    Science.gov (United States)

    Leaf, Kyle; Melia, Fulvio

    2018-03-01

    A previous analysis of starburst-dominated H II galaxies and H II regions has demonstrated a statistically significant preference for the Friedmann-Robertson-Walker cosmology with zero active mass, known as the Rh = ct universe, over Λcold dark matter (ΛCDM) and its related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with these data to present a complementary statistical comparison of Rh = ct with Planck ΛCDM. Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance modulus measured at two redshifts with that predicted by each cosmology. Our results support the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is statistically preferred over Planck ΛCDM. But we also find that the reported errors in the H II measurements may not be purely Gaussian, perhaps due to a partial contamination by non-Gaussian systematic effects. The use of H II galaxies and H II regions as standard candles may be improved even further with a better handling of the systematics in these sources.

  2. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  3. ON THE COMPACT H II GALAXY UM 408 AS SEEN BY GMOS-IFU: PHYSICAL CONDITIONS

    International Nuclear Information System (INIS)

    Lagos, Patricio; Telles, Eduardo; Munoz-Tunon, Casiana; Carrasco, Eleazar R.; Cuisinier, Francois; Tenorio-Tagle, Guillermo

    2009-01-01

    We present Integral Field Unit GMOS-IFU data of the compact H II galaxy UM 408, obtained at the Gemini South telescope, in order to derive the spatial distribution of emission lines and line ratios, kinematics, plasma parameters, and oxygen abundances as well the integrated properties over an area of 3''x4.''4 equivalent with ∼750 pc x 1100 pc located in the central part of the galaxy. The starburst in this area is resolved into two giant regions of about 1.''5 and 1'' (∼375 and ∼250 pc) diameter, respectively and separated 1.5-2'' (∼500 pc). The extinction distribution concentrate its highest values close but not coincident with the maxima of Hα emission around each one of the detected regions. This indicates that the dust has been displaced from the exciting clusters by the action of their stellar winds. The ages of these two regions, estimated using Hβ equivalent widths, suggest that they are coeval events of ∼5 Myr with stellar masses of ∼10 4 M sun . We have also used [O III]/Hβ and [S II]/Hα ratio maps to explore the excitation mechanisms in this galaxy. Comparing the data points with theoretical diagnostic models, we found that all of them are consistent with excitation by photoionization by massive stars. The Hα emission line was used to measure the radial velocity and velocity dispersion. The heliocentric radial velocity shows an apparent systemic motion where the east part of the galaxy is blueshifted, while the west part is redshifted, with a relative motion of ∼10 km s -1 . The velocity dispersion map shows supersonic values typical for extragalactic H II regions. We derived an integrated oxygen abundance of 12+log(O/H) = 7.87 summing over all spaxels in our field of view. An average value of 12+log(O/H) = 7.77 and a difference of Δ(O/H) = 0.47 between the minimum and maximum values (7.58 ± 0.06-8.05 ± 0.04) were found, considering all data points where the oxygen abundance was measured. The spatial distribution of oxygen abundance

  4. A long XMM-Newton observation of an extreme narrow-line Seyfert 1: PG 1244+026

    NARCIS (Netherlands)

    Jin, C.; Done, C.; Middleton, M.; Ward, M.

    2013-01-01

    We explore the origin of the strong soft X-ray excess in narrow-line Seyfert 1 galaxies using spectral-timing information from a 120 ks XMM-Newton observation of PG 1244+026. Spectral fitting alone cannot distinguish between a true additional soft X-ray continuum component and strongly

  5. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. II. COLOR TRENDS AND MASS PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2016-06-01

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  6. Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berse, R. Ch.; Berti, A.; Bhattacharyya, W.; Biland, A.; Blanch, O.; Bonnoli, G.; Carosi, R.; Carosi, A.; Ceribella, G.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; Delfino, M.; Delgado, J.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Masuda, S.; Mazin, D.; Mielke, K.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Nagayoshi, T.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pedaletti, G.; Peresano, M.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takahashi, M.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Torres-Albà, N.; Treves, A.; Tsujimoto, S.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2018-03-01

    The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E gtrsim 50 GeV) in search for signatures of DM annihilation in the wide mass range between ~100 GeV and ~100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored DM models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.

  7. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    International Nuclear Information System (INIS)

    Atlee, David W.; Martini, Paul

    2012-01-01

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z * (>99% confidence) with no dependence on R/R 200 or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR)∝(R/R 200 ) 1.1±0.3 for galaxies with R/R 200 ≤ 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R ≤ 0.1 R 200 . The increase in the fraction of SFGs toward larger R/R 200 and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R 200 in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at ∼3.5σ, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  8. Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios

    Science.gov (United States)

    Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.

    2018-05-01

    We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.

  9. Imaging the Obscuring Torus in Nearby Active Galaxies

    Science.gov (United States)

    Wilson, Andrew S.; Storchi Bergmann, Thaisa; Morris, Simon

    2000-02-01

    We propose to study a sample of Seyfert galaxies with the aim of resolving spatially the torus of dense molecular gas and dust which is believed to surround the nuclei of these objects. The galaxies, selected to have strong molecular hydrogen emission and jet-like radio continuum sources, will be imaged in various molecular hydrogen lines and in [Fe II] or Br (gamma). The goals are to a) confirm the existence of such tori, b) determine whether the extended molecular gas is excited thermally or through fluorescence, and c) compare with the distribution of ionized gas, which may show an ionization cone structure from polar escape of ionizing photons. The availability of IR imaging capabilities with tip-tilt and narrow-band filters, which allow imaging in the H_2(lambda) 2.122(micron) line up to a recession velocity of 6,000 km s^-1, makes the Blanco 4m telescope very well suited to this project.

  10. ULTRALUMINOUS INFRARED GALAXIES IN THE WISE AND SDSS SURVEYS

    International Nuclear Information System (INIS)

    Su, Shanshan; Kong, Xu; Li, Jinrong; Fang, Guanwen

    2013-01-01

    In this paper, we present a large catalog of 419 Ultraluminous infrared galaxies (ULIRGs), carefully selected from the Wide-field Infrared Survey Explorer mid-infrared data and the Sloan Digital Sky Survey eighth data release, and classify them into three subsamples, based on their emission line properties: H II-like ULIRGs, Seyfert 2 ULIRGs, and composite ULIRGs. We apply our new efficient spectral synthesis technique, which is based on mean field approach to Bayesian independent component analysis (MF-ICA) method, to the galaxy integrated spectra. We also analyze the stellar population properties, including percentage contribution, stellar age, and stellar mass, for these three types of ULIRGs, and explore the evolution among them. We find no significant difference between the properties of stellar populations in ULIRGs with or without active galactic nucleus components. Our results suggest that there is no evolutionary link among these three type ULIRGs

  11. A Foreground Masking Strategy for [C II] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Science.gov (United States)

    Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.

    2018-04-01

    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z cost of a moderate ≲8% loss of total survey volume.

  12. Mg II ABSORPTION CHARACTERISTICS OF A VOLUME-LIMITED SAMPLE OF GALAXIES AT z ∼ 0.1

    International Nuclear Information System (INIS)

    Barton, Elizabeth J.; Cooke, Jeff

    2009-01-01

    We present an initial survey of Mg II absorption characteristics in the halos of a carefully constructed, volume-limited subsample of galaxies embedded in the spectroscopic part of the Sloan Digital Sky Survey (SDSS). We observed quasars near sightlines to 20 low-redshift (z ∼ 0.1), luminous (M r + 5log h ≤-20.5) galaxies in SDSS DR4 and DR6 with the LRIS-B spectrograph on the Keck I telescope. The primary systematic criteria for the targeted galaxies are a redshift z ∼> 0.1 and the presence of an appropriate bright background quasar within a projected 75 h -1 kpc of its center, although we preferentially sample galaxies with lower impact parameters and slightly more star formation within this range. Of the observed systems, six exhibit strong (W eq (2796) ≥ 0.3 A) Mg II absorption at the galaxy's redshift, six systems have upper limits which preclude strong Mg II absorption, while the remaining observations rule out very strong (W eq (2796) ≥ 1-2 A) absorption. The absorbers fall at higher impact parameters than many non-absorber sightlines, indicating a covering fraction f c ∼ -1 kpc (f c ∼ 0.25). The data are consistent with a possible dependence of covering fraction and/or absorption halo size on the environment or star-forming properties of the central galaxy.

  13. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  14. A probabilistic approach to emission-line galaxy classification

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.

    2017-12-01

    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.

  15. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Atlee, David W.; Martini, Paul, E-mail: atlee@noao.edu [Department of Astronomy, Ohio State University, 4055 McPherson Laboratory, 140 W. 18th Ave., Columbus, OH 43210 (United States)

    2012-12-20

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z < 0.3) clusters and use them to measure stellar masses and SFRs as a function of environment. A partial correlation analysis indicates that the SFRs of star-forming galaxies (SFGs) depend strongly on M{sub *} (>99% confidence) with no dependence on R/R{sub 200} or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR){proportional_to}(R/R{sub 200}){sup 1.1{+-}0.3} for galaxies with R/R{sub 200} {<=} 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R {<=} 0.1 R{sub 200}. The increase in the fraction of SFGs toward larger R/R{sub 200} and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R < 0.4 R{sub 200} in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at {approx}3.5{sigma}, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  16. Ultrahigh-energy Cosmic Rays from Fanaroff Riley class II radio galaxies

    Science.gov (United States)

    Rachen, Joerg; Biermann, Peter L.

    1992-08-01

    The hot spots of very powerful radio galaxies (Fanaroff Riley class II) are argued to be the sources of the ultrahigh energy component in Cosmic Rays. We present calculations of Cosmic Ray transport in an evolving universe, taking the losses against the microwave background properly into account. As input we use the models for the cosmological radio source evolution derived by radioastronomers (mainly Peacock 1985). The model we adopt for the acceleration in the radio hot spots has been introduced by Biermann and Strittmatter (1987), and Meisenheimer et al. (1989) and is based on first order Fermi theory of particle acceleration at shocks (see, e.g., Drury 1983). As an unknown the actual proportion of energy density in protons enters, which together with structural uncertainties in the hot spots should introduce no more than one order of magnitude in uncertainty: We easily reproduce the observed spectra of high energy cosmic rays. It follows that scattering of charged energetic particles in intergalactic space must be sufficiently small in order to obtain contributions from sources as far away as even the nearest Fanaroff Riley class II radio galaxies. This implies a strong constraint on the turbulent magnetic field in intergalactic space.

  17. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Bord, D. J.; Che, X.; Chen, C.; Cohen, S. A.

    2012-01-01

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II λ4686 broad emission line relative to the optical continuum to be 2.7 ± 0.6 days and the lag in the Hβλ4861 broad emission line to be 13.9 ± 0.9 days. Combined with the line width, the He II lag yields a black hole mass M BH = (2.6 ± 0.8) × 10 7 M ☉ . This measurement is consistent with measurements made using the Hβλ4861 line, suggesting that the He II emission originates in the same structure as Hβ, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  18. A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Denney, K. D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Bord, D. J. [Department of Natural Sciences, The University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); Chen, C.; Cohen, S. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); and others

    2012-01-15

    We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.

  19. A Polarimetric Search for Hidden Quasars in Three Radio-selected Ultraluminous Infrared Galaxies

    International Nuclear Information System (INIS)

    Tran, H.D.; Brotherton, M.S.; Stanford, S.A.; Breugel, W. van; Dey, A.; Stern, D.; Antonucci, R.

    1999-01-01

    We have carried out a spectropolarimetric search for hidden broad-line quasars in three ultraluminous infrared galaxies (ULIRGs) discovered in the positional correlations between sources detected in deep radio surveys and the IRAS Faint Source Catalog. Only the high-ionization Seyfert 2 galaxy TF J1736+1122 is highly polarized, displaying a broad-line spectrum visible in polarized light. The other two objects, TF J1020+6436 and FF J1614+3234, display spectra dominated by a population of young (A type) stars similar to those of open-quotes E+Aclose quotes galaxies. They are unpolarized, showing no sign of hidden broad-line regions. The presence of young starburst components in all three galaxies indicates that the ULIRG phenomenon encompasses both active galactic nuclei (AGNs) and starburst activity, but the most energetic ULIRGs do not necessarily harbor open-quotes buried quasars.close quotes We find that a luminous infrared galaxy is most likely to host an obscured quasar if it exhibits a high-ionization ([O iii] λ5007/Hβ approx-gt 5) spectrum typical of a 'classic' Seyfert 2 galaxy with little or no Balmer absorption lines, is 'ultraluminous' (L IR approx-gt 10 12 L circle-dot ), and has a 'warm' IR color (f 25 /f 60 approx-gt 0.25). The detection of hidden quasars in this group but not in the low-ionization, starburst-dominated ULIRGs (classified as LINERs or H ii galaxies) may indicate an evolutionary connection, with the latter being found in younger systems. copyright copyright 1999. The American Astronomical Society

  20. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    OpenAIRE

    Martin, NF; Nidever, DL; Besla, G; Olsen, K; Walker, AR; Vivas, AK; Gruendl, RA; Kaleida, CC; Muñoz, RR; Blum, RD; Saha, A; Conn, BC; Bell, EF; Chu, YH; Cioni, MRL

    2015-01-01

    © 2015. The American Astronomical Society. All rights reserved.We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact (rh = 68 ± 11 pc) and faint (MV = -4.8 ± 0.3), but well within the realm of dwarf galaxies. The stellar distribution of Hydra II in the color-magnitude diagram is well-described by a m...

  1. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  2. Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8

    Science.gov (United States)

    Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei

    2018-01-01

    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation

  3. H I-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. II. THE COLORS OF GAS-RICH GALAXIES

    International Nuclear Information System (INIS)

    West, Andrew A.; Garcia-Appadoo, Diego A.; Dalcanton, Julianne J.; Ivezic, Zeljko; Disney, Mike J.; Rockosi, Constance M.

    2009-01-01

    We utilize color information for an H I-selected sample of 195 galaxies to explore the star formation histories and physical conditions that produce the observed colors. We show that the H I selection creates a significant offset toward bluer colors that can be explained by enhanced recent bursts of star formation. There is also no obvious color bimodality, because the H I selection restricts the sample to bluer, actively star-forming systems, diminishing the importance of the red sequence. Rising star formation rates are still required to explain the colors of galaxies bluer than g - r< 0.3. We also demonstrate that the colors of the bluest galaxies in our sample are dominated by emission lines and that stellar population synthesis models alone (without emission lines) are not adequate for reproducing many of the galaxy colors. These emission lines produce large changes in the r - i colors but leave the g - r color largely unchanged. In addition, we find an increase in the dispersion of galaxy colors at low masses that may be the result of a change in the star formation process in low-mass galaxies.

  4. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  5. Escape of ionizing radiation from star-forming regions in Young galaxies

    DEFF Research Database (Denmark)

    Razoumov, A; Sommer-Larsen, Jesper

    2006-01-01

    Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10......Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10...

  6. Searching gravitational microlensing events in the galaxy spiral arms by EROS II

    International Nuclear Information System (INIS)

    Derue, Frederic

    1999-01-01

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10 -3 0 0 = 50 ± 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is τ-bar = 0.45 0.11 +0.23 x 10 -6 . It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to estimate the disk contribution to the optical depth towards the bulge and the Magellanic Clouds. (author)

  7. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    Science.gov (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  8. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. II. PLANETARY NEBULA SPECTROSCOPY

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Ciardullo, Robin

    2009-01-01

    As the second step in our investigation of the mass-to-light ratio of spiral disks, we present the results of a spectroscopic survey of planetary nebulae (PNe) in five nearby, low-inclination galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). Using 50 setups of the WIYN/Hydra and Blanco/Hydra spectrographs, and 25 observations with the Hobby-Eberly Telescope's Medium Resolution Spectrograph, we determine the radial velocities of 99, 102, 162, 127, and 48 PNe, respectively, to a precision better than 15 km s -1 . Although the main purpose of this data set is to facilitate dynamical mass measurements throughout the inner and outer disks of large spiral galaxies, our spectroscopy has other uses as well. Here, we co-add these spectra to show that, to first order, the [O III] and Balmer line ratios of PNe vary little over the top ∼1.5 mag of the PN luminosity function. The only obvious spectral change occurs with [N II], which increases in strength as one proceeds down the luminosity function. We also show that typical [O III]-bright planetaries have E(B - V) ∼ 0.2 of circumstellar extinction, and that this value is virtually independent of [O III] luminosity. We discuss the implications this has for understanding the population of PN progenitors.

  9. EXPLORING THE LOW-MASS END OF THE MBH-σ* RELATION WITH ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Xiao Ting; Barth, Aaron J.; Greene, Jenny E.; Ludwig, Randi R.; Ho, Luis C.; Bentz, Misty C.; Jiang Yanfei

    2011-01-01

    We present new measurements of stellar velocity dispersions, using spectra obtained with the Keck Echellette Spectrograph and Imager (ESI) and the Magellan Echellette (MagE), for 76 Seyfert 1 galaxies from the recent catalog of Greene and Ho. These objects were selected from the Sloan Digital Sky Survey (SDSS) to have estimated black hole (BH) masses below 2 x 10 6 M sun . Combining our results with previous ESI observations of similar objects, we obtain an expanded sample of 93 galaxies and examine the relation between BH mass and velocity dispersion (the M BH -σ * relation) for active galaxies with low BH masses. The low-mass active galaxies tend to follow the extrapolation of the M BH -σ * relation of inactive galaxies. Including results for active galaxies of higher BH mass from the literature, we find a zero point α = 7.68 ± 0.08 and slope of β = 3.32 ± 0.22 for the M BH -σ * relation (in the form log M BH = α + βlog (σ * /200 km s -1 )), with intrinsic scatter of 0.46 ± 0.03 dex. This result is consistent, within the uncertainties, with the slope of the M BH -σ * relation for reverberation-mapped active galaxies with BH masses from 10 6 to 10 9 M sun . For the subset of our sample having morphological information from Hubble Space Telescope images, we examine the slope of the M BH -σ * relation separately for subsamples of barred and unbarred host galaxies, and find no significant evidence for a difference in slope. We do find a mild offset between low-inclination and high-inclination disk galaxies, such that more highly inclined galaxies tend to have larger σ * at a given value of BH mass, presumably due to the contribution of disk rotation within the spectroscopic aperture. We also find that the velocity dispersion of the ionized gas, measured from narrow emission lines including [N II] λ6583, [S II] λλ6716, 6731, and the core of [O III] λ5007 (with the blueshifted wing removed), trace the stellar velocity dispersion well for this large

  10. Hydra II: A Faint and Compact Milky Way Dwarf Galaxy Found in the Survey of the Magellanic Stellar History

    NARCIS (Netherlands)

    Martin, Nicolas F.; Nidever, David L.; Besla, Gurtina; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Gruendl, Robert A.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Blum, Robert D.; Saha, Abhijit; Conn, Blair C.; Bell, Eric F.; Chu, You-Hua; Cioni, Maria-Rosa L.; de Boer, Thomas J. L.; Gallart, Carme; Jin, Shoko; Kunder, Andrea; Majewski, Steven R.; Martinez-Delgado, David; Monachesi, Antonela; Monelli, Matteo; Monteagudo, Lara; Noël, Noelia E. D.; Olszewski, Edward W.; Stringfellow, Guy S.; van der Marel, Roeland P.; Zaritsky, Dennis

    We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope. The new satellite is compact ({{r}h}=68 ± 11 pc) and faint ({{M}V}=-4.8 ± 0.3),

  11. MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yingjie; Lilly, Simon J.; Carollo, Marcella [Institute of Astronomy, ETH Zurich, 8093 Zurich (Switzerland); Renzini, Alvio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2012-09-20

    We extend the phenomenological study of the evolving galaxy population of Peng et al. (2010) to the central/satellite dichotomy in Yang et al. Sloan Digital Sky Survey (SDSS) groups. We find that satellite galaxies are responsible for all the environmental effects in our earlier work. The fraction of centrals that are red does not depend on their environment but only on their stellar masses, whereas that of the satellites depends on both. We define a relative satellite quenching efficiency {epsilon}{sub sat}, which is the fraction of blue centrals that are quenched upon becoming the satellite of another galaxy. This is shown to be independent of stellar mass, but to depend strongly on local overdensity, {delta}, ranging between 0.2 and at least 0.8. The red fraction of satellites correlate much better with the local overdensity {delta}, a measure of location within the group, than with the richness of the group, i.e., dark matter halo mass. This, and the fact that satellite quenching depends on local density and not on either the stellar mass of the galaxy or the dark matter halo mass, gives clues as to the nature of the satellite-quenching process. We furthermore show that the action of mass quenching on satellite galaxies is also independent of the dark matter mass of the parent halo. We then apply the Peng et al. approach to predict the mass functions of central and satellite galaxies, split into passive and active galaxies, and show that these match very well the observed mass functions from SDSS, further strengthening the validity of this phenomenological approach. We highlight the fact that the observed M* is exactly the same for the star-forming centrals and satellites and the observed M* for the star-forming satellites is independent of halo mass above 10{sup 12} M{sub Sun }, which emphasizes the universality of the mass-quenching process that we identified in Peng et al. Post-quenching merging modifies the mass function of the central galaxies but can

  12. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  13. Internal Variations in Empirical Oxygen Abundances for Giant H II Regions in the Galaxy NGC 2403

    Science.gov (United States)

    Mao, Ye-Wei; Lin, Lin; Kong, Xu

    2018-02-01

    This paper presents a spectroscopic investigation of 11 {{H}} {{II}} regions in the nearby galaxy NGC 2403. The {{H}} {{II}} regions are observed with a long-slit spectrograph mounted on the 2.16 m telescope at XingLong station of National Astronomical Observatories of China. For each of the {{H}} {{II}} regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels, which inherently decline at larger radii within individual {{H}} {{II}} regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor {{H}} {{II}} regions with measurable T e, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.

  14. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    International Nuclear Information System (INIS)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.

    2014-01-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  15. On the relationship between optical and radio emission from active galaxy nuclei

    International Nuclear Information System (INIS)

    Zentsova, A.S.; Fedorenko, V.N.

    1991-01-01

    Model in which the radio emission of nuclei of Seyfert galaxies emerges in the regions of formation of their narrow emission lines, R∼100 pc is developed. Gaseous clouds, producing this emission, are moving in the surrounding hot gas and induce shock waves. The shock waves accelerate electrons, which produce radio emission via synchrotron mechanism. The model explains an observational correlation between the radio and optical properties of Seyfert galaxies and makes some predictions on the parameters of the region R∼100 pc

  16. A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF BzK-SELECTED MASSIVE STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Onodera, Masato; Daddi, Emanuele; Arimoto, Nobuo; Renzini, Alvio; Kong Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-01-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ∼2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (≅100 Myr) and large initial gas mass appear to be required

  17. The Phoenix galaxy as seen by NuSTAR

    DEFF Research Database (Denmark)

    Masini, A.; Comastri, A.; Puccetti, S.

    2017-01-01

    Aims. We study the long-term variability of the well-known Seyfert 2 galaxy Mrk 1210 (also known as UGC 4203, or the Phoenix galaxy). Methods. The source was observed by many X-ray facilities in the last 20 yr. Here we present a NuSTAR observation and put the results in the context of previously ...

  18. 150 southern compact and bright-nucleus galaxies

    International Nuclear Information System (INIS)

    Fairall, A.P.

    1977-01-01

    Galaxies having regions of exceptionally high surface brightness have been selected from the ESO Quick Blue Survey and investigated by 'grating photography' -direct photography plus low-dispersion slitless spectroscopy. Two new Seyfert galaxies and a peculiar multiple system have been discovered. Differences in red continua are also noted. (author)

  19. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  20. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    Science.gov (United States)

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  1. The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z ~ 3

    Science.gov (United States)

    Foucaud, S.; McCracken, H. J.; Le Fèvre, O.; Arnouts, S.; Brodwin, M.; Lilly, S. J.; Crampton, D.; Mellier, Y.

    2003-10-01

    We present a large sample of z ~ 3 U-band dropout galaxies extracted from the Canada-France deep fields survey (CFDF). Our catalogue covers an effective area of ~ 1700 arcmin2 divided between three large, contiguous fields separated widely on the sky. To IAB=24.5, the survey contains 1294 Lyman-break candidates, in agreement with previous measurements by other authors, after appropriate incompleteness corrections have been applied to our data. Based on comparisons with spectroscopic observations and simulations, we estimate that our sample of Lyman-break galaxies is contaminated by stars and interlopers (lower-redshift galaxies) at no more than { ~ } 30%. We find that omega (theta ) is well fitted by a power-law of fixed slope, gamma =1.8, even at small (theta University of Hawaii, and at the Cerro Tololo Inter-American Observatory and Mayall 4-meter Telescopes, divisions of the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.

  2. The environments of Markarian galaxies

    International Nuclear Information System (INIS)

    Mackenty, J.W.; Simpson, C.; Mclean, B.

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment

  3. An Optical Low-frequency Quasi-Periodic Oscillation in the Kepler Light Curve of an Active Galaxy

    Science.gov (United States)

    Mushotzky, Richard; Smith, Krista Lynne; Boyd, Patricia; Wagoner, Robert

    2018-01-01

    We report the discovery of a candidate quasi-periodic oscillation (QPO) in the optical light curve of KIC 9650712, a Seyfert 1 galaxy in the original Kepler field. After the development and application of a pipeline for Kepler data specific to active galactic nuclei (AGN), one of our sample of 21 AGN selected by infrared photometry and X-ray flux demonstrates a peak in the power spectrum at 10-6.58 Hz, corresponding to a temporal period of 44 days. >From optical spectroscopy, we measure the black hole mass of this AGN as log M = 8.17 M_sun. Despite this high mass, the optical spectrum of KIC 9650712 bears many similarities to Narrow Line Seyfert 1 (NLS1) galaxies, including strong Fe II emission and a low [O III]/Hβ ratio. So far, X-ray QPOs have primarily been seen in NLS1 galaxies. Finally, we find that this frequency lies along a correlation between low-frequency QPOs and black hole mass from stellar and intermediate mass black holes to AGN, similar to the known correlation in high-frequency QPOs.

  4. An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations

    Science.gov (United States)

    Humire, Pedro K.; Nagar, Neil M.; Finlez, Carolina; Firpo, Verónica; Slater, Roy; Lena, Davide; Soto-Pinto, Pamela; Muñoz-Vergara, Dania; Riffel, Rogemar A.; Schmitt, Henrique R.; Kraemer, Steven B.; Schnorr-Müller, Allan; Fischer, Travis C.; Robinson, Andrew; Storchi-Bergmann, Thaisa; Crenshaw, Mike; Elvis, Martin S.

    2018-06-01

    We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092-7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s-1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈10'' to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s-1, and a mean velocity dispersion of 100 km s-1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s-1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10-2 M⊙ yr-1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10-2 M⊙ yr-1. The total ionized gas mass within 84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of 34 km s-1 in this gas would be required to feed both the outflow and SMBH accretion. The reduced datacube (FITS file) is only available at the CDS via anonymous ftp to http

  5. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    International Nuclear Information System (INIS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Simon, Joshua D.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  6. The H II galaxy Hubble diagram strongly favours Rh = ct over ΛCDM

    Science.gov (United States)

    Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio

    2016-12-01

    We continue to build support for the proposal to use H II galaxies (HIIGx) and giant extragalactic H II regions (GEHR) as standard candles to construct the Hubble diagram at redshifts beyond the current reach of Type Ia supernovae. Using a sample of 25 high-redshift HIIGx, 107 local HIIGx, and 24 GEHR, we confirm that the correlation between the emission-line luminosity and ionized-gas velocity dispersion is a viable luminosity indicator, and use it to test and compare the standard model ΛCDM and the Rh = ct universe by optimizing the parameters in each cosmology using a maximization of the likelihood function. For the flat ΛCDM model, the best fit is obtained with Ω _m= 0.40_{-0.09}^{+0.09}. However, statistical tools, such as the Akaike (AIC), Kullback (KIC) and Bayes (BIC) Information Criteria favour Rh = ct over the standard model with a likelihood of ≈94.8-98.8 per cent versus only ≈1.2-5.2 per cent. For wCDM (the version of ΛCDM with a dark-energy equation of state wde ≡ pde/ρde rather than wde = wΛ = -1), a statistically acceptable fit is realized with Ω _m=0.22_{-0.14}^{+0.16} and w_de= -0.51_{-0.25}^{+0.15} which, however, are not fully consistent with their concordance values. In this case, wCDM has two more free parameters than Rh = ct, and is penalized more heavily by these criteria. We find that Rh = ct is strongly favoured over wCDM with a likelihood of ≈92.9-99.6 per cent versus only 0.4-7.1 per cent. The current HIIGx sample is already large enough for the BIC to rule out ΛCDM/wCDM in favour of Rh = ct at a confidence level approaching 3σ.

  7. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    International Nuclear Information System (INIS)

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-01-01

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.

  8. Galaxies and gamma-ray astronomy

    International Nuclear Information System (INIS)

    Bignami, G.F.; Fichtel, C.E.; Hartman, R.C.; Thompson, D.J.

    1979-01-01

    Comparisons between the recently measured X-ray spectra of active galaxies, the intensity upper limits to the γ-ray emission above 35 MeV from the same objects obtained from data from SAS 2, and other γ-ray data are used to address the nature of the high-energy spectra of several types of active galaxies, their contribution to the measured diffuse γ-ray emission between 1 and 150 MeV, and constraints which may be placed on cosmological evolutionary factors. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low-energy γ-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies. A spectral steepening is also seen for 3C 273 and Cen A, the only quasar and radio galaxy for which accurate X-ray spectra are presently available above 20 keV. A cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1--150 MeV diffuse background, even without significant evolution. Sharp emission line galaxies and radio galaxies made a much smaller contribution under the same assumptions. The observed isotropic γ-radiation limits the γ-ray evolution possible for Seyfert galaxies, BL Lac objects, and quasars. The high-latitude galactic radiation limits the γ-ray evolution of normal field galaxies. The integrated emission of normal field galaxies with evolution back to z=4 cannot exceed about 10 times the integrated emission assuming no evolution

  9. Metal-poor dwarf galaxies in the SIGRID galaxy sample. II. The electron temperature-abundance calibration and the parameters that affect it

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J., E-mail: David.Nicholls@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)

    2014-07-20

    In this paper, we use the Mappings photoionization code to explore the physical parameters that impact on the measurement of electron temperature and abundance in H II regions. In our previous paper, we presented observations and measurements of physical properties from the spectra of 17 H II regions in 14 isolated dwarf irregular galaxies from the SIGRID sample. Here, we analyze these observations further, together with three additional published data sets. We explore the effects of optical thickness, electron density, ionization parameter, ionization source, and non-equilibrium effects on the relation between electron temperature and metallicity. We present a standard model that fits the observed data remarkably well at metallicities between one-tenth and 1 solar. We investigate the effects of optically thin H II regions, and show that they can have a considerable effect on the measured electron temperature, and that there is evidence that some of the observed objects are optically thin. We look at the role of the ionization parameter and find that lower ionization parameter values give better fits at higher oxygen abundance. We show that higher pressures combined with low optical depth, and also κ electron energy distributions at low κ values, can generate the apparent high electron temperatures in low-metallicity H II regions, and that the former provides the better fit to observations. We examine the effects of these parameters on the strong line diagnostic methods. We extend this to three-dimensional diagnostic grids to confirm how well the observations are described by the grids.

  10. The Centaurus cluster of galaxies. II. The bimodal-velocity structure

    International Nuclear Information System (INIS)

    Lucey, J.R.; Currie, M.J.; Dickens, R.J.

    1985-09-01

    This is the second paper in a series that describes an extensive study of the Centaurus cluster of galaxies. The paper concerns the bimodal velocity distribution of the galaxies in the cluster. The likely location of the two main cluster components is discussed. The data strongly favours the hypothesis that the two components lie within the same cluster. (UK)

  11. Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies

    Science.gov (United States)

    Zhang, Yimiao; Keres, Dusan; FIRE Team

    2018-01-01

    We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.

  12. Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model

    Science.gov (United States)

    Kuligowska, Elżbieta

    2018-04-01

    Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.

  13. Halo histories versus galaxy properties at z = 0 II: large-scale galactic conformity

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie

    2018-06-01

    Using group catalogues from the Sloan Digital Sky Survey (SDSS) Data Release 7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest haloes. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al., in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e. 2-5 per cent differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive haloes than star-forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al.) can be produced.

  14. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  15. ALMA imaging of gas and dust in a galaxy protocluster at redshift 5.3: [C II] emission in 'typical' galaxies and dusty starbursts ≈1 billion years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Dominik A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801 (United States); Capak, Peter L.; Yan, Lin [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Scoville, Nicholas Z. [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Smolčić, Vernesa [University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb (Croatia); Schinnerer, Eva [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Yun, Min [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cox, Pierre [ALMA Santiago Central Office, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Bertoldi, Frank; Karim, Alexander, E-mail: dr@astro.cornell.edu [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, Bonn, D-53121 (Germany)

    2014-12-01

    We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR) surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.

  16. C II 158 ??bservations of a Sample of Late-type Galaxies from the Virgo Cluster

    Science.gov (United States)

    Leech, K.; Volk, H.; Heinrichsen, I.; Hippelein, H.; Metcalfe, L.; Pierini, D.; Popescu, C.; Tuffs, R.; Xu, C.

    1999-01-01

    We have observed 19 Virgo cluster spiral galaxies with the Long Wavelength Spectrometer (LWS) onboard ESAs Infrared Space Observatory (ISO) obtaining spectra around the [CII] 157.741 ??ine structure line.

  17. GALAXIES IN X-RAY GROUPS. II. A WEAK LENSING STUDY OF HALO CENTERING

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Leauthaud, Alexie; Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Finoguenov, Alexis [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Rykoff, Eli S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Massey, Richard [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Mei, Simona, E-mail: mgeorge@astro.berkeley.edu [Bureau des Galaxies, Etoiles, Physique, Instrumentation (GEPI), University of Paris Denis Diderot, F-75205 Paris Cedex 13 (France)

    2012-09-20

    Locating the centers of dark matter halos is critical for understanding the mass profiles of halos, as well as the formation and evolution of the massive galaxies that they host. The task is observationally challenging because we cannot observe halos directly, and tracers such as bright galaxies or X-ray emission from hot plasma are imperfect. In this paper, we quantify the consequences of miscentering on the weak lensing signal from a sample of 129 X-ray-selected galaxy groups in the COSMOS field with redshifts 0 < z < 1 and halo masses in the range 10{sup 13}-10{sup 14} M{sub Sun }. By measuring the stacked lensing signal around eight different candidate centers (such as the brightest member galaxy, the mean position of all member galaxies, or the X-ray centroid), we determine which candidates best trace the center of mass in halos. In this sample of groups, we find that massive galaxies near the X-ray centroids trace the center of mass to {approx}< 75 kpc, while the X-ray position and centroids based on the mean position of member galaxies have larger offsets primarily due to the statistical uncertainties in their positions (typically {approx}50-150 kpc). Approximately 30% of groups in our sample have ambiguous centers with multiple bright or massive galaxies, and some of these groups show disturbed mass profiles that are not well fit by standard models, suggesting that they are merging systems. We find that halo mass estimates from stacked weak lensing can be biased low by 5%-30% if inaccurate centers are used and the issue of miscentering is not addressed.

  18. THE FATE OF DWARF GALAXIES IN CLUSTERS AND THE ORIGIN OF INTRACLUSTER STARS. II. COSMOLOGICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Hugo [Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, QC (Canada); Barai, Paramita [Osservatorio Astronomico di Trieste, I-34143 Trieste (Italy); Brito, William [Centre de Recherche en Astrophysique du Quebec, C.P. 6128, Succ. Centre-Ville, Montreal, QC (Canada)

    2012-09-20

    We combine an N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function {Phi}(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc){sup 3}, in a concordance {Lambda}CDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light (ICL). We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce ICL fractions f{sub ICL} that are sufficiently high to match observations. Our simulation produces 18 massive clusters (M{sub cl} > 10{sup 14} M{sub Sun }) with values of f{sub ICL} ranging from 1% to 58% at z = 0. There is a weak trend of f{sub ICL} to increase with cluster mass. The bulk of the ICL ({approx}60%) is provided by intermediate galaxies of total masses 10{sup 11}-10{sup 12} M{sub Sun} and stellar masses 6 Multiplication-Sign 10{sup 8} M{sub Sun} to 3 Multiplication-Sign 10{sup 10} M{sub Sun} that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the ICL is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f{sub ICL} tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the ICL is more centrally concentrated than the galactic light. Our results

  19. THE FATE OF DWARF GALAXIES IN CLUSTERS AND THE ORIGIN OF INTRACLUSTER STARS. II. COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Martel, Hugo; Barai, Paramita; Brito, William

    2012-01-01

    We combine an N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function Φ(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc) 3 , in a concordance ΛCDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light (ICL). We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce ICL fractions f ICL that are sufficiently high to match observations. Our simulation produces 18 massive clusters (M cl > 10 14 M ☉ ) with values of f ICL ranging from 1% to 58% at z = 0. There is a weak trend of f ICL to increase with cluster mass. The bulk of the ICL (∼60%) is provided by intermediate galaxies of total masses 10 11 -10 12 M ☉ and stellar masses 6 × 10 8 M ☉ to 3 × 10 10 M ☉ that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the ICL is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f ICL tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the ICL is more centrally concentrated than the galactic light. Our results support tidal destruction of intermediate-mass galaxies as a plausible scenario for the origin of the ICL.

  20. Extreme warm absorber variability in the Seyfert galaxy Mrk 704

    Czech Academy of Sciences Publication Activity Database

    Matt, G.; Bianchi, S.; Guainazzi, M.; Longinotti, A. L.; Dadina, M.; Karas, Vladimír; Malaguti, G.; Miniutti, G.; Petrucci, P. O.; Piconcelli, E.; Ponti, G.

    Roč. 533, September (2011), A1/1-A1/9 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : active galactic nuclei Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  1. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Greggio, L.; Pignata, G.; Della Valle, M.; Grado, A.; Limatola, L.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Haeussler, B.; Harutyunyan, V.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Tomasella, L.; Turatto, M.; Vaccari, M.

    2017-02-01

    Aims: This is the second paper of a series in which we present measurements of the supernova (SN) rates from the SUDARE survey. The aim of this survey is to constrain the core collapse (CC) and Type Ia SN progenitors by analysing the dependence of their explosion rate on the properties of the parent stellar population averaging over a population of galaxies with different ages in a cosmic volume and in a galaxy sample. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the masses of the parent galaxies. To constrain the SN progenitors we compare the observed rates with model predictions assuming four progenitor models for SNe Ia with different distribution functions of the time intervals between the formation of the progenitor and the explosion, and a mass range of 8-40 M⊙ for CC SN progenitors. Methods: We considered a galaxy sample of approximately 130 000 galaxies and a SN sample of approximately 50 events. The wealth of photometric information for our galaxy sample allows us to apply the spectral energy distribution (SED) fitting technique to estimate the intrinsic rest frame colours, the stellar mass and star formation rate (SFR) for each galaxy in the sample. The galaxies have been separated into star-forming and quiescent galaxies, exploiting both the rest frame U-V vs. V-J colour-colour diagram and the best fit values of the specific star formation rate (sSFR) from the SED fitting. Results: We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies, identified as such both on the U-V vs. V-J colour-colour diagram and for their sSFR. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy

  2. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  3. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-01-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z ≤ 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 ≤ z ≤ 0.3. We find values for the cluster SN Ia rate of (0.37 +0.17+0.01 -0.12-0.01 ) SNur h 2 and (0.55 +0.13+0.02 -0.11-0.01 ) SNur h 2 (SNux = 10 -12 L -1 xsun yr -1 ) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31 +0.18+0.01 -0.12-0.01 ) SNur h 2 and (0.49 +0.15+0.02 -0.11-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04 +1.99+0.07 -1.11-0.04 ) SNur h 2 and (0.36 +0.84+0.01 -0.30-0.01 ) SNur h 2 in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94 +1.31+0.043 -0.91-0.015 and 3.02 +1.31+0.062 -1.03-0.048 , for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r L = [(0.49 +0.15 -0.14 )+(0.91 +0.85 -0.81 ) x z] SNuB h 2 . A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4 +8.3 -5.1 )%.

  4. New radio observations of the Circinus Galaxy

    International Nuclear Information System (INIS)

    Harnett, J.I.; Reynolds, J.E.

    1990-01-01

    We present new radio continuum and OH observations of the Circinus Galaxy which confirm the active nature of the nucleus. The continuum structure is dominated by two spurs of emission, which probably originate in the core and extend roughly along the minor axis of the galaxy. In addition, the OH absorption profiles clearly indicate a rapidly rotating cloud surrounding the nucleus or several independent clouds in the vicinity with inflowing and outflowing motions. The Circinus Galaxy is most probably a Seyfert with underlying nuclear starburst activity. (author)

  5. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  6. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  7. Mid-Infrared Silicate Dust Features in Seyfert 1 Spectra

    Science.gov (United States)

    Thompson, Grant D.; Levenson, N. A.; Sirocky, M. M.; Uddin, S.

    2007-12-01

    Silicate dust emission dominates the mid-infrared spectra of galaxies, and the dust produces two spectral features, at 10 and 18 μm. These features' strengths (in emission or absorption) and peak wavelengths reveal the geometry of the dust distribution, and they are sensitive to the dust composition. We examine mid-infrared spectra of 32 Seyfert 1 active galactic nuclei (AGN), observed with the Infrared Spectrograph aboard the Spitzer Space Telescope. In the spectra, we typically find the shorter-wavelength feature in emission, at an average peak wavelength of 10.0 μm, although it is known historically as the "9.7 μm" feature. In addition, peak wavelength increases with feature strength. The 10 and 18 μm feature strengths together are sensitive to the dust geometry surrounding the central heating engine. Numerical calculations of radiative transfer distinguish between clumpy and smooth distributions, and we find that the surroundings of these AGN (the obscuring "tori" of unified AGN schemes) are clumpy. Polycyclic aromatic hydrocarbon (PAH) features are associated with star formation, and we find strong PAH emission (luminosity ≥ 1042 erg/s) in only four sources, three of which show independent evidence for starbursts. We will explore the effects of luminosity on dust geometry and chemistry in a comparison sample of quasars. We acknowledge work supported by the NSF under grant number 0237291.

  8. Near-IR search for lensed supernovae behind galaxy clusters. II. First detection and future prospects

    OpenAIRE

    Goobar, A.; Paech, K.; Stanishev, V.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Kneib, J. P.; Lidman, C.; Limousin, M.; Mörtsell, E.; Nobili, S.; Richard, J.; Riehm, T.; von Strauss, M.

    2009-01-01

    Aims. Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. Methods. We present a pilot supernova search programme conducted with the ISAAC camera at VLT. Lensed galaxies behind the massive clusters A1689, A1835, and AC114 were observed for a tot...

  9. On the lack of correlation between Mg II 2796, 2803 Å and Lyα emission in lensed star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2014-07-20

    We examine the Mg II 2796, 2803 Å, Lyα, and nebular line emission in five bright star-forming galaxies at 1.66 < z < 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyα emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100-200 km s{sup –1}. When present, Lyα is even more redshifted. The reddest components of Mg II and Lyα emission have tails to 500-600 km s{sup –1}, implying a strong outflow. The lack of correlation in the Mg II and Lyα equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.

  10. Origins of ultra-diffuse galaxies in the Coma cluster - II. Constraints from their stellar populations

    Science.gov (United States)

    Ferré-Mateu, Anna; Alabi, Adebusola; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean; Pandya, Viraj; Martín-Navarro, Ignacio; Bellstedt, Sabine; Wasserman, Asher; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultra-diffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (˜ 7 Gyr), low metallicities ([Z/H]˜ - 0.7 dex) and mostly super-solar abundance patterns ([Mg/Fe] ˜ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs' star formation histories imply a relatively recent infall into the Coma cluster, consistent with the theoretical predictions for a dwarf-like origin. However, considering the scatter in the resulting properties and including other UDGs in Coma, together with the results from the velocity phase-space study of the Paper I in this series, a mixed-bag of origins is needed to explain the nature of all UDGs. Our results thus reinforce a scenario in which many UDGs are field dwarfs that become quenched through their later infall onto cluster environments, whereas some UDGs could be be genuine primordial galaxies that failed to develop due to an early quenching phase. The unknown proportion of dwarf-like to primordial-like UDGs leaves the enigma of the nature of UDGs still open.

  11. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  12. OSO 8 X-ray spectra of clusters of galaxies. II - Discussion

    Science.gov (United States)

    Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.

    1979-01-01

    An observational description of X-ray clusters of galaxies is given based on OSO 8 X-ray results for spatially integrated spectra of 20 such clusters and various correlations obtained from these results. It is found from a correlation between temperature and velocity dispersion that the X-ray core radius should be less than the galaxy core radius or, alternatively, that the polytropic index is about 1.1 for most of the 20 clusters. Analysis of a correlation between temperature and emission integral yields evidence that more massive clusters accumulate a larger fraction of their mass as intracluster gas. Galaxy densities and optical morphology, as they correlate with X-ray properties, are reexamined for indications as to how mass injection by galaxies affects the density structure of the gas. The physical arguments used to derive iron abundances from observed equivalent widths of iron line features in X-ray spectra are critically evaluated, and the associated uncertainties in abundances derived in this manner are estimated to be quite large.

  13. ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    DEFF Research Database (Denmark)

    Hansen, Lene; Jørgensen, H.E.; Nørgaard-Nielsen, Hans Ulrik

    2000-01-01

    In a series of papers we investigate far-infrared emission from rich galaxy clusters. Maps have been obtained by ISO at 60 mu m, 100 mu m, 135 mu m, and 200 mu m using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow...

  14. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    International Nuclear Information System (INIS)

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-01-01

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 μm detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 μm imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L IR > 10 11 L sun (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  15. Shocked POststarburst Galaxy Survey. II. The Molecular Gas Content and Properties of a Subset of SPOGs

    Science.gov (United States)

    Alatalo, Katherine; Lisenfeld, Ute; Lanz, Lauranne; Appleton, Philip N.; Ardila, Felipe; Cales, Sabrina L.; Kewley, Lisa J.; Lacy, Mark; Medling, Anne M.; Nyland, Kristina; Rich, Jeffrey A.; Urry, C. Meg

    2016-08-01

    We present CO(1-0) observations of objects within the Shocked POststarburst Galaxy Survey taken with the Institut de Radioastronomie Millimétrique 30 m single dish and the Combined Array for Research for Millimeter Astronomy interferometer. Shocked poststarburst galaxies (SPOGs) represent a transitioning population of galaxies, with deep Balmer absorption ({{EW}}{{H}δ }\\gt 5 {\\mathring{{A}}} ), consistent with an intermediate-age (A-star) stellar population, and ionized gas line ratios inconsistent with pure star formation. The CO(1-0) subsample was selected from SPOGs detected by the Wide-field Infrared Survey Explorer with 22 μm flux detected at a signal-to-noise ratio (S/N) > 3. Of the 52 objects observed in CO(1-0), 47 are detected with S/N > 3. A large fraction (37%-46% ± 7%) of our CO-SPOG sample were visually classified as morphologically disrupted. The H2 masses detected were between {10}8.7-10.8 {M}⊙ , consistent with the gas masses found in normal galaxies, though approximately an order of magnitude larger than the range seen in poststarburst galaxies. When comparing the 22 μm and CO(1-0) fluxes, SPOGs diverge from the normal star-forming relation, having 22 μm fluxes in excess of the relation by a factor of ={4.91}-0.39+0.42, suggestive of the presence of active galactic nuclei (AGNs). The Na I D characteristics of CO-SPOGs show that it is likely that many of these objects host interstellar winds. Objects with large Na I D enhancements also tend to emit in the radio, suggesting possible AGN driving of neutral winds.

  16. IUE and Einstein observations of the LINER galaxy NGC 4579

    Science.gov (United States)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  17. CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT z = 7.01

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Davé, Romeel; Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Oh, S. Peng [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106-9530 (United States); Yang, Yujin, E-mail: caiz@email.arizona.edu [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2015-01-30

    Numerous theoretical models have long proposed that a strong He II λ1640 emission line is the most prominent and unique feature of massive Population III (Pop III) stars in high-redshift galaxies. The He II λ1640 line strength can constrain the mass and initial mass function (IMF) of Pop III stars. We use F132N narrowband filter on the Hubble Space Telescope's (HST) Wide Field Camera 3 to look for strong He II λ1640 emission in the galaxy BDF-521 at z = 7.01, one of the most distant spectroscopically confirmed galaxies to date. Using deep F132N narrowband imaging, together with our broadband imaging with F125W and F160W filters, we do not detect He II emission from this galaxy, but place a 2σ upper limit on the flux of 5.3×10{sup −19} erg s{sup −1} cm{sup −2}. This measurement corresponds to a 2σ upper limit on the Pop III star formation rate (SFR{sub PopIII}) of ∼0.2 M {sub ☉} yr{sup –1}, assuming a Salpeter IMF with 50 ≲ M/M {sub ☉} ≲ 1000. From the high signal-to-noise broadband measurements in F125W and F160W, we fit the UV continuum for BDF-521. The spectral flux density is ∼3.6×10{sup −11}×λ{sup −2.32} erg s{sup −1} cm{sup −2} Å{sup –1}, which corresponds to an overall unobscured SFR of ∼5 M {sub ☉} yr{sup –1}. Our upper limit on SFR{sub PopIII} suggests that massive Pop III stars represent ≲ 4% of the total star formation. Further, the HST high-resolution imaging suggests that BDF-521 is an extremely compact galaxy, with a half-light radius of 0.6 kpc.

  18. Recent star formation in interacting galaxies

    International Nuclear Information System (INIS)

    Joseph, R.D.; Wright, G.S.

    1985-01-01

    The subset of galaxy-galaxy interactions which have resulted in a merger are, as a class, ultraluminous IR galaxies. Their IR luminosities span a narrow range which overlaps with the most luminous Seyfert galaxies. However, in contrast with Seyfert galaxies, the available optical, IR, and radio properties of mergers show no evidence for a compact non-thermal central source, and are easily understood in terms of a burst of star formation of extraordinary intensity and spatial extent; they are 'super starbursts'. We argue that super starbursts occur in the evolution of most mergers, and discuss the implications of super starbursts for the suggestion that mergers evolve into elliptical galaxies. Finally, we note that merger-induced shocks are likely to leave the gas from both galaxies in dense molecular form which will rapidly cool, collapse, and fragment. Thus a merger might in fact be expected to result in a burst of star formation of exceptional intensity and spatial extent, i.e. a super starburst. (author)

  19. An atlas of Calcium triplet spectra of active galaxies

    CERN Document Server

    Garcia-Rissmann, A; Asari, N V; Fernandes, R C; Schmitt, H; González-Delgado, R M; Storchi-Bergmann, T

    2005-01-01

    We present a spectroscopic atlas of active galactic nuclei covering the region around the 8498, 8542, 8662 Calcium triplet (CaT) lines. The sample comprises 78 objects, divided into 43 Seyfert 2s, 26 Seyfert 1s, 3 Starburst and 6 normal galaxies. The spectra pertain to the inner ~300 pc in radius, and thus sample the central kinematics and stellar populations of active galaxies. The data are used to measure stellar velocity dispersions (sigma_star) both with cross-correlation and direct fitting methods. These measurements are found to be in good agreement with each-other and with those in previous studies for objects in common. The CaT equivalent width is also measured. We find average values and sample dispersions of W_CaT of 4.6+/-2.0, 7.0 and 7.7+/-1.0 angstrons for Seyfert 1s, Seyfert 2s and normal galaxies, respectively. We further present an atlas of [SIII]\\lambda 9069 emission line profiles for a subset of 40 galaxies. These data are analyzed in a companion paper which addresses the connection between ...

  20. THE TYPE II SUPERNOVA RATE IN z {approx} 0.1 GALAXY CLUSTERS FROM THE MULTI-EPOCH NEARBY CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L.; Sand, D. J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Bildfell, C. J.; Pritchet, C. J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria BC V8W 3P6 (Canada); Zaritsky, D.; Just, D. W.; Herbert-Fort, S. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hoekstra, H. [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Sivanandam, S. [Dunlap Institute for Astronomy and Astrophysics, 50 St. George St., Toronto, ON M5S 3H4 (Canada); Foley, R. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-07-01

    We present seven spectroscopically confirmed Type II cluster supernovae (SNe II) discovered in the Multi-Epoch Nearby Cluster Survey, a supernova survey targeting 57 low-redshift 0.05 < z < 0.15 galaxy clusters with the Canada-France-Hawaii Telescope. We find the rate of Type II supernovae within R{sub 200} of z {approx} 0.1 galaxy clusters to be 0.026{sup +0.085}{sub -0.018}(stat){sup +0.003}{sub -0.001}(sys) SNuM. Surprisingly, one SN II is in a red-sequence host galaxy that shows no clear evidence of recent star formation (SF). This is unambiguous evidence in support of ongoing, low-level SF in at least some cluster elliptical galaxies, and illustrates that galaxies that appear to be quiescent cannot be assumed to host only Type Ia SNe. Based on this single SN II we make the first measurement of the SN II rate in red-sequence galaxies, and find it to be 0.007{sup +0.014}{sub -0.007}(stat){sup +0.009}{sub -0.001}(sys) SNuM. We also make the first derivation of cluster specific star formation rates (sSFR) from cluster SN II rates. We find that for all galaxy types the sSFR is 5.1{sup +15.8}{sub -3.1}(stat) {+-} 0.9(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}, and for red-sequence galaxies only it is 2.0{sup +4.2}{sub -0.9}(stat) {+-} 0.4(sys) M{sub Sun} yr{sup -1} (10{sup 12} M{sub Sun }){sup -1}. These values agree with SFRs measured from infrared and ultraviolet photometry, and H{alpha} emission from optical spectroscopy. Additionally, we use the SFR derived from our SNII rate to show that although a small fraction of cluster Type Ia SNe may originate in the young stellar population and experience a short delay time, these results do not preclude the use of cluster SN Ia rates to derive the late-time delay time distribution for SNe Ia.

  1. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    International Nuclear Information System (INIS)

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  2. Redshifts for fainter galaxies in the first CfA survey slice. II

    Science.gov (United States)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  3. Imprints of local lightcone \\ projection effects on the galaxy bispectrum. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Jolicoeur, Sheean; Umeh, Obinna; Maartens, Roy; Clarkson, Chris, E-mail: beautifulheart369@gmail.com, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: chris.clarkson@qmul.ac.uk [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-09-01

    General relativistic imprints on the galaxy bispectrum arise from observational (or projection) effects. The lightcone projection effects include local contributions from Doppler and gravitational potential terms, as well as lensing and other integrated contributions. We recently presented for the first time, the correction to the galaxy bispectrum from all local lightcone projection effects up to second order in perturbations. Here we provide the details underlying this correction, together with further results and illustrations. For moderately squeezed shapes, the correction to the Newtonian prediction is ∼ 30% on equality scales at z ∼ 1. We generalise our recent results to include the contribution, up to second order, of magnification bias (which affects some of the local terms) and evolution bias.

  4. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  5. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  6. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra

    Science.gov (United States)

    Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.

    2018-01-01

    We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.

  7. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir [Department of Astrophysics, Princeton University, Princeton, NJ 08540 (United States); Comerford, Julia M.; Gebhardt, Karl [Department of Astronomy, UT Austin, 1 University Station C1400, Austin, TX 71712 (United States)

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  8. Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Kaurov, Alexander A., E-mail: gnedin@fnal.gov, E-mail: kaurov@uchicago.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-09-20

    We compare the results from several sets of cosmological simulations of cosmic reionization, produced under the Cosmic Reionization On Computers project, with existing observational data on the high-redshift Lyα forest and the abundance of Lyα emitters. We find good consistency with the observational measurements and previous simulation work. By virtue of having several independent realizations for each set of numerical parameters, we are able to explore the effect of cosmic variance on observable quantities. One unexpected conclusion we are forced into is that cosmic variance is unusually large at z > 6, with both our simulations and, most likely, observational measurements still not fully converged for even such basic quantities as the average Gunn-Peterson optical depth or the volume-weighted neutral fraction. We also find that reionization has little effect on the early galaxies or on global cosmic star formation history, because galaxies whose gas content is affected by photoionization contain no molecular (i.e., star-forming) gas in the first place. In particular, measurements of the faint end of the galaxy luminosity function by the James Webb Space Telescope are unlikely to provide a useful constraint on reionization.

  9. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  10. The association between gas and galaxies - II. The two-point correlation function

    Science.gov (United States)

    Wilman, R. J.; Morris, S. L.; Jannuzi, B. T.; Davé, R.; Shone, A. M.

    2007-02-01

    We measure the two-point correlation function, ξAG, between galaxies and quasar absorption-line systems at z 1017cm-2. For CIV absorbers, the peak strength of ξAG is roughly comparable to that of HI absorbers with NHI > 1016.5cm-2, consistent with the finding that the CIV absorbers are associated with strong HI absorbers. We do not reproduce the differences reported by Chen et al. between 1D ξAG measurements using galaxy subsamples of different spectral types. However, the full impact on the measurements of systematic differences in our samples is hard to quantify. We compare the observations with smoothed particle hydrodynamical (SPH) simulations and discover that in the observations ξAG is more concentrated to the smallest separations than in the simulations. The latter also display a `finger of god' elongation of ξAG along the LOS in redshift space, which is absent from our data, but similar to that found by Ryan-Weber for the cross-correlation of quasar absorbers and HI-emission-selected galaxies. The physical origin of these `fingers of god' is unclear, and we thus highlight several possible areas for further investigation.

  11. Luminosity function of the brightest galaxies in the IRAS survey

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Madore, B.F.; Neugebauer, G.; Persson, C.J.; Persson, S.E.; Rice, W.L.

    1987-01-01

    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

  12. LOCAL LUMINOUS INFRARED GALAXIES. II. ACTIVE GALACTIC NUCLEUS ACTIVITY FROM SPITZER/INFRARED SPECTROGRAPH SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Herrero, Almudena; Pereira-Santaella, Miguel [Centro de Astrobiologia, INTA-CSIC, E-28850 Torrejon de Ardoz, Madrid (Spain); Rieke, George H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Rigopoulou, Dimitra [Astrophysics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-01-01

    We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8-1000 {mu}m) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, L{sub IR} = 10{sup 11}-10{sup 12} L{sub Sun }). We decompose the Spitzer Infrared Spectrograph low-resolution 5-38 {mu}m spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is {approx}62%. The derived AGN bolometric luminosities are in the range L{sub bol}(AGN) = (0.4-50) Multiplication-Sign 10{sup 43} erg s{sup -1}. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having L{sub bol}[AGN]/L{sub IR} {<=} 0.05. Only {approx_equal} 8% of local LIRGs have a significant AGN bolometric contribution L{sub bol}[AGN]/L{sub IR} > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (L{sub IR} = 10{sup 12}-10{sup 13} L{sub Sun }), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for 5%{sub -3%}{sup +8%} of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of {Omega}{sup AGN

  13. Observational properties of compact groups of galaxies

    International Nuclear Information System (INIS)

    Hickson, P.

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications

  14. H I IMAGING OBSERVATIONS OF SUPERTHIN GALAXIES. II. IC 2233 AND THE BLUE COMPACT DWARF NGC 2537

    International Nuclear Information System (INIS)

    Matthews, Lynn D.; Uson, Juan M.

    2008-01-01

    We have used the Very Large Array to image the H I 21 cm line emission in the edge-on Sd galaxy IC 2233 and the blue compact dwarf NGC 2537. We also present new optical B, R, and Hα imaging of IC 2233 obtained with the WIYN telescope. Despite evidence of localized massive star formation in the form of prominent H II regions and shells, supergiant stars, and a blue integrated color, IC 2233 is a low surface brightness system with a very low global star formation rate (∼ sun yr -1 ), and we detect no significant 21 cm radio continuum emission from the galaxy. The H I and ionized gas disks of IC 2233 are clumpy and vertically distended, with scale heights comparable to that of the young stellar disk. Both the stellar and H I disks of IC 2233 appear flared, and we also find a vertically extended, rotationally anomalous component of H I extending to ∼ 2.4d 10 kpc from the midplane. The H I disk exhibits a mild lopsidedness as well as a global corrugation pattern with a period of ∼7d 10 kpc and an amplitude of ∼150d 10 pc. To our knowledge, this is the first time corrugations of the gas disk have been reported in an external galaxy; these undulations may be linked to bending instabilities or to underlying spiral structure and suggest that the disk is largely self-gravitating. Lying at a projected distance of 16'.7 from IC 2233, NGC 2537 has an H I disk with a bright, tilted inner ring and a flocculent, dynamically cold outer region that extends to ∼3.5 times the extent of the stellar light (D 25 ). Although NGC 2537 is rotationally-dominated, we measure H I velocity dispersions as high as σ V.HI ∼25 km s -1 near its center, indicative of significant turbulent motions. The inner rotation curve rises steeply, implying a strong central mass concentration. Our data indicate that IC 2233 and NGC 2537 do not constitute a bound pair and most likely lie at different distances. We also find no compelling evidence of a recent minor merger in either IC 2233 or NGC

  15. Photometric Signatures of Starbursts in Interacting Galaxies and the Butcher-Oemler Effect

    Science.gov (United States)

    Rakos, Karl D.; Maindl, Thomas I.; Schombert, James M.

    1996-01-01

    This paper presents new and synthetic narrow band photometry of ellipticals, spirals, Seyferts and interacting galaxies in an attempt to identify the cause of the unusually high fraction of blue cluster galaxies in distant clusters (the Butcher-Oemler Effect). The properties and distribution of the low redshift sample specifically points to starbursts as the origin of the blue narrow band colors in interacting Arp galaxies.

  16. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Agertz, Oscar [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Teyssier, Romain; Feldmann, Robert [Centre for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, 8057 (Switzerland); Butler, Michael J. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, D-69120 Heidelberg (Germany); Choi, Jun-Hwan [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Keller, Ben W. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Lupi, Alessandro [Institut d’Astrophysique de Paris, Sorbonne Universites, UPMC Univ Paris 6 et CNRS, F-75014 Paris (France); Quinn, Thomas; Wallace, Spencer [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Revaz, Yves [Institute of Physics, Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Leitner, Samuel N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Shen, Sijing [Kavli Institute for Cosmology, University of Cambridge, Cambridge, CB3 0HA (United Kingdom); Smith, Britton D., E-mail: me@jihoonkim.org [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Collaboration: AGORA Collaboration; and others

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  17. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  18. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nanyao; Xu, C. Kevin; Zhu, Lei [National Astronomical Observatories, Chinese Academy of Sciences (CAS), Beijing 100012 (China); Zhao, Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Díaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Gao, Yu [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van der Werf, Paul P. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Privon, George C. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Inami, Hanae [Centre de Recherche Astrophysique de Lyon (CRAL), Observatoire de Lyon, CNRS, UMR5574, F-69230, Saint-Genis-Laval (France); Rigopoulou, Dimitra [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sanders, David B., E-mail: nanyao.lu@gmail.com [University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2017-06-20

    We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.

  19. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Science.gov (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  20. STRUCTURE IN THE 3D GALAXY DISTRIBUTION. II. VOIDS AND WATERSHEDS OF LOCAL MAXIMA AND MINIMA

    International Nuclear Information System (INIS)

    Way, M. J.; Gazis, P. R.; Scargle, Jeffrey D.

    2015-01-01

    The major uncertainties in studies of the multi-scale structure of the universe arise not from observational errors but from the variety of legitimate definitions and detection methods for individual structures. To facilitate the study of these methodological dependencies, we have carried out 12 different analyses defining structures in various ways. This has been done in a purely geometrical way by utilizing the HOP algorithm as a unique parameter-free method of assigning groups of galaxies to local density maxima or minima. From three density estimation techniques (smoothing kernels, Bayesian blocks, and self-organizing maps) applied to three data sets (the Sloan Digital Sky Survey Data Release 7, the Millennium simulation, and randomly distributed points) we tabulate information that can be used to construct catalogs of structures connected to local density maxima and minima. We also introduce a void finder that utilizes a method to assemble Delaunay tetrahedra into connected structures and characterizes regions empty of galaxies in the source catalog

  1. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Pasquale; Amato, Elena, E-mail: blasi@arcetri.astro.it, E-mail: amato@arcetri.astro.it [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 — 50125 Firenze (Italy)

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ≤ Z ≤ 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)∝(E/Z){sup δ}, with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as δ{sub A}∝D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10{sup 5} GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)∝E{sup 1/3}. Faster diffusion, for instance with δ = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in

  2. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    International Nuclear Information System (INIS)

    Blasi, Pasquale; Amato, Elena

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ≤ Z ≤ 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)∝(E/Z) δ , with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as δ A ∝D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10 5 GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)∝E 1/3 . Faster diffusion, for instance with δ = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in the energy

  3. ISO spectroscopy of compact HII regions in the Galaxy - II. Ionization and elemental abundances

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Peeters, E; Morisset, C; Tielens, AGGM; Cox, P; Roelfsema, PR; Baluteau, JP; Schaerer, D; Mathis, JS; Damour, F; Churchwell, E; Kessler, MF

    Based on the ISO spectral catalogue of compact H II regions by Peeters et al. (2002), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 H II regions located at galactocentric distances between R-Gal = 0

  4. Searching gravitational microlensing events in the galaxy spiral arms by EROS II; Recherche d'evenements de microlentille gravitationnelle dans les bras spiraux de la galaxie avec EROS II

    Energy Technology Data Exchange (ETDEWEB)

    Derue, Frederic [Paris-11 Univ., 91 Orsay (France)

    1999-04-15

    The EROS II experiment is searching for microlensing events due to compact massive objects passing through the line-of-sight of luminous stars. These objects are candidates to explain the baryonic component of Dark Matter in our Galaxy. EROS II was dedicated to different lines-of-sight: Small and Large Magellanic Clouds, Galactic Centre and 4 directions towards the Spiral Arms of the Galaxy. This thesis presents the first search for microlensing towards these last lines-of-sight (about 9 million stars). Simple criteria based on the search for significant fluctuations allowed one to discover a low noise sample of 7 candidates to the microlensing effect, with an average timescale of 50 days. A detailed analysis of the light curve of one candidate allows us to give a confidence interval on its mass 2.7 x 10{sup -3} < M/M{sub 0} < 0.84 at 95% CL. The amplification curve of another candidate shows a modulation which can be interpreted as a microlensing effect acting on a binary source, with an orbital period of P{sub 0} = 50 {+-} 3 days. To improve the knowledge of the distance of the target stars, we have combined observations of EROS II with bibliographic sources on associations of stars linked with the spiral arm features, and we have developed a program to find variable stars. Ten cepheids have thus been found. Distances obtained with different methods are in rough agreement with each other. The average optical depth measured towards the four directions is {tau}-bar = 0.45{sub 0.11}{sup +0.23} x 10{sup -6}. It is compatible with expectations from simple galactic models. The long duration of most events favours interpretation of lensing by objects belonging to the disk instead of the halo. It also seems that some events due to bulge lenses have influenced measurements towards the line-of-sight which is closest to the Galactic Centre. Observation continue towards spiral arms. More accurate measurements should be obtained with increase of statistics, allowing one to

  5. Velocity dispersions in the bulges of spiral and SO galaxies. II. Further observations and a simple three-component model for spiral galaxies

    International Nuclear Information System (INIS)

    Whitmore, B.C.; Kirshner, R.P.

    1981-01-01

    We have obtained velocity dispersions for 24 galaxies in the Virgo cluster to supplement our earlier results. A 2000 channel intensified Reticon scanner has again been used on the 1.3 m telescope of McGraw-Hill Observatory, and a Fourier quotient technique has been employed to yield dispersions. We have confirmed our earlier result that spiral bulges exhibit a relation between total luminosity and velocity dispersion with the form L proportional sigma 4 , but with velocity dispersions that are 17 +- 8% smaller than elliptical galaxies at the same absolute magnitude. However, possible systematic errors may still affect the reality of this gap. The scatter in the L proportional sigma 4 relationship is substantially larger for the spiral bulges than for the elliptical galaxies. This larger scatter probably indicates that spiral bulges comprise a more heterogeneous sample than do elliptical galaxies. we also find that the bulge components of SO galaxies follow a L proportional sigma 4 relation with no gap with the ellipticals. The similarity in this relation for the spheroidal components of spiral, SO, and elliptical galaxies indicates that the systems are dynamically similar

  6. RADIO-LOUD NARROW-LINE SEYFERT 1 AS A NEW CLASS OF GAMMA-RAY ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.

    2009-01-01

    We report the discovery with Fermi/LAT of γ-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004 - 447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in γ rays, they may form an emerging new class of γ-ray active galactic nuclei (AGNs). These findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN.

  7. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    International Nuclear Information System (INIS)

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-01-01

    We use the observed radial profiles of the mass surface densities of total, Σ g , and molecular, Σ H2 , gas, rotation velocity, and star formation rate (SFR) surface density, Σ sfr , of the molecular-rich (Σ H2 ≥ Σ HI /2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ sfr =A g Σ g,2 1.5 ; a 'Constant Molecular' law, Σ sfr = A H2 Σ H2,2 ; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ sfr =B Ω Σ g Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ sfr = B CC Σ g Ω(1-0.7β), where β ≡ d ln v circ /d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  8. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    Science.gov (United States)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 model. Once considered as a whole, the Virgo cluster is effective in removing neutral hydrogen from galaxies, and this perturbation is strong enough to appreciably reduce the SFR of its entire galaxy population. Conclusions: An estimate of the present infall rate of 300-400 galaxies per Gyr in the Virgo cluster is obtained from the number of existing HI-rich late-type systems, assuming 200-300 Myr as the time scale for HI ablation. If the infall process has been acting at a constant rate, this would imply that the Virgo cluster has formed approximately 2 Gyr ago, consistently with the idea that Virgo is in a young state of dynamical evolution. Based

  9. THE X-FACTOR IN GALAXIES. II. THE MOLECULAR-HYDROGEN-STAR-FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Robert; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-10-08

    There is ample observational evidence that the star formation rate (SFR) surface density, Sigma_SFR, is closely correlated with the surface density of molecular hydrogen, Sigma_H2. This empirical relation holds both for galaxy-wide averages and for individual >=kpc sized patches of the interstellar medium (ISM), but appears to degrade substantially at a sub-kpc scale. Identifying the physical mechanisms that determine the scale-dependent properties of the observed Sigma_H2-Sigma_SFR relation remains a challenge from a theoretical perspective. To address this question, we analyze the slope and scatter of the Sigma_H2-Sigma_SFR relation using a set of cosmological, galaxy formation simulations with a peak resolution of ~100 pc. These simulations include a chemical network for molecular hydrogen, a model for the CO emission, and a simple, stochastic prescription for star formation that operates on ~100 pc scales. Specifically, star formation is modeled as a Poisson process in which the average SFR is directly proportional to the present mass of H2. The predictions of our numerical model are in good agreement with the observed Kennicutt-Schmidt and Sigma_H2-Sigma_SFR relations. We show that observations based on CO emission are ill suited to reliably measure the slope of the latter relation at low (<20 M_sun pc^-2) H2 surface densities on sub-kpc scales. Our models also predict that the inferred Sigma_H2-Sigma_SFR relation steepens at high H2 surface densities as a result of the surface density dependence of the CO/H2 conversion factor. Finally, we show that on sub-kpc scales most of the scatter in the relation is a consequence of discreteness effects in the star formation process. In contrast, variations of the CO/H2 conversion factor are responsible for most of the scatter measured on super-kpc scales.

  10. Optical observations of the nearby galaxy IC342 with narrow band [SII] and hα filters. II - detection of 16 optically-identified supernova remnant candidates

    Directory of Open Access Journals (Sweden)

    Vučetić M.M.

    2015-01-01

    Full Text Available We present the detection of 16 optical supernova remnant (SNR candidates in the nearby spiral galaxy IC342. The candidates were detected by applying the [Sii]/Hα ratio criterion on observations made with the 2 m RCC telescope at Rozhen National Astronomical Observatory in Bulgaria. In this paper, we report the coordinates, diameters, Hα and [S ii] fluxes for 16 SNRs detected in two fields of view in the IC342 galaxy. Also, we estimate the contamination of total Hα flux from SNRs in the observed portion of IC342 to be 1.4%. This would represent the fractional error when the star formation rate (SFR for this galaxy is derived from the total galaxy’s Hα emission.

  11. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Rosales-Ortega, F. F.; Díaz, A. I.; Sánchez, S. F.; Iglesias-Páramo, J.; Vílchez, J. M.; Mast, D.; Bland-Hawthorn, J.; Husemann, B.

    2012-01-01

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution—the local mass-metallicity relation—extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce—with a noticeable agreement—the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  12. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Ortega, F. F.; Diaz, A. I. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Sanchez, S. F.; Iglesias-Paramo, J.; Vilchez, J. M.; Mast, D. [Instituto de Astrofisica de Andalucia (CSIC), Camino Bajo de Huetor s/n, Aptdo. 3004, E-18080 Granada (Spain); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Husemann, B., E-mail: frosales@cantab.net [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2012-09-10

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution-the local mass-metallicity relation-extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce-with a noticeable agreement-the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  13. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    Science.gov (United States)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  14. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    Science.gov (United States)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  15. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  16. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  17. Study of II Galactic quadrant of Milky Way Galaxy using open clusters

    Science.gov (United States)

    Bisht, Devendra; Ganesh, Shashikiran; Baliyan, Kiran Singh; Yadav, Ramakant Singh; Durgapal, Alok

    2018-04-01

    We have made UBV I CCD observations for the open clusters Teutsch 1, Riddle 4 and Czernik 6 using 1.04-m Sampurnanand telescope located at the ARIES observatory (Manora peak, Nainital, India). We have used 2MASS JHKS data for the clusters Teutsch 126, Teutsch 54 and Czernik 3. For the estimation of fundamental parameters, we have plotted radial density profiles, colour-magnitude and colour-colour diagrams. Using these inputs, we have studied the structure of Milky Way Galaxy in the second Galactic quadrant. We have considered the open clusters that are younger than 1 Gyrs and lay in the longitude range from 90 to 180 deg. Our study shows that up to 3.5 Kpc, the Galactic disc bends towards the southern hemisphere while after 3.5 Kpc it bends towards the northern hemisphere. The distribution of reddening with longitude and age shows a decreasing trend with the longitude and age of the clusters. Our study also indicates that younger clusters have more reddening than older ones.

  18. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    Science.gov (United States)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  19. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    International Nuclear Information System (INIS)

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-01-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  20. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  1. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R.

    2010-01-01

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at λ = 23 μm and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T ∼ 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 μm) and the forbidden emission lines of [Si II] 34.8 μm, [Ar II] 6.9 μm, [S III] 18.7 and 33.4 μm were detected in all the starbursts and in ∼80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 μm, 11.3 μm, and 12.7 μm, we find that they are present in ∼80% of the Seyfert 1, while only half of this type of activity show the 6.2 μm and 8.6 μm PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 μm/7.7 μm x 11.3 μm/7.7 μm) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules (≥180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 μm) and the neutral PAH bands (8.6 μm and 11.3 μm) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 μm and 11.3 μm bands is nearly constant with the increase of [Ne III]15.5 μm/[Ne II] 12.8 μm, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 μm) or neutral (11.3 μm) bands, may be destroyed with the increase of the hardness of the radiation field.

  2. Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R. /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E. /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /SISSA, Trieste /Naval Research Lab, Wash., D.C. /George Mason U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Garching, Max Planck Inst., MPE /Stockholm U. /Stockholm U., OKC /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /ASDC, Frascati /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique /Brera Observ. /INFN, Trieste /Bonn, Max Planck Inst., Radioastron. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2012-03-29

    Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  3. MULTIWAVELENGTH MONITORING OF THE ENIGMATIC NARROW-LINE SEYFERT 1 PMN J0948+0022 IN 2009 MARCH-JULY

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2009-01-01

    Following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.

  4. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  5. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    International Nuclear Information System (INIS)

    Shkolnik, Evgenya L.; Rolph, Kristina A.; Peacock, Sarah; Barman, Travis S.

    2014-01-01

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy

  6. Star Formation Histories of the LEGUS Dwarf Galaxies. I. Recent History of NGC 1705, NGC 4449, and Holmberg II

    Science.gov (United States)

    Cignoni, M.; Sacchi, E.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Johnson, K. E.; Messa, M.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-03-01

    We use Hubble Space Telescope observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC 4449, Holmberg II, and NGC 1705, from their UV color–magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modeling. Irrespective of the adopted stellar models, all three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100–200 Myr, with modest enhancements (a factor of ∼2) above the 100 Myr averaged SFR. Significant differences among the three dwarfs are found in terms of the overall SFR, the timing of the most recent peak, and the SFR/area. The initial mass function of NGC 1705 and Holmberg II is consistent with a Salpeter slope down to ≈5 M ⊙, whereas it is slightly flatter, s = ‑2.0, in NGC 4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between the upper main-sequence and helium-burning stars, which is not apparent in the data. Since neither differential reddening, which is significant in NGC 4449, nor unresolved binaries appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  7. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Science.gov (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at zcolor selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).MUSE Ultra Deep Field redshift catalogs (Full Table A.1) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  8. DISSECTING THE RED SEQUENCE. II. STAR FORMATION HISTORIES OF EARLY-TYPE GALAXIES THROUGHOUT THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Graves, Genevieve J.; Faber, S. M.; Schiavon, Ricardo P.

    2009-01-01

    This analysis uses spectra of ∼16,000 nearby Sloan Digital Sky Survey quiescent galaxies to track variations in galaxy star formation histories (SFHs) along and perpendicular to the fundamental plane (FP). We sort galaxies by their FP properties (σ, R e , and I e ) and construct high signal-to-noise ratio mean galaxy spectra that span the breadth and thickness of the FP. From these spectra, we determine mean luminosity-weighted ages, [Fe/H], [Mg/H], and [Mg/Fe] based on single stellar population models using the method described in Graves and Schiavon. In agreement with previous work, the SFHs of early-type galaxies are found to form a two-parameter family. The major trend is that mean age, [Fe/H], [Mg/H], and [Mg/Fe] all increase with σ. However, no stellar population property shows any dependence on R e at fixed σ, suggesting that σ and not dynamical mass (M dyn ∝ σ 2 R e ) is the better predictor of past SFH. In addition to the main trend with σ, galaxies also show a range of population properties at fixed σ that are strongly correlated with surface brightness residuals from the FP (Δlog I e ), such that higher surface brightness galaxies have younger mean ages, higher [Fe/H], higher [Mg/H], and lower [Mg/Fe] than lower surface brightness galaxies. These latter trends are a major new constraint on SFHs.

  9. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  10. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-01-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z d = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be (γ') = 2.16 +0.09 -0.09 (ρ tot ∝r -γ ' ), with an intrinsic scatter of 0.25 +0.10 -0.07 . We also determine the dark matter fraction for each lens within half the effective radius, R eff /2, and find the average-projected dark matter mass fraction to be 0.42 +0.08 -0.08 with a scatter of 0.20 +0.09 -0.07 for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z d = 0.2) and the Lenses Structure and Dynamics Survey (median z d = 0.8), we investigate cosmic evolution of γ' and find a mild trend ∂(γ')/∂z d = -0.25 +0.10 -0.12 . This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z ∼ 1.

  11. THE HETDEX PILOT SURVEY. IV. THE EVOLUTION OF [O II] EMITTING GALAXIES FROM z ∼ 0.5 TO z ∼ 0

    International Nuclear Information System (INIS)

    Ciardullo, Robin; Gronwall, Caryl; Schneider, Donald P.; Zeimann, Gregory R.

    2013-01-01

    We present an analysis of the luminosities and equivalent widths of the 284 z 2 pilot survey for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). By combining emission-line fluxes obtained from the Mitchell spectrograph on the McDonald 2.7 m telescope with deep broadband photometry from archival data, we derive each galaxy's dereddened [O II] λ3727 luminosity and calculate its total star formation rate. We show that over the last ∼5 Gyr of cosmic time, there has been substantial evolution in the [O II] emission-line luminosity function, with L* decreasing by ∼0.6 ± 0.2 dex in the observed function, and by ∼0.9 ± 0.2 dex in the dereddened relation. Accompanying this decline is a significant shift in the distribution of [O II] equivalent widths, with the fraction of high equivalent-width emitters declining dramatically with time. Overall, the data imply that the relative intensity of star formation within galaxies has decreased over the past ∼5 Gyr, and that the star formation rate density of the universe has declined by a factor of ∼2.5 between z ∼ 0.5 and z ∼ 0. These observations represent the first [O II]-based star formation rate density measurements in this redshift range, and foreshadow the advancements which will be generated by the main HETDEX survey.

  12. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  13. ESO 113-IG45 galaxy and/or quasar?

    CERN Document Server

    West, R M; Danks, A C

    1978-01-01

    Spectroscopy, UBV photometry and photography have been obtained of the extraordinary 13th magnitude object ESO 113-IG45 identified as a Seyfert galaxy by Fairall (1977); R.A.=01/sup h/ 21/sup m/.9; Decl .=-59 degrees 04' (1950). V/sub 0/=13630+or-50 km s/sup -1/; M/sub V /=-24/sup m/.0; largest diameter 75 kpc or more (with H/sub 0/=55 km s /sup -1/ Mpc/sup -1/). The nucleus is stellar-like and several times more luminous than the surrounding envelope which has a well-developed lane-structure. It is the intrinsically most luminous Seyfert nuclear yet known, and may be described as a 'quasar in the center of a (spiral) galaxy'. It is probably associated with the X-ray source 2A0120-591. (14 refs).

  14. The optical spectrum and morphology of the probable X-ray galaxy NGC 5506 (3U 1410-03)

    International Nuclear Information System (INIS)

    Wilson, A.S.; Penston, M.V.; Fosbury, R.A.E.; Boksenberg, A.

    1976-01-01

    Spectra of the nucleus and plates of the galaxy NGC 5506, suggested by Bahcall et al. as the identification of the X-ray source 3U 1410-03, have been obtained with the Isaac Newton and Anglo-Australian Telescopes. The photographs show it to be a highly elongated system, crossed by dust lanes and possessing a prominent nucleus. It appears to be of irregular Type II and superficially resembles M 82. The nuclear spectrum is dominated by intense emission lines of [O III], [O I], [N II], [S II] and the Balmer series. Lines of high ionized species (e.g. He II, [Ne V], [Fe VII]) are also found, implying that the object is active and greatly enhancing the probability of association with the X-ray source. Numerous weak lines of [Fe II] emission are observed. The strong lines are narrower than is characteristic of Seyfert galaxies, and have widths (FWHM) of about 400 km s -1 . The measured Balmer decrement indicates the nucleus is significantly reddened, from which a visual absorption Asub(v) approximately equal to 4.5 mag is deduced. The dereddened line intensities are remarkably similar to those derived for the radio galaxy Cyg A by Osterbrock and Miller. The forbidden lines from NGC 5506 are emitted in a region with log 10 Tsub(e) =4.2 and log 10 Nsub(e) = 3.4. The observed continuum may be described by a power law S varies as νsup(+α) with α = - 3.6 +- 0.5; after correction for reddening the spectral index becomes α = - 1.3 +- 0.6. If the X-ray source is associated with the nucleus, the high visual absorption implies a low energy cut-off in its spectrum near 0.9 keV. (author)

  15. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  16. A CHARACTERISTIC DIVISION BETWEEN THE FUELING OF QUASARS AND SEYFERTS: FIVE SIMPLE TESTS

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Hernquist, Lars

    2009-01-01

    Given the existence of the M BH -σ relation, models of self-regulated black hole (BH) growth require both a fuel supply and concomitant growth of the host bulge to deepen the central potential, or else the system will either starve or immediately self-regulate without any sustained activity. This leads to a generic prediction that the brightest quasars must be triggered in major mergers: a large fraction of the galaxy mass must be added/converted to new bulge mass and a galactic supply of gas must lose angular momentum in less than a dynamical time. Low-luminosity active galactic nuclei, in contrast, require little bulge growth and small gas supplies, and could be triggered in more common nonmerger events. This leads to the expectation of a characteristic transition to merger-induced fueling around the traditional quasar-Seyfert luminosity division (growth of BH masses above/below ∼10 7 M sun ). We compile and survey a number of observations in order to test several predictions of such a division, including (1) a transition to bulge-dominated hosts (which any major merger remnant, regardless of difficult-to-observe tidal features, should be). (2) A transition between 'pseudobulges' and 'classical' bulges hosting the remnant BHs: pseudobulges are formed in secular processes and minor mergers, whereas classical bulges are relics of major mergers. (3) An increase in the amplitude of small-scale clustering (increased halo occupation of small group environments) where mergers are more efficient. (4) Different redshift evolution, with gas-rich merger rates rising to redshifts z > 2 while secular processes are relatively constant in time. (5) An increasing prominence of post-starburst features in more luminous systems. Our compilation of observations in each of these areas provides tentative evidence for the predicted division around the Seyfert-quasar threshold, and we discuss how future observations can improve these constraints and, in combination with the tests

  17. A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Cassata, P.; Le Fevre, O.; Salvato, M.; Scoville, N. Z.; Capak, P.; Surace, J.; Yan, L.; Caputi, K.; Carollo, C. M.; Lilly, S.; Civano, F.; Hasinger, G.; Koekemoer, A. M.

    2010-01-01

    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 8 IR (8 - 1000 μm) 14 L sun with a median luminosity of 10 11.4 L sun . In general, these galaxies are massive, with a stellar mass range of 10 10 -10 12 M sun , and luminous, with -25 K IR , with the fraction at the highest luminosity (L IR > 10 12 L sun ) being up to ∼50%. We also find that the fraction of spirals drops dramatically with L IR . Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L IR 11.5 L sun ). The precise fraction of mergers in any given L IR bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the galaxies in our sample peaks in the green valley ((U - V) = 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals ( 12 M sun ) to have been

  18. First Detections of the [N II] 122 micron Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    Science.gov (United States)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  19. BOOSTING LY α   AND He ii λ 1640 LINE FLUXES FROM POPULATION III GALAXIES: STOCHASTIC IMF SAMPLING AND DEPARTURES FROM CASE-B

    International Nuclear Information System (INIS)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-01-01

    We revisit calculations of nebular hydrogen Ly α and He ii λ 1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Ly α flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n  = 2 state of atomic hydrogen. The increased sensitivity of the Ly α flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ∼4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  20. Boosting Lyα and He II λ1640 Line Fluxes from Population III Galaxies: Stochastic IMF Sampling and Departures from Case-B

    Science.gov (United States)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-12-01

    We revisit calculations of nebular hydrogen Lyα and He II λ1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Lyα flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n = 2 state of atomic hydrogen. The increased sensitivity of the Lyα flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ˜4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  1. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE

    International Nuclear Information System (INIS)

    Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.

    2011-01-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  2. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    Science.gov (United States)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  3. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    Science.gov (United States)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-06-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies (ETGs) observed with the Spectrographic Areal Unit for Research on Optical Nebulae integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early types (dEs) of Sybilska et al. and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analysed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] versus [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal versus dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  4. An Infrared Method for Discovering AGN: Lick Spectroscopy of New Seyfert I’s in the Kepler Fields

    Science.gov (United States)

    Tsan, Tran; Edelson, Rick; Smith, Krista Lynne; Malkan, Matthew Arnold

    2016-06-01

    Spectra of Active Galactic Nuclei (AGN) candidates in the Kepler fields were observed at Lick Observatory. We used the Shane 3.0-meter telescope with the Kast double spectrograph, covering from 0.35-0.8 μm. Using IRAF, we extracted 1D spectra from the original 2D long-slit images of the candidates. Our main goals are to determine the redshift of the candidates and identify any new AGN. The wavelength and flux calibration are fairly accurate, and most spectra have a good signal-to-noise ratio. Twenty- seven nights of data (consisting of 106 candidates) have been analyzed. For 89% of them, we have determined the redshifts to a precision of δz = 0.0005 in most cases. The rest give inconclusive results. 19 of the candidates turn out to be galactic stars. The most commonly identified emission lines are Hα+[NII], the [OIII] doublet, and Hβ. 44 of the candidates show a Broad Line Region, meaning that their wide permitted lines classify them as either Seyfert I’s or quasars. 6 of these have redshifts above 0.5, indicating that they are highly luminous quasars. One candidate appears to be a bl-lac object. We are now analyzing the Kepler light curves of these Seyfert galaxies.

  5. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    International Nuclear Information System (INIS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass and surface densities of total gas (Σ gas ), molecular gas (Σ H 2 ), neutral gas (Σ H I ), and star formation rate (Σ SFR ) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M 3rd ∝Σ H I 0.4±0.2 , whereM 3rd is the median of the five most massive clusters. There is no correlation withΣ gas ,Σ H2 , orΣ SFR . For clusters younger than 10 Myr, M 3rd ∝Σ H I 0.6±0.1 and M 3rd ∝Σ gas 0.5±0.2 ; there is no correlation with either Σ H 2 orΣ SFR . The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M 3rd ∝Σ gas 3.8±0.3 , M 3rd ∝Σ H 2 1.2±0.1 , and M 3rd ∝Σ SFR 0.9±0.1 . For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  6. THE LICK AGN MONITORING PROJECT: THE M BH-σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle L.; Bentz, Misty C.; Wright, Shelley A.; Filippenko, Alexei V.; Li, Weidong; Martini, Paul; Canalizo, Gabriela; Gates, Elinor; Greene, Jenny; Malkan, Matthew A.; Stern, Daniel; Minezaki, Takeo

    2010-01-01

    To investigate the black hole mass versus stellar velocity dispersion (M BH -σ * ) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 10 6 BH /M sun 9 . We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the M BH -σ * relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σ int = 0.43 ± 0.08 dex in the relation log(M BH /M sun ) = α + β log(σ * /200 km s -1 ), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the M BH -σ * relation of quiescent galaxies; using the quiescent M BH -σ * relation determined by Gueltekin et al., we find log f = 0.72 +0.09 -0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the

  7. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously......] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths....

  8. XMM-Newton observation of the NLS1 galaxy Ark 564. I. Spectral analysis of the time-average spectrum

    NARCIS (Netherlands)

    Papadakis, I.E.; Brinkmann, W.; Page, M.J.; McHardy, I.; Uttley, P.

    2007-01-01

    Context: .We present the results from the spectral analysis of the time-average spectrum of the Narrow Line Seyfert 1 (NLS1) galaxy Ark 564 from a ~100 ks XMM-Newton observation. Aims: .Our aim is to characterize accurately the shape of the time-average, X-ray continuum spectrum of the source and

  9. An intermediate-mass black hole in the darf galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    2005-01-01

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  10. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  11. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS

    2001-01-01

    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  12. A CFH12k lensing survey of X-ray luminous galaxy clusters - II. Weak lensing analysis and global correlations

    NARCIS (Netherlands)

    Bardeau, S.; Soucail, G.; Kneib, J.-P.; Czoske, O.; Ebeling, H.; Hudelot, P.; Smail, I.; Smith, G. P.

    Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing. This sample, spanning a small range in both X-ray luminosity and redshift, is ideally suited to determining the

  13. The sloan lens acs survey. II. Stellar populations and internal structure of early-type lens galaxies

    NARCIS (Netherlands)

    Treu, Tommaso; Koopmans, Léon V.; Bolton, Adam S.; Burles, Scott; Moustakas, Leonidas A.

    2006-01-01

    We use HST images to derive effective radii and effective surface brightnesses of 15 early-type (E+S0) lens galaxies identified by the SLACS Survey. Our measurements are combined with stellar velocity dispersions from the SDSS database to investigate for the first time the distribution of lens

  14. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  15. Variations in the 6.2 μm emission profile in starburst-dominated galaxies: a signature of polycyclic aromatic nitrogen heterocycles (PANHs)?

    Science.gov (United States)

    Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel

    2018-04-01

    Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.

  16. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field - II. Morphological transformation and multiwavelength properties of faint submillimetre galaxies

    Science.gov (United States)

    Zavala, J. A.; Aretxaga, I.; Dunlop, J. S.; Michałowski, M. J.; Hughes, D. H.; Bourne, N.; Chapin, E.; Cowley, W.; Farrah, D.; Lacey, C.; Targett, T.; van der Werf, P.

    2018-04-01

    We present a multiwavelength analysis of galaxies selected at 450 and 850 μm from the deepest SCUBA-2 observations in the Extended Groth Strip (EGS) field, which have an average depth of σ450 = 1.9 and σ850 = 0.46 mJy beam- 1 over ˜70 arcmin2. The final sample comprises 95 sources: 56 (59 per cent) are detected at both wavelengths, 31 (33 per cent) are detected only at 850 μm, and 8 (8 per cent) are detected only at 450 μm. We identify counterparts for 75 per cent of the whole sample. The redshift distributions of the 450 and 850 μm samples peak at different redshifts with median values of \\bar{z}=1.66± 0.18 and \\bar{z}=2.30± 0.20, respectively. However, the two populations have similar IR luminosities, SFRs, and stellar masses, with mean values of 1.5 ± 0.2 × 1012 L⊙, 150 ± 20 M⊙ yr-1, and 9.0 ± 0.6 × 1010 M⊙, respectively. This places most of our sources (≳85 per cent) on the high-mass end of the main sequence of star-forming galaxies. Exploring the IR excess versus UV-slope (IRX-β) relation we find that the most luminous galaxies are consistent with the Meurer law, while the less luminous galaxies lie below this relation. Using the results of a two-dimensional modelling of the HSTH160-band imaging, we derive a median Sérsic index of n=1.4^{+0.3}_{-0.1} and a median half-light radius of r1/2 = 4.8 ± 0.4 kpc. Based on a visual-like classification in the same band, we find that the dominant component for most of the galaxies at all redshifts is a disc-like structure, although there is a transition from irregular discs to discs with a spheroidal component at z ˜ 1.4, which morphologically supports the scenario of SMGs as progenitors of massive elliptical galaxies.

  17. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  18. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  19. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  20. On the total absorption cross-section of galaxies - II: The case of λ cosmologies and covering factor variation

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    1998-01-01

    Full Text Available In this work we expand the previous discussion of the plausibility of hypothesis of origin of the Lyα forest absorption systems in haloes of normal galaxies in connection with the HubbleDeepField (HDF data. It is shown that simplistic approach to absorption cross-sections of galaxies with no luminosity scaling is in strong violation of empirical statistics up to redshift of z ∼ 3.5. Realistic variation of the covering factor in order to account for its increase in the inner parts of observed haloes leads to even bigger discrepancy. Cosmologies with finite cosmological constant are briefly discussed and compared to Λ = 0 case. Ways to improve agreement with observational data are indicated. This problem is highly illustrative of the basic tenets of modern observational cosmology.

  1. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    Science.gov (United States)

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  2. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    Science.gov (United States)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  3. SEARCH FOR BLUE COMPACT DWARF GALAXIES DURING QUIESCENCE. II. METALLICITIES OF GAS AND STARS, AGES, AND STAR FORMATION RATES

    International Nuclear Information System (INIS)

    Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C.; Vazdekis, A.

    2009-01-01

    We examine the metallicity and age of a large set of Sloan Digital Sky Survey/Data Release 6 galaxies that may be blue compact dwarf (BCD) galaxies during quiescence (QBCDs). The individual spectra are first classified and then averaged to reduce noise. The metallicity inferred from emission lines (tracing ionized gas) exceeds by ∼0.35 dex the metallicity inferred from absorption lines (tracing stars). Such a small difference is significant according to our error budget estimate. The same procedure was applied to a reference sample of BCDs, and in this case the two metallicities agree, being also consistent with the stellar metallicity in QBCDs. Chemical evolution models indicate that the gas metallicity of QBCDs is too high to be representative of the galaxy as a whole, but it can represent a small fraction of the galactic gas, self-enriched by previous starbursts. The luminosity-weighted stellar age of QBCDs spans the whole range between 1 and 10 Gyr, whereas it is always smaller than 1 Gyr for BCDs. Our stellar ages and metallicities rely on a single stellar population spectrum fitting procedure, which we have specifically developed for this work using the stellar library MILES.

  4. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  5. INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Yan, Renbin; Cooper, Michael C.; Coil, Alison L.; Faber, S. M.; Koo, David C.; Rosario, D. J.; Dutton, Aaron A.

    2009-01-01

    We present a new technique for observationally identifying galaxy mergers spectroscopically rather than through host galaxy imaging. Our technique exploits the dynamics of supermassive black holes (SMBHs) powering active galactic nuclei (AGNs) in merger-remnant galaxies. Because structure in the universe is built up through galaxy mergers and nearly all galaxies host a central SMBH, some galaxies should possess two SMBHs near their centers as the result of a recent merger. These SMBHs spiral to the center of the resultant merger-remnant galaxy, and one or both of the SMBHs may power AGNs. Using the DEEP2 Galaxy Redshift Survey, we have examined 1881 red galaxies, of which 91 exhibit [O III] and Hβ emission lines indicative of Seyfert 2 activity. Of these, 32 AGNs have [O III] emission-line redshifts significantly different from the redshifts of the host galaxies' stars, corresponding to velocity offsets of ∼50 km s -1 to ∼300 km s -1 . Two of these AGNs exhibit double-peaked [O III] emission lines, while the remaining 30 AGNs each exhibit a single set of velocity-offset [O III] emission lines. After exploring a variety of physical models for these velocity offsets, we argue that the most likely explanation is inspiralling SMBHs in merger-remnant galaxies. Based on this interpretation, we find that roughly half of the red galaxies hosting AGNs are also merger remnants, which implies that mergers may trigger AGN activity in red galaxies. The AGN velocity offsets we find imply a merger fraction of ∼30% and a merger rate of ∼3 mergers Gyr -1 for red galaxies at redshifts 0.34 < z < 0.82.

  6. MEASURING STAR FORMATION RATES AND FAR-INFRARED COLORS OF HIGH-REDSHIFT GALAXIES USING THE CO(7–6) AND [N II] 205 μm LINES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin; Howell, Justin; Mazzarella, Joseph M.; Schulz, Bernhard [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Gao, Yu; Liu, Lijie [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Díaz-Santos, Tanio; Armus, Lee [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Inami, Hanae [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Privon, George C. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Lord, Steven D. [The SETI Institute, 189 Bernardo Avenue Suite 100, Mountain View, CA 94043 (United States); Sanders, David B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Van der Werf, Paul P., E-mail: lu@ipac.caltech.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2015-03-20

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios of the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.

  7. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    International Nuclear Information System (INIS)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y.

    2014-01-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R 25 ) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the three

  8. Deconvolving X-ray spectral variability components in the Seyfert 1.5 NGC 3227

    International Nuclear Information System (INIS)

    Arévalo, P.; Markowitz, A.

    2014-01-01

    We present the variability analysis of a 100 ks XMM-Newton observation of the Seyfert 1.5 active galaxy, NGC 3227. The observation found NGC 3227 in a period where its hard power-law component displayed remarkably little long-term variability. This lucky event allows us to clearly observe a soft spectral component undergoing a large-amplitude but slow flux variation. Using combined spectral and timing analysis, we isolate two independent variable continuum components and characterize their behavior as a function of timescale. Rapid and coherent variations throughout the 0.2-10 keV band reveal a spectrally hard (photon index Γ ∼ 1.7-1.8) power law, dominating the observed variability on timescales of 30 ks and shorter. Another component produces coherent fluctuations in the 0.2-2 keV range and is much softer (Γ ∼ 3); it dominates the observed variability on timescales greater than 30 ks. Both components are viewed through the same absorbers identified in the time-averaged spectrum. The combined spectral and timing analysis breaks the degeneracy between models for the soft excess: it is consistent with a power-law or thermal Comptonized component but not with a blackbody or an ionized reflection component. We demonstrate that the rapid variability in NGC 3227 is intrinsic to continuum-emitting components and is not an effect of variable absorption.

  9. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. II. INTEGRATED LINE PROFILE CHARACTERIZATION AND THE ORIGIN OF LINE PROFILE ASYMMETRY

    International Nuclear Information System (INIS)

    Andersen, David R.; Bershady, Matthew A.

    2009-01-01

    We perform a moments analysis of H I and H II global line profiles for 33 nearly face-on disk galaxies for the threefold purpose of rationalizing and interpreting line profile indices in the literature, presenting robust moment definitions with analytic error functions calibrated against Monte Carlo simulation, and probing the physical origin of line profile asymmetries. The first four profile moments serve as viable surrogates for the recession velocity, line width, asymmetry, and profile shape, respectively. The first three moments are superior, by a factor of ∼2 in precision, to related quantities defined in the literature. First and third profile moments are related; skew can be used to calculate more accurate recession velocities from global profiles. Second and fourth profile moments are linked, corresponding to the known trend that narrow (but well resolved) line widths tend to be more Gaussian. Hα kurtosis also appears correlated with the spatially resolved line width of the ionized gas. No systematics appear between various measures of line width and true rotation speed other than the wide range of normalizations, which we calibrate. This conclusion and calibration, however, is highly sample dependent. The ratio of H II to H I widths is consistent with unity, even at low projected line width. There may be a trend toward a decrease in the ratio of H II to H I widths consistent with previous studies, but we also observe greater scatter. While there is good agreement between H I and H II first, second, and fourth moments, we find no positive correlation between skew measured from H I and H II profiles. Detailed analysis of the spatially resolved Hα distribution demonstrates that H II global profile asymmetries are dominated by differences in the gas distribution, not kinematic asymmetries.

  10. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  11. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    Science.gov (United States)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  12. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: daniel.dicken@cea.fr [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  13. A Survey for Low Surface Brightness Galaxies Around M31. II. The Newly Discovered Dwarf Andromeda VI

    OpenAIRE

    Armandroff, Taft E.; Jacoby, George H.; Davies, James E.

    1999-01-01

    We present B-, V-, and I-band images, as well as an H alpha image, of And VI. This is the second newly identified dwarf spheroidal (dSph) companion to M31 found using a digital filtering technique applied to