WorldWideScience

Sample records for sexta moths innately

  1. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth

    Science.gov (United States)

    Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A.; Kelber, Almut

    2008-06-01

    Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.

  2. SIFamide in the brain of the sphinx moth, Manduca sexta.

    Science.gov (United States)

    Heuer, C M; Binzer, Marlene; Schachtner, J

    2012-01-01

    SIFamides form a group of highly conserved neuropeptides in insects, crustaceans, and chelicerates. Beyond their biochemical commonalities, the neuroanatomical distribution of SIFamide in the insect nervous system also shows a remarkable degree of conservation. Thus, expression of SIFamide has been found to be restricted to four neurons of the pars intercerebralis in different holometabolous species. By means of immunohistological stainings, we here show that in Manduca sexta, those four cells are complemented by additional immunoreactive cells located in the vicinity of the mushroom body calyx. Immunopositive processes form arborizations throughout the brain, innervating major neuropils like the antennal lobes, the central complex, and the optic neuropils.

  3. Power distribution in the hovering flight of the hawk moth Manduca sexta

    International Nuclear Information System (INIS)

    Zhao Liang; Deng Xinyan

    2009-01-01

    We investigated inertial and aerodynamic power consumption during hovering flight of the hawk moth Manduca sexta. The aerodynamic power was estimated based on the aerodynamic forces and torques measured on model hawk-moth wings and hovering kinematics. The inertial power was estimated based on the measured wing mass distribution and hovering kinematics. The results suggest that wing inertial power (without consideration of muscle efficiency and elastic energy storage) consumes about half of the total power expenditure. Wing areal mass density was measured to decrease sharply from the leading edge toward the trailing edge and from the wing base to the wing tip. Such a structural property helps to minimize the wing moment of inertia given a fixed amount of mass. We measured the aerodynamic forces on the rigid and flexible wings, which were made to approximate the flexural stiffness (EI) distribution and deformation of moth wings. It has been found that wings with the characteristic spanwise and chordwise decreasing EI (and mass density) are beneficial for power efficiency while generating aerodynamic forces comparative to rigid wings. Furthermore, negative work to aid pitching in stroke reversals from aerodynamic forces was found, and it showed that the aerodynamic force contributes partially to passive pitching of the wing

  4. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    Science.gov (United States)

    Kanost, Michael R.; Arrese, Estela L.; Cao, Xiaolong; Chen, Yun-Ru; Chellapilla, Sanjay; Goldsmith, Marian R; Grosse-Wilde, Ewald; Heckel, David G.; Herndon, Nicolae; Jiang, Haobo; Papanicolaou, Alexie; Qu, Jiaxin; Soulages, Jose L.; Vogel, Heiko; Walters, James; Waterhouse, Robert M.; Ahn, Seung-Joon; Almeida, Francisca C.; An, Chunju; Aqrawi, Peshtewani; Bretschneider, Anne; Bryant, William B.; Bucks, Sascha; Chao, Hsu; Chevignon, Germain; Christen, Jayne M.; Clarke, David F.; Dittmer, Neal T.; Ferguson, Laura C.F.; Garavelou, Spyridoula; Gordon, Karl H.J.; Gunaratna, Ramesh T.; Han, Yi; Hauser, Frank; He, Yan; Heidel-Fischer, Hanna; Hirsh, Ariana; Hu, Yingxia; Jiang, Hongbo; Kalra, Divya; Klinner, Christian; König, Christopher; Kovar, Christie; Kroll, Ashley R.; Kuwar, Suyog S.; Lee, Sandy L.; Lehman, Rüdiger; Li, Kai; Li, Zhaofei; Liang, Hanquan; Lovelace, Shanna; Lu, Zhiqiang; Mansfield, Jennifer H.; McCulloch, Kyle J.; Mathew, Tittu; Morton, Brian; Muzny, Donna M.; Neunemann, David; Ongeri, Fiona; Pauchet, Yannick; Pu, Ling-Ling; Pyrousis, Ioannis; Rao, Xiang-Jun; Redding, Amanda; Roesel, Charles; Sanchez-Gracia, Alejandro; Schaack, Sarah; Shukla, Aditi; Tetreau, Guillaume; Wang, Yang; Xiong, Guang-Hua; Traut, Walther; Walsh, Tom K.; Worley, Kim C.; Wu, Di; Wu, Wenbi; Wu, Yuan-Qing; Zhang, Xiufeng; Zou, Zhen; Zucker, Hannah; Briscoe, Adriana D.; Burmester, Thorsten; Clem, Rollie J.; Feyereisen, René; Grimmelikhuijzen, Cornelis J.P; Hamodrakas, Stavros J.; Hansson, Bill S.; Huguet, Elisabeth; Jermiin, Lars S.; Lan, Que; Lehman, Herman K.; Lorenzen, Marce; Merzendorfer, Hans; Michalopoulos, Ioannis; Morton, David B.; Muthukrishnan, Subbaratnam; Oakeshott, John G.; Palmer, Will; Park, Yoonseong; Passarelli, A. Lorena; Rozas, Julio; Schwartz, Lawrence M.; Smith, Wendy; Southgate, Agnes; Vilcinskas, Andreas; Vogt, Richard; Wang, Ping; Werren, John; Yu, Xiao-Qiang; Zhou, Jing-Jiang; Brown, Susan J.; Scherer, Steven E.; Richards, Stephen; Blissard, Gary W.

    2016-01-01

    Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects. PMID:27522922

  5. A flight sensory-motor to olfactory processing circuit in the moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Samual P Bradley

    2016-02-01

    Full Text Available Neural circuits projecting information from motor pathways to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor (MsHisClB is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  6. Developmental changes in in vivo cardiac performance in the moth Manduca sexta.

    Science.gov (United States)

    Smits, A W; Burggren, W W; Oliveras, D

    2000-01-01

    of 5.52+/-0. 51, 5.05+/-0.52 and 5.43+/-0.37 cm s(-)(1), respectively. Heart rate and contraction propagation velocity were remarkably resistant to ambient hypoxia and hypercapnia at all developmental stages, decreasing significantly only at 0 % O(2) or 24 % CO(2). As expected, the heart rates of all three developmental stages increased significantly with increasing temperature, with heart rate Q(10) values for larvae, pupae and adults of 2.33, 3.14 and 1.61, respectively, between 10 and 20 degrees C. Corresponding Q(10) values for these stages between 20 and 30 degrees C were 2.22, 2.03 and 2.29. Larval heart rates showed no significant response to forced activity induced by prodding. In contrast, adult heart rate increased nearly fivefold from 50.1 beats min(-)(1) during rest to 223.5 beats min(-)(1) after 1 min of prodding. The activity-induced tachycardia in adults ceased within 10-12 min. Patterns of cardiac contraction in larval, pupal and adult M. sexta were as dissimilar as their morphological appearances and revealed a gradation from simple to complex. These developmentally based distinctive cardiac patterns are undoubtedly related to developmental differences in both morphology and life-style. Larvae are anatomically 'homogeneous' compared with other stages, with no distinct head, thorax and abdominal region (or wings) that might require selective perfusion or drainage. The far more complex pattern of heart activity seen in pupae probably relates to the dramatic changes in internal morphology during this stage. Simultaneous degradation and synthesis of tissues throughout the body may expose the heart to numerous peptides or neurohormones that affect cardiac activity. In adult moths, the complex and repetitive pattern of cardiac activity is reflected in the previously described complexity of hemolymph movement, together with thermoregulatory capabilities in this species that depend on well-regulated hemolymph movements between the thorax, wings and abdomen.

  7. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths.

    Science.gov (United States)

    Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M

    2013-04-22

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.

  8. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Clark, Julie; Meisner, Shannon; Torkkeli, Päivi H

    2005-04-01

    Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.

  9. Developmental distribution of CaM kinase II in the antennal lobe of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Lohr, Christian; Bergstein, Sandra; Hirnet, Daniela

    2007-01-01

    The antennal lobe (primary olfactory center of insects) is completely reorganized during metamorphosis. This reorganization is accompanied by changing patterns of calcium signaling in neurons and glial cells. In the present study, we investigated the developmental distribution of a major calcium-dependent protein, viz., calcium/calmodulin-dependent protein kinase II (CaM kinase II), in the antennal lobe of the sphinx moth Manduca sexta by using a monoclonal antibody. During synaptogenesis (developmental stages 6-10), we found a redistribution of CaM kinase II immunoreactivity, from a homogeneous distribution in the immature neuropil to an accumulation in the neuropil of the glomeruli. CaM kinase II immunoreactivity was less intense in olfactory receptor axons of the antennal nerve and antennal lobe glial cells. Western blot analysis revealed a growing content of CaM kinase II in antennal lobe tissue throughout metamorphosis. Injection of the CaM kinase inhibitor KN-93 into pupae resulted in a reduced number of antennal lobe glial cells migrating into the neuropil to form borders around glomeruli. The results suggest that CaM kinase II is involved in glial cell migration.

  10. Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Utz, Sandra; Schachtner, Joachim

    2005-04-01

    The antennal lobe (AL) of the sphinx moth Manduca sexta is a well-established model system for studying mechanisms of neuronal development. To understand whether neuropeptides are suited to playing a role during AL development, we have studied the cellular localization and temporal expression pattern of neuropeptides of the A-type allatostatin family. Based on morphology and developmental appearance, we distinguished four types of AST-A-immunoreactive cell types. The majority of the cells were local interneurons of the AL (type Ia) which acquired AST-A immunostaining in a complex pattern consisting of three rising (RI-RIII) and two declining phases (DI, DII). Type Ib neurons consisted of two local neurons with large cell bodies not appearing before 7/8 days after pupal ecdysis (P7/P8). Types II and III neurons accounted for single centrifugal neurons, with type II neurons present in the larva and disappearing in the early pupa. The type III neuron did not appear before P7/P8. RI and RII coincided with the rises of the ecdysteroid hemolymph titer. Artificially shifting the pupal 20-hydroxyecdysone (20E) peak to an earlier developmental time point resulted in the precocious appearance of AST-A immunostaining in types Ia, Ib, and III neurons. This result supports the hypothesis that the pupal rise in 20E plays a role in AST-A expression during AL development. Because of their early appearance in newly forming glomeruli, AST-A-immunoreactive fibers could be involved in glomerulus formation. Diffuse AST-A labeling during early AL development is discussed as a possible signal providing information for ingrowing olfactory receptor neurons.

  11. Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Schachtner, Joachim; Trosowski, Björn; D'Hanis, Wolfgang; Stubner, Stephan; Homberg, Uwe

    2004-06-01

    During metamorphosis, the insect nervous system undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. To understand further the mechanisms involved in transforming larval to adult tissue we have mapped the metamorphic changes in a particularly well established brain area, the antennal lobe of the sphinx moth Manduca sexta, using an antiserum recognizing RFamide-related neuropeptides. Five types of RFamide-immunoreactive (ir) neurons could be distinguished in the antennal lobe, based on morphology and developmental appearance. Four cell types (types II-V, each consisting of one or two cells) showed RFamide immunostaining in the larva that persisted into metamorphosis. By contrast, the most prominent group (type I), a mixed population of local and projection neurons consisting of about 60 neurons in the adult antennal lobe, acquired immunostaining in a two-step process during metamorphosis. In a first step, from 5 to 7 days after pupal ecdysis, the number of labeled neurons reached about 25. In a second step, starting about 4 days later, the number of RFamide-ir neurons increased within 6 days to about 60. This two-step process parallels the rise and fall of the developmental hormone 20-hydroxyecdysone (20E) in the hemolymph. Artificially shifting the 20E peak to an earlier developmental time point resulted in the precocious appearance of RFamide immunostaining and led to premature formation of glomeruli. Prolonging high 20E concentrations to stages when the hormone titer starts to decline had no effect on the second increase of immunostained cell numbers. These results support the idea that the rise in 20E, which occurs after pupal ecdysis, plays a role in the first phase of RFamide expression and in glomeruli formation in the developing antennal lobes. The role of 20E in the second phase of RFamide expression is less clear, but increased cell numbers showing RFamide-ir do not appear to be a consequence of

  12. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta.

    Science.gov (United States)

    Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim

    2010-01-01

    DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  13. 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Wolf Huetteroth

    2010-03-01

    Full Text Available During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: New neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  14. Mas-allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides.

    Science.gov (United States)

    Utz, Sandra; Huetteroth, Wolf; Vömel, Matthias; Schachtner, Joachim

    2008-01-01

    The paired antennal lobes (ALs) of the sphinx moth Manduca sexta serve as a well-established model for studying development of the primary integration centers for odor information in the brain. To further reveal the role of neuropeptides during AL development, we have analyzed cellular distribution, developmental time course, and regulation of the neuropeptide M. sexta allatotropin (Mas-AT). On the basis of morphology and appearance during AL formation, seven major types of Mas-AT-immunoreactive (ir) cells could be distinguished. Mas-AT-ir cells are identified as local, projection, and centrifugal neurons, which are either persisting larval or newly added adult-specific neurons. Complementary immunostaining with antisera against two other neuropeptide families (A-type allatostatins, RFamides) revealed colocalization within three of the Mas-AT-ir cell types. On the basis of this neurochemistry, the most prominent type of Mas-AT-ir neurons, the local AT neurons (LATn), could be divided in three subpopulations. The appearance of the Mas-AT-ir cell types occurring during metamorphosis parallels the rising titer of the developmental hormone 20-hydroxyecdysone (20E). Artificially shifting the 20E titer to an earlier developmental time point resulted in the precocious occurrence of Mas-AT immunostaining. This result supports the hypothesis that the pupal rise of 20E is causative for Mas-AT expression during AL development. Comparing localization and developmental time course of Mas-AT and other neuropeptides with the time course of AL formation suggests various functions for these neuropeptides during development, including an involvement in the formation of the olfactory glomeruli.

  15. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?

    Directory of Open Access Journals (Sweden)

    Joshua P Martin

    2010-09-01

    Full Text Available The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL, that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection neurons (PNs in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.

  16. A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera)

    Science.gov (United States)

    Farris, Sarah M.; Pettrey, Colleen; Daly, Kevin C.

    2010-01-01

    Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca. PMID:21040804

  17. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  18. Recent Advances in Insect Olfaction, Specifically Regarding the Morphology and Sensory Physiology of Antennal Sensilla of the Female Sphinx Moth Manduca sexta

    Science.gov (United States)

    SHIELDS, VONNIE D.C.; HILDEBRAND, JOHN G.

    2008-01-01

    The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe. PMID:11754510

  19. Peripheral and Central Olfactory Tuning in a Moth

    Science.gov (United States)

    Ong, Rose C.

    2012-01-01

    Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866

  20. Evaluation of the Thorax of Manduca Sexta for Flapping Wing Micro Air Vehicle Applications

    Science.gov (United States)

    2012-12-01

    subject to the effects of low Reynolds number flight. These effects extend from wind gusts to unstable aerodynamic flow and viscous dominated flow (Shyy...operate as a mechanical spring damper at resonance during flapping flight (Bolsman 2010). For wing actuation, the M.sexta has two fairly simple and...freshly eclosed moth a surface to climb up, which is an absolute necessity. The moth must climb off of the ground in order to pump fluids through

  1. Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour.

    Science.gov (United States)

    Goyret, Joaquín; Kelber, Almut; Pfaff, Michael; Raguso, Robert A

    2009-08-07

    Here, we show that the consequences of deficient micronutrient (beta-carotene) intake during larval stages of Manduca sexta are carried across metamorphosis, affecting adult behaviour. Our manipulation of larval diet allowed us to examine how developmental plasticity impacts the interplay between visual and olfactory inputs on adult foraging behaviour. Larvae of M. sexta were reared on natural (Nicotiana tabacum) and artificial laboratory diets containing different concentrations of beta-carotene (standard diet, low beta-carotene, high beta-carotene and cornmeal). This vitamin-A precursor has been shown to be crucial for photoreception sensitivity in the retina of M. sexta. After completing development, post-metamorphosis, starved adults were presented with artificial feeders that could be either scented or unscented. Regardless of their larval diet, adult moths fed with relatively high probabilities on scented feeders. When feeders were unscented, moths reared on tobacco were more responsive than moths reared on beta-carotene-deficient artificial diets. Strikingly, moths reared on artificial diets supplemented with increasing amounts of beta-carotene (low beta and high beta) showed increasing probabilities of response to scentless feeders. We discuss these results in relationship to the use of complex, multi-modal sensory information by foraging animals.

  2. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

    Science.gov (United States)

    Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato

    2018-02-12

    Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.

  3. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Lin, Hailan; Lin, Xijian; Zhu, Jiwei; Yu, Xiao-Qiang; Xia, Xiaofeng; Yao, Fengluan; Yang, Guang; You, Minsheng

    2017-02-14

    Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity

  4. Learning about Moths.

    Science.gov (United States)

    Albrecht, Kay; Walsh, Katherine

    1996-01-01

    Describes an early childhood classroom project involving moths that teaches children about moths' development from egg to adult stage. Includes information about the moth's enemies, care, and feeding. Outlines reading, art, music and movement, science, and math activities centering around moths. (BGC)

  5. Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta.

    Science.gov (United States)

    Goyret, Joaquín; Markwell, Poppy M; Raguso, Robert A

    2008-03-25

    Typically, animal pollinators are attracted to flowers by sensory stimuli in the form of pigments, volatiles, and cuticular substances (hairs, waxes) derived from plant secondary metabolism. Few studies have addressed the extent to which primary plant metabolites, such as respiratory carbon dioxide (CO(2)), may function as pollinator attractants. Night-blooming flowers of Datura wrightii show transient emissions of up to 200 ppm above-ambient CO(2) at anthesis, when nectar rewards are richest. Their main hawkmoth pollinator, Manduca sexta, can perceive minute variation (0.5 ppm) in CO(2) concentration through labial pit organs whose receptor neurons project afferents to the antennal lobe. We explored the behavioral responses of M. sexta to artificial flowers with different combinations of CO(2), visual, and olfactory stimuli using a laminar flow wind tunnel. Responses in no-choice assays were scale-dependent; CO(2) functioned as an olfactory distance-attractant redundant to floral scent, as each stimulus elicited upwind tracking flights. However, CO(2) played no role in probing behavior at the flower. Male moths showed significant bias in first-approach and probing choice of scented flowers with above-ambient CO(2) over those with ambient CO(2), whereas females showed similar bias only in the presence of host plant (tomato) leaf volatiles. Nevertheless, all males and females probed both flowers regardless of their first choice. While floral CO(2) unequivocally affects male appetitive responses, the context-dependence of female responses suggests that they may use floral CO(2) as a distance indicator of host plant quality during mixed feeding-oviposition bouts on Datura and Nicotiana plants.

  6. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  7. Biological Investigation of the Stimulated Flapping Motions of the Moth, Manduca sexta

    Science.gov (United States)

    2011-03-01

    have gates that open and close in response to changes in the membrane potential ( Cambell Neil A, Reece, & Mitchell, 1999). To understand what...intensity of a stimulus ( Cambell Neil A, Reece, & Mitchell, 1999). This is very relevant to research conducted here because the AP threshold must be...Containing a Retrospective view of every discovery and practical improvement in the medical sciences., 428. Cambell Neil A, Reece, J. B., & Mitchell, L

  8. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    OpenAIRE

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae a...

  9. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model.

    Science.gov (United States)

    Kai, Zhen-Peng; Zhu, Jing-Jing; Deng, Xi-Le; Yang, Xin-Ling; Chen, Shan-Shan

    2018-04-03

    Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C -terminal amidated octapeptide Manse-AT (6-13). We identified three residues essential for bioactivity (Thr⁴, Arg6 and Phe⁸) by assaying alanine-replacement analogs of Manse-AT (6-13). Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR) was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10-13), we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10-13) validated our hypothesis. The IC 50 value of antagonist Manse-AT (10-13) is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10-13) was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.

  10. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model

    Directory of Open Access Journals (Sweden)

    Zhen-Peng Kai

    2018-04-01

    Full Text Available Insect G protein coupled receptors (GPCRs have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C-terminal amidated octapeptide Manse-AT (6–13. We identified three residues essential for bioactivity (Thr4, Arg6 and Phe8 by assaying alanine-replacement analogs of Manse-AT (6–13. Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10–13, we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10–13 validated our hypothesis. The IC50 value of antagonist Manse-AT (10–13 is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10–13 was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.

  11. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae attack all three species, and in N. attenuata attack is recognized when larval oral secretions are introduced to wounds during feeding, resulting in a jasmonate burst, a systemic amplification of trypsin inhibitor accumulation, and a release of volatile organic compounds, which function as a coordinated defense response that slows caterpillar growth and increases the probability of their being attacked. Most aspects of this recognition response are retained with modifications in one allotetraploid (N. bigelovii) but lost in the other (N. clevelandii). Differences between diploid and tetraploid species were apparent in delays (maximum 1 and 0.5 h, respectively) in the jasmonate burst, the elicitation of trypsin inhibitors and release of volatile organic compounds, and the constitutive levels of nicotine, trypsin inhibitors, diterpene glycosides, rutin, and caffeoylputrescine in the leaves. Resistance to M. sexta larvae attack was most strongly associated with diterpene glycosides, which were higher in the diploid than in the two allotetraploid species. Because M. sexta elicitors differentially regulate a large proportion of the N. attenuata transcriptome, we propose that these species are suited for the study of the evolution of adaptive responses requiring trans-activation mechanisms. PMID:14530394

  12. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Thomas Schendzielorz

    Full Text Available The biogenic amine octopamine (OA mediates reward signals in olfactory learning and memory as well as circadian rhythms of sleep and activity. In the crepuscular hawkmoth Manduca sexta, OA changed pheromone detection thresholds daytime-dependently, suggesting that OA confers circadian control of olfactory transduction. Thus, with enzyme-linked immunosorbent assays we searched hawkmoth antennae for daytime-dependent changes in the concentration of OA and its respective second messengers. Antennal stimulation with OA raised cAMP- and IP3 levels. Furthermore, antennae expressed daytime-dependent changes in the concentration of OA, with maxima at Zeitgebertime (ZT 20 when moths were active and also maximal concentrations of cAMP occurred. Maximal IP3 levels at ZT 18 and 23 correlated with maximal flight activity of male moths, while minimal IP3 levels at dusk correlated with peaks of feeding activity. Half maximal effective concentration (EC50 for activation of the OA-receptor decreased during the moth's activity phase suggesting daytime-dependent changes in OA receptor sensitivity. With an antiserum against tyramine, the precursor of OA, two centrifugal neurons were detected projecting out into the sensory cell layer of the antenna, possibly mediating more rapid stimulus-dependent OA actions. Indeed, in fast kinetic assays OA receptor stimulation increased cAMP concentrations within 50 msec. Thus, we hypothesize that fast, stimulus-dependent centrifugal control of OA-release in the antenna occurs. Additional slow systemic OA actions might be based upon circadian release of OA into the hemolymph mediating circadian rhythms of antennal second messenger levels. The resulting rhythms of odor sensitivity are suggested to underlie circadian rhythms in odor-mediated behavior.

  13. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.

    Science.gov (United States)

    Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang

    2015-07-01

    Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from

  14. Douglas-Fir Tussock Moth

    Science.gov (United States)

    Boyd E. Wickman; Richard R. Mason; Galen C. Trostle

    1981-01-01

    The Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) is an important defoliator of true firs and Douglas-fir in Western North America. Severe tussock moth outbreaks have occurred in British Columbia, Idaho, Washington, Oregon, Nevada, California, Arizona, and New Mexico, but the area subject to attack is more extensive

  15. Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta.

    Directory of Open Access Journals (Sweden)

    Ian J Rowland

    Full Text Available Non-invasive 3D magnetic resonance imaging techniques were used to investigate metamorphosis of the alimentary tract of Manduca sexta from the larval to the adult stage. The larval midgut contracts in volume immediately following cessation of feeding and then greatly enlarges during the late pharate pupal period. Magnetic resonance imaging revealed that the foregut and hindgut of the pharate pupa undergo ecdysis considerably earlier than the external exoskeleton. Expansion of air sacs in the early pupa and development of flight muscles several days later appear to orient the midgut into its adult position in the abdomen. The crop, an adult auxiliary storage organ, begins development as a dorsal outgrowth of the foregut. This coincides with a reported increase in pupal ecdysteroid titers. An outgrowth of the hindgut, the rectal sac, appears several days later and continues to expand until it nearly fills the dorsal half of the abdominal cavity. This development correlates with a second rise in pupal ecdysteroid titers. In the pharate pupa, the presence of paramagnetic species renders the silk glands hyperintense.

  16. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    DEFF Research Database (Denmark)

    Kanost, Michael R; Arrese, Estela L; Cao, Xiaolong

    2016-01-01

    of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism...

  17. A new member of the GM130 golgin subfamily is expressed in the optic lobe anlagen of the metamorphosing brain of Manduca sexta

    Directory of Open Access Journals (Sweden)

    Chiou-Miin Wang

    2003-12-01

    Full Text Available During metamorphosis of the insect brain, the optic lobe anlagen generate the proliferation centers for the visual cortices. We show here that, in the moth Manduca sexta, an 80 kDa Golgi complex protein (Ms-golgin80 is abundantly expressed in the cytoplasm of neuroblasts and ganglion mother cells in the optic lobe anlagen and proliferation centers. The predicted amino acid sequence for Ms-golgin80 is similar to that of several members of the GM130 subfamily of Golgi-associated proteins, including rat GM130 and human golgin-95. Homologs of Ms-golgin80 from Drosophila melanogaster, Caenorhabditis elegans, and Brugia malayi were identified through homology sequence search. Sequence similarities are present in three regions: the N-terminus, an internal domain of 89 amino acids, and another domain of 89 amino acids near the C-terminus. Structural similarities further suggest that these molecules play the same cellular role as GM130. GM130 is involved in the docking and fusion of coatomer (COP I coated vesicles to the Golgi membranes; it also regulates the fragmentation and subsequent reassembly of the Golgi complex during mitosis. Abundant expression of Ms-golgin80 in neuroblasts and ganglion mother cells and its reduced expression in the neuronal progeny of these cells suggest that this protein may be involved in the maintenance of the proliferative state.

  18. Historical Gypsy Moth Defoliation Frequency

    Data.gov (United States)

    U.S. Environmental Protection Agency — Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely...

  19. Transcript Abundance of Photorhabdus Insect-Related (Pir Toxin in Manduca sexta and Galleria mellonella Infections

    Directory of Open Access Journals (Sweden)

    Anaïs Castagnola

    2016-09-01

    Full Text Available In this study, we assessed pirAB toxin transcription in Photorhabdus luminescens laumondii (strain TT01 (Enterobacteriaceae by comparing mRNA abundance under in vivo and in vitro conditions. In vivo assays considered both natural and forced infections with two lepidopteran hosts: Galleria mellonella and Manduca sexta. Three portals of entry were utilized for the forced infection assays: (a integument; (b the digestive route (via mouth and anus; and (c the tracheal route (via spiracles. We also assessed plu4093-2 transcription during the course of a natural infection; this is when the bacteria are delivered by Heterorhabditis bacteriophora nematodes. Transcript abundance in G. mellonella was higher than in M. sexta at two of the observed time points: 15 and 18 h. Expression of pirAB plu4093-2 reached above endogenous control levels at 22 h in G. mellonella but not in M. sexta. Overall, pirAB plu4093-2 transcripts were not as highly expressed in M. sexta as in G. mellonella, from 15 to 22 h. This is the first study to directly compare pirAB plu4093-2 toxin transcript production considering different portals of entry.

  20. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

    Science.gov (United States)

    Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H

    2010-02-01

    The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.

  1. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    Directory of Open Access Journals (Sweden)

    Amanda L Baryshyan

    Full Text Available Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment

  2. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

    Science.gov (United States)

    Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H

    1990-03-01

    Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.

  3. Moth hearing and sound communication

    DEFF Research Database (Denmark)

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by compar......Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced...... by comparable hearing physiology with best sensitivity in the bat echolocation range, 20–60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only...... the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by “sensory exploitation”. Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low...

  4. A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta.

    Science.gov (United States)

    Patch, Harland M; Velarde, Rodrigo A; Walden, Kimberly K O; Robertson, Hugh M

    2009-05-01

    In this study, we cloned and characterized three Manduca sexta odorant receptors (ORs). One receptor is a putative pheromone receptor expressed exclusively in a cell associated with male-specific type-I trichoid sensilla. We describe the results of real-time PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) experiments that show MsextaOR1 is expressed only in male antennae. In situ hybridization labels a single cell associated with type-1 trichoid sensilla, which houses two neurons that have been previously determined to respond to the major components of the pheromone blend. The second receptor, MsextaOR2, was discovered using degenerate primers designed to conserved motifs of a unique group ORs that share as much as 88% identity. Comparison of RT-PCR, qRT-PCR, and in situ hybridization results with those of ORs in the Drosophila melanogaster Or83b subfamily shows a strong sequence and expression pattern similarity. The third receptor, MsextaOR3, was found by 5'-end sequencing of a normalized and subtracted cDNA library from male M. sexta antennae. RT-PCR and qRT-PCR show that this receptor is expressed only in male and female antennae. These are the first ORs, including a putative pheromone receptor, to be described from M. sexta.

  5. Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference

    Directory of Open Access Journals (Sweden)

    Howlett Natalie

    2012-05-01

    Full Text Available Abstract Background Insects detect environmental chemicals via a large and rapidly evolving family of chemosensory receptor proteins. Although our understanding of the molecular genetic basis for Drosophila chemoreception has increased enormously in the last decade, similar understanding in other insects remains limited. The tobacco hornworm, Manduca sexta, has long been an important model for insect chemosensation, particularly from ecological, behavioral, and physiological standpoints. It is also a major agricultural pest on solanaceous crops. However, little sequence information and lack of genetic tools has prevented molecular genetic analysis in this species. The ability to connect molecular genetic mechanisms, including potential lineage-specific changes in chemosensory genes, to ecologically relevant behaviors and specializations in M. sexta would be greatly beneficial. Results Here, we sequenced transcriptomes from adult and larval chemosensory tissues and identified chemosensory genes based on sequence homology. We also used dsRNA feeding as a method to induce RNA interference in larval chemosensory tissues. Conclusions We report identification of new chemosensory receptor genes including 17 novel odorant receptors and one novel gustatory receptor. Further, we demonstrate that systemic RNA interference can be used in larval olfactory neurons to reduce expression of chemosensory receptor transcripts. Together, our results further the development of M. sexta as a model for functional analysis of insect chemosensation.

  6. Siberian Moth: Potential New Pest

    Science.gov (United States)

    Yuri Baranchikov; Michael Montgomery; Daniel Kucera

    1997-01-01

    The Siberian moth, Dendrolimus superans Butler (Family Lasiocampidae), is the most destructive defoliator of conifer forests in Northern Asia. Outbreaks defoliate millions of acres and occur at intervals of 8 to 11 years. The larvae feed on most conifers in the pine family, but outbreaks occur in fir, spruce, Siberian pine, and larch forests. The...

  7. The ontogeny of sexual size dimorphism of a moth: when do males and females grow apart?

    Directory of Open Access Journals (Sweden)

    R Craig Stillwell

    Full Text Available Sexual dimorphism in body size (sexual size dimorphism is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high. We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults.

  8. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  10. Climate constraints for siberian moth distribution in Europe

    Science.gov (United States)

    Yuri Baranchikov; Nadezda Tschebakova; Elena Parfenova; Natalia. Kirichenko

    2010-01-01

    A simplistic bioclimatic model of the Siberian moth Dendrolimus sibiricus Tschtvrk. (Lepidoptera: Lasiocampidae) is based on the moth's basic biological requirements, expressed through summer thermal conditions...

  11. Human innate lymphoid cells

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Spits, Hergen

    2014-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of

  12. Molecular cloning of the prothoracicotropic hormone from the tobacco hornworm, Manduca sexta

    Czech Academy of Sciences Publication Activity Database

    Shionoya, M.; Matsubayashi, H.; Asahina, Masako; Kuniyoshi, H.; Nagata, S.; Riddiford, L. M.; Kataoka, H.

    2003-01-01

    Roč. 33, č. 8 (2003), s. 795-801 ISSN 0965-1748 Grant - others:National Science Foundation(US) IBN9005202; National Science Foundation(US) IBN9514187; JP(CZ) Ministry of Education; GA-(CZ) Science; Sports and Culture of Japan(CZ) Grant-in-Aid for Scientific Research on Priority Areas08276101 Institutional research plan: CEZ:AV0Z6022909 Keywords : prothoracicotropic hormone * PTTH * Manduca sexta Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.358, year: 2003

  13. JST Thesaurus Headwords and Synonyms: Manduca sexta [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Manduca sexta 名詞 一般 * * * * Mandu...ca sexta Manduca sexta エムエイエヌディーユーシーエイ エスイーエックスティーエイ Thesaurus2015 200906002541687067 C LS05 UNKNOWN_2 Manduca sexta

  14. Sampling low-density gypsy moth populations

    Science.gov (United States)

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  15. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  16. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Science.gov (United States)

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  17. The role of low levels of juvenile hormone Esterase in the metamorphosis of Manduca sexta

    Directory of Open Access Journals (Sweden)

    M.H. Browder

    2001-10-01

    Full Text Available The activity of juvenile hormone esterase (JHE in feeding fifth instar larvae of Manduca sexta increases gradually with larval weight and rises to a peak after larvae pass the critical weight when juvenile hormone secretion ceases. Starvation of larvae of Manduca sexta (L. that had exceeded the critical weight inhibited peak levels of JHE, but did not delay entry into the wandering stage when larvae leave the plant in search of a pupation site. This suggests that peak levels of JHE may not be essential for the normal timing of metamorphosis. Starved larvae pupated normally, indicating the peak of JHE was not necessary for a morphologically normal pupation. Treatments of larvae with the selective JHE inhibitor O-ethyl-S-phenyl phosphoramidothiolate (EPPAT that began immediately after larvae achieved the critical weight (6.0 to 6.5 grams for our strain of Manduca delayed entry into the wandering stage. By contrast, EPPAT treatment of larvae at weights above 8.0g had no effect on the subsequent timing of the onset of wandering. Therefore, although the normal timing of the onset of wandering does not require peak levels of JHE, it requires low to moderate levels of JHE to be present until larvae reach a weight of about 8.0g.

  18. Structure and expression of sulfatase and sulfatase modifying factor genes in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Ma, Xiao-Li; He, Wei-Yi; Chen, Wei; Xu, Xue-Jiao; Qi, Wei-Ping; Zou, Ming-Min; You, Yan-Chun; Baxter, Simon W; Wang, Ping; You, Min-Sheng

    2017-06-01

    The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  19. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Human innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Spits, Hergen

    2016-01-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune

  1. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  2. Sex stimulant and attractant in the Indian meal moth and in the almond moth.

    Science.gov (United States)

    Brady, U E; Tumlinson, J H; Brownlee, R G; Silverstein, R M

    1971-02-26

    cis-9, trans-12-Tetradecadien-1-yl acetate was isolated from the female Indian meal moth, Plodia interpunctella (Hübner), and the female almond moth, Cadra cautella (Walker). It is the major if not the sole component of the sex stimulatory and attractant pheromone of female Plodia. It is present in the pheromone of the female Cadra along with at least one synergist.

  3. Life history attributes of Indian meal moth (Lepidoptera: Pyralidae) and Angoumois grain moth (Lepidoptera: Gelechiidae) reared on transgenic corn kernels.

    Science.gov (United States)

    Sedlacek, J D; Komaravalli, S R; Hanley, A M; Price, B D; Davis, P M

    2001-04-01

    The Indian meal moth, Plodia interpunctella (Hübner), and Angoumois grain moth, Sitotroga cerealella (Olivier), are two globally distributed stored-grain pests. Laboratory experiments were conducted to examine the impact that corn (Zea mays L.) kernels (i.e., grain) of some Bacillus thuringiensis Berliner (Bt) corn hybrids containing CrylAb Bt delta-endotoxin have on life history attributes of Indian meal moth and Angoumois grain moth. Stored grain is at risk to damage from Indian meal moth and Angoumois grain moth; therefore, Bt corn may provide a means of protecting this commodity from damage. Thus, the objective of this research was to quantify the effects of transgenic corn seed containing CrylAb delta-endotoxin on Indian meal moth and Angoumois grain moth survival, fecundity, and duration of development. Experiments with Bt grain, non-Bt isolines, and non-Bt grain were conducted in environmental chambers at 27 +/- 1 degrees C and > or = 60% RH in continuous dark. Fifty eggs were placed in ventilated pint jars containing 170 g of cracked or whole corn for the Indian meal moth and Angoumois grain moth, respectively. Emergence and fecundity were observed for 5 wk. Emergence and fecundity of Indian meal moth and emergence of Angoumois grain moth were significantly lower for individuals reared on P33V08 and N6800Bt, MON 810 and Bt-11 transformed hybrids, respectively, than on their non-Bt transformed isolines. Longer developmental times were observed for Indian meal moth reared on P33V08 and N6800Bt than their non-Bt-transformed isolines. These results indicate that MON 810 and Bt-11 CrylAb delta-endotoxin-containing kernels reduce laboratory populations of Indian meal moth and Angoumois grain moth. Thus, storing Bt-transformed grain is a management tactic that warrants bin scale testing and may effectively reduce Indian meal moth and Angoumois grain moth populations in grain without application of synthetic chemicals or pesticides.

  4. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction.

    Science.gov (United States)

    van der Hoeven, Ransome; Betrabet, Geeta; Forst, Steven

    2008-09-01

    The tobacco hornworm, Manduca sexta, is a model lepidopteran insect used to study the pathogenic and mutualistic phases of entomopathogenic nematodes (EPNs) and their bacterial symbionts. While intestinal microbial communities could potentially compete with the EPN and its bacterial partner for nutrient resources of the insect, the microbial gut community had not been characterized previously. Here, we show that the midgut of M. sexta raised on an artificial diet contained mostly Gram-positive cocci and coryneforms including Staphylococcus, Pediococcus, Micrococcus and Corynebacterium. Major perturbation in the gut community was observed on addition of antibiotics to the diet. Paenibacillus and several Proteobacteria such as Methylobacterium, Sphingomonas and Acinetobacter were primary genera identified under these conditions. Furthermore, the reproduction of the nematode Steinernema carpocapsae was less efficient, and the level of nematode colonization by its symbiont Xenorhabdus nematophila reduced, in insects reared on a diet containing antibiotics. The effect of antibiotics and perturbation of gut microbiota on nematode reproduction is discussed.

  5. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping

    Czech Academy of Sciences Publication Activity Database

    Yasukochi, Y.; Tanaka-Okuyama, M.; Shibata, F.; Yoshido, A.; Marec, František; Wu, Ch.; Zhang, H.; Goldsmith, M. R.; Sahara, K.

    2009-01-01

    Roč. 4, č. 10 (2009), e7465 E-ISSN 1932-6203 R&D Projects: GA ČR GA206/06/1860; GA AV ČR IAA600960925 Grant - others:Japan Society for the Promotion of Science(JP) 18380037; National Science Foundation(US) IBN020838 Institutional research plan: CEZ:AV0Z50070508 Keywords : Manduca sexta Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.351, year: 2009

  6. Sex Pheromone of the Almond Moth and the Indian Meal Moth: cis-9, trans-12-Tetradecadienyl Acetate.

    Science.gov (United States)

    Kuwahara, Y; Kitamura, C; Takashi, S; Hara, H; Ishii, S; Fukami, H

    1971-02-26

    Female moths of different species but belonging to the same subfamily produce an identical compound as their sex pheromone. The sex pheromone of the almond moth, Cadra cautella (Walker), and the Indian meal moth, Plodia interpunctella (Hübner), has been isolated and identified as cis-9, trans-12-tetradecadienyl acetate.

  7. Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11- and 10,12-desaturase activity

    Czech Academy of Sciences Publication Activity Database

    Matoušková, Petra; Pichová, Iva; Svatoš, Aleš

    2007-01-01

    Roč. 37, č. 6 (2007), s. 601-610 ISSN 0965-1748 R&D Projects: GA ČR(CZ) GD204/03/H066 Institutional research plan: CEZ:AV0Z40550506 Keywords : fatty acid * sex pheromone * desaturase * Lepidoptera Subject RIV: CE - Biochemistry Impact factor: 2.827, year: 2007

  8. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  9. Hearing diversity in moths confronting a neotropical bat assemblage.

    Science.gov (United States)

    Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C

    2017-09-01

    The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.

  10. Hearing in hooktip moths (Drepanidae: Lepidoptera)

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Yack, Jayne E; Spence, Andrew J

    2003-01-01

    This study presents anatomical and physiological evidence for a sense of hearing in hooktip moths (Drepanoidea). Two example species, Drepana arcuata and Watsonalla uncinula, were examined. The abdominal ears of drepanids are structurally unique compared to those of other Lepidoptera and other...... to the dorsal chamber. The ear is tuned to ultrasonic frequencies between 30 and 65 kHz, with a best threshold of around 52 dB SPL at 40 kHz, and no apparent difference between genders. Thus, drepanid hearing resembles that of other moths, indicating that the main function is bat detection. Two sensory cells...

  11. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  12. Nitric oxide affects short-term olfactory memory in the antennal lobe of Manduca sexta.

    Science.gov (United States)

    Gage, Stephanie L; Daly, Kevin C; Nighorn, Alan

    2013-09-01

    Nitric oxide (NO) is thought to play an important neuromodulatory role in olfaction. We are using the hawkmoth Manduca sexta to investigate the function of NO signaling in the antennal lobe (AL; the primary olfactory network in invertebrates). We have found previously that NO is present at baseline levels, dramatically increases in response to odor stimulation, and alters the electrophysiology of AL neurons. It is unclear, however, how these effects contribute to common features of olfactory systems such as olfactory learning and memory, odor detection and odor discrimination. In this study, we used chemical detection and a behavioral approach to further examine the function of NO in the AL. We found that basal levels of NO fluctuate with the daily light cycle, being higher during the nocturnal active period. NO also appears to be necessary for short-term olfactory memory. NO does not appear to affect odor detection, odor discrimination between dissimilar odorants, or learning acquisition. These findings suggest a modulatory role for NO in the timing of olfactory-guided behaviors.

  13. Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar?

    Directory of Open Access Journals (Sweden)

    Douglas J Blackiston

    2008-03-01

    Full Text Available Insects that undergo complete metamorphosis experience enormous changes in both morphology and lifestyle. The current study examines whether larval experience can persist through pupation into adulthood in Lepidoptera, and assesses two possible mechanisms that could underlie such behavior: exposure of emerging adults to chemicals from the larval environment, or associative learning transferred to adulthood via maintenance of intact synaptic connections. Fifth instar Manduca sexta caterpillars received an electrical shock associatively paired with a specific odor in order to create a conditioned odor aversion, and were assayed for learning in a Y choice apparatus as larvae and again as adult moths. We show that larvae learned to avoid the training odor, and that this aversion was still present in the adults. The adult aversion did not result from carryover of chemicals from the larval environment, as neither applying odorants to naïve pupae nor washing the pupae of trained caterpillars resulted in a change in behavior. In addition, we report that larvae trained at third instar still showed odor aversion after two molts, as fifth instars, but did not avoid the odor as adults, consistent with the idea that post-metamorphic recall involves regions of the brain that are not produced until later in larval development. The present study, the first to demonstrate conclusively that associative memory survives metamorphosis in Lepidoptera, provokes intriguing new questions about the organization and persistence of the central nervous system during metamorphosis. Our results have both ecological and evolutionary implications, as retention of memory through metamorphosis could influence host choice by polyphagous insects, shape habitat selection, and lead to eventual sympatric speciation.

  14. Electroantennogram responses of the potato tuber moth ...

    Indian Academy of Sciences (India)

    PRAKASH

    lay eggs in soil cracks and on exposed tubers (Radcliffe ... Compounds belonging to the fatty acid derivatives class appear to be important for an oligophagous pest such as the potato tuber moth and the findings are discussed in relation to host plant selection in ..... specific adaptation of the set of olfactory receptors on the.

  15. Reed Watkins: A Passion for Plume Moths

    Science.gov (United States)

    Reed Watkins has curated the nationl Pterophordiae or plume moth collection at the National Museum of Natural History, Smithsonian Institution, for the past 13 years. He has decreased the number of specimens of unsorted and unidentified material and has expanded the collection from 3 to 6 cabinets....

  16. A monitoring system for gypsy moth management

    Science.gov (United States)

    F. William Ravlin; S. J. Fleischer; M. R. Carter; E. A. Roberts; M. L. McManus

    1991-01-01

    Within the last ten years considerable research has been directed toward the development of a gypsy moth monitoring system for project planning at a regional level and for making control decisions at a local level. Pheromones and pheromone-baited traps have been developed and widely used and several egg mass sampling techniques have also been developed. Recently these...

  17. Modeling winter moth Operophtera brumata egg phenology

    NARCIS (Netherlands)

    Salis, Lucia; Lof, Marjolein; Asch, van Margriet; Visser, Marcel E.

    2016-01-01

    Understanding the relationship between an insect's developmental rate and temperature is crucial to forecast insect phenology under climate change. In the winter moth Operophtera brumata timing of egg-hatching has severe fitness consequences on growth and reproduction as egg-hatching has to match

  18. Artificial night lighting inhibits feeding in moths

    NARCIS (Netherlands)

    Langevelde, Van Frank; Grunsven, Van Roy H.A.; Veenendaal, Elmar M.; Fijen, Thijs P.M.

    2017-01-01

    One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand

  19. ID’ing Innate and Innate-like Lymphoid Cells

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  20. ID'ing innate and innate-like lymphoid cells.

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  2. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication.

    Science.gov (United States)

    Asser-Kaiser, Sabine; Radtke, Pit; El-Salamouny, Said; Winstanley, Doreen; Jehle, Johannes A

    2011-02-20

    An up to 10,000-fold resistance against the biocontrol agent Cydia pomonella granulovirus (CpGV) was observed in field populations of codling moth, C. pomonella, in Europe. Following different experimental approaches, a modified peritrophic membrane, a modified midgut receptor, or a change of the innate immune response could be excluded as possible resistance mechanisms. When CpGV replication was traced by quantitative PCR in different tissues of susceptible and resistant insects after oral and intra-hemocoelic infection, no virus replication could be detected in any of the tissues of resistant insects, suggesting a systemic block prior to viral DNA replication. This conclusion was corroborated by fluorescence microscopy using a modified CpGV (bacCpGV(hsp-eGFP)) carrying enhanced green fluorescent gene (eGFP), which showed that infection in resistant insects did not spread. In conclusion, the different lines of evidence indicate that CpGV can enter but not replicate in the cells of resistant codling moth larvae. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Why Innate Lymphoid Cells?

    Science.gov (United States)

    Kotas, Maya E; Locksley, Richard M

    2018-06-19

    Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4 + T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Innate lymphoid cells and asthma.

    Science.gov (United States)

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. Modeling seasonal migration of fall armyworm moths

    Science.gov (United States)

    Westbrook, J. K.; Nagoshi, R. N.; Meagher, R. L.; Fleischer, S. J.; Jairam, S.

    2016-02-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature but must migrate northward each spring if it is to re-infest cropping areas in temperate regions. The northward limit of the winter-breeding region for North America extends to southern regions of Texas and Florida, but infestations are regularly reported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have characterized migratory pathways from these winter-breeding regions, but knowledge is lacking on the atmosphere's role in influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding source areas. Model simulations identified regions of dominant immigration from the Florida and Texas source areas and overlapping immigrant populations in the Alabama-Georgia and Pennsylvania-Mid-Atlantic regions. This simulated migratory pattern corroborates a previous migratory map based on the distribution of fall armyworm haplotype profiles. We found a significant regression between the simulated first week of moth immigration and first week of moth capture (for locations which captured ≥10 moths), which on average indicated that the model simulated first immigration 2 weeks before first captures in pheromone traps. The results contribute to knowledge of fall armyworm population ecology on a continental scale and will aid in the prediction and interpretation of inter-annual variability of insect migration patterns including those in response to climatic change and adoption rates of transgenic cultivars.

  6. Tip moth parasitoids and pesticides: Are they compatible?

    Science.gov (United States)

    Kenneth W. McCravy; Mark J. Dalusky; C. Wayne Berisford

    1999-01-01

    Effects of herbicide and insecticide applications on parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) were examined in 2-yr-old loblolly pine (Pinus taeda L.) plantations in Georgia. Total parasitism rates varied significantly among tip moth generations, but there were no differences in parasitism rates between herbicide-treated and untreated...

  7. Douglas-fir tussock moth: an annotated bibliography.

    Science.gov (United States)

    Robert W. Campbell; Lorna C. Youngs

    1978-01-01

    This annotated bibliography includes references to 338 papers. Each deals in some way with either the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), or a related species. Specifically, 210 publications and 82 unpublished documents make some reference, at least, to the Douglas-fir tussock moth; 55 are concerned with other species in...

  8. What causes the patterns of gypsy moth defoliation?

    Science.gov (United States)

    Clive G. Jones

    1991-01-01

    Gypsy moth defoliation is typically observed to occur on xeric ridge tops before more mesic, lowland forest, in oak-dominated habitats in the Northeast. In subsequent years defoliation may also occur in mesic forests. What causes this pattern of defoliation? Differences in the degree of defoliation may be due to differences in the density of gypsy moth populations in...

  9. Analysis of spatial density dependence in gypsy moth mortality

    Science.gov (United States)

    Andrew Liebhold; Joseph S. Elkinton

    1991-01-01

    The gypsy moth is perhaps the most widely studied forest insect in the world and much of this research has focused on various aspects of population dynamics. But despite this voluminous amount of research we still lack a good understanding of which, if any, natural enemy species regulate gypsy moth populations. The classical approach to analyzing insect population...

  10. RNA Interference in Moths: Mechanisms, Applications, and Progress

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-10-01

    Full Text Available The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi. Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.

  11. The Homeowner and the Gypsy Moth: Guidelines for Control

    Science.gov (United States)

    Michael L. McManus; David R. Houston; William E. Wallner

    1979-01-01

    The gypsy moth is the most important defoliating insect of hardwood trees in the Eastern United States (fig. 1). Since the turn of the century, millions of dollars have been spent in efforts to control or eliminate gypsy moth populations and to retard natural and artificial spread. In the early decades of this century, outbreaks occurred only in New England; today...

  12. Allee effects and pulsed invasion by the gypsy moth

    Science.gov (United States)

    Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad

    2006-01-01

    Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...

  13. Moth tails divert bat attack: evolution of acoustic deflection.

    Science.gov (United States)

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  14. Innate ideas in Islamic philosophy

    Directory of Open Access Journals (Sweden)

    Halilović Tehran

    2017-01-01

    Full Text Available The human soul is the subject of debates in numerous scientific disciplines. Philosophical considerations encompass a special dimension of the human soul that is related to ontological truths. Among different philosophical questions raised regarding the human soul, the issue of innate ideas particularly stands out. Well-known points of disagreement between Plato and Aristotle regarding this question are usually focused on whether a person possesses knowledge and thoughts from their creation, i.e. birth, or they acquire them through time and experience. With the appearance of Cartesian scepticism and following the solutions Descartes offered for the problem of certain knowledge, the issue of innate ideas has remained the focal question for many prominent philosophers. In the Islamic philosophy, the rational explanation of the nature of innate ideas originates from the more comprehensive theory of the human soul and it states that a person, according to their nature, possesses already existent cognitive abilities they were born with. Innate cognitive abilities discussed in the Islamic philosophy do not refer just to theoretical, but to practical knowledge, as well. Therefore, the analysis of innate ideas in the works of Muslim philosophers is connected to a larger number of scientific disciplines than when it comes to most Western philosophers. The difference between the practical and theoretic intellect will serve as a cognitive basis for defining another aspect of innate ideas. The products of a practical intellect, the human will and his actions, are personal and particular and, therefore, can be connected to the everyday life of a person. Owing to the general presence of the practical intellect in all life spheres, the influence of innate ideas, which are determined in a human being, is recognizable in all most detailed moments of their life.

  15. Response of Adult Lymantriid Moths to Illumination Devices in the Russian Far East

    Science.gov (United States)

    William E. Wallner; Lee M. Humble; Robert E. Levin; Yuri N. Baranchikov; Ring T. Carde; Ring T. Carde

    1995-01-01

    In field studies in the Russian Far East, five types of illuminating devices were evaluated for attracting adult gypsy moth, Lymantria dispar (L.), pink gypsy moth, L. mathura Moore, and nun moth, L. monacha (L.). Our objective was to determine if light from commercial lamps suited to out-of-doors floodlighting could be modified to reduce their attractiveness to moths...

  16. The Gypsy Moth Event Monitor for FVS: a tool for forest and pest managers

    Science.gov (United States)

    Kurt W. Gottschalk; Anthony W. Courter

    2007-01-01

    The Gypsy Moth Event Monitor is a program that simulates the effects of gypsy moth, Lymantria dispar (L.), within the confines of the Forest Vegetation Simulator (FVS). Individual stands are evaluated with a susceptibility index system to determine the vulnerability of the stand to the effects of gypsy moth. A gypsy moth outbreak is scheduled in the...

  17. Moths are not silent, but whisper ultrasonic courtship songs

    DEFF Research Database (Denmark)

    Nakano, R; Takanashi, T; Fujii, T

    2009-01-01

    ) were recently shown to whisper extremely low-intensity ultrasonic courtship songs close to females. Since low sound levels will prevent eavesdropping by predators, parasites and conspecific rivals, we predicted low intensity ultrasound communication to be widespread among moths. Here we tested 13...... species of moths including members of the Noctuidae, Arctiidae, Geometridae and Crambidae. Males of nine species, 70%, produced broadband ultrasound close to females. Peak frequencies ranged from 38 to above 100 kHz. All sounds were of low intensity, 43-76 dB SPL at 1 cm [64+/-10 dB peSPL (mean +/- s......Ultrasonic hearing is widespread among moths, but very few moth species have been reported to produce ultrasounds for sexual communication. In those that do, the signals are intense and thus well matched for long distance communication. By contrast, males of the Asian corn borer moth (Crambidae...

  18. Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Williamson, M; Lenz, C; Winther, A M

    2001-01-01

    neurons of the brain and abdominal ganglia and in endocrine cells of the midgut. This is the first publication on the structure of a C-type allatostatin from insects other than moths and the first report on the presence of all three types of allatostatins in a representative of the insect order Diptera...

  19. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  20. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  1. Moth sex pheromone receptors and deceitful parapheromones.

    Directory of Open Access Journals (Sweden)

    Pingxi Xu

    Full Text Available The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this "lock-and-key" tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs. Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z-hexadecadienal (Z11Z13-16Ald, and its formate analog, (9Z,11Z-tetradecen-1-yl formate (Z9Z11-14OFor. We cloned an odorant receptor co-receptor (Orco and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1 was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13 showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.

  2. Opinion: Interactions of innate and adaptive lymphocytes

    Science.gov (United States)

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  3. Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in castniid moths: a Paysandisia archon model.

    Science.gov (United States)

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel

    2012-01-01

    In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

  4. Artificial light at night inhibits mating in a Geometrid moth

    NARCIS (Netherlands)

    van Geffen, Koert G.; van Eck, Emiel; de Boer, Rens A.; van Grunsven, Roy H.A.; Salis, Lucia; Berendse, Frank; Veenendaal, Elmar M.

    2015-01-01

    * Levels of artificial night lighting are increasing rapidly worldwide, subjecting nocturnal organisms to a major change in their environment. Many moth species are strongly attracted to sources of artificial night lighting, with potentially severe, yet poorly studied, consequences for development,

  5. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  6. Occurrence of Parthenogenesis in Potato Tuber Moth

    Science.gov (United States)

    Liu, Yan; Hu, Chun-Hua; Wang, Chun-Ya; Xiong, Yan; Li, Zong-Kai; Xiao, Chun

    2018-01-01

    Abstract Parthenogenesis, a natural form of asexual reproduction produced from unfertilized eggs, occurs in many insects in Hemiptera and Hymenoptera, but very rarely in Lepidoptera. The current study aimed to test the larval density dependent occurrence of parthenogenesis in potato tuber moth, Phthorimaea operculella (Zeller; Lepidoptera: Gelechiidae) under laboratory conditions. More than 10% of females out of 25 tested females that developed from the high larval density treatment at 45 larvae per tuber were capable to reproduce asexually. Both male and female offspring were produced parthenogenetically. The sexually reproductive offspring of a laboratory parthenogenetic population had a lower egg hatch rate, shorter larval stage, and shorter male life span when compared with the non-parthenogenetic population. This suggests that the sexually reproductive offspring of parthenogenetic population have a decreased overall fitness compared to the sexually reproductive offspring of non-parthenogenetic population.

  7. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  8. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution

    Directory of Open Access Journals (Sweden)

    Schachtner Joachim

    2008-12-01

    Full Text Available Abstract Background Toxin complex (Tc proteins termed TcaABC, TcdAB, and TccABC with insecticidal activity are present in a variety of bacteria including the yersiniae. Results The tc gene sequences of thirteen Yersinia strains were compared, revealing a high degree of gene order conservation, but also remarkable differences with respect to pseudogenes, sequence variability and gene duplications. Outside the tc pathogenicity island (tc-PAIYe of Y. enterocolitica strain W22703, a pseudogene (tccC2'/3' encoding proteins with homology to TccC and similarity to tyrosine phosphatases at its C-terminus was identified. PCR analysis revealed the presence of the tc-PAIYe and of tccC2'/3'-homologues in all biotype 2–5 strains tested, and their absence in most representatives of biotypes 1A and 1B. Phylogenetic analysis of 39 TccC sequences indicates the presence of the tc-PAIYe in an ancestor of Yersinia. Oral uptake experiments with Manduca sexta revealed a higher larvae lethality of Yersinia strains harbouring the tc-PAIYe in comparison to strains lacking this island. Following subcutaneous infection of Galleria mellonella larvae with five non-human pathogenic Yersinia spp. and four Y. enterocolitica strains, we observed a remarkable variability of their insecticidal activity ranging from 20% (Y. kristensenii to 90% (Y. enterocolitica strain 2594 dead larvae after five days. Strain W22703 and its tcaA deletion mutant did not exhibit a significantly different toxicity towards G. mellonella. These data confirm a role of TcaA upon oral uptake only, and suggest the presence of further insecticidal determinants in Yersinia strains formerly unknown to kill insects. Conclusion This study investigated the tc gene distribution among yersiniae and the phylogenetic relationship between TccC proteins, thus contributing novel aspects to the current discussion about the evolution of insecticidal toxins in the genus Yersinia. The toxic potential of several Yersinia

  9. Proceedings, U. S. Department of Agriculture interagency gypsy moth research review 1990

    Science.gov (United States)

    Kurt W. Gottschalk; Mark J. Twery; Shirley I. Smith; [Editors

    1991-01-01

    Eight invited papers and 68 abstracts of volunteer presentations on gypsy moth biology, ecology, impacts, and management presented at the U. S. Department of Agriculture Interagency Gypsy Moth Research Review.

  10. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    Science.gov (United States)

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  11. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  12. Anti-bat tiger moth sounds: Form and function

    Directory of Open Access Journals (Sweden)

    Aaron J. CORCORAN, William E. CONNER, Jesse R. BARBER

    2010-06-01

    Full Text Available The night sky is the venue of an ancient acoustic battle between echolocating bats and their insect prey. Many tiger moths (Lepidoptera: Arctiidae answer the attack calls of bats with a barrage of high frequency clicks. Some moth species use these clicks for acoustic aposematism and mimicry, and others for sonar jamming, however, most of the work on these defensive functions has been done on individual moth species. We here analyze the diversity of structure in tiger moth sounds from 26 species collected at three locations in North and South America. A principal components analysis of the anti-bat tiger moth sounds reveals that they vary markedly along three axes: (1 frequency, (2 duty cycle (sound production per unit time and frequency modulation, and (3 modulation cycle (clicks produced during flexion and relaxation of the sound producing tymbal structure. Tiger moth species appear to cluster into two distinct groups: one with low duty cycle and few clicks per modulation cycle that supports an acoustic aposematism function, and a second with high duty cycle and many clicks per modulation cycle that is consistent with a sonar jamming function. This is the first evidence from a community-level analysis to support multiple functions for tiger moth sounds. We also provide evidence supporting an evolutionary history for the development of these strategies. Furthermore, cross-correlation and spectrogram correlation measurements failed to support a “phantom echo” mechanism underlying sonar jamming, and instead point towards echo interference [Current Zoology 56 (3: 358–369, 2010].

  13. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  14. Innate Immunity and Breast Milk.

    Science.gov (United States)

    Cacho, Nicole Theresa; Lawrence, Robert M

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.

  15. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  16. Innate lymphoid cells and the skin

    OpenAIRE

    Salimi, Maryam; Ogg, Graham

    2014-01-01

    Innate lymphoid cells are an emerging family of effector cells that contribute to lymphoid organogenesis, metabolism, tissue remodelling and protection against infections. They maintain homeostatic immunity at barrier surfaces such as lung, skin and gut (Nature 464:1367?1371, 2010, Nat Rev Immunol 13: 145?149, 2013). Several human and mouse studies suggest a role for innate lymphoid cells in inflammatory skin conditions including atopic eczema and psoriasis. Here we review the innate lymphoid...

  17. Multi-year evaluation of mating disruption treatments against gypsy moth

    Science.gov (United States)

    Patrick C. Tobin; Kevin W. Thorpe; Laura M. Blackburn

    2007-01-01

    Mating disruption is the use of synthetic pheromone flakes that are aerially applied to foliage with the goal of interfering with male gypsy moths? ability to locate females and mate. Mating disruption is the primary tactic against gypsy moth used in the Gypsy Moth Slow-the-Spread Project (STS) [Tobin et al. 2004. Amer. Entomol. 50:200].

  18. Gypsy moth role in forest ecosystems: the good, the bad, and the indifferent

    Science.gov (United States)

    Rose-Marie Muzika; Kurt W. Gottschalk

    1995-01-01

    Despite a century of attempts to control populations of the gypsy moth, it remains one of the most destructive forest pests introduced to North America. Research has yielded valuable, albeit sometimes conflicting information about the effects of gypsy moth on forests. Anecdotal accounts and scientific data indicate that impacts of gypsy moth defoliation can range from...

  19. Development of restriction enzyme analyses to distinguish winter moth from bruce spanworm and hybrids between them

    Science.gov (United States)

    Marinko Sremac; Joseph Elkinton; Adam. Porter

    2011-01-01

    Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...

  20. Innate Immunity against Leishmania Infections

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  1. Shaping Innate Lymphoid Cell Diversity

    Directory of Open Access Journals (Sweden)

    Qiutong Huang

    2017-11-01

    Full Text Available Innate lymphoid cells (ILCs are a key cell type that are enriched at mucosal surfaces and within tissues. Our understanding of these cells is growing rapidly. Paradoxically, these cells play a role in maintaining tissue integrity but they also function as key drivers of allergy and inflammation. We present here the most recent understanding of how genomics has provided significant insight into how ILCs are generated and the enormous heterogeneity present within the canonical subsets. This has allowed the generation of a detailed blueprint for ILCs to become highly sensitive and adaptive sensors of environmental changes and therefore exquisitely equipped to protect immune surfaces.

  2. Stable isotope signatures reflect dietary diversity in European forest moths.

    Science.gov (United States)

    Adams, Marc-Oliver; Seifert, Carlo Lutz; Lehner, Lisamarie; Truxa, Christine; Wanek, Wolfgang; Fiedler, Konrad

    2016-01-01

    Information on larval diet of many holometabolous insects remains incomplete. Carbon (C) and nitrogen (N) stable isotope analysis in adult wing tissue can provide an efficient tool to infer such trophic relationships. The present study examines whether moth feeding guild affiliations taken from literature are reflected in isotopic signatures. Non-metric multidimensional scaling and permutational analysis of variance indicate that centroids of dietary groups differ significantly. In particular, species whose larvae feed on mosses or aquatic plants deviated from those that consumed vascular land plants. Moth δ(15)N signatures spanned a broader range, and were less dependent on species identity than δ(13)C values. Comparison between moth samples and ostensible food sources revealed heterogeneity in the lichenivorous guild, indicating only Lithosia quadra as an obligate lichen feeder. Among root-feeding Agrotis segetum, some specimens appear to have developed on crop plants in forest-adjacent farm land. Reed-feeding stem-borers may partially rely on intermediary trophic levels such as fungal or bacterial growth. Diagnostic partitioning of moth dietary guilds based on isotopic signatures alone could not be achieved, but hypotheses on trophic relationships based on often vague literature records could be assessed with high resolution. Hence, the approach is well suited for basic categorization of moths where diet is unknown or notoriously difficult to observe (i.e. Microlepidoptera, lichen-feeders).

  3. The evolution and expression of the moth visual opsin family.

    Directory of Open Access Journals (Sweden)

    Pengjun Xu

    Full Text Available Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R, blue (B and ultraviolet (UV opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.

  4. Studies on population dynamic of diamondback moth in the field

    International Nuclear Information System (INIS)

    Malakrong, A.; Limohpasmanee, W.; Keawchoung, P.; Kodcharint, P.

    1994-01-01

    The population dynamic of diamondback moth larva in the field was studied at Khao Khor High-land Agricultural Research Station during August-October 1993 and February-April 1994. The distribution patterns of diamondback moth larva was clumped when population was low and would change to be random when population was high. The maximun and minimum number of diamondback moth in the field were 71,203 and 2,732 larva/rai during March and September. Temperature, rainfall and age of cabbage were slightly relative with number of larva (r=-0.2891, p=0.30; r=-0.2816, p=0.31 and r=0.2931, p=0.29 respectively) but relative humidity has no effect on number of larva

  5. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  6. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.

    Science.gov (United States)

    Hinson, Brian T; Morgansen, Kristi A

    2015-10-06

    The wings of the hawkmoth Manduca sexta are lined with mechanoreceptors called campaniform sensilla that encode wing deformations. During flight, the wings deform in response to a variety of stimuli, including inertial-elastic loads due to the wing flapping motion, aerodynamic loads, and exogenous inertial loads transmitted by disturbances. Because the wings are actuated, flexible structures, the strain-sensitive campaniform sensilla are capable of detecting inertial rotations and accelerations, allowing the wings to serve not only as a primary actuator, but also as a gyroscopic sensor for flight control. We study the gyroscopic sensing of the hawkmoth wings from a control theoretic perspective. Through the development of a low-order model of flexible wing flapping dynamics, and the use of nonlinear observability analysis, we show that the rotational acceleration inherent in wing flapping enables the wings to serve as gyroscopic sensors. We compute a measure of sensor fitness as a function of sensor location and directional sensitivity by using the simulation-based empirical observability Gramian. Our results indicate that gyroscopic information is encoded primarily through shear strain due to wing twisting, where inertial rotations cause detectable changes in pronation and supination timing and magnitude. We solve an observability-based optimal sensor placement problem to find the optimal configuration of strain sensor locations and directional sensitivities for detecting inertial rotations. The optimal sensor configuration shows parallels to the campaniform sensilla found on hawkmoth wings, with clusters of sensors near the wing root and wing tip. The optimal spatial distribution of strain directional sensitivity provides a hypothesis for how heterogeneity of campaniform sensilla may be distributed.

  7. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  8. Invasion of Winter Moth in New England: Effects of Defoliation and Site Quality on Tree Mortality

    Directory of Open Access Journals (Sweden)

    Michael J. Simmons

    2014-10-01

    Full Text Available Widespread and prolonged defoliation by the European winter moth, Operophtera brumata L., has occurred in forests of eastern Massachusetts for more than a decade and populations of winter moth continue to invade new areas of New England. This study characterized the forests of eastern Massachusetts invaded by winter moth and related the duration of winter moth defoliation estimated using dendrochronology to observed levels of tree mortality and understory woody plant density. Quercus basal area mortality in mixed Quercus and mixed Quercus—Pinus strobus forests in eastern Massachusetts ranged from 0–30%; mortality of Quercus in these forests was related to site quality and the number of winter moth defoliation events. In addition, winter moth defoliation events lead to a subsequent increase in understory woody plant density. Our results indicate that winter moth defoliation has been an important disturbance in New England forests that may have lasting impacts.

  9. El control del cuerpo y el alma en la sexta parte de la insoportable levedad del ser: Kundera, Eriúgena y Agustín

    OpenAIRE

    Cuenca Almenar, Salvador

    2012-01-01

    Se analiza la relación entre un fragmento de la sexta parte de La insoportable levedad del ser de Milan Kundera y los dos textos que le sirven de fuente: el Peri physeon de Escoto Eriúgena y el De civitate Dei de Agustín de Hipona. Los tres fragmentos analizados en este artículo mantienen una relación de copresencia llamada “alusión” por Genette. Se defiende que el paso de Kundera no es plenamente comprensible sin la intelección de sus fuentes. El problema conceptual desarrollado por los tres...

  10. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta

    DEFF Research Database (Denmark)

    Rewitz, Kim; Rybczynski, Robert; Warren, James T.

    2006-01-01

    this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2...... in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation...

  11. Innate lymphoid cells in atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  12. Innate immune system and preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra ePerez-Sepulveda

    2014-05-01

    Full Text Available Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. PE has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1⁄Th2⁄Th17 and regulatory T (Treg cells paradigm and where dendritic cells could have a crucial role. Recently, some evidence has emerged supporting the idea that mesenchymal stem cells might be part of the feto-maternal tolerance environment. This review will discuss the involvement of the innate immune system in the establishment of a physiological environment that favors pregnancy and possible alterations related to the development of preeclampsia.

  13. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  14. Characterization and expression profiling of ATP-binding cassette transporter genes in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Qi, Weiping; Ma, Xiaoli; He, Weiyi; Chen, Wei; Zou, Mingmin; Gurr, Geoff M; Vasseur, Liette; You, Minsheng

    2016-09-27

    ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins. A total of 82 ABC genes were identified from our published P. xylostella genome, and grouped into eight subfamilies (ABCA-H) based on phylogenetic analysis. Genes of subfamilies ABCA, ABCC and ABCH were found to be expanded in P. xylostella compared with those in Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens. Phylogenetic analysis indicated that many of the ABC transporters in P. xylostella are orthologous to the well-studied ABC transporter genes in the seven other species. Transcriptome- and qRT-PCR-based analysis elucidated physiological effects of ABC gene expressions of P. xylostella which were developmental stage- and tissue-specific as well as being affected by whether or not the insects were from an insecticide-resistant strain. Two ABCC and one ABCA genes were preferentially expressed in midgut of the 4th-instar larvae of a susceptible strain (Fuzhou-S) suggesting their potential roles in metabolizing plant defensive chemicals. Most of the highly expressed genes in insecticide-resistant strains were also predominantly expressed in the tissues of Malpighian tubules and midgut. This is the most comprehensive study on identification, characterization and expression profiling of ABC transporter genes in P. xylostella to date. The diversified features and expression patterns of this gene family may be associated with

  15. Tree condition and mortality following defoliation by the gypsy moth

    Science.gov (United States)

    Robert W. Campbell; Harry T. Valentine; Harry T. Valentine

    1972-01-01

    Relationships between expected defoliation and the subsequent condition and mortality rate among the defoliated trees are almost always important factors in deciding if, when, and where to take control action against a defoliator such as the gypsy moth, Porthetria dispar (L. )

  16. Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts

    Science.gov (United States)

    John P. Burand; Anna Welch; Woojin Kim; Vince D' Amico; Joseph S. Elkinton

    2011-01-01

    The winter moth, Operophtera brumata, originally from Europe, has recently invaded eastern Massachusetts. This insect has caused widespread defoliation of many deciduous tree species and severely damaged a variety of crop plants in the infested area including apple, strawberry, and especially blueberry.

  17. Length Research Paper The effects of the pine processionary moth ...

    African Journals Online (AJOL)

    The pine processionary moth (PPM), causing significant damage on pine stands in Turkey, affects mainly crimean pine stands within the Ulus vicinity. To determine the damage, 20 sample plots of second site class crimean pine stands were measured; 10 of which were taken as the control sample and 10 of which were ...

  18. Coping with the gypsy moth on new frontiers of infestation

    Science.gov (United States)

    David A. Gansner; Owen W. Herrick; Garland N. Mason; Kurt W. Gottschalk

    1987-01-01

    Forest managers on new frontiers of infestation are searching for better ways to cope with the gypsy moth (Lymantria dispar). Presented herea are information and guidelines for remedial action to minimize future losses. Methods for assessing potential stand defoliation (susceptibility) and mortality (vulnerability), monitoring insect populations, and...

  19. Artificial light at night inhibits mating in a Geometrid moth

    NARCIS (Netherlands)

    Geffen, van K.G.; Eck, van E.; Boer, de R.; Grunsven, van R.H.A.; Salis, F.; Berendse, F.; Veenendaal, E.M.

    2015-01-01

    1.Levels of artificial night lighting are increasing rapidly worldwide, subjecting nocturnal organisms to a major change in their environment. Many moth species are strongly attracted to sources of artificial night lighting, with potentially severe, yet poorly studied, consequences for development,

  20. Interactions between microbial agents and gypsy moth parasites

    Science.gov (United States)

    Ronald M. Weseloh

    1985-01-01

    The parasite Cotesia melanoscelus attacks small gypsy moth larvae more successfully than large ones, and Bacillus thuringiensis retards the growth of caterpillars it does not kill. Together, both factors lead to higher parasitism by C. melanoscelus in areas sprayed with B. thuringiensis than...

  1. The small-scale spatial distribution of an invading moth

    DEFF Research Database (Denmark)

    Nash, David Richard; Agassiz, David J. L.; Godfray, H. C. J.

    1995-01-01

    We studied the spread of a small leaf-mining moth [Phyllonorycter leucographella (Zeller), Gracillariidae] after its accidental introduction into the British Isles. At large geographical scales, previous work had shown the spread to be well described by a travelling wave of constant velocity. Her...

  2. 78 FR 23740 - Gypsy Moth Program; Record of Decision

    Science.gov (United States)

    2013-04-22

    ... April 2013. Kevin Shea, Acting Administrator, Animal and Plant Health Inspection Service. [FR Doc. 2013... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2012-0113] Gypsy Moth Program; Record of Decision AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...

  3. selected strains of the diamondback moth, Plutella xylostella (L.)

    African Journals Online (AJOL)

    User

    464-8601, Japan. Present address: K. D. Ninsin, Animal Health and Food Safety Division, CSIR-Animal. Research Institute, Post Office Box AH 20, Achimota. Ghana. Email: kdninsin@hotmail.com. Abstract. Effective control of the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) has become critical ...

  4. Data from: Artificial night lighting inhibits feeding in moths

    NARCIS (Netherlands)

    Langevelde, van F.; Grunsven, van R.H.A.; Veenendaal, E.M.; Fijen, T.P.M.

    2017-01-01

    One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand

  5. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  6. Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA.

    Science.gov (United States)

    Wu, Ying; Du, Qiuyang; Qin, Haiwen; Shi, Juan; Wu, Zhiyi; Shao, Weidong

    2018-02-01

    The gypsy moth- Lymantria dispar (Linnaeus)-is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina ) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth ( L. dispar asiatic ), four pairs of specific primers for the nun moth ( L. monocha ), and three pairs of specific primers for the casuarina moth ( L. xylina ). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China.

  7. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  8. Sexual communication in day-flying Lepidoptera with special reference to castniids or 'butterfly-moths'

    OpenAIRE

    Sarto, Víctor; Quero, Carmen; Santa-Cruz, M.C.; Rosell Pellisé, Glòria; Guerrero Pérez, Ángel

    2016-01-01

    Butterflies and moths are subject to different evolutionary pressures that affect several aspects of their behaviour and physiology, particularly sexual communication. Butterflies are day-flying insects (excluding hedylids) whose partner-finding strategy is mainly based on visual cues and female butterflies having apparently lost the typical sex pheromone glands. Moths, in contrast, are mostly night-flyers and use female-released long-range pheromones for partner-finding. However, some moth f...

  9. Pheromone reception in moths: from molecules to behaviors.

    Science.gov (United States)

    Zhang, Jin; Walker, William B; Wang, Guirong

    2015-01-01

    Male moths detect and find their mates using species-specific sex pheromones emitted by conspecific females. Olfaction plays a vital role in this behavior. Since the first discovery of an insect sex pheromone from the silkmoth Bombyx mori, great efforts have been spent on understanding the sensing of the pheromones in vivo. Much progress has been made in elucidating the molecular mechanisms that mediate chemoreception in insects in the past few decades. In this review, we focus on pheromone reception and detection in moths, from the molecular to the behavioral level. We trace the information pathway from the capture of pheromone by male antennae, binding and transportation to olfactory receptor neurons, receptor activation, signal transduction, molecule inactivation, through brain processing and behavioral response. We highlight the impact of recent studies and also provide our insights into pheromone processing. © 2015 Elsevier Inc. All rights reserved.

  10. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  11. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    Directory of Open Access Journals (Sweden)

    Stephen L. Buchmann

    2011-12-01

    Full Text Available During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York’s Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale.

  12. Effects of Quinizarin and Five Synthesized Derivatives on Fifth Larval Instar Midgut Ecdysone 20-Monooxygenase Activity of the Tobacco Hornworm Manduca sexta

    Directory of Open Access Journals (Sweden)

    Christopher A. Drummond

    2014-01-01

    Full Text Available The plant allelochemical, quinizarin (1,4-dihydroxy-9,10-anthraquinone, and five anthraquinones that were synthesized from quinizarin, namely, 1,4-anthraquinone; 2-hydroxy-1,4-anthraquinone; 2-methoxy-1,4-anthraquinone; 9-hydroxy-1,4-anthraquinone; and 9-methoxy-1,4-anthraquinone, were assessed as to their effects on the essential, P450-dependent ecdysone 20-monooxygenase system of the insect model Manduca sexta (tobacco hornworm. This steroid hydroxylase converts the arthropod molting hormone, ecdysone, to the physiologically required 20-hydroxyecdysone form. M. sexta fifth larval instar midgut homogenates were incubated with increasing concentrations (10−8 to 10−3 M of each of the six anthraquinones followed by ecdysone 20-monooxygenase assessments using a radioenzymological assay. Four of the five anthraquinones exhibited I50’s of about 4×10-6 to 6×10-2 M. The most effective inhibitors were 2-methoxy-1,4-anthraquinone and 1,4-anthraquinone followed by 9-hydroxy-1,4 anthraquinone and 9-methoxy-1,4-anthraquinone. At lower concentrations the latter anthraquinone stimulated E20M activity. Quinizarin was less inhibitory and 2-hydroxy-1,4-anthraquinone was essentially without effect. Significantly, these studies make evident for the first time that anthraquinones can affect insect E20M activity, and thus insect endocrine regulation and development, and that a relationship between anthraquinone structure and effectiveness is apparent. These studies represent the first demonstrations of anthraquinones affecting any steroid hydroxylase system.

  13. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks.

    Directory of Open Access Journals (Sweden)

    Pallara Janardhanan Wills

    Full Text Available Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients' sera. We selected a cohort of patients (n = 155 with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6% for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala.

  14. The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community.

    Science.gov (United States)

    ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M; Holderied, Marc W; Surlykke, Annemarie

    2013-11-01

    Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than smaller moths. Larger moths also have lower A1 best thresholds, allowing them to detect bats at greater distances and possibly compensating for their increased conspicuousness. Interestingly, the sound frequency at the lowest threshold is lower in larger than in smaller moths, suggesting that the relationship between threshold and size might vary across frequencies used by different bat species. Here, we demonstrate that the relationships between threshold and size in moths were only significant at some frequencies, and these frequencies differed between three locations (UK, Canada and Denmark). The relationships were more likely to be significant at call frequencies used by proportionately more bat species in the moths' specific bat community, suggesting an association between the tuning of moth ears and the cues provided by sympatric predators. Additionally, we found that the best threshold and best frequency of the less sensitive A2 receptor are also related to size, and that these relationships hold when controlling for evolutionary relationships. The slopes of best threshold versus size differ, however, such that the difference in threshold between A1 and A2 is greater for larger than for smaller moths. The shorter time from A1 to A2 excitation in smaller than in larger moths could potentially compensate for shorter absolute detection distances in smaller moths.

  15. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

    Directory of Open Access Journals (Sweden)

    Chang-Ku Kang

    Full Text Available Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i whether a choice of resting orientation by moths depends on the properties of natural background, and ii what sensory cues moths use. We studied moths' behavior on natural (a tree log and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature. We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel to achieve crypticity in another sensory modality (visual. This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.

  16. Cryptically patterned moths perceive bark structure when choosing body orientations that match wing color pattern to the bark pattern.

    Science.gov (United States)

    Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G

    2013-01-01

    Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.

  17. Identification and characterization of a RAPD-PCR marker for distinguishing Asian and North American gypsy moths

    Science.gov (United States)

    K.J. Garner; J.M. Slavicek

    1996-01-01

    The recent introduction of the Asian gypsy moth (Lymantria dispar L.) into North America has necessitated the development of genetic markers to distinguish Asian moths from the established North American population, which originated in Europe. We used RAPD-PCR to identify a DNA length polymorphism that is diagnostic for the two moth strains. The...

  18. 40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...

  19. Hourly and seasonable variation in catch of winter moths and bruce spanworm in pheromone-baited traps

    Science.gov (United States)

    Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac

    2011-01-01

    Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....

  20. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Yi Feng

    Full Text Available The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions

  1. Fine structure of selected mouthpart sensory organs of gypsy moth larvae

    Science.gov (United States)

    Vonnie D.C. Shields

    2011-01-01

    Gypsy moth larvae, Lymantria dispar (L.), are major pest defoliators in most of the United States and destroy millions of acres of trees annually. They are highly polyphagous and display a wide host plant preference, feeding on the foliage of hundreds of plants, such as oak, maple, and sweet gum. Lepidopteran larvae, such as the gypsy moth, depend...

  2. Nantucket pine tip moth phenology and timing of insecticide spray applications in seven Southeastern States

    Science.gov (United States)

    Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford

    2000-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...

  3. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks

    Science.gov (United States)

    Joseph P. Spruce; Steven Sader; Robert E. Ryan; James Smoot; Philip Kuper; al. et.

    2011-01-01

    This paper discusses an assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data products for detecting forest defoliation from European gypsy moth (Lymantria dispar). This paper describes an effort to aid the United States Department of Agriculture (USDA) Forest Service in developing and assessing MODIS-based gypsy moth defoliation...

  4. Moth wing scales slightly increase the absorbance of bat echolocation calls.

    Directory of Open Access Journals (Sweden)

    Jinyao Zeng

    Full Text Available Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.

  5. Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis.

    Science.gov (United States)

    Jacobson, M; Redfern, R E; Jones, W A; Aldridge, M H

    1970-10-30

    Two sex pheromones have been isolated from the female southern armyworm moth, Prodenia eridania (Cramer), and identified as cis-9-tetradecen-1-ol acetate, identical with the sex pheromone of the fall armyworm moth, Spodoptera frugiperda (J. E. Smith), and cis-9,trans-12-tetradecadien-1-ol acetate.

  6. The effect of environmental conditions on viability of irradiated codling moth Cydia Pomonella (L.) adults

    International Nuclear Information System (INIS)

    Mohamad, F.; Mansour, M.

    2001-12-01

    Cooled (4 ± 2 Centigrade) codling moth, Cydia pomonella (L.) males exposed to dose of 350 Gy were released in apple orchards starting at 6:00 o'clock in the morning until 4:00 in the afternoon at 2 h. intervals. Moths were released in shade (under trees) or in the sun (between trees), the number of dead moths after 20 minutes of release were recorded, percentage mortality was calculated and compared with unirradiated controls. The effect of ambient temperature and relative humidity on moth survival and activity was evaluated by counting the number of caught males by pheromone traps. Results showed that percentage mortality increased with increase in temperature and decrease in relative humidity and reached to 82% at 30 Centigrade and 40% Rh., when irradiated moths were released under direct sun shine. However, when moths were released in the shade under the same conditions, survival rate was as high as 91%. Results also showed that percentage survival in irradiated males was less than in the control when moths were released under direct sunshine. Results of monitoring moth activity also showed that pheromone trap continued to catch males for up to 8 days which may suggests that released males lived under field conditions for no less than one week. (author)

  7. Interactions between nuclear polyhedrosis virus and Nosema sp. infecting gypsy moth

    Science.gov (United States)

    L. S. Bauer; M. McManus; J. Maddox

    1991-01-01

    Nuclear polyhedrosis virus (NPV) is the only entomopathogen that plays an important role in the natural regulation of North American gypsy moth populations. Recent European studies suggest that populations of gypsy moth in Eurasia are regulated primarily by the interactions between NPV and several species of microsporidia. Researchers have proposed that the...

  8. Gut content analysis of arthropod predators of codling moth in Washington apple orchards

    Science.gov (United States)

    More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...

  9. Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition

    NARCIS (Netherlands)

    Hagström, Å.K; Liénard, M.A.; Groot, A.T.; Hedenström, E; Löfstedt, C.

    2012-01-01

    Background: Sex pheromones are essential in moth mate communication. Information on pheromone biosynthetic genes and enzymes is needed to comprehend the mechanisms that contribute to specificity of pheromone signals. Most heliothine moths use sex pheromones with (Z)-11-hexadecenal as the major

  10. The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community

    DEFF Research Database (Denmark)

    Ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M

    2013-01-01

    Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than ...

  11. The Genome of Winter Moth (Operophtera brumata) Provides a Genomic Perspective on Sexual Dimorphism and Phenology

    NARCIS (Netherlands)

    Derks, Martijn F. L.; Smit, Sandra; Salis, Lucia; Schijlen, Elio; Bossers, Alex; Mateman, Christa; Pijl, Agata S.; de Ridder, Dick; Groenen, Martien A. M.; Visser, Marcel E.; Megens, Hendrik-Jan

    The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth

  12. Spread ability of diamondblack moth (Plutella xylotella L) steriled by irradiation

    International Nuclear Information System (INIS)

    Yang Rongxin; Fang Julian; Xia Darong; Chu Jiming; Feng Chunsheng

    1990-01-01

    The spread ability of the radiation steriled diamondblack moth (DBM) is reported. It shows that the 94.2% of DBM is spread in 40 m duration of 10 days and a few of moths are 120 m. It indicates that the spread of steriled DBM is definitely time limit, the spread area is withinca. 700 m 2 in the first three days

  13. The effects of the pine processionary moth on the increment of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... sycophanta L. (Coleoptera: Carabidae) used against the pine processionary moth (Thaumetopoea pityocampa Den. & Schiff.) (Lepidoptera: Thaumetopoeidae) in biological control. T. J. Zool. 30:181-185. Kanat M, Sivrikaya F (2005). Effect of the pine processionary moth on diameter increment of Calabrian ...

  14. Cost analysis and biological ramifications for implementing the gypsy moth Slow the Spread Program

    Science.gov (United States)

    Patrick C. Tobin

    2008-01-01

    The gypsy moth Slow the Spread Program aims to reduce the rate of gypsy moth, Lymantria dispar (L.), spread into new areas in the United States. The annual budget for this program has ranged from $10-13 million. Changes in funding levels can have important ramifications to the implementation of this program, and consequently affect the rate of gypsy...

  15. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success

    Science.gov (United States)

    Kevin W. Thorpe; Ksenia S. Tcheslavskaia; Patrick C. Tobin; Laura M. Blackburn; Donna S. Leonard; E. Anderson Roberts

    2007-01-01

    In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1-2 years after treatment to determine the effects of the treatment on suppression of...

  16. Preparing for the gypsy moth - design and analysis for stand management Dorr Run, Wayne National Forest

    Science.gov (United States)

    J. J. Colbert; Phil Perry; Bradley Onken

    1997-01-01

    As the advancing front of the gypsy moth continues its spread throughout Ohio, silviculturists on the Wayne National Forest are preparing themselves for potential gypsy moth outbreaks in the coming decade. Through a cooperative effort between the Northeastern Forest Experiment Station and Northeastern Area, Forest Health Protection, the Wayne National Forest, Ohio, is...

  17. Gypsy moth in the southeastern U.S.: Biology, ecology, and forest management strategies

    Science.gov (United States)

    Bruce W. ​Kauffman; Wayne K. Clatterbuck; Andrew M. Liebhold; David R. Coyle

    2017-01-01

    The European gypsy moth (Lymantria dispar L.) is a non-native insect that was accidentally introduced to North America in 1869 when it escaped cultivation by a French amateur entomologist living near Boston, MA. Despite early efforts to eradicate the species, it became established throughout eastern Massachusetts. Since then, the gypsy moth has...

  18. Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem

    Science.gov (United States)

    French, Steven P.; French, Marilynn G.; Knight, Richard R.

    1994-01-01

    The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.

  19. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern

    Directory of Open Access Journals (Sweden)

    Jourdain F.

    2012-05-01

    Full Text Available The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health.

  20. Effects of pedunculate oak tree vitality on gypsy moth preference and performance

    Directory of Open Access Journals (Sweden)

    Milanović Slobodan

    2014-01-01

    Full Text Available Gypsy moths and powdery mildew play a significant role in oak decline processes. However, information is lacking on the effects on the gypsy moth of impaired tree vitality caused by defoliation or parasite infection. We assessed how pedunculate oak leaves collected from vigorous, declining, and infected trees influenced gypsy moth preference and performance (growth and nutritional indices. We found a negative effect of powdery mildew-infected leaves on gypsy moth performance, while declining trees had positive effects on gypsy moth performance and preference. All examined parameters of larvae fed declining oak leaves were higher than those of larvae fed vigorous oak leaves. Increased growth on declining oak leaves was caused by both higher consumption and more efficient food utilization. The results of this research could help us to better understand multitrophic interactions in complex communities such as oak forests. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  1. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets...

  2. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  3. Innate lymphoid cells in inflammation and immunity

    NARCIS (Netherlands)

    McKenzie, Andrew N. J.; Spits, Hergen; Eberl, Gerard

    2014-01-01

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles

  4. Innate lymphoid cells in inflammatory bowel diseases

    NARCIS (Netherlands)

    Peters, C. P.; Mjösberg, J. M.; Bernink, J. H.; Spits, H.

    2016-01-01

    It is generally believed that inflammatory bowel diseases (IBD) are caused by an aberrant immune response to environmental triggers in genetically susceptible individuals. The exact contribution of the adaptive and innate immune system has not been elucidated. However, recent advances in treatments

  5. The biology of innate lymphoid cells

    NARCIS (Netherlands)

    Artis, David; Spits, Hergen

    2015-01-01

    The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to

  6. Transcriptional control of innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Bernink, Jochem; Peters, Charlotte; Spits, Hergen

    2012-01-01

    Cells that belong to the family of innate lymphoid cells (ILCs) not only form a first line of defense against invading microbes, but also play essential roles in tissue remodeling and immune pathology. Ror?t+ ILCs, producing the cytokines IL-22 and IL-17, include lymphoid tissue inducer (LTi) cells

  7. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  8. Is there an innate need for children

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    1974-01-01

    textabstractABSTRACT It is commonly assumed that we have an innate need for children, in particular, that women have a 'mother instinct'. This belief lives in the general public as well as among scientists. In this paper that theory is criticized on two grounds: Firstly, it is argued that the theory

  9. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  10. Innate immune signalling of the zebrafish embryo

    NARCIS (Netherlands)

    Stockhammer, Oliver W.

    2010-01-01

    In the last decade the study of the innate immune system has gained renewed scientific momentum as a result of the discovery of essential receptor families, such as the Toll-like receptor (TLR) family, that are required for pathogen recognition. These receptors detect specific molecular structures

  11. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.

    Science.gov (United States)

    Heitmueller, Miriam; Billion, André; Dobrindt, Ulrich; Vilcinskas, Andreas; Mukherjee, Krishnendu

    2017-10-01

    Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella , a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract. Copyright © 2017 American Society for Microbiology.

  12. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M; Baxter, Simon W; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-05-06

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity.

  13. Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features

    Czech Academy of Sciences Publication Activity Database

    Šíchová, Jindra; Nguyen, Petr; Dalíková, Martina; Marec, František

    2013-01-01

    Roč. 8, č. 5 (2013), e64520 E-ISSN 1932-6203 R&D Projects: GA ČR GA523/09/2106; GA AV ČR IAA600960925 Grant - others:GA JU(CZ) GAJU 059/2010/P; GA JU(CZ) GAJU137/2010/P; IAEA, Viennna(AT) 15838 Institutional support: RVO:60077344 Keywords : tortricid moths Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0064520

  14. Camouflage through an active choice of a resting spot and body orientation in moths.

    Science.gov (United States)

    Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G

    2012-09-01

    Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  15. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  16. Codling moth control by release of radiation-sterilized moths in a pome fruit orchard and observations of other pests

    International Nuclear Information System (INIS)

    Proverbs, M.D.; Newton, J.R.; Logan, D.M.; Brinton, F.E.

    1975-01-01

    Release of radiation-sterilized male and female Laspeyresia pomonella (L.) in a 40-ha pome fruit orchard from 1969-72 in the Similkameen Valley of British Columbia reduced the wild population of this pest to a very low level without causing serious problems in control of other apple and pear pests. Percent apples injured by codling moth larvae at harvest were 0.1 in 1968 (after 3 sprays of azinphosmethyl), and 0.05, 0.02, 0.007, and 0.001 from 1969-72

  17. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  18. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Isolation of Human Innate Lymphoid Cells.

    Science.gov (United States)

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  20. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  1. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  2. Neuromodulation of Innate Behaviors in Drosophila.

    Science.gov (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  3. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2013-10-01

    by the Regional Ministry of Education of Castilla-la Mancha, Spain, supported by the European Social Fund (ESF). We are thankful for the efforts...consistent with previous reports that aber rant activation of innate immune signals in MDS, including overcxpression of several TLRs (36) and loss...281: 1652- 1659. 14. Loiarro M, Set te C , Gallo G. Ciacc.i A, Fa nto N, et al. (2005) Peptide- media ted interference of T JR domain dimeri7.ation

  5. Unexpected plant odor responses in a moth pheromone system

    Directory of Open Access Journals (Sweden)

    Angéla eRouyar

    2015-05-01

    Full Text Available Male moths rely on olfactory cues to find females for reproduction. Males also use volatile plant compounds (VPCs to find food sources and might use host-plant odor cues to identify the habitat of calling females. Both the sex pheromone released by conspecific females and VPCs trigger well-described oriented flight behavior towards the odor source. Whereas detection and central processing of pheromones and VPCs have been thought for a long time to be highly separated from each other, recent studies have shown that interactions of both types of odors occur already early at the periphery of the olfactory pathway. Here we show that detection and early processing of VPCs and pheromone can overlap between the two sub-systems. Using complementary approaches, i.e. single-sensillum recording of olfactory receptor neurons, in vivo calcium imaging in the antennal lobe, intracellular recordings of neurons in the macroglomerular complex (MGC and flight tracking in a wind tunnel, we show that some plant odorants alone, such as heptanal, activate the pheromone-specific pathway in male Agrotis ipsilon at peripheral and central levels. To our knowledge, this is the first report of a plant odorant with no chemical similarity to the molecular structure of the pheromone, acting as a partial agonist of a moth sex pheromone.

  6. Phylogenomics provides strong evidence for relationships of butterflies and moths.

    Science.gov (United States)

    Kawahara, Akito Y; Breinholt, Jesse W

    2014-08-07

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly-moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    Science.gov (United States)

    Schesser, J H

    1976-10-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).

  8. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator

    Directory of Open Access Journals (Sweden)

    Eric Warrant

    2016-04-01

    Full Text Available The nocturnal Bogong moth (Agrotis infusa is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September, Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m. In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”. Towards the end of the summer (February and March, the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes

  9. Innate lymphoid cells and their stromal microenvironments.

    Science.gov (United States)

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  10. Epigenomic Views of Innate Lymphoid Cells.

    Science.gov (United States)

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.

  11. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  12. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  13. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  14. Low volume undiluted Btk application against heavy gypsy moth population densities in southern Corsica

    Science.gov (United States)

    Robert A. Fusco; Jean-Claude Martin

    2003-01-01

    Low volume undiluted applications of Bacillus thuringiensis are common and efficacious against coniferous forest pests such as pine processionary moth and spruce budworm, but have not been common practice against deciduous forest pests due to coverage issues.

  15. Effect of ionizing radiation on reducing the several inhibitors in codling moth Cydia pomonella (L.) medium

    International Nuclear Information System (INIS)

    Mohamad, F. A.

    2008-01-01

    The medium for Codling moth, Cydia pomonella (L) was sterilized using ionizing radiation (0, 5, 15 and 25 KGy) or heat (cooking for 40 minutes.). inhibitors were also added either on the top of the diet or by mixing it with the diet. The results showed that all Codling moth larvae in the ionizing radiation sterilized diet died before reaching the 4th larval instar. Results of using both radiation and cooking for sterilizing the diet gave variable results; those treated with 15 KGy gave significantly more moths with higher weight and more fecundity. The results also showed that increasing the amount of microbial inhibitors in diet negatively affected the number of produced moth and their biological characteristics. Consequently irradiation could be a mean for reducing the amount of chemical inhibitors added to the diet. (author)

  16. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    Science.gov (United States)

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  17. Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller

    Directory of Open Access Journals (Sweden)

    Tayoub Ghaleb

    2016-12-01

    Full Text Available Introduction: The potato tuber moth (PTM is the major economic pest of potato. Different approaches were tried to prevent and control this pest including natural pesticides and synthetic fumigants.

  18. Area-wide population suppression of codling moth

    International Nuclear Information System (INIS)

    Calkins, C.O.; Knight, A.L.; Richardson, G.; Bloem, K.A.

    2000-01-01

    The area-wide pest population control concept began with E.F. Knipling (1979) in the 1970s. Control of a pest population on individual fields does little to control the overall pest population because only a portion of the population is being affected. Expanding control tactics beyond individual farms tends to suppress the population on a wider scale and frequently results in suppression of the population for more than one year. The Agriculture Research Service (ARS) believes that this concept has not been addressed with the focus and support that it deserves. The ARS Administration made a conscious decision in 1994 to create a series of area-wide programmes funded out of ARS-based funds that had previously been used for pilot tests. These programmes involve a coordinated effort among ARS and university scientists, growers, and fieldmen for agriculture supply centres and fruit packing houses. The first area-wide programme supported by ARS was the codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae) suppression programme. The codling moth is the key pest of pome fruit throughout the western United States (Beers et al. 1993). About half of the insecticides applied on these crops are directed toward this pest. A non-insecticidal control technique, mating disruption (MD), is available to replace the organophosphates. Removal of the hard pesticides directed against this pest would do the most to allow natural enemies to survive and reproduce in the orchards, which in turn would have the effect of reducing secondary pests. Elimination of the pesticides would also remove much of the health risks to workers and would minimise buildup of pesticide resistance. The objectives of the Codling Moth Area-wide Program are to enhance the efficacy of the non-pesticide approach, to demonstrate that mating disruption will work if conducted properly, to develop biological technology to lower costs of control that complement mating disruption, to implement effective

  19. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    Science.gov (United States)

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.

  20. Standardised methods for the GMO monitoring of butterflies and moths: the whys and hows

    OpenAIRE

    Lang, Andreas; Theißen, Bernhard; Dolek, Matthias

    2013-01-01

    Butterflies and moths (Lepidoptera) are correlated with many biotic and abiotic characteristics of the environment, and are widely accepted as relevant protection goals. Adverse effects on butterflies and moths through genetically modified (GM) crops have been demonstrated, by both insect-resistant and herbicide-tolerant events. Thus, Lepidoptera are considered suitable bio-indicators for monitoring the potential adverse effects due to the cultivation of GM crops, and guidelines were develope...

  1. Studies on population fluctuation of diamondback moth, plutella xylostella L. at the Khao khor high-land agricultural research

    International Nuclear Information System (INIS)

    Keawchoung, P.; Limohpasmanee, W.; Malakrong, A.; Kodcharint, P.

    1994-01-01

    The population Fluctuation of diamondback moth were studied by using the yellow sticky trap at Khao Khor high-land Agricultural Research Station during August-October 1993 and February-April 1994. The maximum and minimum number of diamondback moth were 24.89 and 0.1 adult/trap/6 days. When number of diamondback moth was low, they distributed in clump pattern. But the distribution would change to be clump or random pattern when number of diamondback moth was high. Temperature, relative humidity, rainfall and age of cabbage had no effects on number of caugh moth. The number of moth was highly relative with number of larva 7th day later

  2. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  3. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase

    Czech Academy of Sciences Publication Activity Database

    Buček, Aleš; Matoušková, P.; Vogel, H.; Šebesta, Petr; Jahn, Ullrich; Weissflog, J.; Svatoš, Aleš; Pichová, Iva

    2015-01-01

    Roč. 112, č. 41 (2015), s. 12586-12591 ISSN 0027-8424 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : fatty acid desaturase * Manduca sexta * sex pheromone biosynthesis * pheromone evolution * substrate specificity Subject RIV: CC - Organic Chemistry Impact factor: 9.423, year: 2015

  4. Comparative life tables of leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), in its native range.

    Science.gov (United States)

    Jenner, W H; Kuhlmann, U; Mason, P G; Cappuccino, N

    2010-02-01

    Leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), is an invasive alien species in eastern Canada, the larvae of which mine the green tissues of Allium spp. This study was designed to construct and analyse life tables for leek moth within its native range. Stage-specific mortality rates were estimated for the third leek moth generation at three sites in Switzerland from 2004 to 2006 to identify some of the principle factors that inhibit leek moth population growth in areas of low pest density. The contribution of natural enemies to leek moth mortality was measured by comparing mortality on caged and uncaged leeks. Total pre-imaginal mortality on uncaged plants was 99.6%, 99.1% and 96.4% in 2004, 2005 and 2006, respectively. Variation in mortality was greater among years than among sites. Total larval mortality was greater than that in the eggs and pupae. This was due largely to the high mortality (up to 83.3%) of neonates during the brief period between egg hatch and establishment of the feeding mine. Leek moth pupal mortality was significantly greater on uncaged than on caged leeks, indicating an impact by natural enemies, and this pattern was consistent over all three years of study. In contrast, the other life stages did not show consistently higher mortality rates on uncaged plants. This observation suggests that the pupal stage may be particularly vulnerable to natural enemies and, therefore, may be the best target for classical biological control in Canada.

  5. Development of synthetic volatile attractant for maleEctropis obliqua moths

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-ling; LI Xi-wang; XIN Zhao-jun; HAN Juan-juan; RAN Wei; LEI Shu

    2016-01-01

    The tea geometridEctropis obliquais one of the most serious leaf-feeding insect pests in tea (Camelia sinensis) in East Asia. Although several volatile chemicals emitted from tea plants have been reported to be attractive toE. obliqua moths, no synthetic attractants for E. obliqua moths have been developed. By measuring the behavioral responses of the moth to a series of chemicals in the lab, we found that a blend containing a ternary mixture containing (Z)-3-hexenal, (Z)-3-hexenyl hexanoate and benzyl alcohol clearly attracted toE. obliqua moths of both sex and that (Z)-3-hexenyl acetate could enhance the attractiveness of the ternary blend. Moreover, we found that the volatiles emitted from the plant-E. obliqua larva com-plex have the same attractiveness as: 1) the blend of volatiles containing the ternary mixture and 2) the blend containing (Z)-3-hexenyl acetate plus the ternary mixture to both male and female moths. In a ifeld bioassay, more male moths were observed on traps that were baited with the blend containing (Z)-3-hexenyl acetate plus the ternary mixture than on control traps. Our study raises the tantalizing possibility that synthetic blends could be deployed as attractants for pests in the ifeld.

  6. Effects of kefir fractions on innate immunity.

    Science.gov (United States)

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  7. Atmospheric pollution and melanic moths in Manchester and its environs

    Energy Technology Data Exchange (ETDEWEB)

    Askew, R R; Cook, L M; Bishop, J A

    1971-01-01

    Samples of moths have been taken in the Manchester area at sites in localities with moderate to extreme atmospheric pollution. The majority of species collected are dark in color, many typically pale species being represented by dark variants. Four species polymorphic for melanic and non-melanic morphs have been examined in more detail. In Biston betularia the melanic frequency is over 93% at all stations, but the frequency of typicals appears to have increased over the past 15 years. This coincides with a period of extensive smoke control zonation. Gondontis bidentata has a higher frequency of melanics than has been recorded elsewhere in the country. There is significant variation between sites, the higher frequencies occurring in the more polluted localities. Non-melanics segregate into a pale and a dark category. In reared samples males exhibit a greater frequency of melanics than females.

  8. SIT for codling moth eradication in British Columbia, Canada

    International Nuclear Information System (INIS)

    Bloem, Kenneth A.; Bloem, Stephanie

    2000-01-01

    The codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae), is considered the key pest of apples and pears in the fruit growing regions of south central British Columbia. This region includes about 18,000 acres of commercial production, as well as several urban centres with abundant backyard fruit trees and ornamental crab apples. Now, after 30 years of research and planning, an eradication programme using the sterile insect technique (SIT) has been implemented against CM. This article reviews the progress that the programme has made and how well reality has met expectations in key areas. Proverbs (1982) and Proverbs et al. (1982) reviewed the techniques for mass rearing, sterilising and releasing CM, DeBiasio (1988) developed the initial implementation plan and Dyck et al. (1993) reviewed the history and development of the programme up to 1992 when it became operational

  9. Innate Lymphoid Cells in Tumor Immunity.

    Science.gov (United States)

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  10. The Development of Adult Innate Lymphoid Cells

    Science.gov (United States)

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  11. A study on the spreading ability of radiation-sterilized male moth of bombyx mandarin in field

    International Nuclear Information System (INIS)

    Yang Rongxin; Xia Darong; Gu Weiping; Zhang Yanjun

    1998-01-01

    The mulberry wild silkworm (MWS), belong to the Bombycidae of Lepidoptera, is serious pest of sericulture. The female moth of MWS is sterile and the male moth is sub-sterile when they were treated with 250 Gy 60 Co γ-ray (dose rate: 1.05 Gy/min), and their filial generations was sterile. The spreading ability of male moth of MWS in field and retrieving the marked MWS male moth with the trapping method was studied. The trapping solution was composed of sugar, vinegar, wine and alive female moth. The retrieving rate of MWS male moth amounted to 12.6%∼13.5% of released moth in field. The spreading range in 24 hours for sterile MWS male moth reached to 700 m, and 90.8% of MWS male moth was in an area of 5 m radius from the releasing centre. It is concluded that thirty releasing centres per hectare are needed to make the irradiated sterilized insects spread for controlling the MWS in field

  12. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  13. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  14. Necroptotic signaling in adaptive and innate immunity.

    Science.gov (United States)

    Lu, Jennifer V; Chen, Helen C; Walsh, Craig M

    2014-11-01

    The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Role for PML in Innate Immunity

    Science.gov (United States)

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  17. Promising new technology for managing diamondback moth (Lepidoptera: Plutellidae) in cabbage with pheromone.

    Science.gov (United States)

    Mitchell, Everett R

    2002-05-01

    Experiments were conducted in plantings of cabbage in spring 1999 and 2000 to evaluate a novel, new matrix system for delivering sex pheromone to suppress sexual communication by diamondback moth, Plutella xylostella (L.). The liquid, viscous, slow-release formulation contained a combination of diamondback moth pheromone, a blend of Z-11-hexadecenyl acetate, 27%:Z-11-hexadecen-1-ol, 1%:Z-11-tetradecen-1-ol, 9%:Z-11-hexadecenal, 63%, and the insecticide permethrin (0.16% and 6% w/w of total formulated material, respectively). Field trapping experiments showed that the lure-toxicant combination was highly attractive to male moths for at least four weeks using as little as a 0.05 g droplet of formulated material per trap; and the permethrin insecticide had no apparent influence on response of moths to lure baited traps. Small field plots of cabbage were treated with the lure-toxicant-matrix combination using droplets of 0.44 and 0.05 g each applied to cabbage in a grid pattern at densities ranging from 990 to 4396 droplets/ha to evaluate the potential for disrupting sexual communication of diamondback moth. There was no significant difference in the level of suppression of sexual communication of diamondback moth, as measured by captures of males in pheromone-baited traps located in the treated plots, versus moths captured in untreated control plots, among the treatments regardless of droplet size (0.05 or 0.44 g) or number of droplets applied per ha. Plots treated with the smallest droplet size (0.05 g) and with the fewest number of droplets per ha (990) suppressed captures of male diamondback moths > 90% for up to 3 weeks post treatment. Although laboratory assays showed that the lure-toxicant combination was 100% effective at killing the diamondback moth, the mode of action in the field trials was not determined. The results indicate that the liquid, viscous, slow release formulation containing diamondback moth pheromone could be used to effectively suppress sexual

  18. Innateness and the instinct to learn

    Directory of Open Access Journals (Sweden)

    Peter Marler

    2004-06-01

    Full Text Available Concepts of innateness were at the heart of Darwin's approach to behavior and central to the ethological theorizing of Lorenz and, at least to start with, of Tinbergen. Then Tinbergen did an about face, and for some twenty years the term 'innate' became highly suspect. He attributed the change to Lehrman's famous 1953 critique in which he asserted that classifying behaviors as innate tells us nothing about how they develop. Although Lehrman made many valid points, I will argue that this exchange also led to profound misunderstandings that were ultimately damaging to progress in research on the development of behavior. The concept of 'instincts to learn', receiving renewed support from current theorizing among geneticists about phenotypic plasticity, provides a potential resolution of some of the controversies that Lehrman created. Bioacoustical studies, particularly on song learning in birds, serve both to confirm some of Lehrman's anxieties about the term 'innate', but also to make a case that he threw out the genetic baby with the bathwater. The breathtaking progress in molecular and developmental genetics has prepared the way for a fuller understanding of the complexities underlying even the simplest notions of innate behavior, necessary before we can begin to comprehend the ontogeny of behavior.O conceito de inato estava no cerne da abordagem de Darwin ao comportamento assim como no das teorias etológicas de Lorenz e, pelo menos inicialmente, de Tinbergen. Depois, Tinbergen deu uma reviravolta e, durante mais ou menos vinte anos, o termo ''inato'' tornou-se altamente suspeito. Tinbergen atribuiu sua mudança à famosa crítica de Lehrman, em 1953, segundo a qual classificar comportamentos como inatos não traz informação alguma a respeito de seu desenvolvimento. Embora muitas das críticas de Lehrman sejam relevantes, tentarei mostrar que a mudança de enfoque também gerou sérios equívocos que acabaram prejudicando o progresso da

  19. The effect of within-instar development on tracheal diameter and hypoxia-inducible factors α and β in the tobacco hornworm, Manduca sexta.

    Science.gov (United States)

    Lundquist, Taylor A; Kittilson, Jeffrey D; Ahsan, Rubina; Greenlee, Kendra J

    2017-12-12

    As insects grow within an instar, body mass increases, often more than doubling. The increase in mass causes an increase in metabolic rate and hence oxygen demand. However, the insect tracheal system is hypothesized to increase only after molting and may be compressed as tissues grow within an instar. The increase in oxygen demand in the face of a potentially fixed or decreasing supply could result in hypoxia as insects near the end of an instar. To test these hypotheses, we first used synchrotron X-ray imaging to determine how diameters of large tracheae change within an instar and after molting to the next instar in the tobacco hornworm, Manduca sexta. Large tracheae did not increase in diameter within the first, second, third, and fourth instars, but increased upon molting. To determine if insects are hypoxic at the end of instars, we used the presence of hypoxia-inducible factors (HIFs) as an index. HIF-α and HIF-β dimerize in hypoxia and act as a transcription factor that turns on genes that will increase oxygen delivery. We sequenced both of these genes and measured their mRNA levels at the beginning and end of each larval instar. Finally, we obtained an antibody to HIF-α and measured protein expression during the same time. Both mRNA and protein levels of HIFs were increased at the end of most instars. These data support the hypothesis that some insects may experience hypoxia at the end of an instar, which could be a signal for molting. As caterpillars grow within an instar, major tracheae do not increase in size, while metabolic demand increases. At the same life stages, caterpillars increased expression of hypoxia inducible factors, suggesting that they become hypoxic near the end of an instar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Zhan, Ming-Yue; Yang, Pei-Jin; Rao, Xiang-Jun

    2018-02-01

    Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella. © 2017 Wiley Periodicals, Inc.

  1. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions

    Science.gov (United States)

    Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés

    2016-01-01

    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478

  2. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Minoura

    Full Text Available The antibacterial effect of a nanostructured film, known as "moth-eye film," was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG derivatives, all over its surface that replicates a moth's eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS and Fourier transform infrared spectroscopy (FT-IR. When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence.

  3. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae among Three Neotropical Ecoregions.

    Directory of Open Access Journals (Sweden)

    Hernán Mario Beccacece

    Full Text Available Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano. Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.

  4. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  5. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  6. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  7. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  8. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  9. The Nantucket pine tip moth: old problems, new research. Proceedings of an informal conference, the Entomological Society of America, annual meeting. 1999 December 12-16

    Science.gov (United States)

    C. Wayne Berisford; Donald M. Grosman; [Editors

    2002-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) has become a more prevalent pest in the South as pine plantation management has intensified. The Pine Tip Moth Research Consortium was formed in 1995 to increase basic knowledge about the moth and to explore ways to reduce damage. A conference was held in 1999 at the Entomological Society...

  10. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.

    Science.gov (United States)

    Hagström, Åsa K; Wang, Hong-Lei; Liénard, Marjorie A; Lassance, Jean-Marc; Johansson, Tomas; Löfstedt, Christer

    2013-12-13

    Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different

  11. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  12. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  13. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    Science.gov (United States)

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.

  14. The Influence of Herbivory on the net rate of Increase of Gypsy Moth Abundance: A Modeling Analysis

    Science.gov (United States)

     Harry T.  Valentine

    1983-01-01

    A differential equation model of gypsy moth abundance, average larval dry weight, and food abundance was used to analyze the effects of changes in foliar chemistry on the net per capita rate of increase in a gypsy moth population. If relative consumption rate per larva is unaffected by herbivory, a reduction in the nutritional value of foliage reduces the net rate of...

  15. Economic Analysis of the Gypsy Moth Problem in the Northeast: III. Impacts on Homeowners and Managers of Recreation Areas

    Science.gov (United States)

    George H. Moeller; Raymond Marler; Roger E. McCay; William B. White

    1977-01-01

    The economic impacts of a gypsy moth infestation on homeowners and on managers of recreation areas (commercial, public, and quasi-public) were determined from data collected via interviews with 540 homeowners and 170 managers of recreation areas in New York and Pennsylvania. The approach to measuring the impact of gypsy moth was to determine the interaction of a...

  16. Age-dependent plasticity of sex pheromone response in the moth, Agrotis ipsilon: combined effects of octopamine and juvenile hormone

    DEFF Research Database (Denmark)

    Jarriault, David; Barrozo, Romina B; de Carvalho Pinto, Carlos J

    2009-01-01

    Male moths use sex pheromones to find their mating partners. In the moth, Agrotis ipsilon, the behavioral response and the neuron sensitivity within the primary olfactory centre, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. By manipulating...

  17. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity

    Science.gov (United States)

    The gypsy moth, Lymantria dispar L., is one of the most destructive forest pests in the world. While the subspecies established in North America is the European gypsy moth (L. dispar dispar), whose females are flightless, the two Asian subspecies, L. dispar asiatica and L. dispar japonica, have flig...

  18. Multiple mating of the diamondback moth (Plutella xylostella L.) and recovering fertility of its progeny after irradiation

    International Nuclear Information System (INIS)

    Chu Jiming; Yang Rongxin; Xian Darong; Feng Chunsheng

    1986-01-01

    The maximum multiple mating of the male diamondback moth (Plutella xylostella L.) was 30 times in its life, and the average was 16 times. The maximum multiple mating of the male moth irradiated with a substerilizing dose (35 kR) was 14 times, and the average was 7.2 times. The maximum multiple mating of the female moth was 8 times, and the average was 4 times. The rates of egg sterility in F 1 and F 2 were 57.3% and 99.1% respectively, when the normal female diamondback moths were mated with male moths irradiated with 35 kR dose. However, the fertility was recovered in F 3 as the rate of egg sterility was 0.7%

  19. Assessing Pine Processionary Moth Defoliation Using Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Adrián Cardil

    2017-10-01

    Full Text Available Pine processionary moth (PPM is one of the most destructive insect defoliators in the Mediterranean for many conifers, causing losses of growth, vitality and eventually the death of trees during outbreaks. There is a growing need for cost-effective monitoring of the temporal and spatial impacts of PPM in forest ecology to better assess outbreak spread patterns and provide guidance on the development of measures targeting the negative impacts of the species on forests, industry and human health. Remote sensing technology mounted on unmanned aerial systems (UASs with high-resolution image processing has been proposed to assess insect outbreak impacts at local and forest stand levels. Here, we used UAS-acquired RGB imagery in two pine sites to quantify defoliation at the tree-level and to verify the accuracy of the estimates. Our results allowed the identification of healthy, infested and completely defoliated trees and suggested that pine defoliation estimates using UASs are robust and allow high-accuracy (79% field-based infestation indexes to be derived that are comparable to those used by forest technicians. When compared to current field-based methods, our approach provides PPM impact assessments with an efficient data acquisition method in terms of time and staff, allowing the quantitative estimation of defoliation at tree-level scale. Furthermore, our method could be expanded to a number of situations and scaled up in combination with satellite remote sensing imagery or citizen science approaches.

  20. Radiopacity of household deodorizers, air fresheners, and moth repellents.

    Science.gov (United States)

    Woolf, A D; Saperstein, A; Zawin, J; Cappock, R; Sue, Y J

    1993-01-01

    Household deodorizers and moth repellents are common agents implicated in many childhood poisonings. Their ingredients usually include either paradichlorobenzene or naphthalene compressed into a solid ball or another shape, sometimes with added essential oils and fragrances. Because medically naphthalene is a more important toxin than paradichlorobenzene, with hematologic and nervous system effects, clinicians often seek to discern which product has been ingested. We discovered fortuitously that a mothball swallowed by a retarded adult was radiopaque, and so designed an in vitro experiment to study the radiopacity of a variety of household deodorizers and products. Of 10 products screened for radiopacity by two radiologists, those containing paradichlorobenzene were consistently strongly radiopaque; those containing naphthalene were radiolucent. A third alternative ingredient which is used in some toilet bowl deodorizers, cetrimonium bromide, was also radiopaque. Radiopacity of paradichlorobenzene or cetrimonium bromide-containing products did not dissipate with time. We speculate that the halogen within the chemical structure of these compounds accounts for their radiopacity. We conclude that paradichlorobenzene-containing commercial products can be distinguished clinically from those containing naphthalene by the performance of an abdominal radiograph.

  1. Floral to green: mating switches moth olfactory coding and preference.

    Science.gov (United States)

    Saveer, Ahmed M; Kromann, Sophie H; Birgersson, Göran; Bengtsson, Marie; Lindblom, Tobias; Balkenius, Anna; Hansson, Bill S; Witzgall, Peter; Becher, Paul G; Ignell, Rickard

    2012-06-22

    Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.

  2. The complete mitochondrial genome of the rice moth, Corcyra cephalonica.

    Science.gov (United States)

    Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong

    2012-01-01

    The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.

  3. Fitness cost of pheromone production in signaling female moths.

    Science.gov (United States)

    Harari, Ally R; Zahavi, Tirtza; Thiéry, Denis

    2011-06-01

    A secondary sexual character may act as an honest signal of the quality of the individual if the trait bears a cost and if its expression is phenotypically condition dependent. The cost of increasing the trait should be tolerable for individuals in good condition but not for those in a poor condition. The trait thus provides an honest signal of quality that enables the receiver to choose higher quality mates. Evidence for sex pheromones, which play a major role in shaping sexual evolution, inflicting a signaling cost is scarce. Here, we demonstrate that the amount of the major component of the pheromone in glands of Lobesia botrana (Lepidoptera) females at signaling time was significantly greater in large than in small females, that male moths preferred larger females as mates when responding to volatile signals, and small virgin females, but not large ones, exposed to conspecific pheromone, produced, when mated, significantly fewer eggs than nonexposed females. The latter indicates a condition-dependent cost of signaling. These results are in accordance with the predictions of condition-dependent honest signals. We therefore suggest that female signaling for males using sex pheromones bears a cost and thus calling may serve as honest advertisement for female quality. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. To females of a noctuid moth, male courtship songs are nothing more than bat echolocation calls

    DEFF Research Database (Denmark)

    Nakano, Ryo; Takanashi, Takuma; Skals, Niels

    2010-01-01

    It has been proposed that intraspecific ultrasonic communication observed in some moths evolved, through sexual selection, subsequent to the development of ears sensitive to echolocation calls of insectivorous bats. Given this scenario, the receiver bias model of signal evolution argues that acou......It has been proposed that intraspecific ultrasonic communication observed in some moths evolved, through sexual selection, subsequent to the development of ears sensitive to echolocation calls of insectivorous bats. Given this scenario, the receiver bias model of signal evolution argues...... production in the male moth, and subsequently the role of the sound with reference to the female's ability to discriminate male courtship songs from bat calls. We found that males have sex-specific tymbals for ultrasound emission, and that the broadcast of either male songs or simulated bat calls equally...

  5. Effects of gamma irradiation on the egg stage of the meal moth, Pyralis Farinalis L

    International Nuclear Information System (INIS)

    Gharib, O.H.; Abdelkawy, F.K.

    1993-01-01

    Two days-old eggs of the meal moth, Pyralis Farinalis L. Were exposed to different doses of gamma radiation ranged from 10 to 150 gray. Reduction in egg hatch was highly correlated with the given dose. At control, 83.2% of the eggs hatched and 75.6% of the eggs reached adult stage, whereas egg hatch was reduced to 21.8 , 16.1 and 5.8% after exposures to 100,120 and 150 gray, respectively. No adults emerged after egg irradiation to 150 gray. Gamma irradiation had almost slight effect on larval pupal duration without significant differences. Irradiation of eggs could alter the reproductive ability of the emerged moths. The doses 10, 20 and 40 gray delivered to the egg stage reduced egg production and fertility of the emerging moths. The greatest reduction was obtained when both sexes had been irradiated at 40 gray and paired together. Females were more radiosensitive than males. 2 tab

  6. Radiobiological studies on the angoumois moth sitotroga cerealella (oliv.) (lepidoptera - Celechiidae)

    Energy Technology Data Exchange (ETDEWEB)

    Boshra, S A

    1983-12-31

    Grain in bins or ear corn in storage has small buff moths flying about the bins or cramling rapidly over the surface of the grain when it is disturbed. One or two small round holes are eaten in the kernels of infested corn or in other grain. This insect is the most destructive grain moth occurring in our country casing great damage to corn in cribs and also destroying ripening grain, especially wheat, in the field. The present study deals with the effects of gamma irradiation on the different developmental stages of the angoumois grain moth sitotroga cerealella (olivier) with special reference to the effects of sterilizing dosage on sexual competition. 15 tabs., 9 figs., 116 refs.

  7. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic.

    Science.gov (United States)

    Sun, Jingyao; Wang, Xiaobing; Wu, Jinghua; Jiang, Chong; Shen, Jingjing; Cooper, Merideth A; Zheng, Xiuting; Liu, Ying; Yang, Zhaogang; Wu, Daming

    2018-04-03

    Sub-wavelength antireflection moth-eye structures were fabricated with Nickel mold using Roll-to-Plate (R2P) ultraviolet nanoimprint lithography (UV-NIL) on transparent polycarbonate (PC) substrates. Samples with well replicated patterns established an average reflection of 1.21% in the visible light range, 380 to 760 nm, at normal incidence. An excellent antireflection property of a wide range of incidence angles was shown with the average reflection below 4% at 50°. Compared with the unpatterned ultraviolet-curable resin coating, the resulting sub-wavelength moth-eye structure also exhibited increased hydrophobicity in addition to antireflection. This R2P method is especially suitable for large-area product preparation and the biomimetic moth-eye structure with multiple performances can be applied to optical devices such as display screens, solar cells, or light emitting diodes.

  8. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella.

    Science.gov (United States)

    Carabajal Paladino, Leonela Z; Nguyen, Petr; Síchová, Jindra; Marec, František

    2014-01-01

    We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.

  9. Importance of Habitat Heterogeneity in Richness and Diversity of Moths (Lepidoptera) in Brazilian Savanna.

    Science.gov (United States)

    Braga, Laura; Diniz, Ivone Rezende

    2015-06-01

    Moths exhibit different levels of fidelity to habitat, and some taxa are considered as bioindicators for conservation because they respond to habitat quality, environmental change, and vegetation types. In this study, we verified the effect of two phytophysiognomies of the Cerrado, savanna and forest, on the diversity distribution of moths of Erebidae (Arctiinae), Saturniidae, and Sphingidae families by using a hierarchical additive partitioning analysis. This analysis was based on two metrics: species richness and Shannon diversity index. The following questions were addressed: 1) Does the beta diversity of moths between phytophysiognomies add more species to the regional diversity than the beta diversity between sampling units and between sites? 2) Does the distribution of moth diversity differ among taxa? Alpha and beta diversities were compared with null models. The additive partitioning of species richness for the set of three Lepidoptera families identified beta diversity between phytophysiognomies as the component that contributed most to regional diversity, whereas the Shannon index identified alpha diversity as the major contributor. According to both species richness and the Shannon index, beta diversity between phytophysiognomies was significantly higher than expected by chance. Therefore, phytophysiognomies are the most important component in determining the richness and composition of the community. Additive partitioning also indicated that individual families of moths respond differently to the effect of habitat heterogeneity. The integrity of the Cerrado mosaic of phytophysiognomies plays a crucial role in maintaining moth biodiversity in the region. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  11. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  12. Effects of gamma radiation on the melanization process in larvae of stored product moths

    International Nuclear Information System (INIS)

    Lupa, D.

    1998-01-01

    Non-irradiated larvae of the Indian meal moth (Plodia interpunctella Hbn.), the Mediterranean flour moth (Ephestia (Anagasta) kuehniella Zell.), and the almond moth (Cadra cautella Wlk.) showed strong melanization after killing by freezing. However, there were some insects which showed lack of melanization or melanized only partly, sometimes like those that have been irradiated. A part of the larval body was dark black while the rest body was of natural color or only slightly gray. Also, black and gray patches were observed in the larvae. After the irradiation treatment, the number of non-melanized larvae and larvae exhibiting a slight melanization usually increased. The degree of melanization in the treated larvae was significantly different from the untreated insects. Generally, it decreased with increasing dose and time elapsed after the treatment. The melanization test for detecting irradiated moth larvae may produce inconsistent results because (a) irradiation does not completely prevent melanization in mature moth larvae, and (b) the untreated larvae, killed by freezing and examined at room temperature, often show incomplete melanization. An ideal method for detection of irradiated insects should be: (1 ) specific for irradiation and not influenced by other processes, (2) accurate and reproducible, (3) have a detection limit below the minimum dose likely to be applied to agricultural commodity as a quarantine treatment, (4) applicable to a range of pests, (5) quick and easy to perform, and (6) capable of providing an estimate of irradiation dose. The melanization test to detect irradiated larvae of the stored product moths fulfills only some of these requirements. Therefore, additional studies were performed to improve this test before it is recommended for quarantine inspection. Because visual assessment of the effects of irradiation on melanization of the moth larvae is very subjective and difficult to perform, a trial to determine the activity of

  13. Effects of gamma radiation on codling moth (Cydia pomonella, Lepidoptera: Tortricidae) fertility and reproductive behaviour

    International Nuclear Information System (INIS)

    Mansour, M.

    2002-01-01

    Studies were conducted with codling moth, Cydia pomonella (L.), to examine the effects of gamma radiation on fertility and reproductive behaviour. Data accumulated during these studies showed that egg production and hatch decreased with increasing radiation dose. Females were more sensitive to radiation treatment than were males. A dose of 150 Gy caused 100% sterility in females and significantly reduced fecundity, and a dose of 350 Gy reduced male fertility to less than 1%. Radiation dosages up to 400 Gy had no adverse effect on male longevity or competitiveness in cages using laboratory reared moths. However, males exposed to a dose of 350 or 400 Gy mated fewer times than unirradiated males. (author)

  14. Innate lymphoid cells, precursors and plasticity.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  15. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. TOX sets the stage for innate lymphoid cells

    NARCIS (Netherlands)

    Spits, Hergen

    2015-01-01

    Like T cells and B cells, innate lymphoid cells (ILCs) develop from common lymphoid progenitors, but how commitment to the ILC lineage is regulated has remained unclear. The transcriptional regulator TOX is important in this process

  17. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dissecting the hypothalamic pathways that underlie innate behaviors.

    Science.gov (United States)

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  19. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  20. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  1. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  2. Recognition Strategies of Group 3 Innate Lymphoid Cells

    OpenAIRE

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors (actR) with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells (APC) in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are share...

  3. What can the semantic properties of innate representations explain?

    OpenAIRE

    Jacob , Pierre

    1997-01-01

    Dretske has argued that, unlike the content of beliefs and desires (formed by learning), the contents of innate representations (depending directly on evolution by natural selection) cannot in principle play a role in the causal explanation of an individual's behavior. I examine this "asymmetry" and against it, I argue that the content of innate mental representations too can play a causal role in the explanation of behavior.

  4. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    Science.gov (United States)

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  5. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  6. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  7. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae).

    Science.gov (United States)

    Ntelezos, Athanasios; Guarato, Francesco; Windmill, James F C

    2017-01-15

    The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. © 2017. Published by The Company of Biologists Ltd.

  8. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  9. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    Science.gov (United States)

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  10. Description of the Diadegma fenestrale (Hymenoptera: Ichneumonidae: Campopleginae Attacking the Potato Tuber Moth, Phthorimaea operculella (Lep.: Gelechiidae New to Korea

    Directory of Open Access Journals (Sweden)

    Jin-Kyung Choi

    2013-01-01

    Full Text Available Diadegma fenestrale is known as a parasitoid of the potato tuber moth, Phthorimaea operculella. The potato tuber moth, Phthorimaea operculella (Zeller is one of the most destructive pest of potatoes. Also, we found this species attacking the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae. Ratio of parasitism is 20-30% and cocoon of lepidopteran was parasitic ichneumonid species after 3 days. This species and the genus Diadegma are recorded for the first time from Korea. In this paper, description of the parasitoid and photographs of the diagnostic characteristics are provided.

  11. Within-population variation in response of red oak seedlings to herbivory by gypsy moth larvae

    Science.gov (United States)

    T. Scott Byington; Kurt W. Gottschalk; James B. McGraw

    1994-01-01

    The potential for an evolutionary response to gypsy moth (Lymantna dispar L.) herbivory was investigated in red oak (Quercus rubra L.), a preferred host. Seedlings of nine open-pollinated families were grown in a greenhouse and experimentally defoliated by fourth instar larvae in the summer of 1991 to assay for intraspecific...

  12. Potential defoliation of trees by outbreak populations of gypsy moth in the Chicago area

    Science.gov (United States)

    David W. Onstad; David J. Nowak; Michael R. Jeffords

    1997-01-01

    The gypsy moth, Lymantria dispar, will soon become established in much of the Midwest. If an outbreak with extremely high population levels of this serious defoliator is allowed to occur in the Chicago area, what kind of damage can be expected? A model for defoliation, refoliation and mortality was developed based on the number of trees and...

  13. Nantucket pine tip moth, Rhyacionia Frustrana, lures and traps: What is the optimum combination?

    Science.gov (United States)

    Gary L. DeBarr; J. wayne Brewer; R. Scott Cameron; C. Wayne Berisford

    1999-01-01

    Pheromone traps are used to monitor flight activity of male Nantucket pine tip moths, Rhyacionia frustrana (Comstock), to initialize spray timing models, determine activity periods, or detect population trends. However, a standardized trapping procedure has not been developed. The relative efficacies of six types of lures and eight commercial pheromone traps were...

  14. Identification of a non-LTR retrotransposon from the gypsy moth

    Science.gov (United States)

    K.J. Garner; J.M. Slavicek

    1999-01-01

    A family of highly repetitive elements, named LDT1, has been identified in the gypsy moth, Lymantria dispar. The complete element is 5.4 kb in length and lacks long-terminal repeats, The element contains two open reading frames with a significant amino acid sequence similarity to several non-LTR retrotransposons. The first open reading frame contains...

  15. Factors affecting the field performance of an attracticide against the codling moth Cydia pomonella

    NARCIS (Netherlands)

    Lösel, P.M.; Potting, R.P.J.; Ebbinghaus, D.; Scherkenbeck, J.

    2002-01-01

    Factors affecting the efficacy of an attracticide strategy for the control of the codling moth Cydia pomonella L (Lepidoptera: Tortricidae) were investigated using laboratory and field experiments. The sex-pheromone-based insect-control strategy utilises 100-?l droplets of a sticky, paste-like

  16. Effects of Nantucket pine tip moth insecticide spray schedules on loblolly pine seedlings

    Science.gov (United States)

    Christopher J. Fettig; Kenneth W. McCravy; C. Wayne Berisford

    2000-01-01

    Frequent and prolonged insecticide applications to control the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera:Torticidae) (NPTM), although effective, may be impractical and uneconomica1, for commercial timber production. Timed insecticide sprays of permethrin (Polmce 3.2® EC) were applied to all possible combinations of spray...

  17. Hearing and evasive behavior in the greater wax moth, Galleria mellonella (Pyralidae)

    DEFF Research Database (Denmark)

    Skals, Niels; Surlykke, Annemarie

    2000-01-01

    Greater wax moths (Galleria mellonella L., Pyraloidea) use ultrasound sensitive ears to detect clicking conspeci®cs and echolocating bats. Pyralid ears have four sensory cells, A1±4. The audiogram of G. mellonella has best frequency at 60 kHz with a threshold around 47 dB sound pressure level. A1...

  18. Effects of elevated CO2 leaf diet on gypsy moth (Lepidoptera: Lymantriidae) respiration rates

    Science.gov (United States)

    Anita R. Foss; William J. Mattson; Terry M. Trier

    2013-01-01

    Elevated levels of CO2 affect plant growth and leaf chemistry, which in turn can alter host plant suitability for insect herbivores. We examined the suitability of foliage from trees grown from seedlings since 1997 at Aspen FACE as diet for the gypsy moth (Lymantria dispar L.) Lepidoptera: Lymantriidae: paper birch (...

  19. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Science.gov (United States)

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  20. Genetic patterns in European Geometrid Moths revealed by the Barcode Index Number (BIN) System

    NARCIS (Netherlands)

    Hausmann, A.; Godfray, H.C.J.; Huemer, J.; Mutane, M.; Rougerie, R.; Nieukerken, van E.J.; Ratnasingham, S.; Hebert, P.D.N.

    2013-01-01

    Background: The geometrid moths of Europe are one of the best investigated insect groups in traditional taxonomy making them an ideal model group to test the accuracy of the Barcode Index Number (BIN) system of BOLD (Barcode of Life Datasystems), a method that supports automated, rapid species

  1. Impact of enhancin genes on potency of LdNPV in gypsy moth

    Science.gov (United States)

    Kelli Hoover; Jim McNeil; Alyssa Gendron; James. Slavicek

    2011-01-01

    Lymantria dispar nucleopolyhedrovirus (LdNPV) contains two enhancin genes (E1 and E2) encoding proteases that degrade key peritrophic matrix (PM) proteins, thereby promoting infection and mortality by the virus. In a previous study, gypsy moth larvae inoculated with LdNPV in which both E1 and E2 were deleted (double deletion virus) resulted in a non-...

  2. Field Attraction of Carob Moth to Host Plants and Conspecific Females

    NARCIS (Netherlands)

    Hosseini, S.A.; Goldansaz, S.H.; Menken, S.B.J.; van Wijk, M.; Roessingh, P.; Groot, A.T.

    2017-01-01

    The carob moth, Ectomyelois ceratoniae (Zeller; Lepidoptera: Pyralidae), is a devastating pest in high-value crops around the world. An efficient sex pheromone attractant is still missing for the management of this pest, because the major pheromone component is unstable. Host plant volatiles attract

  3. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Fuková, Iva; Nguyen, Petr; Marec, František

    Roč. 48, - ( 2005 ), s. 1083-1092 ISSN 0831-2796 R&D Projects: GA AV ČR(CZ) IAA6007307 Grant - others:IAEA(AT) 12055/R Institutional research plan: CEZ:AV0Z50070508 Keywords : CGH * codling moth * FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.070, year: 2005

  4. Survival of diverse bacillus thuringiensis strains in gypsy moth (Lepidotera: Lymantriidae) is correlated with urease production

    Science.gov (United States)

    Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pest insects, but seldom causes epizootics because it replicates poorly in insects. By attempting to repeatedly pass lepidopteran-active B. thuringiensis strains through gypsy moth larvae, we found that only those str...

  5. Reproduction, longevity and survival of the cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Screened potted cactus plants (Opuntia ficus-indica (L.) Mill.) containing pairs of adult male and female cactus moths, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), were placed in a cactus field in St. Marks, Florida to measure oviposition patterns under field-realistic conditions. Results...

  6. Economic analysis of light brown apple moth using GIS and quantitative modeling

    Science.gov (United States)

    Glenn Fowler; Lynn Garrett; Alison Neeley; Roger Magarey; Dan Borchert; Brian. Spears

    2011-01-01

    We conducted an economic analysis of the light brown apple moth (LBAM), (piphyas postvittana (Walker)), whose presence in California has resulted in a regulatory program. Our objective was to quantitatively characterize the economic costs to apple, grape, orange, and pear crops that would result from LBAM's introduction into the continental...

  7. Trail marking and following by larvae of the small ermine moth Yponomeuta cagnagellus

    NARCIS (Netherlands)

    Roessingh, P.

    1989-01-01

    The importance of chemical cues in insect behaviour is well established (Bell & Cardé, 1984). The best known examples include the sex pheromones of butterflies and moths, and the aggregation pheromones of bark beetles. In eusocial insects (bees, wasps, ants, and termites) pheromones are

  8. Effect of gamma radiation on different stages of Indian meal moth ...

    African Journals Online (AJOL)

    Indian meal moth Plodia interpunctella Hübner is one of the most important stored products pests in the world. In this research, the effect of gamma irradiation was studied on different developmental stages of this pest and the doses required to prevent each of these developmental stages was investigated. From the results ...

  9. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-01-01

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth

  10. A technique for sexing fully developed embryos and early-instar larvae of the gypsy moth

    Science.gov (United States)

    Gilbert Levesque

    1963-01-01

    Because variation in sex ratio is an important factor in the population dynamics of the gypsy moth (Porthetria dispar), it is necessary to have some means of determining the ratio of males to females in a population at the beginning of the larval period as well as in the later stages. For determining the sex of fully developed embryos and early-...

  11. Seasonal pattern of infestation by the carob moth Ectomyelois ceratoniae in pomegranate cultivars

    NARCIS (Netherlands)

    Hosseini, S.A.; Goldansaz, S.H.; Fotoukkiaii, S.M.; Menken, S.B.J.; Groot, A.T.

    2017-01-01

    Pomegranate (Punica granatum L.) orchards in the Middle East are typically composed of a mix of different cultivars in which variation in fruit infestation by carob moth Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) has been observed. However, seasonal variation in infestation and

  12. Selective bird predation on the peppered moth: the last experiment of Michael Majerus.

    Science.gov (United States)

    Cook, L M; Grant, B S; Saccheri, I J; Mallet, J

    2012-08-23

    Colour variation in the peppered moth Biston betularia was long accepted to be under strong natural selection. Melanics were believed to be fitter than pale morphs because of lower predation at daytime resting sites on dark, sooty bark. Melanics became common during the industrial revolution, but since 1970 there has been a rapid reversal, assumed to have been caused by predators selecting against melanics resting on today's less sooty bark. Recently, these classical explanations of melanism were attacked, and there has been general scepticism about birds as selective agents. Experiments and observations were accordingly carried out by Michael Majerus to address perceived weaknesses of earlier work. Unfortunately, he did not live to publish the results, which are analysed and presented here by the authors. Majerus released 4864 moths in his six-year experiment, the largest ever attempted for any similar study. There was strong differential bird predation against melanic peppered moths. Daily selection against melanics (s ≈ 0.1) was sufficient in magnitude and direction to explain the recent rapid decline of melanism in post-industrial Britain. These data provide the most direct evidence yet to implicate camouflage and bird predation as the overriding explanation for the rise and fall of melanism in moths.

  13. "Slow the spread" a national program to contain the gypsy moth

    Science.gov (United States)

    Alexei A. Sharov; Donna Leonard; Andrew M. Liebhold; E. Anderson Roberts; Willard Dickerson; Willard Dickerson

    2002-01-01

    Invasions by alien species can cause substantial damage to our forest resources. The gypsy moth (Lymantria dispar) represents one example of this problem, and we present here a new strategy for its management that concentrates on containment rather than suppression of outbreaks. The "Slow the Spread" project is a combined federal and state...

  14. Development of two related endoparasitoids in larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae)

    NARCIS (Netherlands)

    Malčická, Mima; Harvey, Jeffrey A.

    2015-01-01

    We compare the growth and development of two related solitary endoparasitoids (Braconidae, Microgastinae) in different instars (second and third) of the diamondback moth Plutella xylostella. Cotesia vestalis is a well-studied parasitoid whose larvae feed primarily on host hemolymph and fat body

  15. Tip moth control and loblolly pine growth in intensive pine culture: four year results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2006-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...

  16. Monitoring oriental fruit moth (Lepidoptera: Tortricidae) with sticky traps baited with terpinyl acetate and sex pheromone

    Science.gov (United States)

    Studies in Argentina and Chile during 2010-11 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta-shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom center of the trap. The screened lid of ...

  17. Sex Attractants of the Banana Moth, Opogona sacchari Bojer (Lepidoptera: Tineidae): Provisional Identification and Field Evaluation

    Science.gov (United States)

    BACKGROUND: The banana moth, Opogona sacchari Bojer, is a ployphagous agricultural pest in many tropical areas of the world. The identification of an attractant for male O. sacchari could offer new methods for detection, study and control. RESULTS: A male electroantennographically active compound w...

  18. The disease complex of the gypsy moth. II. Aerobic bacterial pathogens

    Science.gov (United States)

    J.D. Podgwaite; R.W. Campbell

    1972-01-01

    Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...

  19. Arabidopsis genotypes resistant and susceptible to diamondback moth (Lepidoptera: Putellidea): No net effects on insect growth

    Science.gov (United States)

    Plutella xylostella (L.), diamondback moth (DBM) is a destructive pest of the Brassicaceae including Arabidopsis thaliana (L.) Heynhold. Ecotypes of Arabidopsis vary in the amounts of leaf area consumed when fed on by DBM, which has been used as a measure of resistance to DBM. Recombinant inbred lin...

  20. Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa

    NARCIS (Netherlands)

    Groot, A.T.; Classen, A.; Inglis, O.; Blanco, C.A.; López Jr., J.; Vargas, A.T.; Schal, C.; Heckel, D.G.; Schöfl, G.

    2011-01-01

    The two moth species Heliothis virescens (Hv) and H. subflexa (Hs) are closely related, but have vastly different feeding habits. Hv is a generalist and an important pest in many crops in the USA, while Hs is a specialist feeding only on plants in the genus Physalis. In this study, we conducted a

  1. Neurophysiological and Behavioral Responses of Gypsy Moth Larvae to Insect Repellents: DEET, IR3535, and Picaridin

    Science.gov (United States)

    2014-06-23

    particularly forest, fruit , shade and ornamental trees [12,13]. The chemosensilla of gypsy moth L. dispar (Lepidoptera: Erebidae) larvae are located on...placed in water and were removed just prior to testing. This was to prevent dehydration of the leaves. Six leaf disks were arranged equidistant

  2. Major outbreaks of the Douglas-fir tussock moth in Oregon and California.

    Science.gov (United States)

    Boyd E. Wickman; Richard R. Mason; C.G. Thompson

    1973-01-01

    Case histories of five tussock moth outbreaks that occurred in California and Oregon between 1935 and 1965 are discussed. Information is given on the size and duration of the outbreaks, the presence of natural control agents and the damage caused. Most of the outbreaks were eventually treated with DDT. However, enough information was available from untreated portions...

  3. Biology, spread, and biological control of winter moth in the eastern United States

    Science.gov (United States)

    Joseph Elkinton; George Boettner; Andrew Liebhold; Rodger. Gwiazdowski

    2015-01-01

    The winter moth (Operophtera brumata L.; Lepidoptera: Geometridae) is an inchworm caterpillar that hatches coincident with bud-break on its hosts and feeds on a wide range of deciduous trees. It is one of a group of geometrid species that feed in early spring and then pupate in the top layer of the soil or litter beginning in mid-May. As postulated...

  4. Haruchlora maesi, a new emerald moth genus and species from Mesoamerica (Lepidoptera, Geometridae, Geometrinae).

    Science.gov (United States)

    Viidalepp, Jaan; Lindt, Aare

    2014-09-30

    A new genus and species of Neotropical emerald geometrid moths, Haruchlora Viidalepp & Lindt, gen. nov., and Haruchlora maesi Viidalepp & Lindt, sp. nov. are described. The new genus differs from all other New World Geometrinae genera in having a bifid uncus, in characters of the pregenital segments of the male abdomen, and in the male genitalia. 

  5. Molecular phylogeny of the small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) in the Palaearctic

    NARCIS (Netherlands)

    Turner, H.; Lieshout, N.; van Ginkel, W.E.; Menken, S.B.J.

    2010-01-01

    Background: The small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) contains 76 species that are specialist feeders on hosts from Celastraceae, Rosaceae, Salicaceae, and several other plant families. The genus is a model for studies in the evolution of phytophagous insects and their

  6. Effects of gypsy moth infestation on aesthetic preferences and behavior intentions

    Science.gov (United States)

    Samuel M. Brock; Steve Hollenhorst; Wayne Freimund

    1991-01-01

    Using the Scenic Beauty Estimator (SBE) approach, within-stand color photographs were taken of 27 forested sites representative of the Central Appalachian Plateau. These sites had been repeatedly infested by gypsy moth (Lymantria dispar) (GM) to varying degrees since 1985, with resulting tree mortality from 6% - 97%. Eighty-one slides (3 slides/site...

  7. Host specificity of microsporidia pathogenic to the gypsy moth, Lymantria dispar (L.): Field studies in Slovakia

    Science.gov (United States)

    Leellen F. Solter; Daniela K. Pilarska; Michael L. McManus; Milan Zubrik; Jan Patocka; Wei-Fone Huang; Julius. Novotny

    2010-01-01

    Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we...

  8. Effects of 60Co irradiation on the genetics of indian meal moth

    International Nuclear Information System (INIS)

    Yang Changju; Liu Ganming; Deng Wangxi; Yang Zhihui; Hu Jianfang

    1993-01-01

    4 ∼ 5 days old male pupae of Indian meal moth, Plodia interpunctella Hubner were irradiated with 1, 3, 5, 7 and 10 krad of 60 Co γ-ray. The male moths developed from treated pupae and their F 1 generation were put together with normal female moths for copulation separately. The genetic effects of irradiation was studied and the results showed that the effects of irradiation were significant, which related to the irradiation dosage, on both parental and filial generations. Only 40% of the pupae was emerged, when they were irradiated at 10 krad. The effects on deformation rates, survival rates, copulation abilities, fecundities, hatching rates and genetic sterilities varied with different irradiation dosage treatment. With consideration of the total irradiation effect, the dosage lower than 5 krad is desirable for inducing the sterility of adults and sex chain recessive lethal gene. With 1, 5 and 7 krad of irradiation, a mutant of P. interpunctella with transparent wings was induced, which provides a marking feature in control of Indian meal moth by sex chain recessive lethal gene

  9. Effect of spectral composition of artificial light on the attraction of moths

    NARCIS (Netherlands)

    Langevelde, van F.; Ettema, J.A.; Donners, M.; Wallis de Vries, M.F.; Groenendijk, D.

    2011-01-01

    During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of

  10. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates : chemoreception and behaviour

    NARCIS (Netherlands)

    Loon, van J.J.A.; Wang, C.Z.; Nielsen, J.K.; Gols, R.; Qiu, Y.T.

    2002-01-01

    In caterpillars two styloconic contact chemoreceptors on the maxillary galea are assumed to contain the main taste receptors involved in host plant selection. The diamondback moth, Plutella xylostella L. is a specialist feeder of plants in the Brassicaceae, a plant family characterized by the

  11. Response of gypsy moth larvae to homologous and heterologous nuclear polyhedrosis virus

    Science.gov (United States)

    Kathleen S. Shields; Edward M. Dougherty

    1991-01-01

    The gypsy moth, Lymantria dispar, is not particularly susceptible to baculoviruses other than the nuclear polyhedrosis virus originally isolated from the species (LdMNPV). The multiple enveloped nuclear polyhedrosis virus of Autographa californica (AcMNPV), a very virulent baculovirus that replicates in a large number of...

  12. Quality of mass-reared codling moth (Lepidoptera: Tortricidae) after long-distance transportation: 1. Logistics of shipping procedures and quality parameters as measured in the laboratory.

    Science.gov (United States)

    Blomefield, T; Carpenter, J E; Vreysen, M J B

    2011-06-01

    The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.

  13. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  14. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic aci...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense o...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  16. Thioredoxin from the Indianmeal moth Plodia interpunctella: cloning and test of the allergenic potential in mice.

    Directory of Open Access Journals (Sweden)

    Elisabeth Hoflehner

    Full Text Available BACKGROUND/OBJECTIVE: The Indianmeal moth Plodia interpunctella is a highly prevalent food pest in human dwellings, and has been shown to contain a number of allergens. So far, only one of these, the arginine kinase (Plo i 1 has been identified. OBJECTIVE: The aim of this study was to identify further allergens and characterise these in comparison to Plo i 1. METHOD: A cDNA library from whole adult P. interpunctella was screened with the serum of a patient with indoor allergy and IgE to moths, and thioredoxin was identified as an IgE-binding protein. Recombinant thioredoxin was generated in E. coli, and tested together with Plo i 1 and whole moth extracts in IgE immunoblots against a large panel of indoor allergic patients' sera. BALB/c mice were immunised with recombinant thioredoxin and Plo i 1, and antibody production, mediator release from RBL cells, T-cell proliferation and cytokine production were measured. RESULT: For the first time a thioredoxin from an animal species was identified as allergen. About 8% of the sera from patients with IgE against moth extracts reacted with recombinant P. interpunctella thioredoxin, compared to 25% reacting with recombinant Plo i 1. In immunised BALB/c mice, the recombinant allergens both induced classical Th2-biased immune responses such as induction IgE and IgG1 antibodies, upregulation of IL-5 and IL-4 and basophil degranulation. CONCLUSION: Thioredoxin from moths like Plo i 1 acts like a classical Type I allergen as do the thioredoxins from wheat or corn. This clearly supports the pan-allergen nature of thioredoxin. The designation Plo i 2 is suggested for the new P. interpunctella allergen.

  17. Suppression of leopard moth (Lepidoptera: Cossidae) populations in olive trees in Egypt through mating disruption.

    Science.gov (United States)

    Hegazi, E M; Khafagi, W E; Konstantopoulou, M A; Schlyter, F; Raptopoulos, D; Shweil, S; Abd El-Rahman, S; Atwa, A; Ali, S E; Tawfik, H

    2010-10-01

    The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.

  18. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths.

    Science.gov (United States)

    Liu, Yongqiang; Gao, Yu; Liang, Gemei; Lu, Yanhui

    2017-01-01

    Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species.

  19. Effect of gamma radiation and entomopathogenic nematodes on greater wax moth, Galleria mellonella (Linnaeus) [Lep., Pyralidae

    International Nuclear Information System (INIS)

    Ali, R.M.S.

    2008-01-01

    The greater wax moth, Galleria mellonella (L.), is a lepidoptera insect; its larval stage, feeds on wax and pollen stored in combs of active honey bee colonies (Milam, 1970). It does not attack adult bees but destructs combs of a weak colony by chewing the comb; spinning silk-lined tunnels through the cell wall and over the face of the comb, which prevent the bees to emerge by their abdomen from their cell, so they die by starvation as they unable to escape from their cell. They also eat out a place to spin their cocoons in the soft wood of the bee hive. Galleria mellonella can also destroy stored honey combs. Therefore, it is considered a major pest of the honeybee. Damage will vary with the level of infestation and the time that has elapsed since the infestation first began. In time, stored combs may be completely destroyed and the frames and combs become filled with a mass of tough, silky web. In ideal conditions for wax moth development, a box (super) of combs may be rendered useless in about a week. Damage occurs mainly in the warm and hot months of the year when wax moths are most active. However, considerable damage can still occur during the cool part of late autumn and early spring as greater wax moth can produce a large amount of metabolic heat which can raise the immediate temperature around them by up to 25 degree C above the normal environment temperature. At the time of storage, combs that are apparently free of wax moth may contain eggs that will hatch later. They should be monitored

  20. Rapid assessment on macro-moth fauna at Nusa Barong Nature Reserve: a low diversity

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2012-02-01

    Full Text Available Rapid assessment on moth faunas with focus on macro-moths was conducted at Nusa Barong Nature Reserve. The aims of the study were to acquire information of macro-moth diversity and to access the composition of the species at this area by comparing data from Meru Betiri National Park, Sebangau National Park and Busang forest. The results showed that the number of species at Nusa Barong, Meru Betiri, Sebangau and Busang were 47, 75, 97 and 297, respectively. The diversity of macro-moth fauna based on William’s α index at Nusa Barong was the lowest as compared to Meru Betiri National Park, Sebangau National Park and Busang forest, which were 34.58, 65.01, 50.91 and 102.08, respectively. The results also show that the similarity based on Jaccard’s index of the binary comparison varies from 0.029 to 0.089. The highest value was the comparison between Nusa Barong and Meru Betiri while the lowest was the comparison between Nusa Barong and Sebangau. In addition, Pyralidae, Geometridae and Noctuidae were dominant across all sites. At Nusa Barong, only 10 species that have been known their host plants; three of them caused damage to some crops, namely, Conogethes punctiferalis, Cydalima laticostalis and Achaea janata. There might be more species that have not been found during this study as indicated by the species numbers across all sites have not reach a plateau. This study clearly showed us that floral diversity and size of area determined the diversity of macro-moths at Nusa Barong Nature Reserve.

  1. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  2. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  3. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  4. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  5. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  6. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  7. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  8. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Science.gov (United States)

    Llewellyn, Amy; Foey, Andrew

    2017-01-01

    There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562

  9. Garden and Landscape-Scale Correlates of Moths of Differing Conservation Status: Significant Effects of Urbanization and Habitat Diversity

    Science.gov (United States)

    Bates, Adam J.; Sadler, Jon P.; Grundy, Dave; Lowe, Norman; Davis, George; Baker, David; Bridge, Malcolm; Freestone, Roger; Gardner, David; Gibson, Chris; Hemming, Robin; Howarth, Stephen; Orridge, Steve; Shaw, Mark; Tams, Tom; Young, Heather

    2014-01-01

    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1) that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution) across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2) that urban areas can act as ecological traps for some vulnerable species of

  10. Chemical ecology of moths: Role of semiochemicals in host location by Ectomyelois ceratoniae and mate guarding by Heliothis virescens

    OpenAIRE

    Hosseini, S.A.

    2017-01-01

    Semiochemical-based behavioral manipulation has been increasingly implemented in Integrated Pest Management (IPM) as an environmentally friendly strategy. For many pest species, however, efficient methods have yet to be developed. An efficient sex pheromone attractant is missing in management of the carob moth, Ectomyelois ceratoniae, a devastating fruit pest, because the major pheromone component is unstable. To explore the use of host-plant volatiles to attract carob moths, the pomegranate-...

  11. Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, Plutella xyllostella

    OpenAIRE

    Sun, Mengjing; Liu, Yang; Walker, William B.; Liu, Chengcheng; Lin, Kejian; Gu, Shaohua; Zhang, Yongjun; Zhou, Jingjiang; Wang, Guirong

    2013-01-01

    Moths depend on olfactory cues such as sex pheromones to find and recognize mating partners. Pheromone receptors (PRs) and Pheromone binding proteins (PBPs) are thought to be associated with olfactory signal transduction of pheromonal compounds in peripheral olfactory reception. Here six candidate pheromone receptor genes in the diamondback moth, Plutella xyllostella were identified and cloned. All of the six candidate PR genes display male-biased expression, which is a typical characteristic...

  12. Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity.

    Directory of Open Access Journals (Sweden)

    Adam J Bates

    Full Text Available Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1 that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2 that urban areas can act as ecological traps for some

  13. Preliminary assessment of the moth (Lepidoptera: Heterocera) fauna of Rincon de Guadalupe, Sierra de Bacadehuachi, Sonora, Mexico

    Science.gov (United States)

    John D. Palting

    2013-01-01

    The Sierra de Bacadéhuachi is a poorly sampled extension of the Sierra Madre Occidental (SMO) located in east-central Sonora near the town of Bacadéhuachi. Sampling of moths using mercury vapor and ultraviolet lights occurred in summer and fall 2011, and spring 2012 at Rincón de Guadalupe, located in pine-oak forest at 1680 m elevation. Approximately 400 taxa of moths...

  14. Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction

    International Nuclear Information System (INIS)

    Hong, Eun-Ju; Byeon, Kyeong-Jae; Park, Hyoungwon; Hwang, Jaeyeon; Lee, Heon; Choi, Kyungwoo; Jung, Gun Young

    2009-01-01

    Moth-eye structures were produced on a p-GaN top cladding layer by UV imprint and inductively coupled plasma (ICP) etch processes in order to improve the light extraction efficiency of GaN-based green light-emitting diodes (LEDs). The height and shape of moth-eye structures were adjusted by controlling the thickness of Cr mask layer and ICP etching time. The transmittance of LED device stacks with moth-eye structure was increased up to 1.5-2.5 times, compared to identical LED sample without moth-eye structure and the intensity of photoluminescence from the InGaN multi-quantum well layer of LED sample with moth-eye structure was 5-7 times higher than that of the LED sample without the moth-eye structure.

  15. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  16. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  17. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    Science.gov (United States)

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  18. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  19. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  20. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses

    OpenAIRE

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-01-01

    Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesi...

  1. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  2. Potential for Using Acetic Acid Plus Pear Ester Combination Lures to Monitor Codling Moth in an SIT Program

    Directory of Open Access Journals (Sweden)

    Gary J. R. Judd

    2016-11-01

    Full Text Available Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-(E,Z-2,4-decadienoate, pear ester (PE, with either acetic acid (AA or sex pheromone, (E,E-8,10-dodecadien-1-ol (codlemone, might improve monitoring of codling moth, Cydia pomonella (L., in an area-wide programme integrating sterile insect technology (SIT and mating disruption (MD. Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild, AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA, and to catches of males with standard codlemone-loaded septa used in SIT (1 mg and MD (10 mg programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2–3× more females than CM-DA lures under both management systems. Sterile to wild (S:W ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using

  3. Lethality of gamma radiation and malathion to the indian meal moth, plodia interpunctella

    International Nuclear Information System (INIS)

    Eesa, N.M.; Moursy, L.E.

    1991-01-01

    The lethality of gamma radiation and the organo phosphorous insecticide, malathion, as well as the combined action of both was determined for the five larval instars of the indian meal moth, plodia interpunctella (Hubner). The younger instars were more susceptible to both gamma radiation and malathion. The L D 50 values of gamma radiation increased gradually with the instar. Malathion was highly toxic to the first four instars, but the fifth instar required a much larger dose. Gamma radiation combined with malathion at the L D 25 values was antagonistic when evaluated against each of the five larval instars of the indian meal moth. Thus, the use of gamma radiation with malathion does not seem to be a promising control strategy. However, further research investigations are needed to confirm this finding.3 tab

  4. Effect of substerilization doses of radiation on the biology of diamondback moth

    International Nuclear Information System (INIS)

    Omar, D.; Mansor, M.

    1993-01-01

    The pupae of the diamondback moth, Plutella xylostella, were exposed to four substerilizing doses (100, 150, 200 and 250 Gy) of gamma radiation. The fecundity, sterility and progeny development of parental crosses and certain F 1 backcrosses (progeny of irradiated males) were studied in the laboratory. All doses caused sterility in the parental crosses and F 1 backcrosses. Doses above 20 Gy greatly affected the development of larvae in parental crosses of irradiated females with normal males and of irradiated males with irradiated females, as no pupation was observed. The study indicated that a dose between 150 and 200 Gy would be suitable for inherited sterility of the diamondback moth. However, the backcross of progeny from irradiated males showed no significant increase in inheritance of deleterious effects. (author). 10 refs, 7 tabs

  5. Phenology of the adult angel lichen moth (Cisthene angelus) in Grand Canyon, USA

    Science.gov (United States)

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    We investigated the phenology of adult angel lichen moths (Cisthene angelus) along a 364-km long segment of the Colorado River in Grand Canyon, Arizona, USA, using a unique data set of 2,437 light-trap samples collected by citizen scientists. We found that adults of C. angelus were bivoltine from 2012 to 2014. We quantified plasticity in wing lengths and sex ratios among the two generations and across a 545-m elevation gradient. We found that abundance, but not wing length, increased at lower elevations and that the two generations differed in size and sex distributions. Our results shed light on the life history and morphology of a common, but poorly known, species of moth endemic to the southwestern United States and Mexico.

  6. Fluorescent SiC with pseudo-periodic moth-eye structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Ou, Haiyan

    2012-01-01

    White light-emitting diodes (LEDs) consisting of a nitride-based blue LED chip and phosphor are very promising candidates for the general lighting applications as energy-saving sources. Recently, donor-acceptor doped fluorescent SiC has been proven as a highly efficient wavelength converter...... to enhance the extraction efficiency, we present a simple method to fabricate the pseudo-periodic moth-eye structures on the surface of the fluorescent SiC. A thin gold layer is deposited on the fluorescent SiC first. Then the thin gold layer is treated by rapid thermal processing. After annealing, the thin...... gold layer turns into discontinuous nano-islands. The average size of the islands is dependent on the annealing condition which could be well controlled. By using the reactive-ion etching, pseudo-periodic moth-eye structures would be obtained using the gold nano-islands as a mask layer. Reactive...

  7. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator

  8. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses...

  9. De novo transcriptome assembly and its annotation for the aposematic wood tiger moth (Parasemia plantaginis

    Directory of Open Access Journals (Sweden)

    Juan A. Galarza

    2017-06-01

    Full Text Available In this paper we report the public availability of transcriptome resources for the aposematic wood tiger moth (Parasemia plantaginis. A comprehensive assembly methods, quality statistics, and annotation are provided. This reference transcriptome may serve as a useful resource for investigating functional gene activity in aposematic Lepidopteran species. All data is freely available at the European Nucleotide Archive (http://www.ebi.ac.uk/ena under study accession number: PRJEB14172.

  10. Synthesis of the Sex Pheromone of the Tea Tussock Moth Based on a Resource Chemistry Strategy

    Directory of Open Access Journals (Sweden)

    Hong-Li Zhang

    2018-06-01

    Full Text Available Synthesis of the sex pheromone of the tea tussock moth in 33% overall yield over 10 steps was achieved. Moreover, the chiral pool concept was applied in the asymmetric synthesis. The synthesis used a chemical available on a large-scale from recycling of wastewater from the steroid industry. The carbon skeleton was constructed using the C4+C5+C8 strategy. Based on this strategy, the original chiral center was totally retained.

  11. Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

    Science.gov (United States)

    Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C

    2014-10-01

    Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®

  12. Moth and carabid beetle species associated with two ecological phases in northern Michigan.

    Science.gov (United States)

    Timothy T. Work; Deborah G. McCullough; William J. Mattson

    1998-01-01

    More than 12,300 moths and 2,500 carabid beetles were trapped during 3 years (1993 through 1995) in two different ecological land type phases (ELTP's) in the Huron-Manistee National Forest in Michigan. One ELTP (no. 20) was dominated by oaks, and the other (no. 45) was dominated by sugar maple; each had distinctive kinds of insects, in spite of the fact that many...

  13. Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe.

    Science.gov (United States)

    Andersen, Jeremy C; Havill, Nathan P; Caccone, Adalgisa; Elkinton, Joseph S

    2017-05-01

    Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the "southern richness, northern purity" paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth ( Operophtera brumata ), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well-established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the "southern richness, northern purity" paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long-distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west-to-east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.

  14. Phase-dependent outbreak dynamics of geometrid moth linked to host plant phenology.

    Science.gov (United States)

    Jepsen, Jane U; Hagen, Snorre B; Karlsen, Stein-Rune; Ims, Rolf A

    2009-12-07

    Climatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent. We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000-2008). We use satellite-derived time series of the prevalence of moth defoliation and the onset of the growing season for the entire region to investigate the link between the patterns of defoliation and outbreak spread. In addition, we examine whether a phase-dependent coherence in the pattern of spatial synchrony exists between defoliation and onset of the growing season, in order to evaluate if the degree of matching phenology between the moth and their host plant could be the mechanism behind a Moran effect. The strength of regional spatial synchrony in defoliation and the pattern of defoliation spread were both highly phase-dependent. The incipient phase of the outbreak was characterized by high regional synchrony in defoliation and long spread distances, compared with the epidemic and crash phase. Defoliation spread was best described using a two-scale stratified spread model, suggesting that defoliation spread is governed by two processes operating at different spatial scale. The pattern of phase-dependent spatial synchrony was coherent in both defoliation and onset of the growing season. This suggests that the timing of spring phenology plays a role in the large-scale synchronization of birch forest moth outbreaks.

  15. Studies on F1 radiation sterilization of diamondback moth and mulberry wild silkworm

    International Nuclear Information System (INIS)

    Yang Rongxing; Xia Darong; Cu Weiping; Chu Jiming; Zhang Yanjun

    1993-01-01

    The study began in 1988 under the aegis of the FAO/IAEA co-ordinated research programme on Radiation Induced F 1 Sterility in Lepidoptera for Area-Wide Control. During the following four years the control of the mulberry wild silkworm (Bombyx mandarina Moore) and the diamondback moth (Plutella xylostella L.) by means of radiation induced sterility was studied. (author). 4 refs, 9 figs, 6 tabs

  16. Five functional adipokinetic peptides expressed in the corpus cardiacum of the moth genus Hippotion (Lepidoptera, Sphingidae)

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Clark, K. D.; Marco, H. G.

    2013-01-01

    Roč. 184, JUN 10 (2013), s. 85-95 ISSN 0167-0115 R&D Projects: GA MZd(CZ) NT11513 Grant - others:National Research Foundation(ZA) FA2008071500048 Institutional support: RVO:60077344 Keywords : Sphingidae * common striped hawk moth * Hippotion eson Subject RIV: ED - Physiology Impact factor: 2.014, year: 2013 http://www.sciencedirect.com/science/article/pii/S0167011513000670

  17. Activity of Bacillus thuringiensis D(delta)-endotoxins against codling moth (Cydia pomonella L.) larvae

    NARCIS (Netherlands)

    Boncheva, R.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.; Naimov, S.

    2006-01-01

    Solubilized protoxins of nine Cry1 and one hybrid Cry1 ¿-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still

  18. Risk assessment of the jasmine moth Palpita vitrealis (Rossi) amplified by a contaminant ?

    OpenAIRE

    Mateus, Helena; Pereira, Cândido; Cardoso, Miguel; Manteigas, Ana; Sequeira, Manuel; Figueiredo, Elisabete; Luz, João Pedro; Mexia, António

    2012-01-01

    Jasmine moth population was monitored in olive groves in Cova da Beira, using traps baited with three commercial formulations of pheromone: Russell (in tricoloured funnel traps), SEDQ and Suterra (both in delta traps). Counts were carried out weekly from March to November 2010 for SEDQ’s pheromone and from September to November for Russell’s and Suterra´s pheromones. The scouts ranged among 0 and 4 insects/trap/ week. A contaminant Lepidoptera species, not yet...

  19. Decline of a Rare Moth at Its Last Known English Site: Causes and Lessons for Conservation.

    Directory of Open Access Journals (Sweden)

    David Baker

    Full Text Available The conditions required by rare species are often only approximately known. Monitoring such species over time can help refine management of their protected areas. We report population trends of a rare moth, the Dark Bordered Beauty Epione vespertaria (Linnaeus, 1767 (Lepidoptera: Geometridae at its last known English site on a protected lowland heath, and those of its host-plant, Salix repens (L. (Malpighiales: Salicaceae. Between 2007 and 2014, adult moth density reduced by an average of 30-35% annually over the monitored area, and its range over the monitored area contracted in concert. By comparing data from before this decline (2005 with data taken in 2013, we show that the density of host-plants over the monitored area reduced three-fold overall, and ten-fold in the areas of highest host-plant density. In addition, plants were significantly smaller in 2013. In 2005, moth larvae tended to be found on plants that were significantly larger than average at the time. By 2013, far fewer plants were of an equivalent size. This suggests that the rapid decline of the moth population coincides with, and is likely driven by, changes in the host-plant population. Why the host-plant population has changed remains less certain, but fire, frost damage and grazing damage have probably contributed. It is likely that a reduction in grazing pressure in parts of the site would aid host-plant recovery, although grazing remains an important site management activity. Our work confirms the value of constant monitoring of rare or priority insect species, of the risks posed to species with few populations even when their populations are large, of the potential conflict between bespoke management for species and generic management of habitats, and hence the value of refining our knowledge of rare species' requirements so that their needs can be incorporated into the management of protected areas.

  20. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella

    OpenAIRE

    Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki

    2013-01-01

    Background The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to fa...

  1. Do saproxylic beetles respond numerically to rapid changes in dead wood availability following moth outbreaks?

    OpenAIRE

    Schultze, Sabrina

    2012-01-01

    Outbreaks of defoliating insects periodically cause mass mortality of trees, thereby generating pulses of dead wood resources for saproxylic (i.e. dead-wood dependent) organisms. This study investigated the responses of saproxylic beetles to a dead wood resource pulse caused by recent (2001-2009) outbreaks of geometrid moths in the subarctic mountain birch forest of the Varanger region in northern Norway. A large scale (20 km) transect design, implementing window (flight interception) traps a...

  2. Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA

    Directory of Open Access Journals (Sweden)

    Shawn A. Steffan

    2017-02-01

    Full Text Available The cranberry fruitworm (Acrobasis vaccinii Riley, sparganothis fruitworm (Sparganothis sulfureana Clemens, and blackheaded fireworm (Rhopobota naevana Hübner are historically significant pests of cranberries (Vaccinium macrocarpon Aiton in the Upper Midwest (Wisconsin, USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant’s developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.

  3. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  4. The role of extracellular vesicles when innate meets adaptive.

    Science.gov (United States)

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  5. Innate immunity in the lung regulates the development of asthma.

    Science.gov (United States)

    DeKruyff, Rosemarie H; Yu, Sanhong; Kim, Hye Young; Umetsu, Dale T

    2014-07-01

    The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  7. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  8. Innate lymphoid cells and parasites: Ancient foes with shared history.

    Science.gov (United States)

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  9. Innate immune factors associated with HIV-1 transmission

    NARCIS (Netherlands)

    Pollakis, Georgios; Stax, Martijn J.; Paxton, William A.

    2011-01-01

    Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response

  10. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune

  11. Developmental acquisition of regulomes underlies innate lymphoid cell functionality

    Science.gov (United States)

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...

  12. Innate lymphoid cells--a proposal for uniform nomenclature

    NARCIS (Netherlands)

    Spits, Hergen; Artis, David; Colonna, Marco; Diefenbach, Andreas; Di Santo, James P.; Eberl, Gerard; Koyasu, Shigeo; Locksley, Richard M.; McKenzie, Andrew N. J.; Mebius, Reina E.; Powrie, Fiona; Vivier, Eric

    2013-01-01

    Innate lymphoid cells (ILCs) are a family of developmentally related cells that are involved in immunity and in tissue development and remodelling. Recent research has identified several distinct members of this family. Confusingly, many different names have been used to characterize these newly

  13. Innate lymphoid cells: the new kids on the block.

    Science.gov (United States)

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  14. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  15. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases

    NARCIS (Netherlands)

    Shikhagaie, Medya M.; Germar, Kristine; Bal, Suzanne M.; Ros, Xavier Romero; Spits, Hergen

    2017-01-01

    Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8(+) T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and

  16. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  17. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  18. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  19. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive ...

  20. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    Science.gov (United States)

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  1. Sex-specific consequences of an induced immune response on reproduction in a moth.

    Science.gov (United States)

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  2. Control of the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae by the male sterile technique (MST

    Directory of Open Access Journals (Sweden)

    Jafari Reza

    2010-01-01

    Full Text Available In this study we examined the control of wax moth using the male sterile technique (MST with gamma-rays. To determine the safe and effective dosage of gamma-rays capable of sterilizing male pupae of the wax moth, male pupae were exposed to increasing single doses of gamma-rays (250, 300, 350 and 400 Gy. The release ratio of sterile to normal males was also studied in a similar experiment. Treatments included sterile males, normal males and virgin females at the following ratios: 1:1:1, 2:1:1, 3:1:1, 4:1:1 and 5:1:1. Possible parthenogenetic reproduction of this pest was also examined. The results showed that 350 Gy was the most effective dose capable of sterilizing the male pupae of the wax moth. The best release ratio was established at four sterile males, one normal male for each normal female (4:1:1. Also females were incapable of producing offspring without males.

  3. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples

    Directory of Open Access Journals (Sweden)

    Yong-Biao Liu

    2016-12-01

    Full Text Available Nitric oxide (NO fumigation under ultralow oxygen (ULO conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  4. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples.

    Science.gov (United States)

    Liu, Yong-Biao; Yang, Xiangbing; Simmons, Gregory

    2016-12-02

    Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  5. Genetic diversity of six isolated populations of the leopard moth, Zeuzera pyrina (Lep: Zeuzeridae

    Directory of Open Access Journals (Sweden)

    Raheleh Dolati

    2017-03-01

    Full Text Available The leopard moth, Zeuzera pyrina (Lep: Zeuzeridae, is an important pest of a wide range of trees and shrubs including walnut and apple across the world. The natural populations of the leopard moth in different geographical areas of Iran show significant differences in some of their biological characteristics such as time of emergence, generation time and host specificity. So, we hypothesized that these populations may represent different subspecies that move toward a speciation event in their evolutionary route. In this study, we evaluated the genetic diversity of six different geographically isolated populations of the leopard moth using the sequence alignment of cytochrome oxidase c subunit one (COI. A fragment of 642 base pairs was amplified in all six populations and the phylogenetic tree was created based on sequenced fragments. Our results revealed significant differences in the nucleotide sequence of COI gene in these populations. Differences in climatic conditions of these regions seem to be the most powerful force driving this diversity among the studied populations.

  6. The gene cortex controls mimicry and crypsis in butterflies and moths.

    Science.gov (United States)

    Nadeau, Nicola J; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan A; Saenko, Suzanne V; Wallbank, Richard W R; Wu, Grace C; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J; Hines, Heather; Salazar, Camilo; Merrill, Richard M; Dowling, Andrea J; ffrench-Constant, Richard H; Llaurens, Violaine; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D

    2016-06-02

    The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.

  7. A major gene controls mimicry and crypsis in butterflies and moths

    Science.gov (United States)

    Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285

  8. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  9. Forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae mate-finding behavior is greatest at intermediate population densities: Implications for interpretation of moth capture in pheromone-baited traps.

    Directory of Open Access Journals (Sweden)

    Maya L. Evenden

    2015-07-01

    Full Text Available The forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae is a native forest defoliator with a broad geographic range in North America. Forest tent caterpillars experience cyclical population changes and at high densities, repeated defoliation can cause reduced tree growth and tree mortality. Pheromone-based monitoring of forest tent caterpillar moths can provide information on spatial and temporal patterns of incipient outbreaks. Pheromone-baited trap capture of male moths correlates to the number of eggs and pupae in a population but this relationship breaks down at high population densities, when moth trap capture declines. The objective of the current study is to understand the mechanisms that reduce trap capture at high population densities. We tested two different hypotheses: 1 at high population densities, male moth orientation to pheromone sources is reduced due to competition for pheromone plumes; and 2 moths from high density populations will be in poor condition and less likely to conduct mate-finding behaviors than moths from low density populations. A field study showed non-linear effects of density on male moth capture in female-baited traps. The number of males captured increased up to an intermediate density level and declined at the highest densities. Field cage studies showed that female moth density affected male moth orientation to female-baited traps, as more males were recaptured at low than high female densities. There was no effect of male density on the proportion of males that oriented to female-baited traps. Moth condition was manipulated by varying larval food quantity. Although feeding regimes affected the moth condition (size, there was no evidence of an effect of condition on mate finding or close range mating behavior. In the field, it is likely that competition for pheromone plumes at high female densities during population outbreaks reduces the efficacy of pheromone-baited monitoring

  10. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune recognition... of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  11. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  12. Functional differences between human NKp44(-) and NKp44(+) RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    Hoorweg, Kerim; Peters, Charlotte P.; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M.; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human

  13. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  14. Age-Dependent Developmental Response to Temperature: An Examination of the Rarely Tested Phenomenon in Two Species (Gypsy Moth (Lymantria dispar and Winter Moth (Operophtera brumata

    Directory of Open Access Journals (Sweden)

    David R. Gray

    2018-04-01

    Full Text Available The pervading paradigm in insect phenology models is that the response to a given temperature does not vary within a life stage. The developmental rate functions that have been developed for general use, or for specific insects, have for the most part been temperature-dependent but not age-dependent, except where age is an ordinal variable designating the larval instar. Age dependence, where age is a continuous variable, is not often reported (or investigated, and is rarely included in phenology models. I provide a short review of the seldom-investigated phenomenon of age dependence in developmental response to temperature, and compare the derivation of the winter moth egg phenology model by Salis et al. to the derivation of another egg phenology model with age-dependent responses to temperature I discuss some probable reasons for the discrepancies (acknowledged by Salis et al. between modelled and observed developmental rates of the winter moth, and discuss the contribution that geographically robust phenology models can make to estimates of species distributions.

  15. Box Tree Moth (Cydalima perspectalis, Lepidoptera; Crambidae, New Invasive Insect Pest in Croatia

    Directory of Open Access Journals (Sweden)

    Dinka Matošević

    2013-12-01

    Full Text Available Background and Purpose: Alien invasive species have been described as an outstanding global problem. Hundreds of species are intentionally and unintentionally moved worldwide and and numbers of introductions to new habitats have been accelerated all over the world due to the increasing mobility of people and goods over the past decades. Numerous alien insect species, many of them introduced only in the last 20 years, have become successfully established in various ecosystems in Croatia. Box tree moth (Cydalima perspectalis, Lepidoptera; Crambidae is an invasive pest recently introduced to Europe causing serious damage to ornamental box (Buxus sp. shrubs and trees. The aim of this paper is to describe the biology of box tree moth with prognosis of its future spread and damages in Croatia. Material and Methods: Young larvae (first and second larval stage and adults of box tree moth were collected in August and September 2013 in Arboretum Opeka and in Varaždin. They were brought to the entomological laboratory of Croatian Forest Research Institute where they were reared to pupae and then to moths. Results and Conclusions: The box tree moth was recorded for the first time in North Croatia in August 2013. Larvae were found defoliating box plants (B. sempervirens in Arboretum Opeka, Vinica and they have been identified as C. prespectalis. According to damages it can be assumed that the pest has been introduced to the region earlier (in 2011 or 2012 and that the primary infection has not been detected. At least two generations per year could be assumed in Croatia in 2013. The damage done to box tree plants on the locality of study is serious. The plants have been defoliated, particularly in the lower parts. The defoliation reduced the amenity value of plants. This is the first record of this pest and its damages in Northern Croatia and it can be expected that the pest will rapidly spread to other parts of Croatia seriously damaging box plants

  16. Synergistic Effect of Combining Plutella xylostella Granulovirus and Bacillus thuringiensis at Sublethal Dosages on Controlling of Diamondback Moth (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Han, Guangjie; Li, Chuanming; Liu, Qin; Xu, Jian

    2015-10-01

    Plutella xylostella granulovirus (PxGV) and Bacillus thuringiensis (Bt) are both entomo-pathogens to the diamondback moth, Plutella xylostella (L.). The purpose of the present study was to measure the effect of the combination of PxGV and Bt at sublethal dosages on the development and mortality of diamondback moth in a laboratory setting. Bt and PxGV exhibited synergistic effect on diamondback moth larval mortality and effectively controlled diamondback moth populations with low dose combination treatment. The combination of three parts per million Bt and 1.3 × 10(3) occlusion bodies per milliliter of PxGV revealed a higher larval mortality compared with the treatment of Bt or PxGV alone. Combination of Bt and PxGV at sublethal concentrations also increased larval duration, reduced oviposition and decreased adult longevity remarkably, resulting in the lowest population trend index among the treatments. The results suggested that the combination of Bt and PxGV at sublethal dosages might provide a valuable way to improve the control efficacy of diamondback moth compared with treatment of Bt or PxGV alone. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    Science.gov (United States)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-07-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.

  18. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    International Nuclear Information System (INIS)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-01-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes. (paper)

  19. CRISPR/Cas9 editing of the codling moth (Lepidoptera: Tortricidae) CpomOR1 gene affects egg production and viability

    Science.gov (United States)

    The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest of pome fruit worldwide. The inclusion of semiochemicals, including the main sex pheromone (codlemone), in codling moth IPM programs has drastically reduced the amount of chemical insecticides needed to control this ...

  20. Addition of pear ester enhances disruption of mating by female codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with meso dispensers

    Science.gov (United States)

    The success of applying low rates (50 ha-1) of dispensers to achieve disruption of adult communication of codling moth, Cydia pomonella (L)., in walnuts, Juglans regia (L.),was evaluated with several methods. These included cumulative catches of male moths in traps baited with either sex pheromone (...

  1. An insect out of control? The potential for spread and establishment of the gypsy moth in new forest areas in the United States

    Science.gov (United States)

    Max W. McFadden; Michael E. McManus

    1991-01-01

    The gypsy moth, Lymantria dispar L., was introduced from Europe into North America near Boston, Massachusetts, in 1869, and is now well established as a serious defoliator of forest, shade, and fruit trees over much of the eastern United States. Despite substantial efforts to eradicate, contain, or control this pest, the gypsy moth has persisted and...

  2. NEW DATA ON COMPARATIVE ANALYSIS OF NOCTUID MOTHS (LEPIDOPTERA, NOCTUIDAE OF THE ISLANDS TULENEI, CHECHEN AND NORDOVIY OF THE NORTH-WESTERN CASPIAN SEA

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2012-01-01

    Full Text Available The work gives the species composition and geographical distribution of the noctuid moths (Lepidoptera,Noctuidae of the islands Tulenei, Chechen and Nordoviy of the north-western Caspian sea. Provides a list of common species of moths for all three of the Islands, as well as the list of rare with small populations of species.

  3. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  4. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  5. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    Science.gov (United States)

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  6. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  7. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  8. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  9. Characterization of innate immune activity in Phrynops geoffroanus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-12-01

    Full Text Available The innate immune activity of the freshwater turtle Phrynops geoffroanus (Schweigger, 1812 was investigated, using a sheep-red-blood cell hemolysis assay. The time- and concentration-dependent hemolytic activity of the turtle plasma was low compared to that reported for other reptiles. However the plasma of P. geoffroanus exhibited higher activity at elevated temperatures, resulting in temperature-dependent hemolysis. The sensitivity of turtle plasma to temperature could be interpreted as a mechanism by which freshwater turtles use basking behavior to elevate body temperature, thus enhancing the innate immune response. However, we cannot discard the possibility that environmental contaminants could be affecting the turtle's immune response, since the animals in this investigation were captured in a polluted watercourse.

  10. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  11. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  12. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  13. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases. © 2014 John Wiley & Sons Ltd.

  15. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  16. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  17. European grapevine moth (Lobesia botrana Denis and Schiff. (Lepidoptera: Totricidae – occurence and management in Istrian vineyards

    Directory of Open Access Journals (Sweden)

    Renata Bažok

    2016-02-01

    Full Text Available The aim of this paper was to identify European grapevine moths (Lobesia botrana Denis and Schiff. flight dynamics, larvae occurrence and degree-day accumulations (DDA for each moth generation in two Istrian vineyards with different pest management practices. The moth has developed three generations. During the third generation there was a significant flight peak in the vineyard without pest management. Predictions about larvae number and possible damage must be based on both, visual monitoring of grapevine and weekly adults catch. Developmental time with lower thermal threshold of 7 °C was calculated. The flight of the first generation was between 217.9 and 406.6 °C, second generation between 786.3 and 1329.8 °C, third generation between 1452.8 and 2108.2 °C.

  18. Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrate

    International Nuclear Information System (INIS)

    Liu, Chia-Hsing; Niu, Pei-Lun; Sung, Cheng-Kuo

    2014-01-01

    This paper proposes an ultraviolet nanoimprint lithography (UV-NIL) roll-to-roll (R2R) process with argon and oxygen (Ar–O 2 ) plasma ashing and coating of a dilute perfluorodecyltrichlorosilane (FDTS) layer to fabricate the large-area moth-eye-like surface morphology on a polyethylene terephthalate substrate. By using Maxwell-Garnett's effective medium theory, the optimal dimensions of the moth-eye-like surface morphology was designed and fabricated with UV-NIL R2R process to obtain maximum transmittance ratio. In addition, the base angle (θ = 30.1°) of the moth-eye-like surface morphology was modified with Ar–O 2 plasma ashing and coated with a dilute FDTS layer to possess both superhydrophobic and air-retention properties. This increases both the transmittance ratio of 4% and contact angle to 153°. (paper)

  19. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata

    International Nuclear Information System (INIS)

    Ooik, Tapio van; Rantala, Markus J.; Saloniemi, Irma

    2007-01-01

    The potential capacity of larval growth and immune response traits of the autumnal moth to adapt to heavy metal polluted environment was tested experimentally. Both the relative growth rate (RGR) and pupal weight were significantly higher in control trees than on polluted trees, indicating that metal pollution prevented the insect from achieving maximal growth on birch leaves. Larval growth rates of different broods differed significantly between metal contaminated and control birches. However, pupal weight of broods, which is considered more important for fitness than growth rate, in response to pollution did not differ. Immune response was significantly higher in moths exposed to pollution than in moths that were exposed to control environment suggesting that pollution enhances the immune defense of defoliators. Encapsulation rate tended to differ between broods indicating that the immune function has potential to respond to selection. - Immune function of an insect herbivore increased in heavy metal polluted environment and some insect traits showed potential to adapt to polluted environment

  20. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    Science.gov (United States)

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  1. The Role of Innate Immune System Receptors in Epilepsy Research.

    Science.gov (United States)

    Cordero-Arreola, Jessica; West, Rachel M; Mendoza-Torreblanca, Julieta; Mendez-Hernandez, Edna; Salas-Pacheco, Jose; Menendez-Gonzalez, Manuel; Freire, Rafael C; Machado, Sergio; Murillo-Rodriguez, Eric; Nardi, Antonio E; Arias-Carrion, Oscar

    2017-01-01

    Epilepsy is one of the most complex neurological disorders and its study requires a broad knowledge of neurology and neuroscience. It comprises a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures, and are often accompanied by cognitive deficits and mood disorder. This condition is one of the most common neurological disorders. Until recently, alterations of neuronal activities had been the focus of epilepsy research. This neurocentric emphasis did not address issues that arise in more complex models of epileptogenesis. An important factor in epilepsy that is not regulated directly by neurons is inflammation and the immune response of the brain. Recent evidence obtained in rodent epilepsy models supports the role of immune responses in the initiation and maintenance of epilepsy. Recognition of exogenous pathogens by the innate immune system is mediated by some pattern recognition receptors such as Toll-like receptors leading to cell activation and cytokine production. Currently, these receptors have been the focus of epilepsy studies looking to determine whether the innate immune activation is neuroprotective or neurotoxic for the brain. Here, we present the evidence in the literature of the involvement of key innate immune receptors in the development of epilepsy. We address some of the contradictory findings in these studies and also mention possible avenues for research into epilepsy treatments that target these receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  3. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  4. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  6. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    Science.gov (United States)

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  8. Emerging concepts and future challenges in innate lymphoid cell biology

    Science.gov (United States)

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  9. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  10. Consultants Group Meeting on Improvement of Codling Moth SIT to Facilitate Expansion of Field Application. Working Material

    International Nuclear Information System (INIS)

    2000-01-01

    SIT currently has only limited application in Lepidoptera control. Prospects for improvement of the technique however are good, and the species with the best immediate prospect is the codling moth (Cydia pomonella). Codling moth is the key pest of most apple and pear orchards in the world and the cause of intensive insecticide use during the whole fruiting season. As a result of increasing development of insecticide resistance in codling moth, the banning of essential insecticides, as well as public concerns about the environment and food safety, the Subprogramme continues to receive enquiries from a number of countries as to the applicability of SIT as a suppression method for this species. SIT is currently used as part of areawide codling moth control in British Columbia, Canada and in the border area with Washington State, USA. The SIT can be integrated with a number of other techniques, including mating disruption as in the trial in Washington State. The Canadian programme is co-funded by growers, local and national government. The programme is proving effective at controlling the moth in an environmental friendly way. Currently the programme is only financially attractive with government subsidy although in view of the replacement of insecticide use with SIT, growers will be able to access the rapidly growing and very lucrative market for organic fruit. A new CRP is proposed with the objective of improving the efficiency of all stages of the SIT for codling moth. This will cover reducing the cost of production, product and process quality control, genetic sexing, strain compatibility and field monitoring among others.

  11. Effect of early oviposition experience on host acceptance in Trichogramma (Hymenoptera: Trichogrammatidae) and application of F1 sterility and T.principium to suppress the potato tuber moth (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Saour, G.

    2009-01-01

    Laboratory experiments with Trichogramma principium Sugonyaev and Sorokina females offered potato tuber moth Phthorimaea operculella (Zeller) eggs demonstrated that wasps rates of oviposition were highest the first day and decreased gradually thereafter. In addition, when T. principium females were sequentially offered eggs from 250-Gy irradiated parents or obtained from non-irradiated moths, the probability of host acceptance was not influenced by treatment of host eggs. In a concurrent laboratory study, a large cage test with combinant releases of T. principium and 250-Gy irradiated moths produced the greatest reduction in potato tuber moth F3-emerged progeny. Reductions obtained with irradiated moths alone, single release of irradiated moths with T. principium, and one or three releases of parasitoids were significantly higher than those in the control. From a pest management perspective, T. principium releases would synergistically complement the effects of F1 sterility against potato tuber moth infestation. (author)

  12. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun

    2009-05-22

    The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.

  13. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths.

    Science.gov (United States)

    Merckx, Thomas; Kaiser, Aurélien; Van Dyck, Hans

    2018-05-23

    Urbanization involves a cocktail of human-induced rapid environmental changes and is forecasted to gain further importance. Urban-heat-island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro-moths-an insect group characterized by positive size-dispersal links-at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro-moth communities display considerable increases in community-weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro-moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization-driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size-biased filtering happens simultaneously and coherently at both the inter- and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species-specific size increases happen at local and landscape scales (50-3,200 m radius), depending on the species. Hence, measures-such as creating and improving urban green infrastructure-to mitigate the effects of urbanization on

  14. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella.

    Directory of Open Access Journals (Sweden)

    Jan Rozsypal

    Full Text Available BACKGROUND: The codling moth (Cydia pomonella is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. PRINCIPAL FINDINGS: We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately -15.3 °C during summer to -26.3 °C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to -15 °C, even in partially frozen state. CONCLUSION: Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer.

  15. Phytosanitary irradiation of peach fruit moth (Lepidoptera: Carposinidae) in apple fruits

    International Nuclear Information System (INIS)

    Zhan, Guoping; Li, Baishu; Gao, Meixu; Liu, Bo; Wang, Yuejin; Liu, Tao; Ren, Lili

    2014-01-01

    Peach fruit moth, Carposina sasakii Matsumura, is a serious pest of many pome and stone fruits and presents a quarantine problem in some export markets. It is widely distributed in pome fruit production areas in China, Japan, Korea, North Korea and the Far Eastern Federal District of Russia. In this investigation, gamma radiation dose–response tests were conducted with late eggs (5-d-old) and various larval stages, followed by large-scale confirmatory tests on the most tolerant stage in fruit, the fifth instar. The dose-response tests, with the target radiation dose of 20 (late eggs), 40, 60, 80, 100, 120, 140, and 160 Gy (late fifth instars in vitro) respectively applied to all stages, showed that the tolerance to radiation increased with increasing age and developmental stage. The fifth instar (most advanced instar in fruits) was determined to be the most tolerant stage requiring an estimated minimum absorbed dose of 208.6 Gy (95% CI: 195.0, 226.5 Gy) to prevent adult emergence at 99.9968% efficacy (95% confidence level). In the confirmatory tests, irradiation was applied to 30,850 late fifth instars in apple fruits with a target dose of 200 Gy (171.6–227.8 Gy measured), but only 4 deformed adults emerged that died 2 d afterwards without laying eggs. A dose of 228 Gy may be recommended as a phytosanitary irradiation treatment under ambient atmosphere for the control of peach fruit moth on all commodities with an efficacy of 99.9902% at 95% confidence level. - Highlights: • Dose–response tests were conducted on eggs and all larval stages. • Fifth instar is the most tolerant stage that could be shipped in fruits. • None normal-looking adult emerged from 30,850 fifth instars in confirmatory tests. • A minimum of 228 Gy is suggested for phytosanitary irradiation of peach fruit moth

  16. Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN system.

    Directory of Open Access Journals (Sweden)

    Axel Hausmann

    Full Text Available BACKGROUND: The geometrid moths of Europe are one of the best investigated insect groups in traditional taxonomy making them an ideal model group to test the accuracy of the Barcode Index Number (BIN system of BOLD (Barcode of Life Datasystems, a method that supports automated, rapid species delineation and identification. METHODOLOGY/PRINCIPAL FINDINGS: This study provides a DNA barcode library for 219 of the 249 European geometrid moth species (88% in five selected subfamilies. The data set includes COI sequences for 2130 specimens. Most species (93% were found to possess diagnostic barcode sequences at the European level while only three species pairs (3% were genetically indistinguishable in areas of sympatry. As a consequence, 97% of the European species we examined were unequivocally discriminated by barcodes within their natural areas of distribution. We found a 1:1 correspondence between BINs and traditionally recognized species for 67% of these species. Another 17% of the species (15 pairs, three triads shared BINs, while specimens from the remaining species (18% were divided among two or more BINs. Five of these species are mixtures, both sharing and splitting BINs. For 82% of the species with two or more BINs, the genetic splits involved allopatric populations, many of which have previously been hypothesized to represent distinct species or subspecies. CONCLUSIONS/SIGNIFICANCE: This study confirms the effectiveness of DNA barcoding as a tool for species identification and illustrates the potential of the BIN system to characterize formal genetic units independently of an existing classification. This suggests the system can be used to efficiently assess the biodiversity of large, poorly known assemblages of organisms. For the moths examined in this study, cases of discordance between traditionally recognized species and BINs arose from several causes including overlooked species, synonymy, and cases where DNA barcodes revealed

  17. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  18. Viruses in laboratory-reared cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae)

    International Nuclear Information System (INIS)

    Marti, O.G.; Myers, R.E.; Carpenter, J.E.; Styer, E.L.

    2007-01-01

    The cactus moth, Cactoblastis cactorum (Lepidoptera: Pyralidae: Phycitinae), is a non-native species threatening a variety of native cacti, particularly endangered species of Opuntia (Zimmerman et al. 2001), on the coast of the Gulf of Mexico. Cactoblastis cactorum populations have expanded from Florida northward along the Atlantic coast as far as Charleston, SC, and westward along the Gulf of Mexico to Dauphin Island, south of Mobile, AL. It is feared that further movement to the west will allow C. cactorum to enter the US desert Southwest and Mexico, particularly the latter. Numerous cactus species, especially those of the genera Opuntia and Nopalea, are native to the U.S. and Mexico. Local economies based on agricultural and horticultural uses of cacti could be devastated by C. cactorum (Vigueras and Portillo 2001). A bi-national control program between the US and Mexico is being developed, utilizing the sterile insect technique (SIT). In the SIT program, newly emerged moths are irradiated with a 60 Co source and released to mate with wild individuals. The radiation dose completely sterilizes the females and partially sterilizes the males. When irradiated males mate with wild females, the F1 progeny of these matings are sterile. In order for the SIT program to succeed, large numbers of moths must be reared from egg to adult on artificial diet in a quarantined rearing facility (Carpenter et al. 2001). Irradiated insects must then be released in large numbers at the leading edge of the invasive population and at times which coincide with the presence of wild individuals available for mating. Mortality from disease in the rearing colony disrupts the SIT program by reducing the numbers of insects available for release

  19. Interpretation of gypsy moth frontal advance using meteorology in a conditional algorithm.

    Science.gov (United States)

    Frank, K L; Tobin, P C; Thistle, H W; Kalkstein, Laurence S

    2013-05-01

    The gypsy moth, Lymantria dispar, is a non-native species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long-distance jumps due to anthropogenic movement of life stages is a well-documented spread mechanism. Another mechanism is the atmospheric transport of early instars and adult males, believed to occur over short distances. However, empirical gypsy moth population data continue to support the possibility of alternative methods of long-range dispersal. Such dispersal events seemed to have occurred in the mid- to late-1990s with spread across Lake Michigan to Wisconsin. Such dispersal would be against the prevailing wind flow for the area and would have crossed a significant physical barrier (Lake Michigan). The climatology of the region shows that vigorous cyclones can result in strong easterly winds in the area at the time when early instars are present. It is hypothesized that these storms would enable individuals to be blown across the Lake and explain the appearance of new population centers observed at several locations on the western shore of Lake Michigan nearly simultaneously. A synoptic climatology model coupled with population dynamics data from the area was parameterized to show an association between transport events and population spread from 1996 to 2007. This work highlights the importance of atmospheric transport events relative to the invasion dynamics of the gypsy moth, and serves as a model for understanding this mechanism of spread in other related biological invasions.

  20. Phylogeny and evolution of pharmacophagy in tiger moths (Lepidoptera: Erebidae: Arctiinae.

    Directory of Open Access Journals (Sweden)

    Jennifer M Zaspel

    Full Text Available The focus of this study was to reconstruct a phylogenetic hypothesis for the moth subfamily Arctiinae (tiger moths, woolly bears to investigate the evolution of larval and adult pharmacophagy of pyrrolizidine alkaloids (PAs and the pathway to PA chemical specialization in Arctiinae. Pharmacophagy, collection of chemicals for non-nutritive purposes, is well documented in many species, including the model species Utetheisa ornatrix L. A total of 86 exemplar ingroup species representing tiger moth tribes and subtribes (68 genera and nine outgroup species were selected. Ingroup species included the most species-rich generic groups to represent the diversity of host-plant associations and pharmacophagous behaviors found throughout Arctiinae. Up to nine genetic markers were sequenced: one mitochondrial (COI barcode region, one nuclear rRNA (D2 region, 28S rRNA, and seven nuclear protein-coding gene fragments: elongation factor 1-α protein, wingless, ribosomal protein subunit S5, carbamoylphosphate synthase domain regions, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and cytosolic malate dehydrogenase. A total of 6984 bp was obtained for most species. These data were analyzed using model-based phylogenetic methods: maximum likelihood (ML and Bayesian inference (BI. Ancestral pharmacophagous behaviors and obligate PA associations were reconstructed using the resulting Bayes topology and Reconstructing Ancestral States in Phylogenies (RASP software. Our results corroborate earlier studies on the evolution of adult pharmacophagous behaviors, suggesting that this behavior arose multiple times and is concentrated in the phaegopterine-euchromiine-ctenuchine clade (PEC. Our results suggest that PA specialization may have arisen early in the phylogeny of the subfamily and that facultative larval pharmacophagous behaviors are the derived condition.

  1. High genetic diversity and structured populations of the oriental fruit moth in its range of origin.

    Directory of Open Access Journals (Sweden)

    Yan Zheng

    Full Text Available The oriental fruit moth Grapholita ( = Cydia molesta is a key fruit pest globally. Despite its economic importance, little is known about its population genetics in its putative native range that includes China. We used five polymorphic microsatellite loci and two mitochondrial gene sequences to characterize the population genetic diversity and genetic structure of G. molesta from nine sublocations in three regions of a major fruit growing area of China. Larval samples were collected throughout the season from peach, and in late season, after host switch by the moth to pome fruit, also from apple and pear. We found high numbers of microsatellite alleles and mitochondrial DNA haplotypes in all regions, together with a high number of private alleles and of haplotypes at all sublocations, providing strong evidence that the sampled area belongs to the origin of this species. Samples collected from peach at all sublocations were geographically structured, and a significant albeit weak pattern of isolation-by-distance was found among populations, likely reflecting the low flight capacity of this moth. Interestingly, populations sampled from apple and pear in the late season showed a structure differing from that of populations sampled from peach throughout the season, indicating a selective host switch of a certain part of the population only. The recently detected various olfactory genotypes in G. molesta may underly this selective host switch. These genetic data yield, for the first time, an understanding of population dynamics of G. molesta in its native range, and of a selective host switch from peach to pome fruit, which may have a broad applicability to other global fruit production areas for designing suitable pest management strategies.

  2. r and K strategies in some larval and pupal parasitoids of the gypsy moth.

    Science.gov (United States)

    Barbosa, Pedro

    1977-12-01

    The investigations of the bionomics and parasitoid-host interactions of some gypsy moth parasitoids provide an opportunity to consider the role of r and K strategies in the life history of some tachinid and hymenopterous parasitoid species. Available historic data as well as results of recent studies are utilized in an attempt to evaluate the degree to which the data conform to this paradigm. Few studies have provided the information required to evaluate this concept particularly in a parasitoid complex. The concept of r and K also is discussed in relation to biological control strategies, and the implications of this analysis for those arguments are discussed.

  3. Proboscis Morphology and Its Relationship to Feeding Habits in Noctuid Moths

    Science.gov (United States)

    Zenker, Maurício Moraes; Penz, Carla; de Paris, Michele; Specht, Alexandre

    2011-01-01

    This study describes proboscis morphology and identifies morphometric differences among five species of noctuid moths with different feeding habits (fruit versus nectar-feeding). Morphological and morphometric parameters were analyzed using scanning electron microscopy and light microscopy. Measurements included: galea height in ten sites from base to tip, total proboscis length, and length of the distal region that contains large sensilla styloconica and / or tearing hooks and erectible barbs. Both morphometric and morphological differences were identified among species within and between feeding guilds, and these results are discussed in light of the feeding habits of each species. PMID:21539419

  4. Suppression of oriental fruit moth (Grapholita molesta, Lepidoptera: Tortricidae) populations using the sterile insect technique

    International Nuclear Information System (INIS)

    Genchev, N.

    2002-01-01

    The Oriental fruit moth (OFM) is a major insect pest of peaches in Bulgaria. Its control usually requires several insecticide treatments per season. This, however, gives rise to serious toxic residue problems. A program for suppression of OFM populations involving the use of sterile-insect technique (SIT) has been developed as an alternative to the chemical methods for OFM. Relevant information regarding laboratory rearing, radiation and basic biology are presented here. Expected effects of some release programs are modelled using appropriate mathematical simulations. Results obtained in a small field experiment showed high efficacy of a program integrating F 1 male sterility technique and classic SIT. (author)

  5. Toxicity of parasporal crystals of Bacillus thuringiensis to the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Schesser, J H; Bulla, L A

    1979-05-01

    Toxicity of Bacillus thuringiensis parasporal crystals to the Indian meal moth, Plodia interpunctella, is described. The numbers of insects killed were in relation to crystal dry weight. Mortality was determined by comparing adult emergence in diets treated with crystals to emergence in untreated diets. There was only a 30% survival at an application of 0.414 microgram/cm2, and the mean 50% lethal concentration value was found to be 0.299 microgram/cm2. The use of emergence data has provided a reliable and reproducible bioassay for comparing relative toxicities of crystals, spores, and other cellular components to this economically important insect.

  6. Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales

    DEFF Research Database (Denmark)

    Nakano, Ryo; Skals, Niels; Takanashi, Takuma

    2008-01-01

    level at 1 cm) adapted for private sexual communication in the Asian corn borer moth, Ostrinia furnacalis. During courtship, the male rubs specialized scales on the wing against those on the thorax to produce the songs, with the wing membrane underlying the scales possibly acting as a sound resonator....... The male's song suppresses the escape behavior of the female, thereby increasing his mating success. Our discovery of extremely low-intensity ultrasonic communication may point to a whole undiscovered world of private communication, using "quiet" ultrasound....

  7. Red Dog, Horses and Bogong Moths: The Memorialisation of Animals in Australia

    Directory of Open Access Journals (Sweden)

    Rose Searby

    2008-08-01

    Full Text Available In this article I examine ways in which animals are memorialised in Australia. By examining the narratives surrounding horses in the Snowy Mountains of New South Wales, ceremonies for Bogong moths, and touching upon the stories of Red Dog, I show how the intangible can be considered a memorial and a memorial landscape conceived as one that is co-constructed by humans and animals. Understanding memorialisation as intangible facilitates a repositioning of animals in relation to humans and the creation of a new framework of reference for memorialising animals.

  8. Lethal dose of gamma radiation for eggs of Corcyra cephalonica (Stainton, 1865) (Lepidoptera: Pyralidae), rice moth

    International Nuclear Information System (INIS)

    Aguilar, J.A.D.; Arthur, V.

    1994-01-01

    The aim of this experiment was to observe the effects of gamma radiation on rice moth Corcyra cephalonica (STAINTON, 1865) eggs. The doses utilized in this experiment were 0; 25; 50; 75; 100; 125; 150; 175; 200 Gy. The experiment was carried out in a climatic room at 25 ± 2 0 C and 70 ± 10% R.H. It was observed that lethal dose LD50 and LD100 for eggs from adults reared by artificial diet were 16 and 75 Gy, respectively. (author). 14 refs, 1 fig, 1 tab

  9. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  10. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  11. FOXO-dependent regulation of innate immune homeostasis.

    Science.gov (United States)

    Becker, Thomas; Loch, Gerrit; Beyer, Marc; Zinke, Ingo; Aschenbrenner, Anna C; Carrera, Pilar; Inhester, Therese; Schultze, Joachim L; Hoch, Michael

    2010-01-21

    The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage

  12. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  13. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  14. Verneuil's disease, innate immunity and vitamin D: a pilot study.

    Science.gov (United States)

    Guillet, A; Brocard, A; Bach Ngohou, K; Graveline, N; Leloup, A-G; Ali, D; Nguyen, J-M; Loirat, M-J; Chevalier, C; Khammari, A; Dreno, B

    2015-07-01

    Verneuil's disease is a chronic inflammatory skin disease of the follicles in apocrine glands rich area of the skin (axillary, inguinal, anogenital) and is associated with a deficient skin innate immunity. It is characterized by the occurrence of nodules, abscesses, fistulas, scars. Recently, vitamin D has been shown to stimulate skin innate immunity. The primary objective of the study was to assess whether Verneuil's disease was associated with vitamin D deficiency. The secondary objective was to determine whether vitamin D supplementation could improve inflammatory lesions. First, 25(OH) vitamin D3 serum levels in patients with Verneuil's disease followed at Nantes University Hospital were compared to those of healthy donors from the French Blood Bank. Then, a pilot study was conducted in 14 patients supplemented with vitamin D according to their vitamin D level at baseline at months 3 and 6. The endpoints at 6 months were decreased by at least 20% in the number of nodules and in the frequency of flare-ups. Twenty-two patients (100%) had vitamin D deficiency (level vitamin D deficiency (91%) of whom 14% were severely deficient. In 14 patients, the supplementation significantly decreased the number of nodules at 6 months (P = 0.01133), and the endpoints were achieved in 79% of these patients. A correlation between the therapeutic success and the importance of the increase in vitamin D level after supplementation was observed (P = 0.01099). Our study shows that Verneuil's disease is associated with a major vitamin D deficiency, correlated with the disease severity. It suggests that vitamin D could significantly improve the inflammatory nodules, probably by stimulating the skin innate immunity. A larger randomized study is needed to confirm these findings. © 2014 European Academy of Dermatology and Venereology.

  15. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  16. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  18. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    Science.gov (United States)

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Biology and Control of the Greater Wax Moth, Galleria mellonella.

    Science.gov (United States)

    Kwadha, Charles A; Ong'amo, George O; Ndegwa, Paul N; Raina, Suresh K; Fombong, Ayuka T

    2017-06-09

    The greater wax moth, Galleria mellonella Linnaeus , is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius . The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest.

  20. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Directory of Open Access Journals (Sweden)

    Dominique Martinez

    Full Text Available Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  1. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    Science.gov (United States)

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  2. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths.

    Directory of Open Access Journals (Sweden)

    Mari Kekkonen

    Full Text Available The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs, few studies have compared their performance. This study compares the performance of one morphology-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC methods on two groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal a striking difference in performance between the two taxa with all four DNA-based methods. OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65% OTU match with reference species while OTU counts were more congruent and performance was higher (ca. 90% in the Gelechiinae. Performance rose when only monophyletic species were compared, but the taxon-dependence remained. None of the DNA-based methods produced a correct match with non-monophyletic species, but singletons were handled well. A simulated test of morphospecies-grouping performed very poorly in revealing taxon diversity in these small, dull-colored moths. Despite the strong performance of analyses based on DNA barcodes, species delineated using single-locus mtDNA data are best viewed as OTUs that require validation by subsequent integrative taxonomic work.

  3. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae).

    Science.gov (United States)

    Dalíková, Martina; Zrzavá, Magda; Kubíčková, Svatava; Marec, František

    2017-10-01

    The W chromosome of most lepidopteran species represents the largest heterochromatin entity in the female genome. Although satellite DNA is a typical component of constitutive heterochromatin, there are only a few known satellite DNAs (satDNAs) located on the W chromosome in moths and butterflies. In this study, we isolated and characterized new satDNA (PiSAT1) from microdissected W chromosomes of the Indian meal moth, Plodia interpunctella. Even though the PiSAT1 is mainly localized near the female-specific segment of the W chromosome, short arrays of this satDNA also occur on autosomes and/or the Z chromosome. Probably due to the predominant location in the non-recombining part of the genome, PiSAT1 exhibits a relatively large nucleotide variability in its monomers. However, at least a part of all predicted functional motifs is located in conserved regions. Moreover, we detected polyadenylated transcripts of PiSAT1 in all developmental stages and in both sexes (female and male larvae, pupae and adults). Our results suggest a potential structural and functional role of PiSAT1 in the P. interpunctella genome, which is consistent with accumulating evidence for the important role of satDNAs in eukaryotic genomes.

  4. Response of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), eggs to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, W.D., E-mail: weliton.silva@usp.b [Department of Entomology and Acarology, Laboratory of Chemical Ecology and Insect Behavior, University of Sao Paulo, ' Luiz de Queiroz' College of Agriculture, Padua Dias Avenue, 11, 13418-900 Piracicaba (Brazil); Arthur, V.; Mastrangelo, T. [Food Irradiation and Radioentomology Laboratory, Center for Nuclear Energy in Agriculture (CENA/USP), Centenario Avenue 303, 13400-970 Piracicaba (Brazil)

    2010-10-15

    As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae's cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD{sub 90} and LD{sub 99} were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile.

  5. Impact of moth suppression/eradication programmes using the sterile insect technique or inherited sterility

    International Nuclear Information System (INIS)

    Bloem, K.A.; Bloem, S.; Carpenter, J.E.

    2005-01-01

    Numerous lepidopteran species have been investigated as candidates for control using the sterile insect technique (SIT) or inherited sterility (IS). However to date only two programmes are operational - the pink bollworm containment programme in the San Joaquin Valley, California, USA, and the codling moth suppression programme in British Columbia, Canada. Both of these programmes have been highly successful in controlling the pest populations, reducing insecticide use, and improving interactions between growers and the general public. However, other benefits, including the positive economic impacts of these programmes, have not been fully quantified. Methods to reduce the cost of lepidopteran programmes might include combining the SIT/IS with other pest control tactics such as mating disruption or the release of natural enemies, the development of genetic sexing strains, or the application of molecular technologies to develop genetic markers and genetic sterility. In future the greatest potential for impact of lepidopteran SIT/IS programmes may be in combating key invasive threats such as the eradication of an outbreak of the painted apple moth in New Zealand. (author)

  6. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate.

    Science.gov (United States)

    Zhao, J Z; Collins, H L; Li, Y X; Mau, R F L; Thompson, G D; Hertlein, M; Andaloro, J T; Boykin, R; Shelton, A M

    2006-02-01

    Six to nine populations of the diamondback moth, Plutella xylostella (L.), were collected annually from fields of crucifer vegetables in the United States and Mexico from 2001 to 2004 for baseline susceptibility tests and resistance monitoring to spinosad, indoxacarb, and emamectin benzoate. A discriminating concentration for resistance monitoring to indoxacarb and emamectin benzoate was determined based on baseline data in 2001 and was used in the diagnostic assay for each population in 2002-2004 together with a discriminating concentration for spinosad determined previously. Most populations were susceptible to all three insecticides, but a population from Hawaii in 2003 showed high levels of resistance to indoxacarb. Instances of resistance to spinosad occurred in Hawaii (2000), Georgia (2001), and California (2002) as a consequence of a few years of extensive applications in each region. The collaborative monitoring program between university and industry scientists we discuss in this article has provided useful information to both parties as well as growers who use the products. These studies provide a baseline for developing a more effective resistance management program for diamondback moth.

  7. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths.

    Science.gov (United States)

    Navarro-Roldán, Miguel A; Gemeno, César

    2017-09-01

    In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC 0.001 (a lethal concentration that kills only 1 in 10 5 individuals), and altered its calling period at LC 1 , and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC 10 . Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.

  8. Effects of gamma radiation on codling moth, Cydia pomonella (L.), eggs

    International Nuclear Information System (INIS)

    Mansour, M.; Mohamad, F

    2005-01-01

    The radiosensitivity of codling moth, Cydia pomonella (L.), eggs in different stages of development was studied. Eggs ranging in age from 1-24 to 97-120 h were exposed, at 24 h intervals, to gamma radiation doses ranging from 10 to 350 Gy. The effects of gamma radiation on egg hatch, pupation and adult emergence was examined. Results showed that the radiosensitivity of codling moth eggs decreased with increasing age. Egg hatch in 1-24 h old eggs was significantly affected at 20 Gy dose and at 60 Gy dose, egg hatch decreased to about 1%. At the age of 25-48 h, however, egg hatch at 60 Gy dose was about 10%, and egg sensitivity to gamma irradiation decreased significantly in the 49-72 h age group; 60 Gy dose had no significant effect on egg hatch. Eggs irradiated few hours before hatch (at the blackhead stage), were the most resistant ones; 100 Gy had no significant effect on egg hatch and at 350 Gy dose over 56% of the eggs hatched. When adult emergence was used as a criterion for measuring effectiveness, however, the effect of gamma radiation was very sever. A dose of 60 Gy completely prevented adult emergence and at 100 Gy dose all resulted larvae died before pupation. (Author)

  9. Effects of gamma radiation on codling moth, Cydia pomonella (L.), eggs

    International Nuclear Information System (INIS)

    Mansour, M.; Mohamad, F.

    2004-01-01

    The radiosensitivity of codling moth, Cydia pomonella (L.), eggs in different stages of development was studied. Eggs ranging in age from 1-24 to 97-120 h were exposed, at 24 h intervals, to gamma radiation doses ranging from 10 to 350 Gy. The effects of gamma radiation on egg hatch, pupation and adult emergence was examined. Results showed that the radiosensitivity of codling moth eggs decreased with increasing age. Egg hatch in 1-24 h old eggs was significantly affected at 20 Gy dose and at 60 Gy dose, egg hatch decreased to about 1%. At the age of 25-48 h, however, egg hatch at 60 Gy dose was about 10%, and egg sensitivity to gamma irradiation decreased significantly in the 49-72 h age group; 60 Gy dose had no significant effect on egg hatch. Eggs irradiated few hours before hatch (at the blackhead stage), were the most resistant ones; 100 Gy had no significant effect on egg hatch and at 350 Gy dose over 56% of the eggs hatched. When adult emergence was used as a criterion for measuring effectiveness, however, the effect of gamma radiation was very sever. A dose of 60 Gy completely prevented adult emergence and at 100 Gy dose all resulted larvae died before pupation

  10. Effects of tannic acid on trypsin and leucine aminopeptidase activities in gypsy moth larval midgut

    Directory of Open Access Journals (Sweden)

    Mrdaković Marija

    2013-01-01

    Full Text Available The effects of allelochemical stress on genetic variations in the specific activities of gypsy moth digestive enzymes (trypsin and leucine aminopeptidase and relative midgut mass (indirect measure of food consumption, as well as variability in their plasticity, were investigated in fifth instar gypsy moths originating from two populations with different trophic adaptations (oak and locust-tree forests. Thirty-two full-sib families from the Quercus population and twenty-six full-sib families from the Robinia population were reared on an artificial diet with or without supplementation with tannic acid. Between population differences were observed as higher average specific activity of trypsin and relative midgut mass in larvae from the Robinia population. Significant broad-sense heritabilities were observed for the specific activity of trypsin in the control state, and for specific activity of leucine aminopeptidase in a stressful environment. Significantly lower heritability for relative midgut mass was recorded in larvae from the Robinia population reared under stressful conditions. Significant variability of trypsin plasticity in larvae from both populations and significant variability of leucine aminopeptidase plasticity in larvae from the Robinia population point to the potential for the evolution of enzyme adaptive plastic responses to the presence of stressor. Non-significant across-environment genetic correlations do not represent a constraint for the evolution of enzyme plasticity. [Projekat Ministarstva nauke Republike Srbije, br. 173027

  11. Effect of different mowing regimes on butterflies and diurnal moths on road verges

    Directory of Open Access Journals (Sweden)

    Valtonen, A.

    2006-12-01

    Full Text Available In northern and central Europe road verges offer alternative habitats for declining plant and invertebrate species of semi-natural grasslands. The quality of road verges as habitats depends on several factors, of which the mowing regime is one of the easiest to modify. In this study we compared the Lepidoptera communities on road verges that underwent three different mowing regimes regarding the timing and intensity of mowing; mowing in mid-summer, mowing in late summer, and partial mowing (a narrow strip next to the road. A total of 12,174 individuals and 107 species of Lepidoptera were recorded. The mid-summer mown verges had lower species richness and abundance of butterflies and lower species richness and diversity of diurnal moths compared to the late summer and partially mown verges. By delaying the annual mowing until late summer or promoting mosaic-like mowing regimes, such as partial mowing, the quality of road verges as habitats for butterflies and diurnal moths can be improved.

  12. Correlation between Pesticide Resistance and Enzyme Activity in the Diamondback Moth, Plutella xylostella

    Science.gov (United States)

    Gong, Ya-Jun; Wang, Ze-Hua; Shi, Bao-Cai; Kang, Zong-Jiang; Zhu, Liang; Jin, Gui-Hua; Weig, Shu-Jun

    2013-01-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most important pests that has developed high pesticide resistance. The resistances of five Chinese populations of this moth, four resistant strains (from Beijing, Henan, Fujian, and Guangdong) and one susceptible strain, to five pesticides were determined, and the activities of carboxylesterase, glutathione S-transferase, and acetylcholine esterase were tested in all five populations. The correlations between pesticide resistance and enzyme activity were analyzed. The results showed that the resistance status to the five pesticides was different among the five populations. The resistance ratios of the Beijing and Henan populations to spinosad were 5.84 and 8.22, respectively, and those to beta-cypermethrin were 4.91 and 4.98, respectively. These ratios were higher than those for the Fujian and Guangdong populations. The Fujian population was more sensitive to abamectin and chlorpyrifos than the susceptible population (the resistance ratios were 0.14 and 0.91, respectively); in fact, the median lethal concentration for P. xylostella was significantly higher for chlorpyrifos than that for any of the other four pesticides. The carboxylesterase activity in P. xylostella showed positive correlations with the resistance to spinosad, beta-cypermethrin, chlorpyrifos, and abamectin, but no correlation was observed between the carboxylesterase activity and resistance to emamectin benzoate, between glutathione S-transferase activity and resistance to any of the five pesticides tested, or between acetylcholine esterase activity and any of the pesticides except for emamectin benzoate. PMID:24766444

  13. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Identification of the chitinase genes from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Liao, Z H; Kuo, T C; Kao, C H; Chou, T M; Kao, Y H; Huang, R N

    2016-12-01

    Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.

  15. Vibration receptive sensilla on the wing margins of the silkworm moth Bombyx mori.

    Science.gov (United States)

    Ai, Hiroyuki; Yoshida, Akihiro; Yokohari, Fumio

    2010-03-01

    Bristles along the wing margins (wm-bristles) of the silkworm moth, Bombyx mori, were studied morphologically and electrophysiologically. The male moth has ca. 50 wm-bristles on each forewing and hindwing. Scanning electron microscopy revealed that these wm-bristles are typical mechanosensilla. Leuco-methylene blue staining demonstrated that each wm-bristle has a single receptor neuron, which is also characteristic of the mechanosensillum. The receptor neuron responded to vibrating air currents but did not respond to a constant air current. The wm-bristles showed clear directional sensitivity to vibrating air currents. The wm-bristles were classified into two types, type I and type II, by their response patterns to sinusoidal movements of the bristle. The neuron in type I discharged bursting spikes immediately following stimulation onset and also discharged a single spike for each sinusoidal cycle for frequencies less than ca. 60 Hz. The neuron in type II only responded to vibrations over 40 Hz and, specifically at 75 Hz, discharged a single spike for each sinusoidal cycle throughout the stimulation period. These results suggest that the two types of wm-bristles are highly tuned in different ways to detect vibrations due to the wing beat. The roles of the wm-bristles in the wing beat are discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Jonas M Bengtsson

    Full Text Available The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim was to identify chemosensory receptors in the codling moth as a means to uncover new targets for behavioral interference. Using next-generation sequencing techniques, we identified a total of 43 candidate ORs, one gustatory receptor and 15 IRs in the antennal transcriptome. Through Blast and sequence similarity analyses we annotated the insect obligatory co-receptor ORco, five genes clustering in a conserved clade containing sex pheromone receptors, one homolog of the Bombyx mori female-enriched receptor BmorOR30 (but no homologs of the other B. mori female-enriched receptors and one gene clustering in the sugar receptor family. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a, and one homolog of an IR involved in phenylethyl amine detection in Drosophila. Our results open for functional characterization of the chemosensory receptors of C. pomonella, with potential for new or refined applications of semiochemicals for control of this pest insect.

  17. Insecticide effect of cyantraniliprole on tomato moth Tuta absoluta Meyrick (Lepidoptera: Gelechiidae larvae in field trials

    Directory of Open Access Journals (Sweden)

    Patricia Larraín

    2014-04-01

    Full Text Available The tomato moth (Tuta absoluta Meyrick, Lepidoptera: Gelechiidae has traditionally been managed in Chile with organophosphate, pyrethroid, and nereistoxin insecticides; all of these have wide action spectra and high toxicity and many of them have developed rapid resistance. It is therefore important to have new molecules which are effective in controlling this pest; how ever, these molecules must have lower toxicity and greater selectivity for beneficial fauna to produce a more sustainable tomato (Solanum lycopersicum L. production. The objective was to evaluate the effectiveness of T. absoluta control with cyantraniliprole insecticide, which has desirable characteristics for programs of integrated pest management of tomato; we thus performed three trials in the 2009-2010 and 2010-2011 seasons in the Coquimbo Region, Chile. These trials evaluated the control of T. absoluta using different doses of two formulations: cyantraniliprole 10 OD (oil dispersion with or without surfactants (Dyne-Amic, Codacide applied to leaves and cyantraniliprole 20 SC (suspension concentrate applied to soil. Trials used a randomized complete block design with four replicates. The effect of treatments was compared with standard insecticides and a control without insecticide. The degree of control was estimated by foliar and fruit damage at harvest. Results indicate a reduction in fruit damage between 75% and 85% for foliar applications and 82% for soil applications of cyantraniliprole. It is concluded that both formulations of cyantraniliprole were effective to reduce damage caused by the tomato moth larva in both the foliage and fruit of tomato.

  18. Effects of gamma irradiation on the grape vine moth, Lobesia botrana, mature larvae

    International Nuclear Information System (INIS)

    Mansour, M.; Al-Attar, J.

    2014-01-01

    Mature 5th instars of the grape vine moth, Lobesia botrana (Denis and Schiffermuller) were exposed to gamma radiation dosages ranging from 50 to 250 Gy. The effects of gamma radiation on pupation, adult emergence, sex ratio and rate of development were examined. Results showed that the radiosensitivity of the grape vine moth larvae increased with increasing radiation dose. The severity of the effect, however, depends on the criterion used for measuring effectiveness; adult emergence was more severely affected than pupation. Pupation was significantly affected at 150 Gy and decreased by about 25% at 250 Gy. Adult emergence, on the other hand, was significantly affected at 100 Gy and completely prevented at 200 Gy. Probit analysis of dose mortality data for pupation and adult emergence show that the LD 99 for preventing subsequent development to pupae and adults was 2668 and 195 Gy, respectively. In addition, the rate of development of mature larvae to the adult stage was negatively affected and sex ratio was skewed in favor of males. - Highlights: • Effects of gamma irradiation on Lobesia botrana mature larvae are examined. • Results showed that a dose of 200 Gy was sufficient to prevent adult emergence from mature larvae. • This dose (200 Gy) is less than the suggested generic phytosanitary irradiation dose of 250 Gy for Lepidopteran larvae. • The dose is also much lower than the maximum allowed dose for irradiation of fresh fruits and vegetables

  19. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis

    2011-01-01

    The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...

  20. Genetic divergence and evidence for sympatric host-races in the highly polyphagous brown tail moth, Euproctis chrysorrhoea (Lepidoptera: Erebidae)

    NARCIS (Netherlands)

    Marques, J.F.; Wang, H.L.; Svensson, G.P.; Frago Clols, E.; Anderbrant, O.

    2014-01-01

    The brown tail moth (BTM) Euproctis chrysorrhoea (Linnaeus 1758) (Lepidoptera: Erebidae) is a forest and ornamental pest in Europe and the United States. Its extreme polyphagy, and documented phenological shift associated with host use suggest the presence of distinct host-races. To test this