WorldWideScience

Sample records for sex chromosomes studies

  1. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  2. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    Science.gov (United States)

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  3. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  4. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  5. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    Science.gov (United States)

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas.

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-03-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates.

  7. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  8. High degree of sex chromosome differentiation in stickleback fishes

    Directory of Open Access Journals (Sweden)

    Shimada Yukinori

    2011-09-01

    Full Text Available Abstract Background Studies of closely related species with different sex chromosome systems can provide insights into the processes of sex chromosome differentiation and evolution. To investigate the potential utility of molecular markers in studying sex chromosome differentiation at early stages of their divergence, we examined the levels and patterns of genetic differentiation between sex chromosomes in nine-spined (Pungitius pungitius and three-spined sticklebacks (Gasterosteus aculeatus using microsatellite markers. Results A set of novel microsatellite markers spanning the entire length of the sex chromosomes were developed for nine-spined sticklebacks using the sequenced genomes of other fish species. Sex-specific patterns of genetic variability and male-specific alleles were identified at most of these loci, indicating a high degree of differentiation between the X and Y chromosomes in nine-spined sticklebacks. In three-spined sticklebacks, male-specific alleles were detected at some loci confined to two chromosomal regions. In addition, male-specific null alleles were identified at several other loci, implying the absence of Y chromosomal alleles at these loci. Overall, male-specific alleles and null alleles were found over a region spanning 81% of the sex chromosomes in three-spined sticklebacks. Conclusions High levels but distinct patterns of sex chromosome differentiation were uncovered in the stickleback species that diverged 13 million years ago. Our results suggest that the Y chromosome is highly degenerate in three-spined sticklebacks, but not in nine-spined sticklebacks. In general, the results demonstrate that microsatellites can be useful in identifying the degree and patterns of sex chromosome differentiation in species at initial stages of sex chromosome evolution.

  9. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Science.gov (United States)

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  10. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Directory of Open Access Journals (Sweden)

    Shayer Mahmood Ibney Alam

    2018-05-01

    Full Text Available Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD and temperature-dependent sex determination (TSD within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

  11. Sex chromosome repeats tip the balance towards speciation.

    Science.gov (United States)

    O'Neill, Michael J; O'Neill, Rachel J

    2018-04-06

    Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create sub-optimal sex ratios, but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  13. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2009-02-01

    Full Text Available Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae. Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus have a heteromorphic XY pair corresponding to linkage group (LG 19. In this study, we found that the ninespine stickleback (Pungitius pungitius has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X(1X(2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans and the fourspine stickleback (Apeltes quadracus. However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.

  14. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The evolution of sex chromosomes in organisms with separate haploid sexes.

    Science.gov (United States)

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  16. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    Science.gov (United States)

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  17. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  18. A role for a neo-sex chromosome in stickleback speciation

    Science.gov (United States)

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  19. The variability is in the sex chromosomes.

    Science.gov (United States)

    Reinhold, Klaus; Engqvist, Leif

    2013-12-01

    Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability ("sex-chromosome hypothesis"), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex-chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex-specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex-specific variability and sexual selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  1. Patterns of molecular evolution of an avian neo-sex chromosome.

    Science.gov (United States)

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs.

  2. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  3. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  4. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  5. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  6. Distribution of sex chromosomes (XY) in lymphocyte metaphase spreads of dairy bulls

    OpenAIRE

    Kotikalapudi Rosaiah; Patel Rajesh Kumar; Medidi Hemanth; Sugali Nagaraju Naik

    2013-01-01

    Position of autosome and sex chromosomes in metaphase spreads is grate concerned of Cytogeneticians worldwide to understand cell biology. A few isolated studies have been conducted for the distribution of chromosomes in metaphase spread. Our studies reveal that most sex chromosomes (XY) remain on periphery and semi-periphery, 84.16% for X and 86.97% for Y respectively, in round metaphase spreads. The application of sex chromosome position in metaphase sprea...

  7. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    Science.gov (United States)

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  8. Sex chromosomes in Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Sahara, K.; Traut, W.

    2001-01-01

    Roč. 44, č. 1 (2001), s. 131 ISSN 0003-3995. [European Cytogenetics Conference /3./. 07.07.2001-10.07.2001, Paris] Institutional research plan: CEZ:AV0Z5007907 Keywords : Telomere * sex chromosomes * chromosome fragments Subject RIV: EB - Genetics ; Molecular Biology

  9. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Science.gov (United States)

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  10. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    Science.gov (United States)

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  11. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... chromosomes are evolutionary consequences of that func- tion. Given sufficient ... (for a review, see Charlesworth et al. 2005). ... In the present paper, I review sex deter- mination .... part had apparently been exchanged against the homologous ... age group III-Y chromosomes were successful while in well-.

  12. Evolution of vertebrate sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  13. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  14. ON THE TOPOGRAPHY OF THE SEX- CHROMOSOME IN

    Indian Academy of Sciences (India)

    over, we endeavoured to find the relative distribution of these genes in their chromosome, and to determine the distance between them, having in view the construction of a map of the sex-chromosome of fowls. We studied the following genes (in ...

  15. Sex chromosomes and speciation in Drosophila

    Science.gov (United States)

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  16. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    Science.gov (United States)

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  17. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  18. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  19. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    Science.gov (United States)

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  20. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2014-03-01

    Full Text Available Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.

  1. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  2. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  3. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  4. Autosomal origin of sex chromosome in a polyploid plant

    Science.gov (United States)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  5. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis

    Directory of Open Access Journals (Sweden)

    Ben J.G. Sutherland

    2017-08-01

    Full Text Available Whole-genome duplication (WGD can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy, which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera. Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic

  6. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    Science.gov (United States)

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes

  7. Sex chromosome aneuploidy in cytogenetic findings of referral patients from south of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2012-01-01

    Full Text Available Background: Chromosome abnormality (CA including Sex chromosomes abnormality (SCAs is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth. Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study. Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS. Results: Out of 230 (5.54% cases with chromosomally abnormal karyotype, 122 (30% cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively. Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity.

  8. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    Science.gov (United States)

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  9. Construction of physical maps for the sex-specific regions of papaya sex chromosomes

    Directory of Open Access Journals (Sweden)

    Na Jong-Kuk

    2012-05-01

    Full Text Available Abstract Background Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male, XYh (hermaphrodite, and XX (female. The papaya hermaphrodite-specific Yh chromosome region (HSY is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89% DNA sequence expansion. Conclusion The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2–3 million years ago. The

  10. Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis.

    Science.gov (United States)

    Portela-Bens, Silvia; Merlo, Manuel Alejandro; Rodríguez, María Esther; Cross, Ismael; Manchado, Manuel; Kosyakova, Nadezda; Liehr, Thomas; Rebordinos, Laureana

    2017-03-01

    The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.

  11. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2011-08-01

    Full Text Available The endemic cichlid fishes in Lake Victoria are a model system for speciation through adaptive radiation. Although the evolution of the sex-determination system may also play a role in speciation, little is known about the sex-determination system of Lake Victoria cichlids. To understand the evolution of the sex-determination system in these fish, we performed cytogenetic analysis in 11 cichlid species from Lake Victoria. B chromosomes, which are present in addition to standard chromosomes, were found at a high prevalence rate (85% in these cichlids. In one species, B chromosomes were female-specific. Cross-breeding using females with and without the B chromosomes demonstrated that the presence of the B chromosomes leads to a female-biased sex ratio in this species. Although B chromosomes were believed to be selfish genetic elements with little effect on phenotype and to lack protein-coding genes, the present study provides evidence that B chromosomes have a functional effect on female sex determination. FISH analysis using a BAC clone containing B chromosome DNA suggested that the B chromosomes are derived from sex chromosomes. Determination of the nucleotide sequences of this clone (104.5 kb revealed the presence of several protein-coding genes in the B chromosome, suggesting that B chromosomes have the potential to contain functional genes. Because some sex chromosomes in amphibians and arthropods are thought to be derived from B chromosomes, the B chromosomes in Lake Victoria cichlids may represent an evolutionary transition toward the generation of sex chromosomes.

  12. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    Science.gov (United States)

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  13. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  14. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  15. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  16. Neurogenin 3 Mediates Sex Chromosome Effects on the Generation of Sex Differences in Hypothalamic Neuronal Development

    Directory of Open Access Journals (Sweden)

    Maria Julia Scerbo

    2014-07-01

    Full Text Available The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3 in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis.

  17. Conservation of sex chromosomes in lacertid lizards

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Vukič, J.; Altmanová, M.; Johnson Pokorná, Martina; Moravec, J.; Kratochvíl, L.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 3120-3126 ISSN 0962-1083 Institutional support: RVO:67985904 Keywords : lizards * molecular sex ing * reptiles * sex chromosomes Subject RIV: EG - Zoology Impact factor: 6.086, year: 2016

  18. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes

    Directory of Open Access Journals (Sweden)

    Fumihiko eMaekawa

    2014-08-01

    Full Text Available From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.

  19. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans.

  20. Sex chromosomes and speciation in birds and other ZW systems.

    Science.gov (United States)

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  1. Allele-specific marker generation and linkage mapping on the Xiphophorus sex chromosomes.

    Science.gov (United States)

    Woolcock, B; Kazianis, S; Lucito, R; Walter, R B; Kallman, K D; Morizot, D C; Vielkind, J R

    2006-01-01

    There is great interest in the sex chromosomes of Xiphophorus fishes because both WY/YY and XX/XY sex-determining mechanisms function in these species, with at least one taxon possessing all three types of sex chromosomes, and because in certain interspecific hybrids melanoma arises as a consequence of inheritance of the sex-linked macromelanophore determining locus (MDL). Representational difference analysis (RDA) has been used to clone two sequences from the sex-determining region of X. maculatus, including a cholinergic receptor, nicotinic, delta polypeptide (CHRND) orthologue. Allele-specific assays for these sequences, as well as for the sex-linked XMRK1 and XMRK2 genes, were developed to distinguish W, X, and Y chromosomes derived from a X. maculatus (XX/XY) strain and a X. helleri (WY/YY) strain. Linkage mapping localized these markers to linkage group (LG) 24. No recombinants were observed between XMRK2 and MDL, confirming a role for XMRK2 in macromelanophore development. Although the master sex-determining (SD) locus certainly resides on Xiphophorus LG 24, autosomal loci are probably involved in sex determination as well, as indicated by the abnormal sex ratios in the backcross hybrids that contrast theoretical predictions based on LG 24 genotyping. Marker development and allelic discrimination on the Xiphophorus sex chromosomes should prove highly useful for studies that utilize this genus as an animal model.

  2. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.

    Science.gov (United States)

    Schartl, Manfred; Schmid, Michael; Nanda, Indrajit

    2016-06-01

    The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.

  3. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    Science.gov (United States)

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  5. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  6. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice.

    Science.gov (United States)

    Aguayo, Antonio; Martin, Camille S; Huddy, Timothy F; Ogawa-Okada, Maya; Adkins, Jamie L; Steele, Andrew D

    2018-01-01

    Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.

  7. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    Science.gov (United States)

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  8. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus.

    Science.gov (United States)

    Avia, Komlan; Lipinska, Agnieszka P; Mignerot, Laure; Montecinos, Alejandro E; Jamy, Mahwash; Ahmed, Sophia; Valero, Myriam; Peters, Akira F; Cock, J Mark; Roze, Denis; Coelho, Susana M

    2018-06-06

    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

  9. Using RAD-seq to recognize sex-specific markers and sex chromosome systems.

    Science.gov (United States)

    Gamble, Tony

    2016-05-01

    Next-generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. ). Among the most impressive of these sequencing innovations is restriction site-associated DNA sequencing or RAD-seq (Baird et al. ; Andrews et al. ). RAD-seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD-seq data has been to identify sex-specific genetic markers, markers found in one sex but not the other (Baxter et al. ; Gamble & Zarkower ). Sex-specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon ; Mossman & Waser ), the management and breeding of endangered species (Taberlet et al. ; Griffiths & Tiwari ; Robertson et al. ) and sexing embryonic material (Hacker et al. ; Smith et al. ). Furthermore, sex-specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank ; Gamble & Zarkower ). Thus, species with male-specific markers have male heterogamety (XY) while species with female-specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi () illustrate the ease by which RAD-seq data can generate sex-specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD-seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig. ), Fowler & Buonaccorsi () uncover shared sex-specific markers and a conserved sex chromosome system. © 2016 John Wiley & Sons Ltd.

  10. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    Directory of Open Access Journals (Sweden)

    Mikhail G Divashuk

    Full Text Available Hemp (Cannabis sativa L. was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71, 5S rDNA (pCT4.2, a subtelomeric repeat (CS-1 and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants. The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  11. Turnover of sex chromosomes induced by sexual conflict

    NARCIS (Netherlands)

    van Doorn, G. S.; Kirkpatrick, Mark

    2007-01-01

    Sex-determination genes are among the most fluid features of the genome in many groups of animals(1,2). In some taxa the master sex-determining gene moves frequently between chromosomes, whereas in other taxa different genes have been recruited to determine the sex of the zygotes. There is a well

  12. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

    Science.gov (United States)

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-11-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.

  13. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  14. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    Science.gov (United States)

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  15. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  16. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2007-01-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W. Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  17. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2006-05-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W; Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  18. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  19. Sex chromosome complement influences operant responding for a palatable food in mice.

    Science.gov (United States)

    Seu, Emanuele; Groman, Stephanie M; Arnold, Arthur P; Jentsch, J David

    2014-07-01

    The procurement and consumption of palatable, calorie-dense foods is influenced by the nutritional and hedonic value of foods. Although many factors can influence the control over behavior by foods rich in sugar and fat, emerging evidence indicates that biological sex may play a particularly crucial role in the types of foods individuals seek out, as well as the level of motivation individuals will exert to obtain those foods. However, a systematic investigation of food-seeking and consumption that disentangles the effects of the major sex-biasing factors, including sex chromosome complement and organizational and activational effects of sex hormones, has yet to be conducted. Using the four core genotypes mouse model system, we separated and quantified the effects of sex chromosome complement and gonadal sex on consumption of and motivation to obtain a highly palatable solution [sweetened condensed milk (SCM)]. Gonadectomized mice with an XY sex chromosome complement, compared with those with two X chromosomes, independent of gonadal sex, appeared to be more sensitive to the reward value of the SCM solution and were more motivated to expend effort to obtain it, as evidenced by their dramatically greater expended effort in an instrumental task with progressively larger response-to-reward ratios. Gonadal sex independently affected free consumption of the solution but not motivation to obtain it. These data indicate that gonadal and chromosomal sex effects independently influence reward-related behaviors, contributing to sexually dimorphic patterns of behavior related to the pursuit and consumption of rewards. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kejnovský, Eduard; Vyskot, Boris; Widmer, A.

    2007-01-01

    Roč. 278, č. 6 (2007), s. 633-638 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA204/05/2097; GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromosomal rearrangements * sex chromosomes * FISH Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  1. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    Science.gov (United States)

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  2. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    Science.gov (United States)

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  3. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    Science.gov (United States)

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  4. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.

    Science.gov (United States)

    Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M

    2017-11-17

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.

  5. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Directory of Open Access Journals (Sweden)

    Zhou Qi

    2012-03-01

    Full Text Available Abstract Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.

  6. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  7. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    Science.gov (United States)

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  9. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    Full Text Available Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio, neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate, the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.

  10. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis).

    Science.gov (United States)

    Johnson Pokorná, Martina; Altmanová, Marie; Rovatsos, Michail; Velenský, Petr; Vodička, Roman; Rehák, Ivan; Kratochvíl, Lukáš

    2016-01-01

    The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part. © 2016 S. Karger AG, Basel.

  11. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.

  12. Structural, functional, and evolutionary features of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman; Kejnovský, Eduard; Žlůvová, Jitka; Janoušek, Bohuslav

    2009-01-01

    Roč. 17, č. 4 (2009), s. 547 ISSN 0967-3849. [17th International Chromosome Conference. 23.06.2009-26.06.2009, Boone] R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sex chromosomes * Silene latifolia * epigenetic Subject RIV: BO - Biophysics

  13. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    Science.gov (United States)

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. © 2013 S. Karger AG, Basel.

  14. [Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies (Calliphoridae, Diptera)].

    Science.gov (United States)

    Ullerich, F H

    1975-01-01

    Previous investigations have shown the sex determination in the monogenic blowfly Chrysomya rufifacies to be controlled by a cytologically not discernible homogametry-heterogamety mechanism in the female. Female-producing (thelygenic) females are assumed to be heterozygous for a dominant female sex realizer (F') with sex-predetermining properties, while male-producing (arrhenogenic) females as well as males are supposed to be homozygous for the recessive allele (f). In order to identify the genetic sex chromosomes of C. rufifacies among its five pairs of long euchromatic chromosomes (nos. 1-5) plus one pair of small heterochromatic ones (no. 6), all chromosomes were marked by reciprocal translocations induced by X-ray treatment of adult males. The inheritance of thirteen different heteroxygous translocations has been analyzed. All of the translocations (eleven) between two of the four longer chromosomes did not show sex-linked inheritance, thus demonstrating the autosomal character of the chromosomes nos 1, 2, 3 and 4. The same is true for the translocation T6 (2/6). Therefore the small heterochromatic chromosome no. 6, corresponding to the morphlogically differentiated six chromosomes within the amphogenic calliphorid species, remains without sex determining function in the monogenic fly. This could be confirmed by the analysis of monosomic (monosomy-6) and trisomic (trisomy-6) individuals, which resulted from meiotic non-disfunction in T6/+ translocation heterozygotes. Contrary to these translocations, the heteroxygous 5/2 translocation (T14) exhibited sex-linked inheritance: There was but a very low frequency (0,76 per cent) of recombinants resulting from crossing-over between F'/f and the translocation breakage point in theylgenic F1 T14/+females. The sex-linked inheritance of T14 was confirmed by the progeny of a thelygenic F1 T14/+ female crossed to a homozygous T14/T14 translocation male.Among the offspring of that F1 T14/+ female, which had received the

  15. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M. de B.; Yano, C. F.; Sember, Alexandr; Bertollo, L.A.C.

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 258. ISSN 2073-4425 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : alternative evolutionary models * simple and multiple sex chromosomes * independent and common origins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  16. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea).

    Science.gov (United States)

    Dufresnes, Christophe; Bertholet, Youna; Wassef, Jérôme; Ghali, Karim; Savary, Romain; Pasteur, Baptiste; Brelsford, Alan; Rozenblut-Kościsty, Beata; Ogielska, Maria; Stöck, Matthias; Perrin, Nicolas

    2014-12-01

    Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations). © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  17. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms.

    Directory of Open Access Journals (Sweden)

    James A Fraser

    2004-12-01

    Full Text Available Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.

  18. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    Science.gov (United States)

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  19. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  20. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  1. Comparative AFLP reveals paternal sex ratio chromosome specific DNA sequences in the parasitoid wasp Trichogramma kaykai

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.; Hulst, van der R.G.M.; Pruijssers, A.; Verbaarschot, P.G.H.; Stouthamer, R.; Jong, de H.

    2009-01-01

    The parasitoid wasp Trichogramma kaykai with a haplo-diploid sex determination has a B chromosome called the paternal sex ratio (PSR) chromosome that confers paternal genome loss during early embryogenesis, resulting in male offspring. So far, it is not well known whether the PSR chromosome has

  2. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  3. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Dufresnes, C.; Majtyka, T.; Baird, Stuart J. E.; Gerchen, J. F.; Borzée, A.; Savary, R.; Ogielska, M.; Perrin, N.; Stöck, M.

    2016-01-01

    Roč. 6, č. 21029 (2016), s. 21029 ISSN 2045-2322 Institutional support: RVO:68081766 Keywords : controlled study * genetic marker * hybrid zone * Hyla * introgression * sex chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  4. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  5. Sex chromosome trisomies in Europe: prevalence, prenatal detection and outcome of pregnancy

    DEFF Research Database (Denmark)

    Boyd, Patricia Anne; Loane, Maria; Garne, Ester

    2011-01-01

    This study aims to assess prevalence and pregnancy outcome for sex chromosome trisomies (SCTs) diagnosed prenatally or in the first year of life. Data held by the European Surveillance of Congenital Anomalies (EUROCAT) database on SCT cases delivered 2000-2005 from 19 population-based registries ...

  6. Genetics of dioecy and causal sex chromosomes in plants

    Indian Academy of Sciences (India)

    2014-04-15

    chromosome evolution; sex-ratio variation ...... interaction between the two genes, Cm ACS7 and Cm W1P1, ... son of low pollinator density seed formation will be scanty ...... Kaltz O. and Bell G. 2002 The ecology and genetics of fitness in.

  7. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution for longitu......CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and sitting height, serum levels of reproductive hormones, IGF-I, and IGFBP-3 were measured. RESULTS: In boys with 47,XXY and 47,XYY karyotypes, growth was accelerated already in childhood, compared with healthy boys. 46,XX-males were significantly shorter than healthy boys but matched the stature of healthy...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  8. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction.

    Science.gov (United States)

    Yoshido, A; Marec, F; Sahara, K

    2016-05-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies.

  9. Comparative genetic mapping in Fragaria virginiana reveals autosomal origin of sex chromosome

    Science.gov (United States)

    Although most flowering plants are hermaphrodite, separate sexes (dioecy) have evolved repeatedly. The evolution of sex chromosomes from autosomes can often, but not always, accompany this transition. Thus, many have argued that plant genera that contain both hermaphroditic and dioecious members pro...

  10. Y Chromosome DNA in Women's Vaginal Samples as a Biomarker of Recent Vaginal Sex and Condom Use With Male Partners in the HPV Infection and Transmission Among Couples Through Heterosexual Activity Cohort Study.

    Science.gov (United States)

    Malagón, Talía; Burchell, Ann; El-Zein, Mariam; Guénoun, Julie; Tellier, Pierre-Paul; Coutlée, François; Franco, Eduardo L

    2018-01-01

    Y chromosome DNA from male epithelial and sperm cells was detected in vaginal samples after unprotected sex in experimental studies. We assessed the strength of this association in an observational setting to examine the utility of Y chromosome DNA as a biomarker of recent sexual behaviors in epidemiological studies. The HPV (human papillomavirus) Infection and Transmission Among Couples Through Heterosexual Activity cohort study enrolled 502 women attending a university or college in Montréal, Canada, and their male partners from 2005 to 2010. Participants completed self-administered questionnaires. We used real-time polymerase chain reaction to test women's baseline vaginal samples for Y chromosome DNA and assessed which sexual behaviors were independent predictors of Y chromosome DNA positivity and quantity with logistic and negative binomial regression. Y chromosome DNA positivity decreased from 77% in women in partnerships reporting vaginal sex 0 to 1 day ago to 13% in women in partnerships reporting last vaginal sex of 15 or more days ago (adjusted odds ratio, 0.09; 95% confidence interval, 0.02-0.36). The mean proportion of exfoliated vaginal sample cells with Y chromosome DNA was much lower for women who reported always using condoms (0.01%) than for women who reported never using condoms (2.07%) (adjusted ratio, 26.8; 95% confidence interval, 8.9-80.5). No association was found with reported oral/digital sex frequency or concurrency of partnerships. Y chromosome DNA quantity is strongly associated with days since last vaginal sex and lack of condom use in observational settings. Y chromosome DNA quantity may prove useful as a correlate of recent vaginal sex in observational studies lacking data on sexual behavior, such as surveillance studies of human papillomavirus infection prevalence.

  11. The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.; Jong, de J.H.S.G.M.; Stouthamer, R.

    2009-01-01

    This study uses molecular and cytogenetic methods to determine the origin of a B chromosome in some males of the wasp Trichogramma kaykai. This so-called paternal sex ratio (PSR) chromosome transmits only through sperm and shortly after fertilization triggers degeneration of the paternal genome,

  12. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  13. Sex-chromosome heterochromatin variation in the wood mouse, Apodemus sylvaticus

    Czech Academy of Sciences Publication Activity Database

    Nová, P.; Reutter, B. A.; Rábová, Marie; Zima, Jan

    2002-01-01

    Roč. 96, 1-4 (2002), s. 186-190 ISSN 0301-0171 R&D Projects: GA AV ČR KSK6005114 Keywords : sex-chromosome * Apodemus sylvaticus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.114, year: 2002

  14. Gender in plants: sex chromosomes are emerging from the fog

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2004-01-01

    Roč. 20, č. 9 (2004), s. 432-438 ISSN 0168-9525 R&D Projects: GA AV ČR(CZ) KSK5052113 Keywords : sex chromosomes * dioecious papaya * evolution Subject RIV: BO - Biophysics Impact factor: 14.643, year: 2004

  15. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  16. Molecular analysis of sex chromosome-linked mutants in the ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, ... In Bombyx mori, the W chromosome determines the female sex. .... located on an autosome, and there is no difference in the ex- ..... tral nervous system or in a brain-controlled body wall muscle.

  17. Sex chromosome abnormalities and sterility in river buffalo.

    Science.gov (United States)

    Di Meo, G P; Perucatti, A; Di Palo, R; Iannuzzi, A; Ciotola, F; Peretti, V; Neglia, G; Campanile, G; Zicarelli, L; Iannuzzi, L

    2008-01-01

    Thirteen male river buffaloes, 119 females with reproductive problems (which had reached reproductive age but had failed to become pregnant in the presence of bulls) and two male co-twins underwent both clinical and cytogenetic investigation. Clinical analyses performed by veterinary practitioners revealed normal body conformation and external genitalia for most females. However, some subjects showed some slight male traits such as large base horn circumference, prominent withers and tight pelvis. Rectal palpation revealed damage to internal sex adducts varying between atrophy of Mullerian ducts to complete lack of internal sex adducts (with closed vagina). All bulls had normal karyotypes at high resolution banding, while 25 animals (23 females and 2 male co-twins) (20.7%) with reproductive problems were found to carry the following sex chromosome abnormalities: X monosomy (2 females); X trisomy (1 female); sex reversal syndrome (2 females); and free-martinism (18 females and 2 males). All female carriers were sterile. Copyright 2008 S. Karger AG, Basel.

  18. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Czech Academy of Sciences Publication Activity Database

    Koubová, M.; Johnson Pokorná, Martina; Rovatsos, M.; Farkačová, K.; Altmanová, M.; Kratochvíl, L.

    2014-01-01

    Roč. 22, č. 4 (2014), s. 441-452 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex chromosomes * heterochromatin * reptiles * sex determination * FISH * ITSs Subject RIV: EG - Zoology Impact factor: 2.478, year: 2014

  19. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well.

    Science.gov (United States)

    Wijchers, Patrick J; Yandim, Cihangir; Panousopoulou, Eleni; Ahmad, Mushfika; Harker, Nicky; Saveliev, Alexander; Burgoyne, Paul S; Festenstein, Richard

    2010-09-14

    Differences between males and females are normally attributed to developmental and hormonal differences between the sexes. Here, we demonstrate differences between males and females in gene silencing using a heterochromatin-sensitive reporter gene. Using "sex-reversal" mouse models with varying sex chromosome complements, we found that this differential gene silencing was determined by X chromosome complement, rather than sex. Genome-wide transcription profiling showed that the expression of hundreds of autosomal genes was also sensitive to sex chromosome complement. These genome-wide analyses also uncovered a role for Sry in modulating autosomal gene expression in a sex chromosome complement-specific manner. The identification of this additional layer in the establishment of sexual dimorphisms has implications for understanding sexual dimorphisms in physiology and disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Complex evolutionary trajectories of sex chromosomes across bird taxa

    DEFF Research Database (Denmark)

    Zhou, Qi; Zhang, Jilin; Bachtrog, Doris

    2014-01-01

    Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination.We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have...

  1. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    Science.gov (United States)

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  2. To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis.

    Science.gov (United States)

    Van, Mike V; Larson, Braden J; Engebrecht, JoAnne

    2016-11-01

    Meiotic recombination establishes connections between homologous chromosomes to promote segregation. Hemizygous regions of sex chromosomes have no homologous chromosome to recombine with, yet must be transmitted through meiosis. An extreme case of hemizygosity exists in the genus Caenorhabditis, where males have a single X chromosome that completely lacks a homologous partner. To determine whether similar strategies have evolved to accommodate hemizygosity of the X during male meiosis in Caenorhabditis with distinct modes of sexual reproduction, we examined induction and processing of meiotic double strand breaks (DSBs) in androdioecious (hermaphrodite/male) Caenorhabditis elegans and C. briggsae, and gonochoristic (female/male) C. remanei and C. brenneri Analysis of the recombinase RAD-51 suggests more meiotic DSBs are induced in gonochoristic vs. androdioecious species. However, in late prophase in all species, chromosome pairs are restructured into bivalents around a single axis, suggesting that the holocentric nature of Caenorhabditis chromosomes dictates a single crossover per bivalent regardless of the number of DSBs induced. Interestingly, RAD-51 foci were readily observed on the X chromosome of androdioecious male germ cells, while very few were detected in gonochoristic male germ cells. As in C. elegans, the X chromosome in C. briggsae male germ cells undergoes transient pseudosynapsis and flexibility in DSB repair pathway choice. In contrast, in C. remanei and C. brenneri male germ cells, the X chromosome does not undergo pseudosynapsis and appears refractory to SPO-11-induced breaks. Together our results suggest that distinct strategies have evolved to accommodate sex chromosome hemizygosity during meiosis in closely related Caenorhabditis species. Copyright © 2016 by the Genetics Society of America.

  3. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  4. Differentiation of Sex Chromosomes and Karyotype Characterisation in the Dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae)

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Johnson Pokorná, Martina; Kratochvíl, L.

    2015-01-01

    Roč. 147, č. 1 (2015), s. 48-54 ISSN 1424-8581 Institutional support: RVO:67985904 Keywords : interstitial telomeric repeats * sex chromosomes * sex determination Subject RIV: EG - Zoology Impact factor: 1.638, year: 2015

  5. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    Science.gov (United States)

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  6. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    Science.gov (United States)

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  8. Unusual distribution of Zfy and Zfx sequences on the sex chromosomes of the wood lemming, a species exhibiting XY sex reversal.

    Science.gov (United States)

    Lau, Y F; Yang-Feng, T L; Elder, B; Fredga, K; Wiberg, U H

    1992-01-01

    Sex reversal occurs naturally in the wood lemming (Myopus schisticolor) due to the presence in populations of this species of a variant (mutated) X chromosome, designated X*. Thus, X*Y animals develop into females, whereas XY animals develop into normal males. Chromosome mapping by in situ hybridization of DNA sequences homologous to the human ZFY gene localized the wood lemming Zfx sequences to region p12----p11 on both the wild-type X and the mutated X* chromosomes, at or proximal to a presumed breakpoint (Xp12) involved in the generation of the X* chromosome from the normal X, and Zfy sequences along the entire short arm of the Y chromosome. Differences between Zfx and Zfx* were readily detected by Southern blot analysis. However, both the Zfx and Zfx* genes expressed similarly sized transcripts in all adult somatic tissues investigated. Although the precise molecular difference between the Zfx and Zfx* genes is still unknown, their chromosomal location suggests that either Zfx or some other closely linked gene(s) on the X chromosome may be a major X-linked sex-determining gene, Tdx, which in the X* chromosome fails to interact properly with the Y-linked testis-determining gene, Tdy, thus causing X*Y embryos to develop into females. At least 15 copies of wood lemming Zfy sequences are distributed along the short arm of the Y chromosome. Northern hybridization analyses of adult tissues and somatic cell lines indicated that these Zfy repeats were transcriptionally inactive. Normally, 3-kb Zfy (ZFY) transcripts are readily detected in mouse and human testes, especially in the germ cells. It has therefore been postulated that expression of the Zfy (ZFY) gene may be important for spermatogenesis. Whether the lack of sufficient Zfy transcripts in the testis of the adult wood lemming has any impact on spermatogenesis in this species is still to be elucidated by further studies.

  9. 3. Pattern of Inheritance of Autosome and Sex. Chromosome Linked ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Teaching and Learning Genetics with Drosophila – Pattern of Inheritance of Autosome and Sex Chro-mosome Linked Genes/Characters. H A Ranganath M T Tanuja. Classroom Volume 4 Issue 10 October 1999 pp 78-87 ...

  10. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  11. Asymmetry of cerebral grey and white matter and structural volumes in relation to sex hormones and chromosomes

    Directory of Open Access Journals (Sweden)

    Ivanka eSavic

    2014-11-01

    Full Text Available Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY Methods: Regional asymmetry in grey and white matter volumes (GMV and WMV was calculated using voxel based moprhometry (SPM5, by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis.Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected.Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  12. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes.

    Science.gov (United States)

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  13. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    Science.gov (United States)

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection. © 2009 Association for Psychological Science.

  14. Polytene chromosome analysis in relation to genetic sex separation in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Kerremans, P.; Busch-Petersen, E.

    1990-01-01

    The development of stable genetic sexing strains in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is hampered by the presence of low levels of male recombination. Such recombination may be reduced by minimizing the distance between the translocation breakpoint and the translocated 'sexing' allele. Cytogenetic analysis of mitotic/meiotic and polytene chromosomes could provide information on the selection of such potentially stable genetic sexing strains. Translocation breakpoints in two genetic sexing strains in the medfly, based on a white female/brown male pupal colour dimorphism, have been determined. Preliminary results are described and the advantages and limitations of polytene chromosome analysis for the isolation of stable genetic sexing strains of the medfly are discussed. (author). 31 refs

  15. Influence of postzygotic reproductive isolation on the interspecific transmission of the paternal sex ratio chromosome in Trichogramma

    NARCIS (Netherlands)

    Jeong, G.S.; Stouthamer, R.

    2006-01-01

    The paternal sex ratio (PSR) chromosome is a supernumerary chromosome that causes the destruction of the paternal chromosome set in the first mitosis in a fertilized egg. It is known from parasitoid wasps in the genera Nasonia and Trichogramma (Hymenoptera). In these haplodiploids, the egg

  16. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides.

    Science.gov (United States)

    Nemetschke, Linda; Eberhardt, Alexander G; Hertzberg, Hubertus; Streit, Adrian

    2010-10-12

    When chromatin diminution occurs during a cell division a portion of the chromatin is eliminated, resulting in daughter cells with a smaller amount of genetic material. In the parasitic roundworms Ascaris and Parascaris, chromatin diminution creates a genetic difference between the soma and the germline. However, the function of chromatin diminution remains a mystery, because the vast majority of the eliminated DNA is noncoding. Within the parasitic roundworm genus Strongyloides, S. stercoralis (in man) and S. ratti (in rat) employ XX/XO sex determination, but the situation in S. papillosus (in sheep) is different but controversial. We demonstrate genetically that S. papillosus employs sex-specific chromatin diminution to eliminate an internal portion of one of the two homologs of one chromosome pair in males. Contrary to ascarids, the eliminated DNA in S. papillosus contains a large number of genes. We demonstrate that the region undergoing diminution is homologous to the X chromosome of the closely related S. ratti. The flanking regions, which are not diminished, are homologous to the S. ratti autosome number I. Furthermore, we found that the diminished chromosome is not incorporated into sperm, resulting in a male-specific transmission ratio distortion. Our data indicate that on the evolutionary path to S. papillosus, the X chromosome fused with an autosome. Chromatin diminution serves to functionally restore an XX/XO sex-determining system. A consequence of the fusion and the process that copes with it is a transmission ratio distortion in males for certain loci. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Polytene chromosomes of monogenic and amphogenic Chrysomya species (Calliphoridae, Diptera): analysis of banding patterns and in situ hybridization with Drosophila sex determining gene sequences.

    Science.gov (United States)

    Puchalla, S

    1994-03-01

    Standard maps for the five banded polytene chromosomes found in trichogen cell nuclei of the monogenic blowfly Chrysomya rufifacies and the amphogenic Chrysomya pinguis are presented. The chromosomes are highly homologous in the two species; differences in banding patterns are predominantly caused by one pericentric and ten paracentric inversions. In chromosome 5 of the amphogenic Chrysomya phaonis, also analysed in this paper, an additional paracentric inversion was observed. The distribution of species specific inversions indicates that the monogenic C. rufifacies is phylogenetically older than the amphogenic species. The maternal sex realizer locus F'/f on polytene chromosome 5 of C. rufifacies is not associated with a structural heterozygosity. Chromosome pair 6 of C. rufifacies and the sex chromosome pair of C. pinguis are under-replicated in polytene nuclei; they consist of irregular chromatin granules, frequently associated with nucleolus material. Evolution of heteromorphic sex chromosomes in Chrysomya is probably correlated with heterochromatin accumulation. A search for sex determining genes in Chrysomya was initiated using sex determining sequences from Drosophila melanogaster for in situ hybridization. The polytene band 41A1 on chromosome 5 of monogenic and amphogenic Chrysomya species contains sequences homologous to the maternal sex determining gene daughterless (da). Homology to the zygotic gene Sex-lethal (Sxl) of Drosophila is detected in band 39A1 on chromosome 5 of C. rufifacies. The findings reported here are the first evidence for a possible homology between the da gene of Drosophila and the maternal sex realizer F' of C. rufifacies. An hypothesis for the evolution of the maternal effect sex determination of C. rufifacies is proposed.

  18. Statistics for X-chromosome associations.

    Science.gov (United States)

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  19. Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly.

    Science.gov (United States)

    Harrison, Peter W; Mank, Judith E; Wedell, Nina

    2012-01-01

    Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.

  20. Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae)

    Czech Academy of Sciences Publication Activity Database

    Sember, Alexandr; Bertollo, L.A.C.; Ráb, Petr; Yano, C. F.; Hatanaka, T.; de Oliveira, E. A.; de Bello Cioffi, M.

    2018-01-01

    Roč. 9, č. 1 (2018), č. článku 71. ISSN 1664-8021 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : fish cytogenetics * multiple sex chromosomes * sex-determining region Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.789, year: 2016

  1. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    Science.gov (United States)

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  2. The eXtroardinarY Babies Study: Natural History of Health and Neurodevelopment in Infants and Young Children With Sex Chromosome Trisomy

    Science.gov (United States)

    2018-01-10

    Klinefelter Syndrome; Trisomy X; XYY Syndrome; XXXY and XXXXY Syndrome; Xxyy Syndrome; Xyyy Syndrome; Xxxx Syndrome; Xxxxx Syndrome; Xxxyy Syndrome; Xxyyy Syndrome; Xyyyy Syndrome; Male With Sex Chromosome Mosaicism

  3. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae).

    Science.gov (United States)

    Diniz, Débora; Moreira-Filho, Orlando; Bertollo, Luiz Antonio Carlos

    2008-05-01

    Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.

  4. Karyotype characterization and ZZ/ZW sex chromosome heteromorphism in two species of the catfish genus Ancistrus Kner, 1854 (Siluriformes: Loricariidae from the Amazon basin

    Directory of Open Access Journals (Sweden)

    Renildo R. de Oliveira

    Full Text Available We present karyotypic characteristics and report on the occurrence of ZZ/ZW sex chromosomes in Ancistrus ranunculus (rio Xingu and Ancistrus sp. "Piagaçu" (rio Purus, of the Brazilian Amazon. Ancistrus ranunculus has a modal number of 2n=48 chromosomes, a fundamental number (FN of 82 for both sexes, and the karyotypic formula was 20m+8sm+6st+14a for males and 19m+9sm+6st+14a for females. Ancistrus sp. "Piagaçu" presented 2n=52 chromosomes, FN= 78 for males and FN= 79 for females. The karyotypic formula was 16m+8sm+2st+26a for males and 16m+9sm+2st+25a for females. The high number of acrocentric chromosomes in karyotype of Ancistrus sp. "Piagaçu" differs from the majority of Ancistrini genera studied so far, and may have resulted from pericentric inversions and translocations. The lower number of chromosomes in A. ranunculus indicates that centric fusions also occurred in the evolution of Ancistrus karyotypes. We conclude that karyotypic characteristics and the presence of sex chromosomes can constitute important cytotaxonomic markers to identify cryptic species of Ancistrus. However, sex chromosomes apparently arose independently within the genus and thus do not constitute a reliable character to analyze phylogenetic relations among Ancistrus species.

  5. An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm

    Directory of Open Access Journals (Sweden)

    Shiv Kumar Yadav

    2017-05-01

    Full Text Available Separation of X- and Y-chromosome bearing sperm has been practiced for selection of desired sex of offspring to increase the profit in livestock industries. At present, fluorescence-activated cell sorter is the only successful method for separation of X- and Y-chromosome bearing sperm. This technology is based on the differences in DNA content between these two types of sperm and has been commercialized for bovine sperm. However, this technology still has problems in terms of high economic cost, sperm damage, and lower pregnancy rates compared to unsorted semen. Therefore, an inexpensive, convenient, and non-invasive approach for sperm sexing would be of benefit to agricultural sector. Within this perspective, immunological sperm sexing method is one of the attractive choices to separate X- and Y-chromosome bearing sperm. This article reviews the current knowledge about immunological approaches, viz., H-Y antigen, sex-specific antigens, and differentially expressed proteins for sperm sexing. Moreover, this review also highlighted the different methods for identification of X- and Y-sperm.

  6. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Science.gov (United States)

    Kopsida, Eleni; Lynn, Phoebe M; Humby, Trevor; Wilkinson, Lawrence S; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  7. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Directory of Open Access Journals (Sweden)

    Eleni Kopsida

    Full Text Available Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry; in two behavioural tests (the elevated plus and zero mazes XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  8. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  9. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  10. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus

    Czech Academy of Sciences Publication Activity Database

    Mongue, A. J.; Nguyen, Petr; Voleníková, Anna; Walters, J. R.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 3281-3294 ISSN 2160-1836 R&D Projects: GA ČR(CZ) GA14-22765S; GA ČR(CZ) GP14-35819P Grant - others:GA JU(CZ) 159/2016/P Institutional support: RVO:60077344 Keywords : sex chromosomes * evolution * Lepidoptera Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.861, year: 2016 http://www.g3journal.org/content/7/10/3281.long

  11. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    Science.gov (United States)

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  12. The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera Chalcidoidea)

    NARCIS (Netherlands)

    Beukeboom, L.W.; Werren, J.H.

    2000-01-01

    Selfish genetic elements may be important in promoting evolutionary change. Paternal sex ratio (PSR) is a selfish B chromosome that causes all-male families in the haplodiploid parasitic wasp Nasonia vitripennis, by inducing paternal genome loss in fertilized eggs. The natural distribution and

  13. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris.

    Directory of Open Access Journals (Sweden)

    Radim Cegan

    Full Text Available Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24, but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA, which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.

  14. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  15. Neurocognitive Outcomes of Individuals with a Sex Chromosome Trisomy: XXX, XYY, or XXY--A Systematic Review

    Science.gov (United States)

    Leggett, Victoria; Jacobs, Patricia; Nation, Kate; Scerif, Gaia; Bishop, Dorothy V. M.

    2010-01-01

    Aim: To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). Method: A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. Results: We identified 35…

  16. Chromosomes of South American Bufonidae (Amphibia, Anura Chromosomes of South American Bufonidae (Amphibia, Anura

    Directory of Open Access Journals (Sweden)

    Brum Zorrilla N.

    1973-09-01

    Full Text Available Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.

  17. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Altmanová, M.; Kratochvíl, L.

    2014-01-01

    Roč. 22, č. 1 (2014), s. 35-44 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : amniota * centromere * heterogamety * neo-sex chromosomes * reptiles Subject RIV: EG - Zoology Impact factor: 2.478, year: 2014

  18. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    Science.gov (United States)

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  19. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis)

    Czech Academy of Sciences Publication Activity Database

    Johnson Pokorná, Martina; Altmanová, M.; Rovatsos, M.; Velenský, P.; Vodička, R.; Řehák, I.; Kratochvíl, L.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 284-291 ISSN 1424-8581 Institutional support: RVO:67985904 Keywords : CGH * female heterogamety * heterochromatin * microsatellite accumulation * sex chromosome evolution * squamate reptile Subject RIV: EG - Zoology Impact factor: 1.354, year: 2016

  20. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M.B.; Kejnovský, Eduard; Bertollo, L.A.C.

    2011-01-01

    Roč. 132, č. 4 (2011), s. 289-296 ISSN 1424-8581 R&D Projects: GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : fish sex chromosomes * fluorescence in situ hybridization * microsatellites Subject RIV: BO - Biophysics Impact factor: 1.533, year: 2011

  1. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  2. Reporting of sex as a variable in cardiovascular studies using cultured cells

    Directory of Open Access Journals (Sweden)

    Taylor K

    2011-11-01

    Full Text Available Abstract Background Chromosomal complement, including that provided by the sex chromosomes, influences expression of proteins and molecular signaling in every cell. However, less than 50% of the scientific studies published in 2009 using experimental animals reported sex as a biological variable. Because every cell has a sex, we conducted a literature review to determine the extent to which sex is reported as a variable in cardiovascular studies on cultured cells. Methods Articles from 10 cardiovascular journals with high impact factors (Circulation, J Am Coll Cardiol, Eur Heart J, Circ Res, Arterioscler Thromb Vasc Biol, Cardiovasc Res, J Mol Cell Cardiol, Am J Physiol Heart Circ Physiol, J Heart Lung Transplant and J Cardiovasc Pharmacol and published in 2010 were searched using terms 'cultured' and 'cells' in any order to determine if the sex of those cells was reported. Studies using established cell lines were excluded. Results Using two separate search strategies, we found that only 25 of 90 articles (28% and 20 of 101 articles (19.8% reported the sex of cells. Of those reporting the sex of cells, most (68.9%; n = 31 used only male cells and none used exclusively female cells. In studies reporting the sex of cells of cardiovascular origin, 40% used vascular smooth-muscle cells, and 30% used stem/progenitor cells. In studies using cells of human origin, 35% did not report the sex of those cells. None of the studies using neonatal cardiac myocytes reported the sex of those cells. Conclusions The complement of sex chromosomes in cells studied in culture has the potential to affect expression of proteins and 'mechanistic' signaling pathways. Therefore, consistent with scientific excellence, editorial policies should require reporting sex of cells used in in vitro experiments.

  3. Vocal and Gestural Productions of 24-Month-Old Children with Sex Chromosome Trisomies

    Science.gov (United States)

    Zampini, Laura; Draghi, Lara; Silibello, Gaia; Dall'Ara, Francesca; Rigamonti, Claudia; Suttora, Chiara; Zanchi, Paola; Salerni, Nicoletta; Lalatta, Faustina; Vizziello, Paola

    2018-01-01

    Background: Children with sex chromosome trisomies (SCT) frequently show problems in language development. However, a clear description of the communicative patterns of these children is still lacking. Aims: To describe the first stages of language development in children with SCT in comparison with those in typically developing (TD) children. The…

  4. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  5. Uncovering the evolutionary history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis.

    Science.gov (United States)

    Palacios-Gimenez, Octavio M; Milani, Diogo; Lemos, Bernardo; Castillo, Elio R; Martí, Dardo A; Ramos, Erica; Martins, Cesar; Cabral-de-Mello, Diogo C

    2018-01-08

    Neo-sex chromosome systems arose independently multiple times in evolution, presenting the remarkable characteristic of repetitive DNAs accumulation. Among grasshoppers, occurrence of neo-XY was repeatedly noticed in Melanoplinae. Here we analyzed the most abundant tandem repeats of R. bergii (2n = 22, neo-XY♂) using deep Illumina sequencing and graph-based clustering in order to address the neo-sex chromosomes evolution. The analyses revealed ten families of satDNAs comprising about ~1% of the male genome, which occupied mainly C-positive regions of autosomes. Regarding the sex chromosomes, satDNAs were recorded within centromeric or interstitial regions of the neo-X chromosome and four satDNAs occurred in the neo-Y, two of them being exclusive (Rber248 and Rber299). Using a combination of probes we uncovered five well-defined cytological variants for neo-Y, originated by multiple paracentric inversions and satDNA amplification, besides fragmented neo-Y. These neo-Y variants were distinct in frequency between embryos and adult males. The genomic data together with cytogenetic mapping enabled us to better understand the neo-sex chromosome dynamics in grasshoppers, reinforcing differentiation of neo-X and neo-Y and revealing the occurrence of multiple additional rearrangements involved in the neo-Y evolution of R. bergii. We discussed the possible causes that led to differences in frequency for the neo-Y variants between embryos and adults. Finally we hypothesize about the role of DNA satellites in R. bergii as well as putative historical events involved in the evolution of the R. bergii neo-XY.

  6. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    Science.gov (United States)

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  7. Sex differences in life span: Females homozygous for the X chromosome do not suffer the shorter life span predicted by the unguarded X hypothesis.

    Science.gov (United States)

    Brengdahl, Martin; Kimber, Christopher M; Maguire-Baxter, Jack; Friberg, Urban

    2018-03-01

    Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (∼20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X-linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg-to-adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X-linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  8. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio.

    Science.gov (United States)

    Akbari, Omar S; Antoshechkin, Igor; Hay, Bruce A; Ferree, Patrick M

    2013-09-04

    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.

  9. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae).

    Science.gov (United States)

    Conde-Saldaña, Cristhian Camilo; Barreto, Cynthia Aparecida Valiati; Villa-Navarro, Francisco Antonio; Dergam, Jorge Abdala

    2018-02-01

    This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA 15 and GA 15 ) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA 15 and GA 15 ) in a differentiated sex chromosome in Neotropical fish.

  10. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  11. Sex-linked dominant

    Science.gov (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  12. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  13. Chromosomal characterization of the bonytongue Arapaima gigas (Osteoglossiformes: Arapaimidae

    Directory of Open Access Journals (Sweden)

    Debora Karla Marques

    Full Text Available The mitotic chromosomes of the pirarucu Arapaima gigas inhabiting the middle Araguaia River and collected in the municipality of Araguaiana (MT, Brazil were studied. The chromosomes were analyzed through Giemsa staining, C-banding, Ag-NOR staining and in situ hybridization using an 18S rRNA gene probe. The karyotype had 2n=56 comprising 14 biarmed and 14 uniarmed chromosome pairs in both sexes. No cytologically distinguishable sex chromosome was identified. A single NOR-bearing chromosome pair was detected by Ag-NOR staining and confirmed by 18S rDNA- FISH. Faint constitutive heterochromatin was C-banded in the centromeric region of some chromosomes.

  14. Normal Female Germ Cell Differentiation Requires the Female X Chromosome to Autosome Ratio and Expression of Sex-Lethal in DROSOPHILA MELANOGASTER

    OpenAIRE

    Schüpbach, Trudi

    1985-01-01

    In somatic cells of Drosophila, the ratio of X chromosomes to autosomes (X:A ratio) determines sex and dosage compensation. The present paper addresses the question of whether germ cells also use the X:A ratio for sex determination and dosage compensation. Triploid female embryos were generated which, through the loss of an unstable ring-X chromosome, contained some germ cells of 2X;3A constitution in their ovaries. Such germ cells were shown to differentiate along one of two alternative pat...

  15. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  16. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  17. Sixteen kiwi (Apteryx spp) transcriptomes provide a wealth of genetic markers and insight into sex chromosome evolution in birds.

    Science.gov (United States)

    Ramstad, Kristina M; Miller, Hilary C; Kolle, Gabriel

    2016-05-26

    Kiwi represent the most basal extant avian lineage (paleognaths) and exhibit biological attributes that are unusual or extreme among living birds, such as large egg size, strong olfaction, nocturnality, flightlessness and long lifespan. Despite intense interest in their evolution and their threatened status, genomic resources for kiwi were virtually non-existent until the recent publication of a single genome. Here we present the most comprehensive kiwi transcriptomes to date, obtained via Illumina sequencing of whole blood and de novo assembly of mRNA sequences of eight individuals from each of the two rarest kiwi species, little spotted kiwi (LSK; Apteryx owenii) and rowi (A. rowi). Sequences obtained were orthologous with a wide diversity of functional genes despite the sequencing of a single tissue type. Individual and composite assemblies contain more than 7900 unique protein coding transcripts in each of LSK and rowi that show strong homology with chicken (Gallus gallus), including those associated with growth, development, disease resistance, reproduction and behavior. The assemblies also contain 66,909 SNPs that distinguish between LSK and rowi, 12,384 SNPs among LSK (associated with 3088 genes), and 29,313 SNPs among rowi (associated with 4953 genes). We found 3084 transcripts differentially expressed between LSK and rowi and 150 transcripts differentially expressed between the sexes. Of the latter, 83 could be mapped to chicken chromosomes with 95% syntenic with chromosome Z. Our study has simultaneously sequenced multiple species, sexes, and individual kiwi at thousands of genes, and thus represents a significant leap forward in genomic resources available for kiwi. The expression pattern we observed among chromosome Z related genes in kiwi is similar to that observed in ostriches and emu, suggesting a common and ancestral pattern of sex chromosome homomorphy, recombination, and gene dosage among living paleognaths. The transcriptome assemblies described

  18. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae).

    Science.gov (United States)

    Oyama, Ryan K; Silber, Martina V; Renner, Susanne S

    2010-06-14

    Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Y-chromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes.

  19. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development.

    Science.gov (United States)

    Bramble, Matthew S; Lipson, Allen; Vashist, Neerja; Vilain, Eric

    2017-01-02

    Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Why we should consider sex (and study sex differences) in addiction research.

    Science.gov (United States)

    Sanchis-Segura, Carla; Becker, Jill B

    2016-09-01

    Among mammals, every cell has a biological sex, and the sex of an individual pervades its body and brain. In this review, we describe the processes through which mammals become phenotypically male or female by organizational and activational influences of genes and hormones throughout development. We emphasized that the molecular and cellular changes triggered by sex chromosomes and steroid hormones may generate sex differences in overt physiological functions and behavior, but they may alternatively promote end-point convergences between males and females. Clinical and pre-clinical evidences suggest that sex and gender differences modulate drug consumption as well as of the transition towards drug-promoted pathological states such as dependence and addiction. Additionally, sex differences in drug pharmacokinetics and pharmacodynamics will also influence dependence and addiction as well as side effects of drugs. These effects will further interact with socially gendered factors to result in sex differences in the access to, engagement in and efficacy of any therapeutic attempt. Finally, we maintain that 'sex sameness' is as important as 'sex differences' when building a complete understanding of biology for both males and females and provide a framework with which to classify and guide investigation into the mechanisms mediating sex differences and sex sameness. © 2016 Society for the Study of Addiction.

  1. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination

    Czech Academy of Sciences Publication Activity Database

    Pokorná, M.; Rábová, Marie; Ráb, Petr; Kratochvíl, L.

    2010-01-01

    Roč. 18, č. 6 (2010), s. 748-748 ISSN 0967-3849. [19th International Colloquium on animal cytogenetics and gene mapping. 06.06.-09.06.2010, Krakow] Institutional research plan: CEZ:AV0Z50450515 Keywords : sex chromosomes * karyotypic evolution * eye-lid geckos Subject RIV: EB - Genetics ; Molecular Biology

  2. Sex differences in the brain-an interplay of sex steroid hormones and sex chromosomes.

    Science.gov (United States)

    Grgurevic, Neza; Majdic, Gregor

    2016-09-01

    Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. SRY mutation analysis by next generation (deep sequencing in a cohort of chromosomal Disorders of Sex Development (DSD patients with a mosaic karyotype

    Directory of Open Access Journals (Sweden)

    Hersmus Remko

    2012-11-01

    Full Text Available Abstract Background The presence of the Y-chromosome or Y chromosome-derived material is seen in 4-60% of Turner syndrome patients (Chromosomal Disorders of Sex Development (DSD. DSD patients with specific Y-chromosomal material in their karyotype, the GonadoBlastoma on the Y-chromosome (GBY region, have an increased risk of developing type II germ cell tumors/cancer (GCC, most likely related to TSPY. The Sex determining Region on the Y gene (SRY is located on the short arm of the Y-chromosome and is the crucial switch that initiates testis determination and subsequent male development. Mutations in this gene are responsible for sex reversal in approximately 10-15% of 46,XY pure gonadal dysgenesis (46,XY DSD cases. The majority of the mutations described are located in the central HMG domain, which is involved in the binding and bending of the DNA and harbors two nuclear localization signals. SRY mutations have also been found in a small number of patients with a 45,X/46,XY karyotype and might play a role in the maldevelopment of the gonads. Methods To thoroughly investigate the presence of possible SRY gene mutations in mosaic DSD patients, we performed next generation (deep sequencing on the genomic DNA of fourteen independent patients (twelve 45,X/46,XY, one 45,X/46,XX/46,XY, and one 46,XX/46,XY. Results and conclusions The results demonstrate that aberrations in SRY are rare in mosaic DSD patients and therefore do not play a significant role in the etiology of the disease.

  4. Human male infertility, the Y chromosome, and dinosaur extinction

    Directory of Open Access Journals (Sweden)

    Sherman J. Silber

    2011-06-01

    Our studies of the Y chromosome and male infertility suggest that the default mechanism for determining the sex of offspring is the temperature of egg incubation, and that genetic sex determination (based on sex chromosomes like X and Y has evolved many times over and over again in different ways, in different genera, as a more foolproof method than temperature variation of assuring a balanced sex ratio in offspring. The absence of such a genetic sex determining mechanism in dinosaurs may have led to a skewed sex ratio when global temperature dramatically changed 65,000,000 years ago, resulting in a preponderance of males, and consequentially a rapid decline in population.

  5. Quantitative sexing (Q-Sexing) and relative quantitative sexing (RQ ...

    African Journals Online (AJOL)

    samer

    Key words: Polymerase chain reaction (PCR), quantitative real time polymerase chain reaction (qPCR), quantitative sexing, Siberian tiger. INTRODUCTION. Animal molecular sexing .... 43:3-12. Ellegren H (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc.

  6. Unusual arrangement and behaviour of the sex chromosomes of Aphodius (Agolius abdominalis Bonelli, 1812, and comparison with A. (A. bonvouloiri Harold, 1860 (Coleoptera: Aphodiidae

    Directory of Open Access Journals (Sweden)

    Robert Angus

    2009-12-01

    Full Text Available Aphodius abdominalis Bonelli, 1812 is shown to have a karyotype comprising nine pairs of autosomes and sex chromosomes which are X0 (male, XX (female. At first metaphase of meiosis the X chromosome is linked to an autosomal bivalent by a darkly staining area of the cytoplasm, resembling the Xy p arrangement typical of Aphodius species, but giving nine, rather than 10, elements in the nucleus. C-banding, which shows the centromeres, confirms this unusual arrangement. A. bonvouloiri, the only other known species of subgenus Agolius Mulsant et Rey, 1869, has a male karyotype with nine pairs of autosomes and Xy sex chromosomes. No preparations of its meiosis are available.

  7. Identification of 2nd chromosome region translocated onto the W chromosome by RFLP with EST-cDNA clones in the Gensei-kouken strains of the mulberry silkworm, Bombyx mori L

    Directory of Open Access Journals (Sweden)

    Sivaramakurup Sreekumar

    2010-01-01

    Full Text Available In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome. In these improved strains, the females are yellow-blooded and spin yellow cocoons. By using the EST-cDNA clones mapped on the Z chromosome, we identified the sex according to the polymorphic banding pattern or intensity of the signals. Furthermore, by using the clones on the second chromosome, the region of the second chromosome translocated onto the W chromosome was also defined. In both the A95 and A 96 strains selected for the present study, only the mid-portion of the second chromosome was translocated. The differences in length of the fragments translocated in these strains are discussed.

  8. X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries and European red deer (Cervus elaphus

    Directory of Open Access Journals (Sweden)

    Brenig B

    2005-03-01

    Full Text Available Abstract Background Simple and precise methods for sex determination in animals are a pre-requisite for a number of applications in animal production and forensics. However, some of the existing methods depend only on the detection of Y-chromosome specific sequences. Therefore, the abscence of a signal does not necessarily mean that the sample is of female origin, because experimental errors can also lead to negative results. Thus, the detection of Y- and X-chromosome specific sequences is advantageous. Results A novel method for sex identification in mammals (sheep, Ovis aries and European red deer, Cervus elaphus is described, using a polymerase chain reaction (PCR and sequencing of a part of the amelogenin gene. A partial sequence of the amelogenin gene of sheep and red deer was obtained, which exists on both X and Y chromosomes with a deletion region on the Y chromosome. With a specific pair of primers a DNA fragment of different length between the male and female mammal was amplified. Conclusion PCR amplification using the amelogenin gene primers is useful in sex identification of samples from sheep and red deer and can be applied to DNA analysis of micro samples with small amounts of DNA such as hair roots as well as bones or embryo biopsies.

  9. Identification of a Novel Retrotransposon with Sex Chromosome-Specific Distribution in Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Králová, Tereza; Čegan, Radim; Kubát, Zdeněk; Vrána, Jan; Vyskot, Boris; Vogel, Ivan; Kejnovský, Eduard; Hobza, Roman

    2014-01-01

    Roč. 143, 1-3 (2014), s. 87-95 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LM2010005; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP501/12/2220; GA ČR(CZ) GAP305/10/0930; GA ČR(CZ) GA522/09/0083; GA MŠk(CZ) LO1204 Institutional support: RVO:68081707 Keywords : Microdissection * Sex chromosomes * Silene latifolia (white campion) Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 1.561, year: 2014

  10. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction

    Czech Academy of Sciences Publication Activity Database

    Yoshido, Atsuo; Marec, František; Sahara, K.

    2016-01-01

    Roč. 116, č. 5 (2016), s. 424-433 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:The European Union Seventh Framework Programme (FP7/2007-2013)(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : hybrids * sex chromosomes * sex determination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.961, year: 2016

  11. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.

    Science.gov (United States)

    Lau, Allison N; Peng, Lei; Goto, Hiroki; Chemnick, Leona; Ryder, Oliver A; Makova, Kateryna D

    2009-01-01

    Despite their ability to interbreed and produce fertile offspring, there is continued disagreement about the genetic relationship of the domestic horse (Equus caballus) to its endangered wild relative, Przewalski's horse (Equus przewalskii). Analyses have differed as to whether or not Przewalski's horse is placed phylogenetically as a separate sister group to domestic horses. Because Przewalski's horse and domestic horse are so closely related, genetic data can also be used to infer domestication-specific differences between the two. To investigate the genetic relationship of Przewalski's horse to the domestic horse and to address whether evolution of the domestic horse is driven by males or females, five homologous introns (a total of approximately 3 kb) were sequenced on the X and Y chromosomes in two Przewalski's horses and three breeds of domestic horses: Arabian horse, Mongolian domestic horse, and Dartmoor pony. Five autosomal introns (a total of approximately 6 kb) were sequenced for these horses as well. The sequences of sex chromosomal and autosomal introns were used to determine nucleotide diversity and the forces driving evolution in these species. As a result, X chromosomal and autosomal data do not place Przewalski's horses in a separate clade within phylogenetic trees for horses, suggesting a close relationship between domestic and Przewalski's horses. It was also found that there was a lack of nucleotide diversity on the Y chromosome and higher nucleotide diversity than expected on the X chromosome in domestic horses as compared with the Y chromosome and autosomes. This supports the hypothesis that very few male horses along with numerous female horses founded the various domestic horse breeds. Patterns of nucleotide diversity among different types of chromosomes were distinct for Przewalski's in contrast to domestic horses, supporting unique evolutionary histories of the two species.

  12. Pulp tissue in sex determination: A fluorescent microscopic study

    Science.gov (United States)

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  13. An anther- and petal-specific gene SlMF1 is a multicopy gene with homologous sequences on sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Matsunaga, S.; Lebel-Hardenack, S.; Kejnovský, Eduard; Vyskot, Boris; Grant, Sarah R.; Kawano, S.

    2005-01-01

    Roč. 80, - (2005), s. 395-401 ISSN 1341-7568 R&D Projects: GA ČR(CZ) GA204/05/2097 Institutional research plan: CEZ:AV0Z50040507 Keywords : dioecious plant * male flower * sex chromosomes Subject RIV: BO - Biophysics Impact factor: 1.081, year: 2005

  14. Genes and chromosome arrangements affecting sex ratio in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Wood, R.J.; Kafu, A.A.; Rendon Arana, P.A.; Owusu-Daaku, K.; Alcock, R.M.; Hallows, J.A.; Busch-Petersen, E.; Mani, G.S.

    1997-01-01

    The MP (male producing) factor, which shows temperature sensitive meiotic drive favoring the Y chromosome, proved to be highly variable in spermatozoal deficiency in different cysts within a single testis. However, the overall loss of sperm corresponded almost precisely with the loss of females. The minimum proportion of females consistently obtained in inbred lines was about 30-35%. On the basis of parallel studies with the mosquito Aedes aegypti, variability between cysts is open to interpretation in terms of different rates of senescence. The T:Y(wp + )30C genetic sexing strain, which is designed to generate males with brown (wild type) puparia and females with white puparia, was contaminated artificially in a series of population experiments to investigate the pattern of breakdown. Wild type contamination with either sex caused an increase of brown pupae. The sex ratio became progressively distorted in favour of females after contamination with females, mated or unmated, but not after male contamination. The experiments revealed evidence of a low frequency of natural recombination between wp + and the translocation breakpoint on the Y chromosome, shown by the appearance of wp males. The frequency of male recombination (r) and the selection coefficient (s) against wp/wp were measured over 11 generations. The best fit to the observed data was obtained with r = (0.14 ± 0.04)% and s=(26.0 ± 2.7)%. Using these estimates to predict the frequency of wp + females and wp males for up to 100 generations, it was concluded that white males would never exceed 0.5% whereas the frequency of brown females was expected to exceed 33% after 25 generations. Published data on the mass reared strain, maintained with a population size of 240,000 adult flies, were subjected to the same analysis. A higher value of s between (38.0 ± 3.2)% and (52.0 ± 0.3)% was obtained under these conditions. Electrophoretic studies on esterases revealed a significantly higher activity in a recently

  15. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome

    Science.gov (United States)

    White, Michael A.; Kitano, Jun; Peichel, Catherine L.

    2015-01-01

    Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858

  16. Clinical, chromosomal and endocrine studies for congenital adrenal hyperplasia

    International Nuclear Information System (INIS)

    Soliman, S.E.; Shousha, M.; Hafez, M.

    2006-01-01

    Severe forms of congenital adrenal hyperplasia are potentially fatal if unrecognized and untreated. The aim of this study was to clarify the clinical presentation together with the chromosomal and laboratory associations in this syndrome. Twenty four patients diagnosed as congenital adrenal hyperplasia were referred from Children's Hospital, Cairo University, Egypt, for hormonal and chromosomal workup. The age ranged from eight months to 19 years with mean age of 3.18 years. Twenty two patients were diagnosed as classic congenital adrenal hyperplasia (CAH) syndrome. Severe salt wasting form was present in ten patients whereas simple virilisation was the presenting manifestation in twelve patients. Two patients presented as late onset congenital adrenal hyperplasia (LOCAH). The sex of rearing was female in 18 cases and male in six cases. Genitography and sonography confirmed the presence of female internal organs in all cases. Advanced bone age was evident by radiographic studies. Although the karyotyping was 46,XX in all cases, the diagnosed correct sex was delayed in six cases. Serum concentrations of 17-hydroxyprogesterone (17.OH.P), dehydroepiandrosterone sulfate (DHEAS), delta, 4-androstenedione (D4A), testosterone (T) and 11-deoxycortisol were all elevated as compared to controls. It was found that the adrenal androgens DHEAS, D4A and T were more elevated in salt losers when compared to simple virilising patients. However, this difference was statistically non-significant. The present study demonstrates that the clinical examination and laboratory investigations are necessary for the early detection and treatment of these cases to avoid major medical and psychological problems for the patients and their parents

  17. Clinical, Chromosomal and Endocrine Studies for Congenital Adrenal Hyperplasia

    International Nuclear Information System (INIS)

    Shousha, M.A.; Somaya, E.T.; Attia, M.

    2007-01-01

    Several forms of congenital adrenal hyperplasia are potentially fatal if unrecognized and untreated. The aim of this study is to throw light on the clinical presentation together with chromosomal and laboratory associations in this syndrome. Twenty four patients diagnosed as congenital adrenal hyperplasia were referred from the Diabetic Endocrine Metabolic Pediatric Unit [DEMPU], Children's Hospital, Cairo University for hormonal and chromosomal workup. Twenty two patients were diagnosed as classic congenital adrenal hyperplasia (CAH) syndrome. Sever salt wasting form was present in ten patients whereas simple virilization was the presenting manifestation in twelve patients. Two patients presented as late onset congenital adrenal hyperplasia (LOCAH). The mean age was 3.18 years, ranging from eight months to 19 years. The sex of rearing was Female in 18 cases and male in six cases. Genitography and sonography confirmed the presence of female internal organs in all cases. Advanced bone age was evident by radiographic studies. Although the karyotyping was (46,XX) in all cases, the correct sex diagnosis was delayed in 6 cases. Serum concentrations of 17-hydroxyprogesterone (17.OH.P); Dehydroepiandrosterone sulfate (DHEAS); Delta,4-androstenedione (D 4 A); Testosterone and 11-deoxycortisol were all elevated in relation to controls. We found that the adrenal androgens DHEAS, delta 4A, and T were more elevated in salt losers when compared to simple virilizing patients. However, this difference was not of statistical significance. The present study demonstrates that clinical examination and laboratory investigations are necessary for early detection and treatment of hese cases to avoid major medical and psychological problems for the patients and their parents.

  18. Sex determination in mythology and history.

    Science.gov (United States)

    Mittwoch, Ursula

    2005-02-01

    The history of ideas on how the sexes became divided spans at least three thousand years. The biblical account of the origin of Eve, and the opinions of the philosophers of classical Greece, have unexpected bearings on present-day ideas. The scientific study of sex determination can be said to have begun in the 17th century with the discovery of spermatozoa, but the origin and function of the "spermatic animalcules" eluded investigators until 1841. The mammalian egg was discovered in 1827, and in the last quarter of the century fertilization was observed. The view current at that time, that sex determination was under environmental control, gave way to the idea of chromosomal determination in the first quarter of the 20th century. The study of human and other mammalian chromosomes during the third quarter of the century, and the discovery of sex-chromosome abnormalities, emphasized the importance of the Y chromosome for male sex determination. The last quarter of the century witnessed a hunt for the "testis-determining" gene, thought to be responsible for the differentiation of Sertoli cells, and culminating in the isolation of SRY (Sry in the mouse). However, an increasing number of additional genes and growth factors were found to be required for the establishment of male sex. During the same period evidence emerged that male development was accompanied by enhanced growth, both of gonads and whole embryos. An unexpected finding was the demonstration of temperature-dependent sex determination in reptiles. With the advent of the 21st century, it was shown that Sry induces cell proliferation in fetal mouse gonads, and it has been suggested that male sex differentiation in mammals requires a higher metabolic rate. These insights could lead to a better understanding and improved treatment of abnormalities of sexual development.

  19. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  20. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  1. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    Science.gov (United States)

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  2. 46,XX T testicular disorder of sex development. Case report.

    Science.gov (United States)

    Pastor Guzmán, José María; Pastor Navarro, Hector; Quintanilla Mata, María Luisa; Carrión López, Pedro; Martínez Ruíz, Jesús; Martínez Sanchiz, Carlos; Perán Teruel, Miguel; Virseda Rodríguez, Julio Antonio

    2011-06-01

    We present a case of X-Y translocation with male phenotype (46,XX testicular disorder of sex development) and review the literature. Disorders of sex development with mismatch of genetic, gonadal and phenotypic sex are quite rare, and some are due to genetic or chromosomal abnormalities. The karyotype was investigated by a cytogenetic study of peripheral blood (phytohemagglutinin-timulated lymphocyte culture over 72 hours). G-banding analysis of 25 metaphases showed a 46,XX chromosome constitution (46 chromosomes with XX sexual composition). Fluorescence in situ hybridization (FISH) analysis with probes for X centromeres and the sex-determining region of the Y chromosome (SRY) (testis-determining factor gene) showed two X chromosomes. The analysis also showed the SRY signal in the telomeric region of the short arm of one of the chromosomes. In recent years, a number of other genes involved in disorders of sex development in animals and humans have also been identified. Genetic defects in the peptide hormone receptors, members of the steroid receptor superfamily, and other transcription factors, as well as any of a series of enzymes and cofactors involved in steroid biosynthesis can cause abnormal determination and differentiation. Although chromosomal abnormalities are rarely present in patients with apparently normal external genitalia, they should be considered in urology consultations by adolescents and adults, particularly in the investigation of gynecomastia or infertility.

  3. C-banding and fluorescent in situ hybridization with rDNA sequences in chromosomes of Cycloneda sanguinea Linnaeus (Coleoptera, Coccinellidae

    Directory of Open Access Journals (Sweden)

    Eliane Mariza Dortas Maffei

    2004-01-01

    Full Text Available The aim of this study was to describe mitotic and meiotic chromosomes of Cycloneda sanguinea using C-banding, fluorescent in situ hybridization (FISH rDNA probes, and sequential FISH/Ag-NOR staining. The chromosome number was 2n = 18 + XX for females and 2n = 18 + Xy for males. The X chromosome was metacentric and the Y chromosome was very small. During meiosis, the karyotypic meioformula was n = 9 + Xy p, and sex chromosomes configured a parachute at metaphase I. At the beginning of pachytene, bivalents were still individualized, and sex chromosomes were associated end-to-end through the heteropycnotic region of the X chromosome. Later in pachytene, further condensation led to the formation of a pseudo-ring by the sex bivalent. All chromosomes showed pericentromeric heterochromatin. FISH and sequential FISH/Ag-NOR staining evidenced the location of the nucleolar organizer region in one pair of autosomes (at spermatogonial metaphase. During meiosis, these genes were mapped to a region outside the sex vesicle by FISH, although Xy p was deeply stained with silver at metaphase I. These results suggest that these argyrophilic substances are of a nucleolar protein nature, and seem to be synthesized by a pair of autosomes and imported during meiosis (prophase I to the sex pair, during the association of the sex chromosomes.

  4. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution.

    Science.gov (United States)

    Rens, Willem; Grützner, Frank; O'brien, Patricia C M; Fairclough, Helen; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2004-11-16

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution.

  5. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex.

    Science.gov (United States)

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  6. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  7. Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review*

    Science.gov (United States)

    LEGGETT, VICTORIA; JACOBS, PATRICIA; NATION, KATE; SCERIF, GAIA; BISHOP, DOROTHY V M

    2010-01-01

    Aim To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). Method A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. Results We identified 35 articles on five neonatally identified samples that had adequate power for our review. An additional 11 studies were included where cases had been identified for reasons other than neurodevelopmental concerns. Individuals with an additional X chromosome had mean IQs that were within broadly normal limits but lower than the respective comparison groups, with verbal IQ most affected. Cognitive outcomes were poorest for females with XXX. Males with XYY had normal-range IQs, but all three SCT groups (XXX, XXY, and XYY) had marked difficulties in speech and language, motor skills, and educational achievement. Nevertheless, most adults with SCTs lived independently. Less evidence was available for brain structure and for attention, social, and psychiatric outcomes. Within each group there was much variation. Interpretation Individuals with SCTs are at risk of cognitive and behavioural difficulties. However, the evidence base is slender, and further research is needed to ascertain the nature, severity, and causes of these difficulties in unselected samples. PMID:20059514

  8. Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review.

    Science.gov (United States)

    Leggett, Victoria; Jacobs, Patricia; Nation, Kate; Scerif, Gaia; Bishop, Dorothy V M

    2010-02-01

    To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. We identified 35 articles on five neonatally identified samples that had adequate power for our review. An additional 11 studies were included where cases had been identified for reasons other than neurodevelopmental concerns. Individuals with an additional X chromosome had mean IQs that were within broadly normal limits but lower than the respective comparison groups, with verbal IQ most affected. Cognitive outcomes were poorest for females with XXX. Males with XYY had normal-range IQs, but all three SCT groups (XXX, XXY, and XYY) had marked difficulties in speech and language, motor skills, and educational achievement. Nevertheless, most adults with SCTs lived independently. Less evidence was available for brain structure and for attention, social, and psychiatric outcomes. Within each group there was much variation. Individuals with SCTs are at risk of cognitive and behavioural difficulties. However, the evidence base is slender, and further research is needed to ascertain the nature, severity, and causes of these difficulties in unselected samples.

  9. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp

    Czech Academy of Sciences Publication Activity Database

    Yoshido, A.; Sahara, K.; Marec, František; Matsuda, Y.

    2011-01-01

    Roč. 106, č. 4 (2011), s. 614-624 ISSN 0018-067X R&D Projects: GA AV ČR IAA600960925 Grant - others:Japan Society for the Promotion of Science(JP) 19-1114; Japan Society for the Promotion of Science(JP) 21-7147 Institutional research plan: CEZ:AV0Z50070508 Keywords : Lepidoptera * sex chromosomes * fluorescences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  10. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  11. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2013-01-01

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly

  12. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

    Directory of Open Access Journals (Sweden)

    Melissa Bizzarri

    Full Text Available Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3 were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid

  13. Systematic chromosome examination of two families with schizophrenia and two families with manic depressive illness

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, U.; Mors, O.; Ewald, H. [Aarhus Univ. (Denmark)

    1996-02-16

    Systematic and detailed chromosome analysis, combined with a semistructured interview, was performed in 2 families with schizophrenia and in 2 families with manic depressive illness. Prometaphase technique did not reveal any subtle structural chromosome abnormalities. However, in standard techniques, gain and loss of sex chromosomes were observed. This occurred in patients at a younger age than in unaffected persons. This gives rise to the suspicion that sex chromosome aneuploidy may somehow be related to the development of psychosis. But since the data set is small, especially with respect to schizophrenia, further studies are needed to elucidate this observation. In one family, cosegregation of the disease locus with a marker on chromosome 21 was seen. Therefore, further research should determine if chromosome 21 contains a gene for manic depressive illness. 10 refs., 3 figs., 2 tabs.

  14. Disorders of sex development: a study of 194 cases

    Directory of Open Access Journals (Sweden)

    R Walia

    2018-02-01

    Full Text Available Objective: To study the clinical profile and the management of patients with disorders of sex development (DSD. Design and setting: Retrospective study from a tertiary care hospital of North India. Methods and patients: One hundred ninety-four patients of DSD registered in the Endocrine clinic of Postgraduate Institute of Medical Education and Research, Chandigarh between 1995 and 2014 were included. Results: One hundred and two patients (52.5% had 46,XY DSD and seventy-four patients (38.1% had 46,XX DSD. Sex chromosome DSD was identified in seven (3.6% patients. Of 102 patients with 46,XY DSD, 32 (31.4% had androgen insensitivity syndrome and 26 (25.5% had androgen biosynthetic defect. Of the 74 patients with 46,XX DSD, 52 (70.27% had congenital adrenal hyperplasia (CAH and eight (10.8% had ovotesticular DSD. Five patients with sex chromosome DSD had mixed gonadal dysgenesis. Excluding CAH, majority of the patients (90% presented in the post-pubertal period. One-fourth of the patients with simple virilising CAH were reared as males because of strong male gender identity and behaviour and firm insistence by the parents. Corrective surgeries were performed in twenty patients (20% of 46,XY DSD without hormonal evaluation prior to the presentation. Conclusion: Congenital adrenal hyperplasia is the most common DSD in the present series. Most common XY DSD is androgen insensitivity syndrome, while CAH is the most common XX DSD. Delayed diagnosis is a common feature, and corrective surgeries are performed without seeking a definite diagnosis.

  15. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  16. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex

    Directory of Open Access Journals (Sweden)

    Pilar Santolaria

    2016-01-01

    Full Text Available This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively. Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001 although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY and sexed (SX semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05. We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.

  17. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  18. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi; Onizuka, Kanako; Fujimi, Mai; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes

  19. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds.

    Science.gov (United States)

    Ezaz, Tariq; Moritz, Benjamin; Waters, Paul; Marshall Graves, Jennifer A; Georges, Arthur; Sarre, Stephen D

    2009-01-01

    Reptiles show a diverse array of sex chromosomal systems but, remarkably, the Z sex chromosomes of chicken are homologous to the ZW sex chromosomes of a species of gecko, Gekko hokouensis, suggesting an ancient but common origin. This is in contrast to the ZW sex chromosomes of snakes and a species of soft-shelled turtle, Pelodiscus sinensis, which are nonhomologous to those of chicken or each other and appear to have been independently derived. In this paper, we determine what homology, if any, the sex chromosomes of the Australian dragon lizard Pogona vitticeps shares with those of snake and chicken by mapping the dragon homologs of five snake Z chromosome genes (WAC, KLF6, TAX1BP1, RAB5A, and CTNNB1) and five chicken Z chromosome genes (ATP5A1, GHR, DMRT1, CHD1, and APTX) to chromosomes in the dragon. The dragon homologs of snake and chicken sex chromosome genes map to chromosomes 6 and chromosome 2, respectively, in the dragon and that DMRT1, the bird sex-determining gene, is not located on the sex chromosomes of P. vitticeps. Indeed, our data show that the dragon homolog to the chicken Z chromosome is likely to be wholly contained within chromosome 2 in P. vitticeps, which suggests that the sex-determining factor in P. vitticeps is not the sex-determining gene of chicken. Homology between chicken Z chromosome and G. hokouensis ZW chromosome pairs has been interpreted as retention of ancient ZW sex chromosomes in which case the nonhomologous sex chromosomes of snake and dragons would be independently derived. Our data add another case of independently derived sex chromosomes in a squamate reptile, which makes retention of ancient sex chromosome homology in the squamates less plausible. Alternatively, the conservation between the bird Z chromosome and the G. hokouensis ZW chromosomes pairs is coincidental, may be an example of convergent evolution, its status as the Z chromosome having been independently derived in birds and G. hokouensis.

  20. The genomics of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2015-01-01

    Roč. 236, JUL 2015 (2015), s. 126-135 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220 Institutional support: RVO:68081707 Keywords : Y-CHROMOSOME * SILENE-LATIFOLIA * DIOECIOUS PLANT Subject RIV: BO - Biophysics Impact factor: 3.362, year: 2015

  1. Recombination difference between sexes: a role for haploid selection.

    Directory of Open Access Journals (Sweden)

    Thomas Lenormand

    2005-03-01

    Full Text Available Why the autosomal recombination rate differs between female and male meiosis in most species has been a genetic enigma since the early study of meiosis. Some hypotheses have been put forward to explain this widespread phenomenon and, up to now, only one fact has emerged clearly: In species in which meiosis is achiasmate in one sex, it is the heterogametic one. This pattern, known as the Haldane-Huxley rule, is thought to be a side effect, on autosomes, of the suppression of recombination between the sex chromosomes. However, this rule does not hold for heterochiasmate species (i.e., species in which recombination is present in both sexes but varies quantitatively between sexes and does not apply to species lacking sex chromosomes, such as hermaphroditic plants. In this paper, we show that in plants, heterochiasmy is due to a male-female difference in gametic selection and is not influenced by the presence of heteromorphic sex chromosomes. This finding provides strong empirical support in favour of a population genetic explanation for the evolution of heterochiasmy and, more broadly, for the evolution of sex and recombination.

  2. seXY: a tool for sex inference from genotype arrays.

    Science.gov (United States)

    Qian, David C; Busam, Jonathan A; Xiao, Xiangjun; O'Mara, Tracy A; Eeles, Rosalind A; Schumacher, Frederick R; Phelan, Catherine M; Amos, Christopher I

    2017-02-15

    Checking concordance between reported sex and genotype-inferred sex is a crucial quality control measure in genome-wide association studies (GWAS). However, limited insights exist regarding the true accuracy of software that infer sex from genotype array data. We present seXY, a logistic regression model trained on both X chromosome heterozygosity and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% more accurate female classification. https://github.com/Christopher-Amos-Lab/seXY. Christopher.I.Amos@dartmouth.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Seed sexing revealed female bias in two Rumex species

    Directory of Open Access Journals (Sweden)

    Dagmara Kwolek

    2011-07-01

    Full Text Available Sex-ratio bias in seeds of dioecious Rumex species with sex chromosomes is an interesting and still unsettled issue. To resolve gender among seeds of R. acetosa and R. thyrsiflorus (two species with an XX/XY1Y2 sex chromosome system, this work applied a PCR-based method involving DNA markers located on Y chromosomes. Both species showed female-biased primary sex ratios, with female bias greater in R. acetosa than in R. thyrsiflorus. The observed predominance of female seeds is consistent with the view that the female biased sex ratios in Rumex are conditioned not only postzygotically but also prezygotically.

  4. Chromosomes and their meiotic behaviour in two species of Dieuches Dohrn, 1860 (Heteroptera: Lygaeidae: Rhyparochromini

    Directory of Open Access Journals (Sweden)

    Harbhajan Kaur

    2009-08-01

    Full Text Available The Lygaeidae (Heteroptera are a large and diverse family in which the male diploid chromosomal complement ranges from 10 to 30. Diploid numbers of 14 and 16 are taken as two modal numbers of the family. The Rhyparochrominae, one of the largest subfamilies of the Lygaeidae, are known to be heterogeneous both cytologically and morphologically. Available data on the tribe Rhyparochromini reveal that all species are characterized by the presence of a pair of microchromosomes (m-chromosomes and have an XY/XX (♂/♀ sex chromosome determining system. Dieuches coloratus (Distant, 1909 and D. insignis (Distant, 1918 belonging to Rhyparochromini, have 2n=14=10A+2m+XY and 2n=12=8A+2m+XY respectively. Both the species are similar inone pair of distinctly large autosomes in their chromosome complements. The metaphase plate arrangement of autosomes, sex chromosomes and m-chromosomes in D. coloratus is similar to the common condition observed in the tribe Rhyparochromini. In D. insignis, however, the arrangement is different. Here, metaphase I is usual in showing peripheral position of autosomes and central position of sex chromosomes and m-chromosomes. At metaphase II, however, autosomes, sex chromosomes and m-chromosomes are peripherally placed, an arrangement, which is not reported earlier in the tribe Rhyparochromini.

  5. A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae.

    Science.gov (United States)

    Zefa, Edison; Redü, Darlan Rutz; Da Costa, Maria Kátia Matiotti; Fontanetti, Carmem S; Gottschalk, Marco Silva; Padilha, Giovanna Boff; Fernandes e Silva, Anelise; Martins, Luciano De P

    2014-08-06

    In this paper we describe a new species of Luzarinae cricket collected from the cave "Gruta de Ubajara, municipality of Ubajara, State of Ceará, Brazil, highlighting phallic sclerites morphology and chromosome complement as diagnostic characters. We presented meiotic and mitotic characterization in order to define the karyotype with 2n = 12 + X1X2♂/12 + X1X1X2X2♀. This represents the first record of X1X20 chromosomal sex system in Gryllidae.

  6. A History of the Discovery of Random X Chromosome Inactivation in the Human Female and its Significance

    Directory of Open Access Journals (Sweden)

    Sophia Balderman

    2011-07-01

    Full Text Available Genetic determinants of sex in placental mammals developed by the evolution of primordial autosomes into the male and female sex chromosomes. The Y chromosome determines maleness by the action of the gene SRY, which encodes a protein that initiates a sequence of events prompting the embryonic gonads to develop into testes. The X chromosome in the absence of a Y chromosome results in a female by permitting the conversion of the embryonic gonads into ovaries. We trace the historical progress that resulted in the discovery that one X chromosome in the female is randomly inactivated in early embryogenesis, accomplishing approximate equivalency of X chromosome gene dosage in both sexes. This event results in half of the somatic cells in a tissue containing proteins encoded by the genes of the maternal X chromosome and half having proteins encoded by the genes of the paternal X chromosome, on average, accounting for the phenotype of a female heterozygote with an X chromosome mutation. The hypothesis of X chromosome inactivation as a random event early in embryogenesis was first described as a result of studies of variegated coat color in female mice. Similar results were found in women using the X chromosome-linked gene, glucose-6-phosphate dehydrogenase, studied in red cells. The random inactivation of the X chromosome-bearing genes for isoenzyme types A and B of glucose-6-phosphate dehydrogenase was used to establish the clonal origin of neoplasms in informative women with leiomyomas. Behind these discoveries are the stories of the men and women scientists whose research enlightened these aspects of X chromosome function and their implication for medicine.

  7. XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Jack E Green

    Full Text Available We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.

  8. Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin?

    Science.gov (United States)

    Mosiołek, Magdalena; Pasierbek, Paweł; Malarz, Janusz; Moś, Maria; Joachimiak, Andrzej J

    2005-01-01

    Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw.) Steam roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.

  9. Divergent actions of long noncoding RNAs on X-chromosome ...

    Indian Academy of Sciences (India)

    2015-10-20

    Oct 20, 2015 ... Organisms with heterochromatic sex chromosomes need to compensate for differences in dosages of ... could also get genetically inactive and late replicating when ... tial to achieve the chromosomal level modifications were.

  10. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  11. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    Science.gov (United States)

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Insect Sex Determination Manipulated by Their Endosymbionts: Incidences, Mechanisms and Implications.

    Science.gov (United States)

    Kageyama, Daisuke; Narita, Satoko; Watanabe, Masaya

    2012-02-10

    The sex-determining systems of arthropods are surprisingly diverse. Some species have male or female heterogametic sex chromosomes while other species do not have sex chromosomes. Most species are diploids but some species, including wasps, ants, thrips and mites, are haplodiploids (n in males; 2n in females). Many of the sexual aberrations, such as sexual mosaics, sex-specific lethality and conversion of sexuality, can be explained by developmental defects including double fertilization of a binucleate egg, loss of a sex chromosome or perturbation of sex-determining gene expression, which occur accidentally or are induced by certain environmental conditions. However, recent studies have revealed that such sexual aberrations can be caused by various groups of vertically-transmitted endosymbiotic microbes such as bacteria of the genera Wolbachia, Rickettsia, Arsenophonus, Spiroplasma and Cardinium, as well as microsporidian protists. In this review, we first summarize the accumulated data on endosymbiont-induced sexual aberrations, and then discuss how such endosymbionts affect the developmental system of their hosts and what kinds of ecological and evolutionary effects these endosymbionts have on their host populations.

  13. A dense SNP-based linkage map for Atlantic salmon (Salmo salar reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns

    Directory of Open Access Journals (Sweden)

    Lien Sigbjørn

    2011-12-01

    Full Text Available Abstract Background The Atlantic salmon genome is in the process of returning to a diploid state after undergoing a whole genome duplication (WGD event between 25 and100 million years ago. Existing data on the proportion of paralogous sequence variants (PSVs, multisite variants (MSVs and other types of complex sequence variation suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding of genetic differences between sexes in this species. Results A linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide polymorphisms (SNPs was constructed using genotyping data from 3297 fish belonging to 143 families. Of these, 2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus aculeatus. The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males, highlighting a difference in sex specific recombination rate (1.38:1 which is much lower than previously reported in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites within linkage groups, with males showing recombination strongly localized to telomeres. Conclusion The map presented here represents a valuable resource for addressing important questions of interest to evolution (the process of re-diploidization, aquaculture and salmonid life history biology and not least as a resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.

  14. Fetal sex determination in the first trimester of pregnancy using a Y chromosome-specific DNA probe

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Huang, S.; Chen, M.; Huang, Y.; Zhang, M.; Dong, J.; Ku, A.; Xu, S.

    1987-05-01

    Prenatal determination of fetal sex is important for the prevention of X-linked disorders such as hemophilia, Lesch-Nyhan syndrome and Duchenne muscular dystrophy. The complex procedures of prenatal diagnosis for X-linked disorders are unnecessary if the fetus is female, because usually no clinical symptoms ever appear in female. pY 3.4 probe used in this work for sex determination is a 3.4 kilobase human repeat sequence. The probe is specific for the Y chromosome of males and can be used for sex determination. The other prove pBLUR used in this paper as control is a widely dispersed, highly repeated human Alu family DNA sequence, represented equally in male and female DNA. On the basis of the relative densities of the autoradiographic spots produced by hybridization of fetal DNA with pY3.4 and pBLUR, the sex of fetus can be clearly identified. Further the authors can determine the radioactive intensity (cpm) of the hybridized DNA spots and the ratio of hybridization with Y3.4 to pBLUR (Y3.4/pBLUR x 10). Results show that the hybridization ratio of DNA from chorionic villi of male (1.03 +/- 0.24) is significantly higher than that of female (0.16 +/- 0.09). Therefore, sex determination of the fetus can be made, based on the ratio of pY3.4/pBLUR x 10. If necessary they can also use Southern hybridization with pY 3.4 probe of DNA isolated from chorionic villi to confirm the result of dot hybridization.

  15. Chromosome-wise dissection of the genome of the extremely big mouse line DU6i.

    Science.gov (United States)

    Bevova, Marianna R; Aulchenko, Yurii S; Aksu, Soner; Renne, Ulla; Brockmann, Gudrun A

    2006-01-01

    The extreme high-body-weight-selected mouse line DU6i is a polygenic model for growth research, harboring many small-effect QTL. We dissected the genome of this line into 19 autosomes and the Y chromosome by the construction of a new panel of chromosome substitution strains (CSS). The DU6i chromosomes were transferred to a DBA/2 mice genetic background by marker-assisted recurrent backcrossing. Mitochondria and the X chromosome were of DBA/2 origin in the backcross. During the construction of these novel strains, >4000 animals were generated, phenotyped, and genotyped. Using these data, we studied the genetic control of variation in body weight and weight gain at 21, 42, and 63 days. The unique data set facilitated the analysis of chromosomal interaction with sex and parent-of-origin effects. All analyzed chromosomes affected body weight and weight gain either directly or in interaction with sex or parent of origin. The effects were age specific, with some chromosomes showing opposite effects at different stages of development.

  16. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    Science.gov (United States)

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  17. B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes

    Science.gov (United States)

    Dhar, Manoj K.; Kour, Gurmeet; Kaul, Sanjana

    2017-01-01

    Abstract Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen mother cells. Several experiments were done to determine the transmission of B chromosome through male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was significantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to have preferential transmission through the female sex track, which may be due to meiotic drive. One of the most intriguing aspects of the present study was the recovery of plants having more chromosomes than the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromosome carrying plants. The origin of these plants can be explained on the basis of a two step process; formation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar genetic constitution of 1B (parent) and plants with higher number of chromosomes. PMID:28919970

  18. Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin?

    Directory of Open Access Journals (Sweden)

    Andrzej J. Joachimiak

    2011-08-01

    Full Text Available Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro. 5-azacytidine (5-azaC treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw. Stearn roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.

  19. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  20. Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive.

    Science.gov (United States)

    Friberg, Urban; Stewart, Andrew D; Rice, William R

    2011-01-01

    Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype). However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive) extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them. Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons. Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.

  1. Empirical evidence for son-killing X chromosomes and the operation of SA-zygotic drive.

    Directory of Open Access Journals (Sweden)

    Urban Friberg

    Full Text Available Diploid organisms have two copies of all genes, but only one is carried by each haploid gamete and diploid offspring. This causes a fundamental genetic conflict over transmission rate between alternative alleles. Single genes, or gene clusters, only rarely code for the complex phenotypes needed to give them a transmission advantage (drive phenotype. However, all genes on a male's X and Y chromosomes co-segregate, allowing different sex-linked genes to code for different parts of the drive phenotype. Correspondingly, the well-characterized phenomenon of male gametic drive, occurring during haploid gametogenesis, is especially common on sex chromosomes. The new theory of sexually antagonistic zygotic drive of the sex chromosomes (SA-zygotic drive extends the logic of gametic drive into the diploid phase of the lifecycle, whenever there is competition among siblings or harmful sib-sib mating. The X and Y are predicted to gain a transmission advantage by harming offspring of the sex that does not carry them.Here we analyzed a mutant X-chromosome in Drosophila simulans that produced an excess of daughters when transmitted from males. We developed a series of tests to differentiate between gametic and SA-zygotic drive, and provide multiple lines of evidence that SA-zygotic drive is responsible for the sex ratio bias. Driving sires produce about 50% more surviving daughters than sons.Sex-ratio distortion due to genetic conflict has evolved via gametic drive and maternally transmitted endosymbionts. Our data indicate that sex chromosomes can also drive by harming the non-carrier sex of offspring.

  2. Y-chromosomal diversity in Haiti and Jamaica: contrasting levels of sex-biased gene flow.

    Science.gov (United States)

    Simms, Tanya M; Wright, Marisil R; Hernandez, Michelle; Perez, Omar A; Ramirez, Evelyn C; Martinez, Emanuel; Herrera, Rene J

    2012-08-01

    Although previous studies have characterized the genetic structure of populations from Haiti and Jamaica using classical and autosomal STR polymorphisms, the patrilineal influences that are present in these countries have yet to be explored. To address this lacuna, the current study aims to investigate, for the first time, the potential impact of different ancestral sources, unique colonial histories, and distinct family structures on the paternal profile of both groups. According to previous reports examining populations from the Americas, island-specific demographic histories can greatly impact population structure, including various patterns of sex-biased gene flow. Also, given the contrasting autosomal profiles provided in our earlier study (Simms et al.: Am J Phys Anthropol 142 (2010) 49-66), we hypothesize that the degree and directionality of gene flow from Europeans, Africans, Amerindians, and East Asians are dissimilar in the two countries. To test this premise, 177 high-resolution Y-chromosome binary markers and 17 Y-STR loci were typed in Haiti (n = 123) and Jamaica (n = 159) and subsequently utilized for phylogenetic comparisons to available reference collections encompassing Africa, Europe, Asia (East and South), and the New World. Our results reveal that both studied populations exhibit a predominantly South-Saharan paternal component, with haplogroups A1b-V152, A3-M32, B2-M182, E1a-M33, E1b1a-M2, E2b-M98, and R1b2-V88 comprising 77.2% and 66.7% of the Haitian and Jamaican paternal gene pools, respectively. Yet, European derived chromosomes (i.e., haplogroups G2a*-P15, I-M258, R1b1b-M269, and T-M184) were detected at commensurate levels in Haiti (20.3%) and Jamaica (18.9%), whereas Y-haplogroups indicative of Chinese [O-M175 (3.8%)] and Indian [H-M69 (0.6%) and L-M20 (0.6%)] ancestry were restricted to Jamaica. Copyright © 2012 Wiley Periodicals, Inc.

  3. Observation of a ZZW female in a natural population: implications for avian sex determination.

    Science.gov (United States)

    Arit, D; Bensch, S; Hansson, B; Hasselquist, D; Westerdahl, H

    2004-01-01

    Avian sex determination is chromosomal; however, the underlying mechanisms are not yet understood. There is no conclusive evidence for either of two proposed mechanisms: a dominant genetic switch or a dosage mechanism. No dominant sex-determining gene on the female-specific W chromosome has been found. Birds lack inactivation of one of the Z chromosomes in males, but seem to compensate for a double dose of Z-linked genes by other mechanisms. Recent studies showing female-specific expression of two genes may support an active role of the W chromosome. To resolve the question of avian sex determination the investigation of birds with a 2A: ZZW or 2A: ZO genotype would be decisive. Here, we report the case of an apparent 2A: ZZW great reed warbler (Acrocephalus arundinaceus) female breeding in a natural population, which was detected using Z-linked microsatellites. Our data strongly suggest a role of W-linked genes in avian sex determination. PMID:15252998

  4. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis

    Czech Academy of Sciences Publication Activity Database

    Šíchová, Jindra; Ohno, M.; Dincă, V.; Watanabe, M.; Sahara, K.; Marec, František

    2016-01-01

    Roč. 118, č. 3 (2016), s. 457-471 ISSN 0024-4066 R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:GA JU(CZ) 052/2013/P Institutional support: RVO:60077344 Keywords : karyotype evolution * meiotic pairing * multiple sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.288, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/bij.12756/full

  5. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes.

    Directory of Open Access Journals (Sweden)

    Arjen E Van't Hof

    Full Text Available BACKGROUND: The chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping. METHODOLOGY/PRINCIPAL FINDINGS: Physical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera. CONCLUSIONS/SIGNIFICANCE: This study adds to the knowledge of chromosome structure and

  6. Enzymatic amplification of a Y chromosome repeat in a single blastomere allows identification of the sex of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Bradbury, M.W.; Isola, L.M.; Gordon, J.W.

    1990-01-01

    The polymerase chain reaction (PCR) technique has been adapted to identify the sex of preimplantation mouse embryos rapidly. PCR was used to amplify a specific repeated DNA sequence on the Y chromosome from a single isolated blastomere in under 12 hr. The remainder of the biopsied embryo was then transferred to a pseudopregnant female and carried to term. Using this technique, 72% of embryos can be classed as potentially either male or female. Transfers of such embryos have produced pregnancies with 8/8 fetuses (100%) being of the predicted sex. Variations of the technique have demonstrated certain limitations to the present procedure as well as indicated possible strategies for improvement of the assay. The PCR technique may have wide application in the genetic analysis of preimplantation embryos

  7. The chicken Z chromosome is enriched for genes with preferential expression in ovarian somatic cells

    Czech Academy of Sciences Publication Activity Database

    Mořkovský, L.; Storchová, R.; Plachý, Jiří; Ivánek, Robert; Divina, Petr; Hejnar, Jiří

    2010-01-01

    Roč. 70, č. 2 (2010), s. 129-136 ISSN 0022-2844 Institutional research plan: CEZ:AV0Z50520514 Keywords : Z chromosome * meiotic sex chromosome inactivation * sex ual antagonisms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.311, year: 2010

  8. Forensic use of Y-chromosome DNA: a general overview

    NARCIS (Netherlands)

    M.H. Kayser (Manfred)

    2017-01-01

    textabstractThe male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes

  9. Evaluation of chromosomal aberrations in radiologists and medical radiographers chronically exposed to ionising radiation

    International Nuclear Information System (INIS)

    Kasuba, V.; Rozgaj, R.; Jazbec, A.

    2005-01-01

    Chromosomal aberrations are fairly reliable indicators of damage induced by ionising radiation. This study included 180 radiologists and medical radiographers (technicians) and 90 controls who were not occupationally exposed to ionising radiation. All exposed subjects were routinely monitored with film badge, and none was exposed to a radiation dose exceeding the limit for occupational exposure recommended by the International Commission on Radiological Protection (ICRP). Two hundred metaphases for each person were scored. The frequencies of acentric fragments, dicentrics, ring chromosomes and chromosomal exchanges were determined and compared to those obtained in the control group. Chromosome aberrations were analysed using Poisson regression for profession, age, sex, smoking and years of exposure. Age, smoking, diagnostic exposure to X-rays and occupation were found to correlate with the occurrence of acentric fragments. The influence of exposure duration on the frequency of acentric fragments was greater in medical radiographers than in radiologists. Smoking and sex were found to correlate with the occurrence of dicentric chromosomes, which were more common in men than in women. As chromosome aberrations exceeded the expected level with respect to the absorbed dose, our findings confirm the importance of chromosome analysis as a part of regular medical check-up of subjects occupationally exposed to ionising radiation.(author)

  10. Chromosome studies in Cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Despite the increased cultivation of cashew as a commodity crop in sub-Sahara Africa, Asia and South America there are few chromosome studies on it. The present study investigates number, structure and behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these populations ...

  11. Cytogenetic abnormality in man, wider implications of theories of sex chromatin origin.

    Science.gov (United States)

    MILES, C P

    1962-01-01

    Female nuclei may be identified by means of sex chromatin. In general the number of sex chromatin bodies is one less than the number of X chromosomes. An exception to this rule is a case of sex chromatin-positive XO Turner's syndrome. This case suggests the possibility of sex chromatin-positive XY males, and it may be evidence for chromosomal differentiation.

  12. Two males with SRY-positive 46,XX testicular disorder of sex development.

    Science.gov (United States)

    Gunes, Sezgin; Asci, Ramazan; Okten, Gülsen; Atac, Fatih; Onat, Onur E; Ogur, Gonul; Aydin, Oguz; Ozcelik, Tayfun; Bagci, Hasan

    2013-02-01

    The 46,XX testicular disorder of sex development (46,XX testicular DSD) is a rare phenotype associated with disorder of the sex chromosomes. We describe the clinical, molecular, and cytogenetic findings of a 16- and a 30-year-old male patient with sex-determining region Y (SRY)-positive 46,XX testicular DSD. Chromosomal analysis revealed 46,XX karyotype. Fluorescence in situ hybridization (FISH) showed the SRY region translocated to the short arm of the X chromosome. The presence of the SRY gene was also confirmed by polymerase chain reaction (PCR). The X chromosome inactivation (XCI) assay showed that both patients have a random pattern of X chromosome inactivation. This report compares the symptoms and features of the SRY-positive 46,XX testicular DSD patients.

  13. 46, XX male: a case study of clinical, hormonal and molecular cytogenetic evaluation of sex development disorder

    International Nuclear Information System (INIS)

    Ali, S.; Shahid, S.M.; Azhar, A.

    2012-01-01

    Disorders of sex development (DSD) create medical and social dilemma. Maleness with XX genotype is a rare genetic condition affecting one in 24,000 new-born males. The XX male syndrome is a varied condition characterized by a spectrum of clinical presentation. ranging from normal male genitalia to ambiguous sex. Chromosomal anomalies are important cause of lack of development in secondary sexual characteristics, delayed puberty, miscarriage, infertility and other associated problems. An individual having ambiguous sex may have lifelong impact on social, psychological and sexual functions. The present case study describes the hormonal, clinical and molecular cytogenetics data of sex development disorders in a patient who was phenotypically male but cytogenetic analysis revealed 46.XX. (author)

  14. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH.

    Science.gov (United States)

    Mcnair, Alistair; Lokman, P Mark; Closs, Gerard P; Nakagawa, Shinichi

    2015-03-01

    Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.

  15. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  16. Nonrandom distribuion of chromosome breaks in cultured lymphocytes of normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Ayme, S.; Mattei, J.F.; Mattei, M.G.; Aurran, Y.; Giraud, F.

    1976-02-29

    Breakpoint distribution was studied from cultured lymphocytes on 7653 metaphases from 524 subjects whose karyotypes were normal. The mean break rate was 5% in both sexes. The frequency increased significantly after 40 years and varied during the year. The location of the breaks was very different from the expected random distribution. The break frequency for each chromosome was different according to the type of break (chromatid, simple chromosomal and chromosomal involving rearrangements). The location of the breaks was also studied according to the type of band and with respect to the centromere. A comparison between spontaneous breaks, x-ray induced breaks, breaks in Fanconi's anemia and in congenital rearrangements, show very significant differences.

  17. Guardian small RNAs and sex determination.

    Science.gov (United States)

    Katsuma, Susumu; Kawamoto, Munetaka; Kiuchi, Takashi

    2014-01-01

    The W chromosome of the silkworm Bombyx mori has been known to determine femaleness for more than 80 years. However, the feminizing gene has not been molecularly identified, because the B. mori W chromosome is almost fully occupied by a large number of transposable elements. The W chromosome-derived feminizing factor of B. mori was recently shown to be a female-specific PIWI-interacting RNA (piRNA). piRNAs are small RNAs that potentially repress invading "non-self" elements (e.g., transposons and virus-like elements) by associating with PIWI proteins. Our results revealed that female-specific piRNA precursors, which we named Fem, are transcribed from the sex-determining region of the W chromosome at the early embryonic stage and are processed into a single mature piRNA (Fem piRNA). Fem piRNA forms a complex with Siwi (silkworm Piwi), which cleaves a protein-coding mRNA transcribed from the Z chromosome. RNA interference of this Z-linked gene, which we named Masc, revealed that this gene encodes a protein required for masculinization and dosage compensation. Fem and Masc both participate in the ping-pong cycle of the piRNA amplification loop by associating with the 2 B. mori PIWI proteins Siwi and BmAgo3 (silkworm Ago3), respectively, indicating that the piRNA-mediated interaction between the 2 sex chromosomes is the primary signal for the B. mori sex determination cascade. Fem is a non-transposable repetitive sequence on the W chromosome, whereas Masc is a single-copy protein-coding gene. It is of great interest how the piRNA system recognizes "self "Masc mRNA as "non-self" RNA.

  18. No evidence for selective follicle abortion underlying primary sex ratio adjustment in pigeons

    NARCIS (Netherlands)

    Goerlich, Vivian C.; Dijkstra, Cornelis; Groothuis, Antonius

    Primary sex ratio adjustment in birds has been extensively studied, yet the underlying physiological mechanisms are far from understood. Avian females are the heterogametic sex (ZW), and the future sex of the offspring is determined at chromosome segregation during meiosis I, shortly before the

  19. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    Science.gov (United States)

    Dumont, Beth L

    2017-04-01

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus , were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females. Copyright © 2017 by the Genetics Society of America.

  20. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Giovannotti, M.; Kratochvíl, L.; Caputo, V.; Olmo, E.; Ferguson-Smith, M. A.; Rens, W.

    2012-01-01

    Roč. 121, č. 4 (2012), s. 409-418 ISSN 0009-5915 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex-chromosomes * evolution * genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.340, year: 2012

  1. Screening human populations for chromosome damage. Progress report, March 1982-November 1982

    International Nuclear Information System (INIS)

    Norman, A.

    1982-01-01

    The micronuclear counts in 73 relatively young and healthy patients obtained in previous studies were examined. The natural logarithm of the micronuclear counts (LMNC) was approximately normally distributed so we have tested the effects of age, sex, and medical x-ray exposure on the counts. The results show a clear dependence of micronuclear counts on age, and demonstrate that studies of chromosome damage in radiation workers or in other populations exposed to radiation may be misinterpreted if the effects of age and medical x-ray examinations are not controlled. The results also show that the variability in LNMC among the individuals examined cannot be accounted for totally by the factors of age, sex, or medical x-rays. There are at least two other important sources of variation: counting statistics and degree of lymphocyte proliferation. A single set of harlequin stained cells may be sufficient for estimating micronuclear yields, the degree of lymphocyte proliferation, and possibly the frequency of chromosome aberrations. These results point to the usefulness of the micronucleus assay for screening human populations for chromosome damage

  2. Fish Karyome version 2.1: a chromosome database of fishes and other aquatic organisms.

    Science.gov (United States)

    Nagpure, Naresh Sahebrao; Pathak, Ajey Kumar; Pati, Rameshwar; Rashid, Iliyas; Sharma, Jyoti; Singh, Shri Prakash; Singh, Mahender; Sarkar, Uttam Kumar; Kushwaha, Basdeo; Kumar, Ravindra; Murali, S

    2016-01-01

    A voluminous information is available on karyological studies of fishes; however, limited efforts were made for compilation and curation of the available karyological data in a digital form. 'Fish Karyome' database was the preliminary attempt to compile and digitize the available karyological information on finfishes belonging to the Indian subcontinent. But the database had limitations since it covered data only on Indian finfishes with limited search options. Perceiving the feedbacks from the users and its utility in fish cytogenetic studies, the Fish Karyome database was upgraded by applying Linux, Apache, MySQL and PHP (pre hypertext processor) (LAMP) technologies. In the present version, the scope of the system was increased by compiling and curating the available chromosomal information over the globe on fishes and other aquatic organisms, such as echinoderms, molluscs and arthropods, especially of aquaculture importance. Thus, Fish Karyome version 2.1 presently covers 866 chromosomal records for 726 species supported with 253 published articles and the information is being updated regularly. The database provides information on chromosome number and morphology, sex chromosomes, chromosome banding, molecular cytogenetic markers, etc. supported by fish and karyotype images through interactive tools. It also enables the users to browse and view chromosomal information based on habitat, family, conservation status and chromosome number. The system also displays chromosome number in model organisms, protocol for chromosome preparation and allied techniques and glossary of cytogenetic terms. A data submission facility has also been provided through data submission panel. The database can serve as a unique and useful resource for cytogenetic characterization, sex determination, chromosomal mapping, cytotaxonomy, karyo-evolution and systematics of fishes. Database URL: http://mail.nbfgr.res.in/Fish_Karyome. © The Author(s) 2016. Published by Oxford University Press.

  3. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Genes on B chromosomes: old questions revisited with new tools.

    Science.gov (United States)

    Banaei-Moghaddam, Ali M; Martis, Mihaela M; Macas, Jiří; Gundlach, Heidrun; Himmelbach, Axel; Altschmied, Lothar; Mayer, Klaus F X; Houben, Andreas

    2015-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio bias.

    Science.gov (United States)

    Tech, C

    2006-11-01

    I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the 'faster-male' theory in taxa lacking well-differentiated sex chromosomes.

  6. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

    NARCIS (Netherlands)

    Hughes, Jennifer F.; Skaletsky, Helen; Pyntikova, Tatyana; Graves, Tina A.; van Daalen, Saskia K. M.; Minx, Patrick J.; Fulton, Robert S.; McGrath, Sean D.; Locke, Devin P.; Friedman, Cynthia; Trask, Barbara J.; Mardis, Elaine R.; Warren, Wesley C.; Repping, Sjoerd; Rozen, Steve; Wilson, Richard K.; Page, David C.

    2010-01-01

    The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome(1,2). Little is known about the recent evolution of the Y chromosome because only

  7. Pleiotropic Mechanisms Indicated for Sex Differences in Autism.

    Directory of Open Access Journals (Sweden)

    Ileena Mitra

    2016-11-01

    Full Text Available Sexual dimorphism in common disease is pervasive, including a dramatic male preponderance in autism spectrum disorders (ASDs. Potential genetic explanations include a liability threshold model requiring increased polymorphism risk in females, sex-limited X-chromosome contribution, gene-environment interaction driven by differences in hormonal milieu, risk influenced by genes sex-differentially expressed in early brain development, or contribution from general mechanisms of sexual dimorphism shared with secondary sex characteristics. Utilizing a large single nucleotide polymorphism (SNP dataset, we identify distinct sex-specific genome-wide significant loci. We investigate genetic hypotheses and find no evidence for increased genetic risk load in females, but evidence for sex heterogeneity on the X chromosome, and contribution of sex-heterogeneous SNPs for anthropometric traits to ASD risk. Thus, our results support pleiotropy between secondary sex characteristic determination and ASDs, providing a biological basis for sex differences in ASDs and implicating non brain-limited mechanisms.

  8. Karyotype analysis and sex determination in Australian Brush-turkeys (Alectura lathami.

    Directory of Open Access Journals (Sweden)

    Madison T Ortega

    Full Text Available Sexual differentiation across taxa may be due to genetic sex determination (GSD and/or temperature sex determination (TSD. In many mammals, males are heterogametic (XY; whereas females are homogametic (XX. In most birds, the opposite is the case with females being heterogametic (ZW and males the homogametic sex (ZZ. Many reptile species lack sex chromosomes, and instead, sexual differentiation is influenced by temperature with specific temperatures promoting males or females varying across species possessing this form of sexual differentiation, although TSD has recently been shown to override GSD in Australian central beaded dragons (Pogona vitticeps. There has been speculation that Australian Brush-turkeys (Alectura lathami exhibit TSD alone and/or in combination with GSD. Thus, we sought to determine if this species possesses sex chromosomes. Blood was collected from one sexually mature female and two sexually mature males residing at Sylvan Heights Bird Park (SHBP and shipped for karyotype analysis. Karyotype analysis revealed that contrary to speculation, Australian Brush-turkeys possess the classic avian ZW/ZZ sex chromosomes. It remains a possibility that a biased primary sex ratio of Australian Brush-turkeys might be influenced by maternal condition prior to ovulation that result in her laying predominantly Z- or W-bearing eggs and/or sex-biased mortality due to higher sensitivity of one sex in environmental conditions. A better understanding of how maternal and extrinsic factors might differentially modulate ovulation of Z- or W-bearing eggs and hatching of developing chicks possessing ZW or ZZ sex chromosomes could be essential in conservation strategies used to save endangered members of Megapodiidae.

  9. Sex Reversal in Reptiles: Reproductive Oddity or Powerful Driver of Evolutionary Change?

    Science.gov (United States)

    Holleley, Clare E; Sarre, Stephen D; O'Meally, Denis; Georges, Arthur

    2016-01-01

    Is sex a product of genes, the environment, or both? In this review, we describe the diversity of sex-determining mechanisms in reptiles, with a focus on systems that display gene-environment interactions. We summarise the field and laboratory-based evidence for the occurrence of environmental sex reversal in reptiles and ask whether this is a widespread evolutionary mechanism affecting the evolution of sex chromosomes and speciation in vertebrates. Sex determination systems exist across a continuum of genetic and environmental influences, blurring the lines between what was once considered a strict dichotomy between genetic sex determination and temperature-dependent sex determination. Across this spectrum, we identify the potential for sex reversal in species with clearly differentiated heteromorphic sex chromosomes (Pogona vitticeps, Bassiana duperreyi, Eremias multiocellata, Gekko japonicus), weakly differentiated homomorphic sex chromosomes (Niveoscincus ocellatus), and species with only a weak heritable predisposition for sex (Emys orbicularis, Trachemys scripta). We argue that sex reversal is widespread in reptiles (Testudines, Lacertidae, Agamidae, Scincidae, Gekkonidae) and has the potential to have an impact on individual fitness, resulting in reproductively, morphologically, and behaviourally unique phenotypes. Sex reversal is likely to be a powerful evolutionary force responsible for generating and maintaining lability and diversity in reptile sex-determining modes. © 2016 S. Karger AG, Basel.

  10. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Harkess, Alex; Mercati, Francesco; Shan, Hong-Yan; Sunseri, Francesco; Falavigna, Agostino; Leebens-Mack, Jim

    2015-08-01

    Sex chromosomes have evolved independently in phylogenetically diverse flowering plant lineages. The genes governing sex determination in dioecious species remain unknown, but theory predicts that the linkage of genes influencing male and female function will spur the origin and early evolution of sex chromosomes. For example, in an XY system, the origin of an active Y may be spurred by the linkage of female suppressing and male promoting genes. Garden asparagus (Asparagus officinalis) serves as a model for plant sex chromosome evolution, given that it has recently evolved an XX/XY sex chromosome system. In order to elucidate the molecular basis of gender differences and sex determination, we used RNA-sequencing (RNA-Seq) to identify differentially expressed genes between female (XX), male (XY) and supermale (YY) individuals. We identified 570 differentially expressed genes, and showed that significantly more genes exhibited male-biased than female-biased expression in garden asparagus. In the context of anther development, we identified genes involved in pollen microspore and tapetum development that were specifically expressed in males and supermales. Comparative analysis of genes in the Arabidopsis thaliana, Zea mays and Oryza sativa anther development pathways shows that anther sterility in females probably occurs through interruption of tapetum development before microspore meiosis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    Science.gov (United States)

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Hou, S.; Hobza, Roman; Feltus, F.A.; Wang, X.; Jin, W.; Skelton, R.L.; Blas, A.; Lemke, C.; Saw, J.H.; Moore, P.H.; Alam, M.; Jiang, J.; Paterson, A.H.; Vyskot, Boris; Ming, R.

    2007-01-01

    Roč. 278, č. 2 (2007), s. 177-185 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Carica papaya * repetitive sequences * sex chromosome Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  13. Semen says: assessing the accuracy of adolescents' self-reported sexual abstinence using a semen Y-chromosome biomarker.

    Science.gov (United States)

    Rosenbaum, Janet E; Zenilman, Jonathan M; Rose, Eve; Wingood, Gina M; DiClemente, Ralph J

    2017-03-01

    Researchers often assess condom use only among participants who report recent sexual behaviour, excluding participants who report no recent vaginal sex or who did not answer questions about their sexual behaviour, but self-reported sexual behaviour may be inaccurate. This study uses a semen Y-chromosome biomarker to assess semen exposure among participants who reported sexual abstinence or did not report their sexual behaviour. This prospective cohort study uses data from 715 sexually active African-American female adolescents in Atlanta, surveyed at baseline, 6 months and 12 months. Participants completed a 40 min interview and were tested for semen Y-chromosome with PCR from a self-administered vaginal swab. We predicted Y-chromosome test results from self-reported sexual behaviour using within-subject panel regression. Among the participants who reported abstinence from vaginal sex in the past 14 days, 9.4% tested positive for semen Y-chromosome. Among item non-respondents, 6.3% tested positive for semen Y-chromosome. Women who reported abstinence and engaged in item non-response regarding their sexual behaviour had respectively 62% and 78% lower odds of testing positive for Y-chromosome (OR 0.38 (0.21 to 0.67), OR 0.22 (0.12 to 0.40)), controlling for smoking, survey wave and non-coital sexual behaviours reported during abstinence. Adolescents who report sexual abstinence under-report semen exposure. Research should validate self-reported sexual behaviour with biomarkers. Adolescents who engage in item non-response regarding vaginal sex test positive for semen Y-chromosome at similar rates, which supports the practice of grouping non-respondents with adolescents reporting abstinence in statistical analysis. NCT00633906. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Effect of x-rays on the somatic chromosomes of the exotic fish, Tilapia mossambica

    Energy Technology Data Exchange (ETDEWEB)

    Manna, G.K.; Som, R.C. (Kalyani Univ. (India). Dept. of Zoology)

    1982-03-01

    Male and female T. mossambica were x-rayed with 100 r and the metaphase chromosome aberrations in their gill epithelia were studied at 13 different intervals against suitable control. The chromosomes of males appeared more radio-sensitive than those of females. Among the diploid complement of 44 chromosomes, the individual type aberrations were non-random in both sexes. The longest pair of chromosomes, taken as the marker pair, was found very highly radio-sensitive, while the remaining 21 pairs as non-markers were somewhat resistant to x-radiation when the observed and the expected numbers were subjected to statistical analysis. The break in the marker chromosome was also non-randomly distributed as the distal half had a significantly large number of breaks.

  15. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  16. Chromosome survey for children of A-bomb survivors

    International Nuclear Information System (INIS)

    Awa, Akio

    1992-01-01

    To investigate chromosomes from children of A-bomb survivors, cytogenetic survey has been started in 1967 by the ABCC and completed in 1985 by the succeeding RERF. This paper is designed to overview the cytogenetic survey and to discuss the cytogenetic effects of A-bomb radiation. A cohort of 16,298 children of A-bomb survivors, which were collected from mortality survey population in 1974, was enrolled in this survey and was divided into two groups: the proximally exposed group (n=8,322, whose parents exposed to estimated doses of 0.01 Gy or more within 2,000 m from the hypocenter) and the distally exposed group (n=7,976, those exposed to 0.005 Gy or less far from 2,500 m or not in the city). Three chromosomal aberrations were identified: sex chromosome aberrations consisting mainly of XYY, XXY, and mosaic; structural abnormality of autosomes consisting mainly of translocation and inversion; and trisomy of autosomes. Overall, the incidence of chromosomal aberrations was higher in the distally exposed group (6.39%) than the proximally exposed group (5.17%). According to the type of chromosomal aberrations, the incidences of both sex chromosomes and structural abnormality of autosomes were slightly higher in the distally exposed group (0.30% and 0.34%) than the proximally exposed group (0.23% and 0.28%). Trisomy of autosomes was identified in only one child in the proximally exposed group. These findings failed to demonstrate the rationale for the cytogenetic effects of A-bomb radiation; however, cytogenetic risk of radiation has not been denied completely. (N.K.)

  17. Monozygotic twins of different apparent sex

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yukifumi; Fujino, Nobuyuki; Sato, Yoshiaki; Matsunobu, Akira; Tadokoro, Mamoru [Sagamihara Kyodo Hospital (Japan); Akane, Atsushi [Kansai Medical College, Osaka (Japan); Matsuura, Nobuo; Maeda, Tohru [Kitasato Univ. (Japan); Nakahori, Yutaka; Nakagome, Yasuo [Univ. of Tokyo (Japan)

    1994-10-15

    We report on twins of unlike sex who shared a 45,X/46,X, +mar karyotype. The mar chromosome was found to be Yq- by DNA analysis. Marker studies, including 8 VNTR loci, yielded a probability of monozygosity of 0.99999996. 16 refs., 1 fig., 1 tab.

  18. Chromosome polymorphism in a population of ceratitis capitata

    International Nuclear Information System (INIS)

    Lifschitz, E.

    1987-08-01

    A morphological chromosomal polymorphism along with the observation of B chromosomes in a natural population of Ceratitis capitata is reported. A variability affecting the centromere size of chromosome 3 is described. The observed B chromosome is minute, heterochromatic and telocentric. The B chromosome was found in the male and female germ cells and it exhibited, in the males, intra-individual numerical variation with OB and IB cells, which suggested a mitotic instability. It was also found, in both sexes, in somatic cells (cerebral ganglia tissue). Only males transmitted the B chromosomes to the progeny. The high rate of transmission suggested a differential utilization of the sperm carrying the B chromosomes or a preferential segregation into secondary spermatocytes. Previously reported linkage relationship between a pupal esterase gene (Est-1) and a pupa colour mutant (nig) has been extended to a line carrying a Y-chromosome (Y,B) shorter than the one previously studied (Y,A). Furthermore, an elaborate crossing scheme has been devised in order to estimate the recombination distances between these two genes and a third one affecting pupal length (lp-1). It is concluded that all three genes are in the same linkage group but Est-1 is far from the other two. In turn, nig and lp-1 are separated by 14.9 map units. It is confirmed that genetic recombination does not regularly occur at high frequency in the male and this frequency is not increased by the varying length of the Y-chromosome. Refs, figs, tabs

  19. A father effect explains sex-ratio bias.

    Science.gov (United States)

    Malo, Aurelio F; Martinez-Pastor, Felipe; Garcia-Gonzalez, Francisco; Garde, Julián; Ballou, Jonathan D; Lacy, Robert C

    2017-08-30

    Sex ratio allocation has important fitness consequences, and theory predicts that parents should adjust offspring sex ratio in cases where the fitness returns of producing male and female offspring vary. The ability of fathers to bias offspring sex ratios has traditionally been dismissed given the expectation of an equal proportion of X- and Y-chromosome-bearing sperm (CBS) in ejaculates due to segregation of sex chromosomes at meiosis. This expectation has been recently refuted. Here we used Peromyscus leucopus to demonstrate that sex ratio is explained by an exclusive effect of the father, and suggest a likely mechanism by which male-driven sex-ratio bias is attained. We identified a male sperm morphological marker that is associated with the mechanism leading to sex ratio bias; differences among males in the sperm nucleus area (a proxy for the sex chromosome that the sperm contains) explain 22% variation in litter sex ratio. We further show the role played by the sperm nucleus area as a mediator in the relationship between individual genetic variation and sex-ratio bias. Fathers with high levels of genetic variation had ejaculates with a higher proportion of sperm with small nuclei area. This, in turn, led to siring a higher proportion of sons (25% increase in sons per 0.1 decrease in the inbreeding coefficient). Our results reveal a plausible mechanism underlying unexplored male-driven sex-ratio biases. We also discuss why this pattern of paternal bias can be adaptive. This research puts to rest the idea that father contribution to sex ratio variation should be disregarded in vertebrates, and will stimulate research on evolutionary constraints to sex ratios-for example, whether fathers and mothers have divergent, coinciding, or neutral sex allocation interests. Finally, these results offer a potential explanation for those intriguing cases in which there are sex ratio biases, such as in humans. © 2017 The Author(s).

  20. Screening and identification of a microsatellite marker associated with sex in Wami tilapia, Oreochromis urolepis hornorum.

    Science.gov (United States)

    Zhu, Huaping; Liu, Zhigang; Lu, Maixin; Gao, Fengying; Ke, Xiaoli; Ma, Dongmei; Huang, Zhanghan; Cao, Jianmeng; Wang, Miao

    2016-06-01

    In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.

  1. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    Rousseaux, S.

    1990-02-01

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  2. Comparative Genomic Hybridization (CGH) reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis).

    Science.gov (United States)

    Baker, Richard H; Wilkinson, Gerald S

    2010-09-16

    Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2) ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  3. Comparative Genomic Hybridization (CGH reveals a neo-X chromosome and biased gene movement in stalk-eyed flies (genus Teleopsis.

    Directory of Open Access Journals (Sweden)

    Richard H Baker

    2010-09-01

    Full Text Available Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH, using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log(2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1 rates of protein evolution, 2 the pattern of gene duplication, and 3 the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information.

  4. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  5. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Macholán, Miloš; Baird, S. J. E.; Dufková, Petra; Munclinger, P.; Vošlajerová Bímová, Barbora; Piálek, Jaroslav

    2011-01-01

    Roč. 65, č. 5 (2011), s. 1428-1446 ISSN 0014-3820 R&D Projects: GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z60930519 Keywords : genetic conflict * hybrid zone movement * sex biased introgression * mice * X chromosome Subject RIV: EG - Zoology Impact factor: 5.146, year: 2011

  6. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  7. Lack of a Y-Chromosomal Complement in the Majority of Gestational Trophoblastic Neoplasms

    Directory of Open Access Journals (Sweden)

    Kai Lee Yap

    2010-01-01

    Full Text Available Gestational trophoblastic neoplasms (GTNs are a rare group of neoplastic diseases composed of choriocarcinomas, placental site trophoblastic tumors (PSTTs and epithelioid trophoblastic tumors (ETTs. Since these tumors are derivatives of fetal trophoblastic tissue, approximately 50% of GTN cases are expected to originate from a male conceptus and carry a Y-chromosomal complement according to a balanced sex ratio. To investigate this hypothesis, we carried out a comprehensive analysis by genotyping a relatively large sample size of 51 GTN cases using three independent sex chromosome genetic markers; Amelogenin, Protein Kinase and Zinc Finger have X and Y homologues that are distinguishable by their PCR product size. We found that all cases contained the X-chromosomal complement while only five (10% of 51 tumors harbored the Y-chromosomal complement. Specifically, Y-chromosomal signals were detected in one (5% of 19 choriocarcinomas, one (7% of 15 PSTTs and three (18% of 17 ETTs. The histopathological features of those with a Y-chromosome were similar to those without. Our results demonstrate the presence of a Y-chromosomal complement in GTNs, albeit a low 10% of cases. This shortfall of Y-chromosomal complements in GTNs may reinforce the notion that the majority of GTNs are derived from previous molar gestations.

  8. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Science.gov (United States)

    Suárez, Pablo; Boeris, Juan M.; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y.; Rivera, Miryan; Parise-Maltempi, Patricia P.; Wiley, John E.; Pieczarka, Julio C.; Haddad, Celio F. B.; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini. PMID:29444174

  9. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae.

    Directory of Open Access Journals (Sweden)

    Juan M Ferro

    Full Text Available The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46 and H. alytolylax (FN = 38, with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p, H. palmeri (4q, and H. larinopygion (1p. Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns for their impact on the taxonomy and karyotype evolution in Cophomantini.

  10. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Puterová, J.; Razumova, O.; Martínek, T.; Alexandrov, O.; Divashuk, M.; Kubát, Z.; Hobza, Roman; Karlov, G.; Kejnovský, E.

    2017-01-01

    Roč. 9, č. 1 (2017), s. 197-212 ISSN 1759-6653 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : sex-chromosomes * repetitive sequences * silene-latifolia * molecular cytogenetics * arabidopsis-thaliana * genome size * evolution * organization * alignment * database * sex chromosomes * genome composition * chromosomal localization * repetitive DNA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.979, year: 2016

  11. Commentary Sex determination

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    2008-01-31

    Jan 31, 2008 ... years old (Charnier 1966 reported it in an African agamid lizard), although it was ... people's attention in Susumu Ohno's now famous book on .... If they do enhance male and female fitness, sex chromosomes would then be.

  12. MECHANISMS IN ENDOCRINOLOGY: Aberrations of the X chromosome as cause of male infertility.

    Science.gov (United States)

    Röpke, Albrecht; Tüttelmann, Frank

    2017-11-01

    Male infertility is most commonly caused by spermatogenetic failure, clinically noted as oligo- or a-zoospermia. Today, in approximately 20% of azoospermic patients, a causal genetic defect can be identified. The most frequent genetic causes of azoospermia (or severe oligozoospermia) are Klinefelter syndrome (47,XXY), structural chromosomal abnormalities and Y-chromosomal microdeletions. Consistent with Ohno's law, the human X chromosome is the most stable of all the chromosomes, but contrary to Ohno's law, the X chromosome is loaded with regions of acquired, rapidly evolving genes, which are of special interest because they are predominantly expressed in the testis. Therefore, it is not surprising that the X chromosome, considered as the female counterpart of the male-associated Y chromosome, may actually play an essential role in male infertility and sperm production. This is supported by the recent description of a significantly increased copy number variation (CNV) burden on both sex chromosomes in infertile men and point mutations in X-chromosomal genes responsible for male infertility. Thus, the X chromosome seems to be frequently affected in infertile male patients. Four principal X-chromosomal aberrations have been identified so far: (1) aneuploidy of the X chromosome as found in Klinefelter syndrome (47,XXY or mosaicism for additional X chromosomes). (2) Translocations involving the X chromosome, e.g. nonsyndromic 46,XX testicular disorders of sex development (XX-male syndrome) or X-autosome translocations. (3) CNVs affecting the X chromosome. (4) Point mutations disrupting X-chromosomal genes. All these are reviewed herein and assessed concerning their importance for the clinical routine diagnostic workup of the infertile male as well as their potential to shape research on spermatogenic failure in the next years. © 2017 European Society of Endocrinology.

  13. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2013-01-01

    Full Text Available Disorders of sex development (DSD, formerly termed “intersex” conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2, confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16(p11.32;p13.3[8]/45,X,t(Y;8(p11.32;p23.3[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a “jumping translocation.” Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8(p11.32;p23.3[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y “jumping translocation.” Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach.

  14. Chromosomal aberrations and micronuclei frequencies in Bulgarian control population

    International Nuclear Information System (INIS)

    Popova, I.; Hadjidekova, V.; Hristova, R.; Atanasova, P.

    2004-01-01

    The aim of this investigation is to represent the frequency of spontaneous chromosomal damages in peripheral blood lymphocytes of Bulgarian control population. Material and methods: The investigated group includes persons belonging to both sexes and different ages. Each of them is interviewed of their social and health status. Sixteen persons are examined using the chromosomal aberrations analysis and forty-five with micronucleus test. The frequency of chromosomal aberrations varied between 0 - 2.4 % and the mean value is 1.00 %. The frequency of cells with micronuclei varied between 4.5 - 24.5 % and the mean value 12,9 %. Further work on the investigation of spontaneous frequency of chromosomal damages is in progress. (authors)

  15. Frequency of chromosomal aberrations in a group of patients carriers of gonosomopathies

    International Nuclear Information System (INIS)

    Quesada Dorta, Marlen; Bello Alvarez, Daisy; Gonzalez Fernandez, Pedro

    2004-01-01

    This paper was aimed at determining the frequency of chromosomal aberrations in a group of patients carriers of gonosomopathies and at relating in each case the meaning of the different chromosomal aberrations found to the patients' clinical diagnosis. 656 patients with presumptive diagnosis of gonosomopathies from different hospital institutions of the country that were received at the molecular genetics laboratory of Hermanos Ameijeiras Clinical and Surgical Hospital from 1982 to 2001, were studied. Of the total of patients with presumptive diagnosis of gonosomopathies, in 32.7 % (215/656) the clinical diagnosis was confirmed by the cytogenetic study. The chromosomal study was conducted by using G band techniques. The chromosomal rearrangements found were classified into 4 groups. The group of numerical gonosomopathies showed the highest frequency with 110 patients, accounting for 51 % of the total. It was followed by the group of numerical and structural alterations (mosaics) with 59 patients (27.0), the inversions of sex with 24 patients (12.0), and the group of structural gonosomopathies with 22 patients (10.0) The most common chromosomal aberrations were the numerical gonosomopathies (Turner and Klinefelter's syndrome). The chromosomal study in these patients is a very important diagnostic value indicator for the therapeutical conduct to be followed in every case

  16. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  17. Impact of repetitive elements on the Y chromosome formation in plants

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Čegan, R.; Jesionek, W.; Kejnovský, E.; Vyskot, B.; Kubát, Z.

    2017-01-01

    Roč. 8, č. 11 (2017), č. článku 302. ISSN 2073-4425 R&D Projects: GA ČR GA16-08698S Institutional support: RVO:61389030 Keywords : Satellites * Sex chromosomes * Transposable elements * Y chromosome Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.600, year: 2016

  18. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Arbeitman Michelle N

    2011-07-01

    -specific transcripts. No transcription unit structural feature was robustly enriched in the sex-differentially expressed transcript isoforms. Additionally, we found that many genes with male-biased expression were enriched on the × chromosome and reside adjacent to dosage compensation entry sites, suggesting that differences in sex chromosome composition contributes to dimorphism in gene expression. Taken together, this study provides new insight into the molecular underpinnings of sexual differentiation.

  19. The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis-Break rules but keep playing the game.

    Directory of Open Access Journals (Sweden)

    M Rajičić

    Full Text Available B chromosomes (Bs are known for more than hundred years but their origin, structure and pattern of evolution are not well understood. In the past few years new methodological approaches, involving isolation of Bs followed by whole DNA amplification, DNA probe generation, and fluorescent in situ hybridization (FISH or the B chromosome DNA sequencing, has allowed detailed analysis of their origin and molecular structure in different species. In this study we explored the origin of Bs in the yellow-necked wood mouse, Apodemus flavicollis, using generation of microdissected DNA probes followed by FISH on metaphase chromosomes. Bs of A. flavicollis were successfully isolated and DNA was used as the template for B-specific probes for the first time. We revealed homology of DNA derived from the analyzed B chromosomes to the pericentromeric region (PR of sex chromosomes and subtelomeric region of two pairs of small autosomes, but lower homology to the rest of the Y chromosome. Moreover, all analysed Bs had the same structure regardless of their number per individual or the great geographic distance between examined populations from the Balkan Peninsula (Serbia and Eastern Europe (south region of Russia and central Belarus. Therefore, it was suggested that B chromosomes in A. flavicollis have a unique common origin from the PR of sex chromosomes, and/or similar evolutionary pattern.

  20. Chromosomal aberrations induced by low-dose γ-irradiation: Study of R-banded chromosomes of human lymphocytes

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Lefrancois, D.; Aurias, A.

    1991-01-01

    The effect of low-dose (0-0.5 Gy) γ-radiations was studied on R-banded chromosomes from lymphocytes of healthy donors of various ages. In cells from newborns, an increase of chromosome damage roughly proportional to the dose was found. In lymphocytes from young adults chromosomal aberrations were not detected at doses of 0.05 and 0.1 Gy, and in lymphocytes from old adults not even at 0.2 Gy. The difficulty in detecting aberrations in lymphocytes from adults is largely due to a considerable background of chromosomal anomalies which should be borne in mind in dosimetry studies. The rate of induction largely depends on the types of rearrangements. One-break terminal deletions are efficiently induced at 0.1 and 0.2 Gy and are the best indicators of exposure at these doses. At 0.5 Gy, the frequencies of 2-break lesions, i.e., dicentrics and reciprocal translocations, increase, whereas the of deletions decreases. (author). 6 refs., 3 figs., 2 tabs

  1. A genetic linkage map of the chromosome 4 short arm

    Energy Technology Data Exchange (ETDEWEB)

    Locke, P.A.; MacDonald, M.E.; Srinidhi, J.; Tanzi, R.E.; Haines, J.L. (Massachusetts General Hospital, Boston (United States)); Gilliam, T.C. (Columbia Univ., New York, NY (United States)); Conneally, P.M. (Indiana Univ. Medical Center, Indianapolis (United States)); Wexler, N.S. (Columbia Univ., New York, NY (United States) Hereditary Disease Foundation, Santa Monica, CA (United States)); Gusella, J.F. (Massachusetts General Hospital, Boston (United States) Harvard Univ., Boston, MA (United States))

    1993-01-01

    The authors have generated an 18-interval contiguous genetic linkage map of human chromosome 4 spanning the entire short arm and proximal long arm. Fifty-seven polymorphisms, representing 42 loci, were analyzed in the Venezuelan reference pedigree. The markers included seven genes (ADRA2C, ALB, GABRB1, GC, HOX7, IDUA, QDPR), one pseudogene (RAF1P1), and 34 anonymous DNA loci. Four loci were represented by microsatellite polymorphisms and one (GC) was expressed as a protein polymorphism. The remainder were genotyped based on restriction fragment length polymorphism. The sex-averaged map covered 123 cM. Significant differences in sex-specific rates of recombination were observed only in the pericentromeric and proximal long arm regions, but these contributed to different overall map lengths of 115 cM in males and 138 cM in females. This map provides 19 reference points along chromosome 4 that will be particularly useful in anchoring and seeding physical mapping studies and in aiding in disease studies. 26 refs., 1 fig., 1 tab.

  2. American marsupials chromosomes: why study them?

    Directory of Open Access Journals (Sweden)

    Marta Svartman

    2009-01-01

    Full Text Available Marsupials, one of the three main groups of mammals, are only found in Australia and in the American continent. Studies performed in Australian marsupials have demonstrated the great potential provided by the group for the understanding of basic genetic mechanisms and chromosome evolution in mammals. Genetic studies in American marsupials are relatively scarce and cytogenetic data of most species are restricted to karyotype descriptions, usually without banding patterns. Nevertheless, the first marsupial genome sequenced was that of Monodelphis domestica, a South American species. The knowledge about mammalian genome evolution and function that resulted from studies on M. domestica is in sharp contrast with the lack of genetic data on most American marsupial species. Here, we present an overview of the chromosome studies performed in marsupials with emphasis on the South American species.

  3. Male infertility associated with de novo pericentric inversion of chromosome 1.

    Science.gov (United States)

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  4. An assessment of sex chromosome copy number in a phenotypic female patient with hypergonadtropic hypogonadism, primary amenorrhea and growth retardation by GTG-banding and FISH in peripheral blood and skin tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, I.M.D.; DeMoranville, B.; Grollino, M.G. [Brown Univ. School of Medicine, Providence, RI (United States)] [and others

    1994-09-01

    The present report describes studies performed on an 18-year-old phenotypic female referred because of primary amenorrhea, hypergonadotropic hypoganadism and growth retardation. The clinical features raised the possibility of a gonadal dysgenesis. The ovaries were not identified on either side. Her testosterone was significantly elevated, with serum level at 48 ng/dl, and her free testosterone at 7 pg/ml. A GTG-banding analysis of 33 peripheral blood leukocytes revealed the modal number of chromosomes to be 46 per cell with a male sex constitution and normal appearing banding patterns (46,XY). In view of the clinical findings, additional cells were scored to rule out low percentage mosaicism. Out of 35 additional GTG-banded cells scored for the sex chromosomes, 4 cells (11.5%) were found to contain only one copy of the X chromosome. Fluorescent in situ hybridization (FISH) using dual color biotinylated X and Y probes (Imagenetics) was subsequently performed. Out of approximately 500 cells scored, 87% were found to be XY and 9% were found to be positive for the X signal only, versus 7% and 3% X signal only for 2 XY controls, aged 61 and 46, respectively. As loss of the Y chromosome has been reported in elderly males as well as certain males with leukemia, the age of the controls was important to note. To unequivocally establish the presence of mosaicism, a skin biopsy was obtained for fibroblast culture. Out of 388 total cells scored, 286 (74%) were found to be XY and 46 (12%) were found to be X, versus 99% XY and <1% X in controls. GTG-banding analysis of the same fibroblast culture is currently in progress. Preliminary data on this specimen thus far corroborate results of the FISH study. The presence of XY cells, along with an increased testosterone level, raises the distinct possibility of a gonadoblastoma. In view of this increased risk, arrangements are being made for the patient to have a laparoscopy and surgical removal of her presumptive streak gonads.

  5. Chromosome Characteristic of Peranakan Etawa (PE) Goat (Capra hircus Linn.) as Indonesian Local Breed

    Science.gov (United States)

    Putri, A. R. I.; Ciptadi, G.; Warih, A. P.

    2018-02-01

    Chromosome characteristics of Peranakan Etawa (PE) goat needs to be analyzed because information about Indonesian goat races is very limited. The purpose of this research was to determine the characteristics of PE goat chromosome as basic data as one of the genetic local resources. Blood was collected from pair of PE goat at Sumber Sekar Field Laboratory, Faculty of Animal Husbandry, Brawijaya University, Malang. Blood cultured using standard cytogenetic technique and stained with G-Banding. Observations being done in metaphase cells and analyzed using Genus Cytovision Image. Chromosomes arranged and numbered by standard goat karyotype. The result of this research showed that PE goat had number of chromosomes 2n=60, consisting of 29 pairs of autosome and a pair of sex chromosomes. Female goat had average of total length (TL) of autosome ranged from 47.91 µm±6.46 to 22.12 µm±3.33. TL of chromosome X are 45.96 µm±4,59 and 44.45 µm±3,96. Centromeric index (Ci) of chromosome X, 31,74 and 32,80. PE goat had average of TL of autosome ranged from 58.20µm±6.72 to 18.97µm±2.82. TL of chromosome X is 56,42µm±7,38 and Y chromosome is 15,80 µm±3,24. Ci in chromosome X and Y are 19.34 and 46.84. These results concluded that the total of goat chromosome was 60 with types of autosomal chromosomes were acrocentric as many as 58 chromosomes and pair of sex chromosomes XX and XY, X classified as subtelocentric and Y submetacentric.

  6. The mating type locus (MAT and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi.

    Directory of Open Access Journals (Sweden)

    Banu Metin

    2010-05-01

    transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.

  7. Weird Animals, Sex, and Genome Evolution.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2018-02-15

    Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.

  8. Molecular sexing of threatened Gyps vultures: an important strategy for conservation breeding and ecological studies.

    Science.gov (United States)

    Ghorpade, Prabhakar B; Gupta, Praveen K; Prakash, Vibhu; Cuthbert, Richard J; Kulkarni, Mandar; Prakash, Nikita; Das, Asit; Sharma, Anil K; Saini, Mohini

    2012-12-01

    During the last two decades populations of three resident species of Gyps vulture have declined dramatically and are now threatened with extinction in South Asia. Sex identification of vultures is of key importance for the purpose of conservation breeding as it is desirable to have an equal sex ratio in these monogamous species which are housed together in large colony aviaries. Because vultures are monomorphic, with no differences in external morphology or plumage colour between the sexes, other methods are required for sex identification. Molecular methods for sex identification in birds rely on allelic length or nucleotide sequence discrimination of the chromohelicase-DNA binding (CHD) gene located on male and female chromosomes ZZ and ZW, respectively. We characterized the partial sequences of CHD alleles from Gyps indicus, Gyps bengalensis, Gyps himalayensis and Aegypius monachus and analysed the applicability of five molecular methods of sex identification of 46 individual vultures including 26 known-sex G. bengalensis and G. indicus. The results revealed that W-specific PCR in combination with ZW-common PCR is a quick, accurate and simple method, and is ideal for sex identification of vultures. The method is also suitable to augment ecological studies for identifying sex of these endangered birds during necropsy examinations especially when gonads are not apparent, possibly due to regression during non-breeding seasons.

  9. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Transitions between sex-determining systems in reptiles and amphibians.

    Science.gov (United States)

    Sarre, Stephen D; Ezaz, Tariq; Georges, Arthur

    2011-01-01

    Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.

  11. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  12. Sex differences in primary hypertension

    Science.gov (United States)

    2012-01-01

    Men have higher blood pressure than women through much of life regardless of race and ethnicity. This is a robust and highly conserved sex difference that it is also observed across species including dogs, rats, mice and chickens and it is found in induced, genetic and transgenic animal models of hypertension. Not only do the differences between the ovarian and testicular hormonal milieu contribute to this sexual dimorphism in blood pressure, the sex chromosomes also play a role in and of themselves. This review primarily focuses on epidemiological studies of blood pressure in men and women and experimental models of hypertension in both sexes. Gaps in current knowledge regarding what underlie male-female differences in blood pressure control are discussed. Elucidating the mechanisms underlying sex differences in hypertension may lead to the development of anti-hypertensives tailored to one's sex and ultimately to improved therapeutic strategies for treating this disease and preventing its devastating consequences. PMID:22417477

  13. X-derived marker chromosome in patient with mosaic Turner syndrome and Dandy-Walker syndrome: a case report

    OpenAIRE

    Telepova, Alena S.; Romanenko, Svetlana A.; Lemskaya, Natalya A.; Maksimova, Yulia V.; Shorina, Asia R.; Yudkin, Dmitry V.

    2017-01-01

    Background Small supernumerary marker chromosomes can be derived from autosomes and sex chromosomes and can accompany chromosome pathologies, such as Turner syndrome. Case presentation Here, we present a case report of a patient with mosaic Turner syndrome and Dandy-Walker syndrome carrying a marker chromosome. We showed the presence of the marker chromosome in 33.8% of blood cells. FISH of the probe derived from the marker chromosome by microdissection revealed that it originated from the ce...

  14. Sex determination strategies in 2012: towards a common regulatory model?

    Science.gov (United States)

    2012-01-01

    Sex determination is a complicated process involving large-scale modifications in gene expression affecting virtually every tissue in the body. Although the evolutionary origin of sex remains controversial, there is little doubt that it has developed as a process of optimizing metabolic control, as well as developmental and reproductive functions within a given setting of limited resources and environmental pressure. Evidence from various model organisms supports the view that sex determination may occur as a result of direct environmental induction or genetic regulation. The first process has been well documented in reptiles and fish, while the second is the classic case for avian species and mammals. Both of the latter have developed a variety of sex-specific/sex-related genes, which ultimately form a complete chromosome pair (sex chromosomes/gonosomes). Interestingly, combinations of environmental and genetic mechanisms have been described among different classes of animals, thus rendering the possibility of a unidirectional continuous evolutionary process from the one type of mechanism to the other unlikely. On the other hand, common elements appear throughout the animal kingdom, with regard to a) conserved key genes and b) a central role of sex steroid control as a prerequisite for ultimately normal sex differentiation. Studies in invertebrates also indicate a role of epigenetic chromatin modification, particularly with regard to alternative splicing options. This review summarizes current evidence from research in this hot field and signifies the need for further study of both normal hormonal regulators of sexual phenotype and patterns of environmental disruption. PMID:22357269

  15. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  16. Social Function in Multiple X and Y Chromosome Disorders: XXY, XYY, XXYY, XXXY

    Science.gov (United States)

    Visootsak, Jeannie; Graham, John M., Jr.

    2009-01-01

    Klinefelter syndrome (47,XXY) was initially described in the context of its endocrinologic and physical features; however, subsequent studies have revealed specific impairments in verbal skills and social functioning. Males with sex chromosomal aneuploidies are known to have variability in their developmental profile with the majority presenting…

  17. Y-chromosomal variation of local goat breeds of Turkey close to the domestication centre

    NARCIS (Netherlands)

    Cinar Kul, B; Bilgen, N; Lenstra, J A|info:eu-repo/dai/nl/067852335; Korkmaz Agaoglu, O; Akyuz, B; Ertugrul, O

    2015-01-01

    Genetic variations in chromosome Y are enabling researchers to identify paternal lineages, which are informative for introgressions and migrations. In this study, the male-specific region markers, sex-determining region-Y (SRY), amelogenin (AMELY) and zinc finger (ZFY) were analysed in seven Turkish

  18. Sex-biased gene expression during head development in a sexually dimorphic stalk-eyed fly.

    Directory of Open Access Journals (Sweden)

    Gerald S Wilkinson

    Full Text Available Stalk-eyed flies (family Diopsidae are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and

  19. Sex-linkage of two enzyme loci in Oncorhyncus mykiss (rainbow trout)

    Science.gov (United States)

    Allendorf, F W; Gellman, W A; Thorgaard, G H

    1994-05-01

    We report the first sex-linked loci in Oncorhynchus mykiss (rainbow trout). Previous cytological and breeding experiments have demonstrated an XX/XY sex determining system in this and other salmonid species. Joint segregation data from fathers indicated an average of 8.1 per cent recombination between HEX-2 and the sex determining locus (SEX). The average recombination between HEX-2 and sSOD-1 in fathers was 26.8 per cent. No evidence of non-random segregation of HEX-2 and sSOD-1 was found in mothers; this difference in recombination rates between males and females is concordant with previous studies with rainbow trout and other salmonid species. These results also suggest the possibility that proper chromosomal pairing and segregation in salmonid males does not require a crossover event. Unlike the extreme XX/XY heteromorphy in mammals, functional alleles for HEX-2 and sSOD-1 occur on both the X and Y chromosomes. Significant non-random associations (i.e. gametic disequilibrium) occur between genotypes at HEX-2 and SEX in the hatchery population used for the inheritance study. This gametic disequilibrium has resulted in large changes in allele frequency at HEX-2 from one generation to the next and an excess of heterozygotes in comparison to expected binomial (i.e. Hardy-Weinberg) proportions.

  20. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes were identified by immunostaining and fluorescence in situ hybridization (FISH. The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers, on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18 and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.

  1. [Origin and morphological features of small supernumerary marker chromosomes in Turner syndrome].

    Science.gov (United States)

    Liu, Nan; Tong, Tong; Chen, Yue; Chen, Yanling; Cai, Chunquan

    2018-02-10

    OBJECTIVE To explore the origin and morphological features of small supernumerary marker chromosomes (sSMCs) in Turner syndrome. METHODS For 5 cases of Turner syndrome with a sSMC identified by conventional G-banding, dual-color fluorescence in situ hybridization (FISH) was applied to explore their origin and morphological features. RESULTS Among the 5 cases, 3 have derived from the X chromosome, which included 2 ring chromosomes and 1 centric minute. For the 2 sSMCs derived from the Y chromosome, 1 was ring or isodicentric chromosome, while the other was an isodicentric chromosome. CONCLUSION The sSMCs found in Turner syndrome have almost all derived from sex chromosomes. The majority of sSMCs derived from the X chromosome will form ring chromosomes, while a minority will form centric minute. While most sSMC derived from Y chromosome may exist as isodicentric chromosomes, and a small number may exist as rings. For Turner syndrome patients with sSMCs, dual-color FISH may be used to delineate their origins to facilitate genetic counseling and selection of clinical regime.

  2. Infant sex-specific placental cadmium and DNA methylation associations

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, April F., E-mail: april.mohanty@va.gov [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Farin, Fred M., E-mail: freddy@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Bammler, Theo K., E-mail: tbammler@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); MacDonald, James W., E-mail: jmacdon@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Afsharinejad, Zahra, E-mail: zafshari@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Burbacher, Thomas M., E-mail: tmb@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Box: 357234, 1705 N.E. Pacific Street, Seattle, WA 98195 (United States); Siscovick, David S., E-mail: dsiscovick@nyam.org [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Department of Medicine, University of Washington, Seattle, WA (United States); and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  3. Infant sex-specific placental cadmium and DNA methylation associations

    International Nuclear Information System (INIS)

    Mohanty, April F.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Afsharinejad, Zahra; Burbacher, Thomas M.; Siscovick, David S.

    2015-01-01

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  4. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  5. Viability of human dental pulp in determination of sex of an individual by identifying srygene through DNA analysis: A single blind pilot study

    Directory of Open Access Journals (Sweden)

    Prachi Ravikant Naik

    2012-01-01

    Full Text Available Recognition of importance of human teeth in personal identification has been recognized from time immemorial. In any natural calamity or man-made catastrophe identification of an individual is of paramount importance. Here tooth plays an important role as it is the last one to get affected in a disaster due to its durable nature and good survival rate. This information comes under the aegis of forensic odontology and is of paramount importance from legal and social viewpoints. This analysis uses highly informative genetic markers and can be carried out easily in a typical forensic lab oratory. The SRY gene marker (sex determining region Y is a sex-determining gene on the Y chromosome in the therians (placental mammals and marsupials and this gene marker is considered as a signature gene to differentiate the male from female sex chromosome. The detection of SRY gene in the DNA from a forensic sample can be confirmatory to type the gender as male. This study was taken up to identify the viability of human tooth pulp by identification of SRY gene in gender determination.

  6. A Chromosome-Scale Assembly of the Bactrocera cucurbitae Genome Provides Insight to the Genetic Basis of white pupae

    Directory of Open Access Journals (Sweden)

    Sheina B. Sim

    2017-06-01

    Full Text Available Genetic sexing strains (GSS used in sterile insect technique (SIT programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae (wp, also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera.

  7. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila.

    Science.gov (United States)

    Larschan, Erica; Bishop, Eric P; Kharchenko, Peter V; Core, Leighton J; Lis, John T; Park, Peter J; Kuroda, Mitzi I

    2011-03-03

    The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

  8. Chromosomal Translocations in Black Flies (Diptera: Simuliidae-Facilitators of Adaptive Radiation?

    Directory of Open Access Journals (Sweden)

    Peter H Adler

    Full Text Available A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential

  9. Increased Y-chromosome detection by SRY duplexing

    DEFF Research Database (Denmark)

    Hansen, Morten Høgh; Clausen, Frederik Banch; Dziegiel, Morten Hanefeld

    2012-01-01

    Determining fetal sex noninvasively is dependent of a robust assay. We designed a novel SRY assay and combined it with a SRY assay from literature forming a duplex assay with the same fluorescent dye to increase detection of Y-chromosome at low cell-free fetal DNA or chimeric DNA concentrations....

  10. Invited review: sex ratio and rheumatic disease.

    Science.gov (United States)

    Lockshin, M D

    2001-11-01

    Human illnesses affect men and women differently. In some cases (diseases of sex organs, diseases resulting from X or Y chromosome mutations), reasons for sex discrepancy are obvious, but in other cases no reason is apparent. Explanations for sex discrepancy of illness occur at different biological levels: molecular (e.g., imprinting, X-inactivation), cellular (sex-specific receptor activity), organ (endocrine influences), whole organism (size, age), and environmental-behavioral, including intrauterine influences. Autoimmunity represents a prototypical class of illness that has high female-to-male (F/M) ratios. Although the F/M ratios in autoimmune diseases are usually attributed to the influence of estrogenic hormones, evidence demonstrates that the attributed ratios are imprecise and that definitions and classifications of autoimmune diseases vary, rendering at least part of the counting imprecise. In addition, many studies on sex discrepancy of human disease fail to distinguish between disease incidence and disease severity. In April 2001, the Institute of Medicine of the National Academy of Sciences published Exploring the Biological Contributions to Human Health: Does Sex Matter? (Wizemann T and Pardue M-L, editors). This minireview summarizes the section of that report that concerns autoimmune and infectious disease. Some thyroid, rheumatic, and hepatic autoimmune diseases have high F/M ratios, whereas others have low. Those that have high ratios occur primarily in young adulthood. Gonadal hormones, if they play a role, likely do so through a threshold or permissive mechanism. Examples of sex differences that could be caused by environmental exposure, X inactivation, imprinting, X or Y chromosome genetic modulators, and intrauterine influences are presented as alternate, theoretical, and largely unexplored explanations for sex differences of incidence. The epidemiology of autoimmune diseases (young, female) suggests that an explanation for sex discrepancy of

  11. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  12. Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus.

    Science.gov (United States)

    Telgmann-Rauber, Alexa; Jamsari, Ari; Kinney, Michael S; Pires, J Chris; Jung, Christian

    2007-09-01

    Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex

  13. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  14. Sex reduces genetic variation: a multidisciplinary review.

    Science.gov (United States)

    Gorelick, Root; Heng, Henry H Q

    2011-04-01

    For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  15. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.

    Science.gov (United States)

    Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David

    2012-07-01

    Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.

  16. Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination.

    Science.gov (United States)

    Honda, Arata

    2018-04-06

    The endangered species Tokudaia osimensis has the unique chromosome constitution of 2n = 25, with an XO/XO sex chromosome configuration (2n = 25; XO). There is urgency to preserve this species and to elucidate the regulator(s) that can discriminate the males and females arising from the indistinguishable sex chromosome constitution. However, it is not realistic to examine this rare animal species by sacrificing individuals. Recently, true naïve induced pluripotent stem cells were successfully generated from a female T. osimensis, and the sexual plasticity of its germ cells was elucidated. This achievement constitutes the basis of an attractive research area, including embryonic fate determination, sex determination, and factor(s) that can replace the Y chromosome. In this essay, concrete strategies to conserve rare animal species and to reveal their specific characteristics using other compatible and abundant animals are proposed. © 2018 WILEY Periodicals, Inc.

  17. Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2

    Directory of Open Access Journals (Sweden)

    Sergey N. Matveevsky

    2017-11-01

    Full Text Available Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the ‘head’, forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or ‘tail’, a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated ‘true’ sex chromosome regions (part of the X and the Y1 and more centrally located transcriptionally active autosomal segments (part of the X and the Y2.

  18. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae: a survey across Europe

    Directory of Open Access Journals (Sweden)

    David Sadílek

    2013-10-01

    Full Text Available Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4 and Homo sapiens Linnaeus, 1758 (57. The karyotype of all the specimens of C. lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3% from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the

  19. A rapid, non-sacrificial chromosome preparation technique for ...

    African Journals Online (AJOL)

    1987-09-16

    Sep 16, 1987 ... Contribution to the knowledge of eggs and early larval stages of mullets ... Giemsa staining makes it possible to achieve good quality metaphase chromosome spreads using small fish without the use of sterile conditions, ... Genetic mechanisms of sex determination have been described for a number of ...

  20. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900 (Hemiptera: Reduviidae: Hammacerinae

    Directory of Open Access Journals (Sweden)

    María Poggio

    2011-05-01

    Full Text Available In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900 by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y, including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in M. conspicillaris (Drury, 1782 (2n=28+XY. However, M. lunifer has a multiple sex chromosome system X1X2Y (male that could have originated by fragmentation of the ancestral X chromosome. Taking into account that M. conspicillaris and M. lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in M. lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants  of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity.

  1. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  2. Two new pupal sexing strains in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Zapater, M.

    1990-01-01

    A genetic sexing system in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is urgently required in order to reduce the costs of mass rearing and to prevent punctures in fruit made by the ovipositors of sterilized females. Two genetic sexing strains, T(Y,5)122; T:Y(wp), white pupae, and T(Y,3,5)11; T:Y(dp + wp + ), were isolated and studied in connection with their possible use in a mass rearing programme. Both strains have males emerging from wild type brown pupae and females emerging from mutant pupae; they are stable up to generation 22. The strain T(Y,5)122 has a translocation linking the Y chromosome with the autosome carrying the wp locus. The strain T(Y,3,5)11 has a translocation linking the Y chromosome and the two chromosomes carrying the wp and the dp loci. The egg fertility of the strain T(Y,5)122 was 52% and that of T(Y,3,5)11 was 48%. Larval survival of the latter line was 79%. The technical advantages of these strains was discussed in this paper. The strain T(Y,4)116; T:Y(ap + ), apricot eye, is characterized by wild type males and apricot eye females, as well as apricot eye sterile males. A model explaining the appearance of these ap males is proposed. Isolation and preliminary fertility studies of six sex linked multiple translocations are presented. Each of these strains has three translocations involving the chromosomes Y, 3, 4 and 5. (author). 13 refs, 4 tabs

  3. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies.

    Science.gov (United States)

    Šíchová, Jindra; Voleníková, Anna; Dincă, Vlad; Nguyen, Petr; Vila, Roger; Sahara, Ken; Marec, František

    2015-05-19

    Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.

  4. Exposure to widespread environmental endocrine disrupting chemicals and human sperm sex ratio

    International Nuclear Information System (INIS)

    Jurewicz, Joanna; Radwan, Michał; Sobala, Wojciech; Radwan, Paweł; Jakubowski, Lucjusz; Wielgomas, Bartosz; Ligocka, Danuta; Brzeźnicki, Sławomir; Hanke, Wojciech

    2016-01-01

    In recent years, a trend toward a declining proportion of male births has been noted in several, but not all, industrialized countries. The underlying reason for the drop in the sex ratio is unclear, but one theory states that widespread environmental endocrine disrupting chemicals affecting the male reproductive system in a negative manner could be part of the explanation. The present study was designed to investigate whether the urinary phthalate, pyrethroids and polycyclic aromatic hydrocarbons metabolites concentrations were associated with sperm Y:X ratio. The study population consisted of 194 men aged under 45 years of age who attended infertility clinic in Lodz, Poland for diagnostic purposes with normal semen concentration of 20–300 mln/ml or with slight oligozoospermia (semen concentration of 15–20 mln/ml) (WHO, 1999). The Y:X ratio was assessed by fluorescent in situ hybridization. Urinary concentrations of 1-hydroxypyrene were measured by high performance liquid chromatography, phthalate metabolites were analyzed using a procedure based on the LC-MS/MS methods and metabolites of synthetic pyrethroids were assessed by gas chromatography ion-tap mass spectrometry method. After adjustment for potential confounders (past diseases, age, abstinence, smoking, alcohol consumption, sperm concentration, motility, morphology) 5OH MEHP, CDCCA to TDCCA and 1-OHP was negatively related to Y:X sperm chromosome ratio (p = 0.033, p < 0.001, p = 0.047 respectively). As this is the first study to elucidate the association between the level of metabolites of widespread environmental endocrine disrupting chemicals (phthalates, synthetic pyrethroids, polycyclic aromatic hydrocarbons) on sex chromosome ratio in sperm therefore, these findings require further replication in other populations. - Highlights: • Urinary phthalate metabolites levels were significantly associated with a decrease in Y/X chromosome bearing sperm. • The levels of 1-hydroxypyrene in urine

  5. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    Directory of Open Access Journals (Sweden)

    Ellis Steven P

    2003-09-01

    Full Text Available Abstract Background Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Results Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA], to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. Conclusion In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex

  6. Pyovagina and stump pyometra in a neutered XX sex-reversed Beagle: a case report

    International Nuclear Information System (INIS)

    Williams, J.; Partington, B.P.; Smith, B.; Hedlund, C.S.; Law, J.M.

    1997-01-01

    An 18-month-old, neutered male beagle presented with acute abdominal signs and a suppurative infection of the urogenital tract. Chromosomal sex was female (78, XX), gonadal sex was male (testicles), and phenotypic sex was ambiguous, with evidence of both male and female duct systems. The internal and external genitalia consisted of epididymides, an underdeveloped uterus with an immature spermatic cord, communication between the uterus or cranial vagina and the membranous urethra, a urethrographically male urethra, a hypoplastic os penis, and a hypoplastic penis with hypospadia. Based on these findings and the familial history of a similarly affected litter mate, the dog was diagnosed as having the XX male syndrome with pyovagina and uterine stump pyometra. Radiographic and ultrasonographic investigations are described, and abnormalities of chromosomal sex, gonadal sex, and phenotypic sex are discussed

  7. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  8. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    Science.gov (United States)

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  9. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes

    NARCIS (Netherlands)

    Skaletsky, Helen; Kuroda-Kawaguchi, Tomoko; Minx, Patrick J.; Cordum, Holland S.; Hillier, LaDeana; Brown, Laura G.; Repping, Sjoerd; Pyntikova, Tatyana; Ali, Johar; Bieri, Tamberlyn; Chinwalla, Asif; Delehaunty, Andrew; Delehaunty, Kim; Du, Hui; Fewell, Ginger; Fulton, Lucinda; Fulton, Robert; Graves, Tina; Hou, Shun-Fang; Latrielle, Philip; Leonard, Shawn; Mardis, Elaine; Maupin, Rachel; McPherson, John; Miner, Tracie; Nash, William; Nguyen, Christine; Ozersky, Philip; Pepin, Kymberlie; Rock, Susan; Rohlfing, Tracy; Scott, Kelsi; Schultz, Brian; Strong, Cindy; Tin-Wollam, Aye; Yang, Shiaw-Pyng; Waterston, Robert H.; Wilson, Richard K.; Rozen, Steve; Page, David C.

    2003-01-01

    The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes

  10. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci

    Science.gov (United States)

    2013-01-01

    Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex-determining loci could be used in

  11. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp. and mapping of sex-determining loci

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2013-01-01

    Full Text Available Abstract Background Tilapia is the common name for a group of cichlid fishes and is one of the most important aquacultured freshwater food fish. Mozambique tilapia and its hybrids, including red tilapia are main representatives of salt tolerant tilapias. A linkage map is an essential framework for mapping QTL for important traits, positional cloning of genes and understanding of genome evolution. Results We constructed a consensus linkage map of Mozambique tilapia and red tilapia using 95 individuals from two F1 families and 401 microsatellites including 282 EST-derived markers. In addition, we conducted comparative mapping and searched for sex-determining loci on the whole genome. These 401 microsatellites were assigned to 22 linkage groups. The map spanned 1067.6 cM with an average inter-marker distance of 3.3 cM. Comparative mapping between tilapia and stickleback, medaka, pufferfish and zebrafish revealed clear homologous relationships between chromosomes from different species. We found evidence for the fusion of two sets of two independent chromosomes forming two new chromosome pairs, leading to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex determination locus in Mozambique tilapia was mapped on LG1, and verified in five families containing 549 individuals. The major XY sex determination locus in red tilapia was located on LG22, and verified in two families containing 275 individuals. Conclusions A first-generation linkage map of salt tolerant tilapia was constructed using 401 microsatellites. Two separate fusions of two sets of two independent chromosomes may lead to a reduction of 24 chromosome pairs in their ancestor to 22 pairs in tilapias. The XY sex-determining loci from Mozambique tilapia and red tilapia were mapped on LG1 and LG22, respectively. This map provides a useful resource for QTL mapping for important traits and comparative genome studies. The DNA markers linked to the sex

  12. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  13. Characterizing the Prevalence of Chromosome Instability in Interval Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    A.L. Cisyk

    2015-03-01

    Full Text Available A substantial proportion of colorectal cancers (CRCs are interval CRCs (I-CRCs; i.e., CRCs diagnosed soon after a colonoscopy. Chromosomal instability (CIN is defined as an increase in the rate of which whole chromosomes/large chromosomal fragments are gained or lost and is observed in 85% of non-hereditary CRCs. The contribution of CIN to the etiology of I-CRCs remains unknown. We established a fluorescence in situ hybridization (FISH approach to characterize CIN by enumerating specific chromosomes and determined the prevalence of numerical CIN in a population-based cohort of I-CRCs and control (sporadic CRCs. Using the population-based Manitoba Health administrative databases and Manitoba Cancer Registry, we identified an age, sex, and colonic site of CRC matched cohort of I-CRCs and controls and retrieved their archived paraffin-embedded tumor samples. FISH chromosome enumeration probes specifically recognizing the pericentric regions of chromosomes 8, 11, and 17 were first used on cell lines and then CRC tissue microarrays to detect aneusomy, which was then used to calculate a CIN score (CS. The 15th percentile CS for control CRC was used to define CIN phenotype. Mean CSs were similar in the control CRCs and I-CRCs; 82% of I-CRCs exhibited a CIN phenotype, which was similar to that in the control CRCs. This study suggests that CIN is the most prevalent contributor to genomic instability in I-CRCs. Further studies should evaluate CIN and microsatellite instability (MSI in the same cohort of I-CRCs to corroborate our findings and to further assess concomitant contribution of CIN and MSI to I-CRCs.

  14. Comparative analysis of chromosomal localization of ribosomal and telomeric DNA markers in three species of Pyrgomorphidae grasshoppers

    Directory of Open Access Journals (Sweden)

    Olesya G. Buleu

    2017-09-01

    Full Text Available The karyotypes of three species of Pyrgomorphidae grasshoppers were studied: Zonocerus elegans (Thunberg, 1815, Pyrgomorpha guentheri (Burr, 1899 and Atractomorpha lata (Mochulsky, 1866. Data on karyotypes of P. guentheri and Z. elegans are reported here for the first time. All species have karyotypes consisting of 19 acrocentric chromosomes in males and 20 acrocentric chromosomes in females (2n♂=19, NF=19; 2n♀=20, NF=20 and X0/XX sex determination system. A comparative analysis of the localization of C-heterochromatin, clusters of ribosomal DNA, and telomere repeats revealed inter-species diversity in these cytogenetic markers. These differences indicate that the karyotype divergence in the species studied is not associated with structural chromosome rearrangements, but with the evolution of repeated DNA sequences.

  15. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  16. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  17. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  18. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  19. Delineation of an Isodicentric Y Chromosome in a Mosaic 45,X/46,X,idic(Y(qter-p11.3:: p11.3-qter Fetus by SRY Sequencing, G-banding, FISH, SKY and Study of Distribution in Different Tissues

    Directory of Open Access Journals (Sweden)

    Hsuan-Hsuan Wu

    2007-05-01

    Full Text Available Many factors such as genetic, developmental and hormonal are involved in mammalian sex determination. The relative importance and the mutual interactions among those factors are obscure. Study of cytogenetic mosaicism involving sex chromosomes may help to further unravel the mysterious process. We report a fetus with a mosaic karyotype, 45,X/46,X,idic(Y(qter-p11.3::p11.3-qter, with unambiguous male external genitalia and a defect in the interventricular septum of the heart. Genotype of this fetus was extensively studied by technologies including sequencing of SRY (sex-determining region on the Y chromosome gene, G-banding, FISH (fluorescence in situ hybridization and SKY (spectral karyotyping. A markedly higher percentage of Y-containing cells was observed in the gonads (55% than in the amniotic fluid (17% and placental villi (11%, which was considered to be the major reason why the fetus did not have ambiguous genitalia.

  20. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in the characid fish Triportheus venezuelensis (Characiformes, Characidae

    Directory of Open Access Journals (Sweden)

    Mauro Nirchio

    2007-01-01

    Full Text Available The karyotype and chromosomal characteristics of the characid fish Triportheus venezuelensis were investigated using differential staining techniques (C-banding, Ag-NOR staining and fluorescent in situ hybridization (FISH with an 18S rDNA probe. The diploid chromosome number (2n = 52, karyotype composition and sex chromosome determination system of the ZZ/ZW type were the same as previously described in other species of the genus Triportheus. However, extensive variation regarding nucleolus organizer regions (NOR different from other species was observed. 18S rDNA sequences were distributed on nine chromosome pairs, but the number of chromosomes with Ag-NORs was usually lower, reaching a maximum of four chromosomes. When sequential staining experiments were performed, it was demonstrated that: 1. active NORs usually corresponded to segments with 18S rDNA genes identified in FISH experiments; 2. several 18S rDNA sequences were not silver-stained, suggesting that they do not correspond to active NORs; and 3. some chromosomes with silver-stained regions did not display any 18S rDNA signals. These findings characterize an extensive polymorphism associated with the NOR-bearing chromosomes of T. venezuelensis and emphasize the importance of combining traditional and molecular techniques in chromosome studies.

  1. Autoradiographic studies of chromosome replication during the cell cycle of Streptococcus faecium

    International Nuclear Information System (INIS)

    Higgins, M.L.; Koch, A.L.; Dicker, D.T.; Daneo-Moore, L.

    1986-01-01

    Analysis of the distribution of autoradiographic grains around cells of Streptococcus faecium which had been either continuously or pulse-labeled with tritiated thymidine (mass doubling time, 90 min) showed a non-Poisson distribution even when the distribution of cell sizes in the populations studied was taken into account. These non-Poisson distributions of grains were assumed to reflect the discontinuous nature of chromosome replication. To study this discontinuous process further, an equation was fitted to the grain distribution observed for the pulse-labeled cells that assumed that in any population of cells there were subpopulations in which there were zero, one, or two replicating chromosomes. This analysis predicted an average time for chromosome replication and for the period between completion of rounds of chromosome replication and division of 55 and 43 min, respectively, which were in excellent agreement with estimates made by other techniques. The present investigation extended past studies in indicating that the initiation and completion of rounds of chromosome replication are poorly phased with increases in cell volume and that the amount of chromosome replication may be different in different cell halves

  2. Sex and Gender Differences in Central Nervous System-Related Disorders

    Directory of Open Access Journals (Sweden)

    Emanuela Zagni

    2016-01-01

    Full Text Available There are important sex differences in the brain that seem to arise from biology as well as psychosocial influences. Sex differences in several aspects of human behavior and cognition have been reported. Gonadal sex steroids or genes found on sex chromosomes influence sex differences in neuroanatomy, neurochemistry and neuronal structure, and connectivity. There has been some resistance to accept that sex differences in the human brain exist and have biological relevance; however, a few years ago, it has been recommended by the USA National Institute of Mental Health to incorporate sex as a variable in experimental and clinical neurological and psychiatric studies. We here review the clinical literature on sex differences in pain and neurological and psychiatric diseases, with the aim to further stimulate interest in sexual dimorphisms in the brain and brain diseases, possibly encouraging more research in the field of the implications of sex differences for treating these conditions.

  3. Sex Determination: Why So Many Ways of Doing It?

    Science.gov (United States)

    Bachtrog, Doris; Mank, Judith E.; Peichel, Catherine L.; Kirkpatrick, Mark; Otto, Sarah P.; Ashman, Tia-Lynn; Hahn, Matthew W.; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C.

    2014-01-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination. PMID:24983465

  4. Alcohols as discriminating agents for genetic sexing in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Riva Francos, M.E.

    1990-01-01

    The locus of the alcohol dehydrogenase (ADH) has been used to develop a genetic sexing mechanism in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). Previous work (1982-1984) has led to the isolation of a translocation linking a null mutant of this locus to the Y chromosome of the males. This strain, T-128, together with others showing different ADH electrophoretic patterns, have been assayed for their resistance to alcohols, such as allyl-alcohol, pentynol, ethanol and 2-propanol. The strains carrying the T-128 translocation show a differential, sex dependent survival to some of these alcohols. Part of this work is still in progress. The mutagenic ethyl methanesulphate (EMS) is being used to induce new ADH null mutants using the strain T-128 as a marker. Several hundred females have been treated with 0.04% EMS and then outcrossed to T-128 males. Their progeny is put through selective larval medium (0.08% allyl-alcohol) and the surviving F 1 individuals and subsequent F 2 are being analysed. Population studies have shown that the genetic sexing strain, T-128, is a double translocation with complete linkage between the Adh N allele (chromosome 2), and the Y chromosome, and incomplete linkage of the Y with the wild type allele of the apricot eye locus (ap + ) of chromosome 4. (author). 40 refs, 4 figs, 12 tabs

  5. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  6. Do holocentric chromosomes represent an evolutionary advantage? A study of paired analyses of diversification rates of lineages with holocentric chromosomes and their monocentric closest relatives.

    Science.gov (United States)

    Márquez-Corro, José Ignacio; Escudero, Marcial; Luceño, Modesto

    2017-10-17

    Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.

  7. What was the ancestral sex-determining mechanism in amniote vertebrates?

    Science.gov (United States)

    Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2016-02-01

    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms. © 2014 Cambridge Philosophical Society.

  8. Sex. Dev.

    OpenAIRE

    Jakubiczka, S.; Schröder, C.; Ullmann, R.; Volleth, M.; Ledig, S.; Gilberg, E.; Kroisel, P.; P. Wieacker, P.

    2010-01-01

    Campomelic dysplasia (MIM 114290) is a severe malformation syndrome frequently accompanied by male-to-female sex reversal. Causative are mutations within the SOX9 gene on 17q24.3 as well as chromosomal aberrations (translocations, inversions or deletions) in the vicinity of SOX9 . Here, we report on a patient with muscular hypotonia, craniofacial dysmorphism, cleft palate, brachydactyly, malformations of thoracic spine, and gonadal dysgenesis with female external genitalia and müllerian duct ...

  9. Bulked segregant analysis of the pirarucu (Arapaima gigas) genome for identification of sex-specific molecular markers.

    Science.gov (United States)

    Almeida, I G; Ianella, P; Faria, M T; Paiva, S R; Caetano, A R

    2013-12-04

    Arapaima gigas (Osteoglossidae) is one of the largest fish species in the Amazon Basin, attaining lengths of over 2.5 m and weights of over 100 kg. Its flesh is prized, and it has great potential for production in aquaculture systems. However, live pirarucu cannot be reliably sexed visually, even after sexual development, since this species does not have clear external sexual dimorphism. Simple and inexpensive methods for sexing immature pirarucu based on DNA markers would facilitate production of this species in commercial operations. We analyzed A. gigas male and female DNA pools with 566 RAPD primers, generating 2609 fragments, with an estimated 1341 segregating polymorphic markers, and an estimated average spacing of 714 kb, which corresponds to less than 0.1% of the species' genome. Two putative sex-specific fragments were initially identified in bulked samples; but they were not confirmed in a study of individual male and female samples. We suggest that A. gigas has developed a non-chromosomal system of sex determination or, alternatively, that the species has undergone a recent loss of the chromosome carrying the sex-determining locus.

  10. The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage.

    Science.gov (United States)

    Mignerot, Laure; Coelho, Susana M

    2016-01-01

    Sexual reproduction is an extraordinarily widespread phenomenon that assures the production of new genetic combinations in nearly all eukaryotic lineages. Although the core features of sexual reproduction (meiosis and syngamy) are highly conserved, the control mechanisms that determine whether an individual is male or female are remarkably labile across eukaryotes. In genetically controlled sexual systems, gender is determined by sex chromosomes, which have emerged independently and repeatedly during evolution. Sex chromosomes have been studied in only a handful of classical model organism, and empirical knowledge on the origin and evolution of the sexes is still surprisingly incomplete. With the advent of new generation sequencing, the taxonomic breadth of model systems has been rapidly expanding, bringing new ideas and fresh views on this fundamental aspect of biology. This mini-review provides a quick state of the art of how the remarkable richness of the sexual characteristics of the brown algae is helping to increase our knowledge about the evolution of sex determination. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Fully automated pipeline for detection of sex linked genes using RNA-Seq data.

    Science.gov (United States)

    Michalovova, Monika; Kubat, Zdenek; Hobza, Roman; Vyskot, Boris; Kejnovsky, Eduard

    2015-03-11

    Sex chromosomes present a genomic region which to some extent, differs between the genders of a single species. Reliable high-throughput methods for detection of sex chromosomes specific markers are needed, especially in species where genome information is limited. Next generation sequencing (NGS) opens the door for identification of unique sequences or searching for nucleotide polymorphisms between datasets. A combination of classical genetic segregation analysis along with RNA-Seq data can present an ideal tool to map and identify sex chromosome-specific expressed markers. To address this challenge, we established genetic cross of dioecious plant Rumex acetosa and generated RNA-Seq data from both parental generation and male and female offspring. We present a pipeline for detection of sex linked genes based on nucleotide polymorphism analysis. In our approach, tracking of nucleotide polymorphisms is carried out using a cross of preferably distant populations. For this reason, only 4 datasets are needed - reads from high-throughput sequencing platforms for parent generation (mother and father) and F1 generation (male and female progeny). Our pipeline uses custom scripts together with external assembly, mapping and variant calling software. Given the resource-intensive nature of the computation, servers with high capacity are a requirement. Therefore, in order to keep this pipeline easily accessible and reproducible, we implemented it in Galaxy - an open, web-based platform for data-intensive biomedical research. Our tools are present in the Galaxy Tool Shed, from which they can be installed to any local Galaxy instance. As an output of the pipeline, user gets a FASTA file with candidate transcriptionally active sex-linked genes, sorted by their relevance. At the same time, a BAM file with identified genes and alignment of reads is also provided. Thus, polymorphisms following segregation pattern can be easily visualized, which significantly enhances primer design

  12. Estimating HPV DNA Deposition Between Sexual Partners Using HPV Concordance, Y Chromosome DNA Detection, and Self-reported Sexual Behaviors.

    Science.gov (United States)

    Malagón, Talía; Burchell, Ann N; El-Zein, Mariam; Guénoun, Julie; Tellier, Pierre-Paul; Coutlée, François; Franco, Eduardo L

    2017-12-05

    Detection of human papillomavirus (HPV) DNA in genital samples may not always represent true infections but may be depositions from infected sexual partners. We examined whether sexual risk factors and a biomarker (Y chromosome DNA) were associated with genital HPV partner concordance and estimated the fraction of HPV detections potentially attributable to partner deposition. The HITCH study enrolled young women attending a university or college in Montréal, Canada, and their male partners, from 2005 to 2010. We tested baseline genital samples for Y chromosome DNA and HPV DNA using polymerase chain reaction. Type-specific HPV concordance was 42.4% in partnerships where at least one partner was HPV DNA positive. Y chromosome DNA predicted type-specific HPV concordance in univariate analyses, but in multivariable models the independent predictors of concordance were days since last vaginal sex (26.5% higher concordance 0-1 vs 8-14 days after last vaginal sex) and condom use (22.6% higher concordance in never vs always users). We estimated that 14.1% (95% confidence interval [CI], 6.3-21.9%) of HPV DNA detections in genital samples were attributable to vaginal sex in the past week. A substantial proportion of HPV DNA detections may be depositions due to recent unprotected vaginal sex. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  14. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  15. Sex identification of polar bears from blood and tissue samples

    Science.gov (United States)

    Amstrup, Steven C.; Garner, G.W.; Cronin, M.A.; Patton, J.C.

    1993-01-01

    Polar bears (Ursus maritimus) can be adversely affected by hunting and other human perturbations because of low population densities and low reproduction rates. The sustainable take of adult females may be as low as 1.5% of the population. Females and accompanying young are most vulnerable to hunting, and hunters have not consistently reported the sex composition of the harvest, therefore a method to confirm the sexes of polar bears harvested in Alaska is needed. Evidence of the sex of harvested animals is often not available, but blood or other tissue samples often are. We extracted DNA from tissue and blood samples, and amplified segments of zinc finger (ZFX and ZFY) genes from both X and Y chromosomes with the polymerase chain reaction. Digestion of amplified portions of the X chromosome with the restriction enzyme HaeIII resulted in subdivision of the original amplified segment into four smaller fragments. Digestion with HaeIII did not subdivide the original segment amplified from the Y chromosome. The differing fragment sizes produced patterns in gel electrophoresis that distinguished samples from male and female bears 100% of the time. This technique is applicable to the investigation of many wildlife management and research questions.

  16. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice

    Science.gov (United States)

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-01-01

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. PMID:26251527

  17. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi

    2016-11-29

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes in Drosophila miranda and their autosomal orthologues in closely related species. The pseudogenization rate on the neo-X is much lower than the rate on the neo-Y, but appears to be higher than the rate on the orthologous autosome in D. pseudoobscura. Genes under less functional constraint and/or genes with male-biased expression tend to become pseudogenes on the neo-X, indicating the accumulation of slightly deleterious mutations and the feminization of the neo-X. We also find a weak trend that the genes with female-benefit/male-detriment effects identified in D. melanogaster are pseudogenized on the neo-X, implying the masculinization of the neo-X. These observations suggest that both X and Y chromosomes can degenerate due to a complex suite of evolutionary forces.

  18. Effects of a chromosome-3 mutator gene on radiation-induced mutability in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. (Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1982-01-01

    A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. In the present work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The results show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.

  19. Comparative analysis of chromosomes in the Palaearctic bush-crickets of tribe Pholidopterini (Orthoptera, Tettigoniinae

    Directory of Open Access Journals (Sweden)

    Elżbieta Warchałowska-Śliwa

    2017-05-01

    Full Text Available The present study focused on the evolution of the karyotype in four genera of the tribe Pholidopterini: Eupholidoptera Mařan, 1953, Parapholidoptera Mařan, 1953, Pholidoptera Wesmaël, 1838, Uvarovistia Mařan, 1953. Chromosomes were analyzed using fluorescence in situ hybridization (FISH with 18S rDNA and (TTAGGn telomeric probes, and classical techniques, such as C-banding, silver impregnation and fluorochrome DAPI/CMA3 staining. Most species retained the ancestral diploid chromosome number 2n = 31 (male or 32 (female, while some of the taxa, especially a group of species within genus Pholidoptera, evolved a reduced chromosome number 2n = 29. All species show the same sex determination system X0/XX. In some taxa, a pericentric inversion has changed the morphology of the ancestral acrocentric X chromosome to the biarmed X. The rDNA loci coincided with active NORs and C-band/CG-rich segments. A comparison of the location of the single rDNA/NOR in the genus Pholidoptera suggests that reduced chromosome number results from Robertsonian translocation between two pairs of autosomes, one carrying the rDNA/NOR. The results constitute a step towards better understanding of the chromosomal reorganization and evolution within the tribe Phaneropterini and the whole subfamily Tettigoniinae.

  20. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome

    Science.gov (United States)

    2013-01-01

    Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366

  1. Correction to: Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species.

    Science.gov (United States)

    Cioffi, Marcelo de Bello; Sánchez, Antonio; Marchal, Juan Alberto; Kosyakova, Nadezda; Liehr, Thomas; Trifonov, Vladimir; Bertollo, Luiz Antonio Carlos

    2018-02-01

    ere, we report that a paragraph from the "Discussion" section of Cioffi et al. (2011; p. 1070, 4th paragraph of column 1) was transcribed (with only minor edits) from an introductory paragraph previously published in Chromosome Research by O'Meally et al.

  2. MYB transcription factor gene involved in sex determination in Asparagus officinalis.

    Science.gov (United States)

    Murase, Kohji; Shigenobu, Shuji; Fujii, Sota; Ueda, Kazuki; Murata, Takanori; Sakamoto, Ai; Wada, Yuko; Yamaguchi, Katsushi; Osakabe, Yuriko; Osakabe, Keishi; Kanno, Akira; Ozaki, Yukio; Takayama, Seiji

    2017-01-01

    Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome

    NARCIS (Netherlands)

    Cutter, William J.; Daly, Eileen M.; Robertson, Dene M. W.; Chitnis, Xavier A.; van Amelsvoort, Therese A. M. J.; Simmons, Andrew; Ng, Virginia W. K.; Williams, Benjamin S.; Shaw, Phillip; Conway, Gerard S.; Skuse, David H.; Collier, David A.; Craig, Michael; Murphy, Declan G. M.

    2006-01-01

    Women with Turner syndrome (TS; 45,X) lack a normal second X chromosome, and many are prescribed exogenous sex and growth hormones (GH). Hence, they allow us an opportunity to investigate genetic and endocrine influences on brain development. We examined brain anatomy and metabolism in 27 adult

  4. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    Science.gov (United States)

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  5. The U2 snDNA Is a Useful Marker for B Chromosome Detection and Frequency Estimation in the Grasshopper Abracris flavolineata.

    Science.gov (United States)

    Milani, Diogo; Palacios-Gimenez, Octavio M; Cabral-de-Mello, Diogo C

    2017-01-01

    In this study, we describe a strategy to determine the presence of B chromosomes in the living grasshopper Abracris flavolineata by FISH using U2 snDNA as a probe in interphase hemolymph nuclei. In individuals without B chromosomes, (0B) 2 dot signals were noticed, corresponding to A complement U2 snDNA clusters. In +1B and +2B individuals, 4 or 8 additional signals were noticed, respectively. In all cases, the absence or presence of 1 or 2 B chromosomes correlated in hemolymph and in somatic or germline tissues, validating the efficiency of the marker. Our data suggest that the B chromosome of A. flavolineata is present in all somatic tissues. B-carrying individuals showed the same number of B chromosomes in germ and somatic cells, suggesting that the B is mitotically stable. The marker was used to compare B chromosome frequency in the analyzed population with a sample collected previously, in order to test for B frequency changes and differences of B chromosome prevalence among sexes, but no statistically significant differences were noticed. The identification of living animals harboring B chromosomes will be very useful in future studies of B chromosome transmission, as well as in functional studies involving RNA analysis, thus contributing to the understanding of evolutionary history and the possible role of the B chromosome in A. flavolineata. © 2017 S. Karger AG, Basel.

  6. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    Science.gov (United States)

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  7. Aberrations of chromosome 8 in myelodysplastic syndromes: Clinical and biological significance

    Directory of Open Access Journals (Sweden)

    Marisavljević Dragomir

    2006-01-01

    Full Text Available Introduction: Rearrangements of any single chromosome in human karyotype have been reported in patients with pMDS. Objective: To examine the role of aberrations of chromosome 8 in pathogenesis, clinical presentation and progression of myelodysplastic syndromes. Method: Cytogenetic analysis of bone marrow cells was carried out by direct method and by means of 24- and/or 48-hour unstimulated cell culture. Chromosomes were obtained by modified method of HG-bands. Results: On presentation, 109 out of 271 successfully karyotyped patients (40,2% had abnormal karyotypes. Among them, 22 patients (10.9% had aberrations of chromosome 8. Ten patients had trisomy 8 as "simple" aberration whilst additional three cases had trisomy 8 included in "complex" karyotypes (≥3 chromosomes. Cases with constitutional trisomy 8 mosaicism (CT8M were excluded using the chromosome analyses of PHA-stimulated blood cultures. On the contrary, monosomy (seven patients or deletion of chromosome 8 (two patients were exclusively found in "complex" karyotypes. During prolonged cytogenetic follow-up, trisomy 8 was not recorded in evolving karyotypes. In contrast, trisomy 8 disappeared in two cases during subsequent cytogenetic studies, i.e. 23 and 72 months from diagnosis, accompanied in one patient with complete hematological remission. No difference regarding age, sex, cytopenia, blood and marrow blast count or response to treatment was found between patients with trisomy 8 as the sole aberration compared to those with normal cytogenetics. Median survival of patients with trisomy 8 as the sole aberration was 27 months, as compared to 32 months in patients with normal cytogenetics (p=0.468, whilst median survival of patients with aberrations of chromosome 8 included in "complex" karyotypes was only 4 months. Conclusion: Aberrations of chromosome 8 are common in patients with pMDS. The presence of a clone with trisomy 8 is not always the sign of disease progression or poor

  8. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    Science.gov (United States)

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera).

    Science.gov (United States)

    de Araújo, Ramon Everton Ferreira; Nagamachi, Cleusa Yoshiko; da Costa, Marlyson Jeremias Rodrigues; Noronha, Renata Coelho Rodrigues; Rodrigues, Luís Reginaldo Ribeiro; Pieczarka, Julio César

    2016-08-01

    Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene-diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria.

  10. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  11. Evidence for an asthma risk locus on chromosome Xp: a replication linkage study

    DEFF Research Database (Denmark)

    Brasch-Andersen, C; Møller, M U; Haagerup, A

    2008-01-01

    replication sample as used in the present study. The aim of the study was to replicate linkage to candidate regions for asthma in an independent Danish sample. METHODS: We performed a replication study investigating linkage to candidate regions for asthma on chromosomes 1p36.31-p36.21, 5q15-q23.2, 6p24.3-p22...... studies have been carried out the results are still conflicting and call for replication experiments. A Danish genome-wide scan has prior reported evidence for candidate regions for asthma susceptibility genes on chromosomes 1p, 5q, 6p, 12q and Xp. Linkage to chromosome 12q was later confirmed in the same.......3, and Xp22.31-p11.4 using additional markers in an independent set of 136 Danish asthmatic sib pair families. RESULTS: Nonparametric multipoint linkage analyses yielded suggestive evidence for linkage to asthma to chromosome Xp21.2 (MLS 2.92) but failed to replicate linkage to chromosomes 1p36.31-p36.21, 5...

  12. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch

    OpenAIRE

    Agate, Robert J.; Grisham, William; Wade, Juli; Mann, Suzanne; Wingfield, John; Schanen, Carolyn; Palotie, Aarno; Arnold, Arthur P.

    2003-01-01

    In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gyna...

  13. Sex-Dependent Gene Expression in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Ronen

    2014-08-01

    Full Text Available Males and females have a variety of sexually dimorphic traits, most of which result from hormonal differences. However, differences between male and female embryos initiate very early in development, before hormonal influence begins, suggesting the presence of genetically driven sexual dimorphisms. By comparing the gene expression profiles of male and X-inactivated female human pluripotent stem cells, we detected Y-chromosome-driven effects. We discovered that the sex-determining gene SRY is expressed in human male pluripotent stem cells and is induced by reprogramming. In addition, we detected more than 200 differentially expressed autosomal genes in male and female embryonic stem cells. Some of these genes are involved in steroid metabolism pathways and lead to sex-dependent differentiation in response to the estrogen precursor estrone. Thus, we propose that the presence of the Y chromosome and specifically SRY may drive sex-specific differences in the growth and differentiation of pluripotent stem cells.

  14. Study of 25 X-chromosome SNPs in the Portuguese

    DEFF Research Database (Denmark)

    Pereira, Vania; Tomas Mas, Carmen; Amorim, António

    2011-01-01

    The importance of X-chromosome markers in individual identifications, population genetics, forensics and kinship testing is getting wide recognition. In this work, we studied the distributions of 25 X-chromosome single nucleotide polymorphisms (X-SNPs) in population samples from Northern, Central...... and Southern Portugal (n=305). The data were also compared with previous data from the Mediterranean area confirming a general genetic homogeneity among populations in the region. The X-SNP distribution in the three Portuguese regional samples did not show any significant substructure and the X...

  15. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health

    DEFF Research Database (Denmark)

    Bonassi, S; Hagmar, L; Strömberg, U

    2000-01-01

    An increased risk of cancer in healthy individuals with high levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes has been described in recent epidemiological studies. This association did not appear to be modified by sex, age, country, or time since CA test, whereas the role...... by country, sex, year of birth, and year of CA test were randomly selected. Occupational exposure and smoking habit were assessed by a collaborative group of occupational hygienists. Logistic regression models indicated a statistically significant increase in risk for subjects with a high level of CAs...... compared to those with a low level in the Nordic cohort (odds ratio, 2.35; 95% confidence interval, 1.31-4.23) and in the Italian cohort (odds ratio, 2.66; 95% confidence interval, 1.26-5.62). These estimates were not affected by the inclusion of occupational exposure level and smoking habit...

  16. Gender identity outcomes in children with disorders/differences of sex development: Predictive factors.

    Science.gov (United States)

    Bakula, Dana M; Mullins, Alexandria J; Sharkey, Christina M; Wolfe-Christensen, Cortney; Mullins, Larry L; Wisniewski, Amy B

    2017-06-01

    Disorders/differences of sex development (DSD) comprise multiple congenital conditions in which chromosomal, gonadal, and/or anatomical sex are discordant. The prediction of future gender identity (i.e., self-identifying as male, female, or other) in children with DSD can be imprecise, and current knowledge about the development of gender identity in people with, and without DSD, is limited. However, sex of rearing is the strongest predictor of gender identity for the majority of individuals with various DSD conditions. When making decisions regarding sex of rearing biological factors (e.g., possession of a Y chromosome, degree and duration of pre- and postnatal androgen exposure, phenotypic presentation of the external genitalia, and fertility potential), social and cultural factors, as well as quality of life should be considered. Information on gender identity outcomes across a range of DSD diagnoses is presented to aid in sex of rearing assignment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Condensin-driven remodelling of X chromosome topology during dosage compensation

    Science.gov (United States)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  18. The development of functional mapping by three sex-related loci on the third whorl of different sex types of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Chen-Yu Lee

    Full Text Available Carica papaya L. is an important economic crop worldwide and is used as a model plant for sex-determination research. To study the different flower sex types, we screened sex-related genes using alternative splicing sequences (AS-seqs from a transcriptome database of the three flower sex types, i.e., males, females, and hermaphrodites, established at 28 days before flowering using 15 bacterial artificial chromosomes (BACs of C. papaya L. After screening, the cDNA regions of the three sex-related loci, including short vegetative phase-like (CpSVPL, the chromatin assembly factor 1 subunit A-like (CpCAF1AL, and the somatic embryogenesis receptor kinase (CpSERK, which contained eight sex-related single-nucleotide polymorphisms (SNPs from the different sex types of C. papaya L., were genotyped using high-resolution melting (HRM. The three loci were examined regarding the profiles of the third whorl, as described below. CpSVPL, which had one SNP associated with the three sex genotypes, was highly expressed in the male and female sterile flowers (abnormal hermaphrodite flowers that lacked the fourth whorl structure. CpCAF1AL, which had three SNPs associated with the male genotype, was highly expressed in male and normal hermaphrodite flowers, and had no AS-seqs, whereas it exhibited low expression and an AS-seqs in intron 11 in abnormal hermaphrodite flowers. Conversely, carpellate flowers (abnormal hermaphrodite flowers showed low expression of CpSVPL and AS-seqs in introns 5, 6, and 7 of CpSERK, which contained four SNPs associated with the female genotype. Specifically, the CpSERK and CpCAF1AL loci exhibited no AS-seq expression in the third whorl of the male and normal hermaphrodite flowers, respectively, and variance in the AS-seq expression of all other types of flowers. Functional mapping of the third whorl of normal hermaphrodites indicated no AS-seq expression in CpSERK, low CpSVPL expression, and, for CpCAF1AL, high expression and no AS

  19. Evolutionary rate of a gene affected by chromosomal position.

    Science.gov (United States)

    Perry, J; Ashworth, A

    1999-09-09

    Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.

  20. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  1. A study of chromosomal aberrations in amniotic fluid cell cultures.

    Science.gov (United States)

    Wolstenholme, J; Crocker, M; Jonasson, J

    1988-06-01

    This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2.9 per cent of 19,432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 per cent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2, 18, 21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1.4 X 10(-3)) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 X 10(-2)) corresponding to 3 X 10(-3) mutations per cell per generation accumulating over approximately ten generations in vitro.

  2. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  3. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination

    Science.gov (United States)

    Burridge, Christopher P; Ezaz, Tariq; Wapstra, Erik

    2018-01-01

    Abstract Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences. PMID:29659810

  4. Molecular sexing of tucuxi dolphins (Sotalia guianensis and Sotalia fluviatilis using samples from biopsy darting and decomposed carcasses

    Directory of Open Access Journals (Sweden)

    Haydée A. Cunha

    2007-01-01

    Full Text Available We tested the zinc-finger sex chromosome-linked genes Zfx/Zfy and the sex-determining region Y (Sry genes for gender determination of biopsy samples from marine and riverine tucuxi dolphins (Sotalia guianensis and S. fluviatilis. We also evaluated the performance of these genes with decomposed carcasses, for which sexing cannot rely on the direct examination of the reproductive tract. Both systems proved reliable for sexing 46 fresh and decomposed samples, making them especially useful when biopsy darting is coupled with photo-identification studies.

  5. “How should I tell my child?” Disclosing the Diagnosis of Sex Chromosome Aneuploidies

    Science.gov (United States)

    Dennis, Anna; Howell, Susan; Cordeiro, Lisa; Tartaglia, Nicole

    2017-01-01

    To date, the disclosure of a sex chromosome aneuploidy (SCA) diagnosis to an affected individual has not been explored. This study aimed to assess the timing and content revealed to an affected child by his or her parent(s), resources accessed in preparation, parental feelings of preparedness, common parental concerns, and recommendations for disclosure approaches. Two online surveys were created: 1) for parents of a child with a diagnosis and 2) for individuals with a diagnosis. One-hundred thirty-nine parent surveys (XXY n=68, XXX n=21, XYY n=9, other SCAs n=41) and 67 individual surveys (XXY n=58, XXX n=9) were analyzed. Parents most frequently discussed the topics of learning disabilities (47%) and genetics (45%) with their child during the initial disclosure. A significantly greater proportion of parent respondents reported feeling prepared vs. unprepared for disclosure, regardless of their child’s diagnosis (z-test of proportions, all p’sparents most frequently accessed resources such as websites, support groups, and discussion with the child’s physician prior to disclosure, with unprepared parents accessing fewer resources (M = 2.0 ± 1.41) than prepared parents [M= 2. ± 1.56; t(101) = −2.02, pparental concerns included making the conversation age-appropriate, discussing infertility, and possible impact on the child’s self-esteem. Both parent and individual respondents endorsed being honest with the child, disclosing the diagnosis early and before puberty, and discussing the diagnosis gradually over time. These results provide recommendations for parents, and suggest benefits from additional resources and supports to alleviate concerns when approaching diagnosis disclosure. PMID:25179748

  6. The riddle of sex: biological theories of sexual difference in the early twentieth-century.

    Science.gov (United States)

    Ha, Nathan Q

    2011-01-01

    At the turn of the twentieth century, biologists such as Oscar Riddle, Thomas Hunt Morgan, Frank Lillie, and Richard Goldschmidt all puzzled over the question of sexual difference, the distinction between male and female. They all offered competing explanations for the biological cause of this difference, and engaged in a fierce debate over the primacy of their respective theories. Riddle propounded a metabolic theory of sex dating from the late-nineteenth century suggesting that metabolism lay at the heart of sexual difference. Thomas Hunt Morgan insisted on the priority of chromosomes, Frank Lillie emphasized the importance of hormones, while Richard Goldschmidt supported a mixed model involving both chromosomes and hormones. In this paper, I will illustrate how the older metabolic theory of sex was displaced when those who argued for the relatively newer theories of chromosomes and hormones gradually formed an alliance that accommodated each other and excluded the metabolic theory of sex. By doing so, proponents of chromosomes and hormones established their authority over the question of sexual difference as they laid the foundations for the new disciplines of genetics and endocrinology. Their debate raised urgent questions about what constituted sexual difference, and how scientists envisioned the plasticity and controllability of this difference. These theories also had immediate political and cultural consequences at the turn of the twentieth century, especially for the eugenic and feminist movements, both of which were heavily invested in knowledge of sex and its determination, ascertainment, and command.

  7. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    Science.gov (United States)

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  8. A comparative study of chromosome morphology among some ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... genetic source of wheat, some cytogenetic analysis reported (Chennaveeraiah, 1960; Badaeva et al., 1998,. 2001) and indicated that all A. crassa chromosomes can be identified by their morphology and C-banding patterns. Cytogenetical studies have been carried out on A. crassa but a comparative study ...

  9. Chromosome X-wide association study identifies Loci for fasting insulin and height and evidence for incomplete dosage compensation.

    Directory of Open Access Journals (Sweden)

    Taru Tukiainen

    2014-02-01

    Full Text Available The X chromosome (chrX represents one potential source for the "missing heritability" for complex phenotypes, which thus far has remained underanalyzed in genome-wide association studies (GWAS. Here we demonstrate the benefits of including chrX in GWAS by assessing the contribution of 404,862 chrX SNPs to levels of twelve commonly studied cardiometabolic and anthropometric traits in 19,697 Finnish and Swedish individuals with replication data on 5,032 additional Finns. By using a linear mixed model, we estimate that on average 2.6% of the additive genetic variance in these twelve traits is attributable to chrX, this being in proportion to the number of SNPs in the chromosome. In a chrX-wide association analysis, we identify three novel loci: two for height (rs182838724 near FGF16/ATRX/MAGT1, joint P-value = 2.71×10(-9, and rs1751138 near ITM2A, P-value = 3.03×10(-10 and one for fasting insulin (rs139163435 in Xq23, P-value = 5.18×10(-9. Further, we find that effect sizes for variants near ITM2A, a gene implicated in cartilage development, show evidence for a lack of dosage compensation. This observation is further supported by a sex-difference in ITM2A expression in whole blood (P-value = 0.00251, and is also in agreement with a previous report showing ITM2A escapes from X chromosome inactivation (XCI in the majority of women. Hence, our results show one of the first links between phenotypic variation in a population sample and an XCI-escaping locus and pinpoint ITM2A as a potential contributor to the sexual dimorphism in height. In conclusion, our study provides a clear motivation for including chrX in large-scale genetic studies of complex diseases and traits.

  10. Chromosome X-wide association study identifies Loci for fasting insulin and height and evidence for incomplete dosage compensation.

    Science.gov (United States)

    Tukiainen, Taru; Pirinen, Matti; Sarin, Antti-Pekka; Ladenvall, Claes; Kettunen, Johannes; Lehtimäki, Terho; Lokki, Marja-Liisa; Perola, Markus; Sinisalo, Juha; Vlachopoulou, Efthymia; Eriksson, Johan G; Groop, Leif; Jula, Antti; Järvelin, Marjo-Riitta; Raitakari, Olli T; Salomaa, Veikko; Ripatti, Samuli

    2014-02-01

    The X chromosome (chrX) represents one potential source for the "missing heritability" for complex phenotypes, which thus far has remained underanalyzed in genome-wide association studies (GWAS). Here we demonstrate the benefits of including chrX in GWAS by assessing the contribution of 404,862 chrX SNPs to levels of twelve commonly studied cardiometabolic and anthropometric traits in 19,697 Finnish and Swedish individuals with replication data on 5,032 additional Finns. By using a linear mixed model, we estimate that on average 2.6% of the additive genetic variance in these twelve traits is attributable to chrX, this being in proportion to the number of SNPs in the chromosome. In a chrX-wide association analysis, we identify three novel loci: two for height (rs182838724 near FGF16/ATRX/MAGT1, joint P-value = 2.71×10(-9), and rs1751138 near ITM2A, P-value = 3.03×10(-10)) and one for fasting insulin (rs139163435 in Xq23, P-value = 5.18×10(-9)). Further, we find that effect sizes for variants near ITM2A, a gene implicated in cartilage development, show evidence for a lack of dosage compensation. This observation is further supported by a sex-difference in ITM2A expression in whole blood (P-value = 0.00251), and is also in agreement with a previous report showing ITM2A escapes from X chromosome inactivation (XCI) in the majority of women. Hence, our results show one of the first links between phenotypic variation in a population sample and an XCI-escaping locus and pinpoint ITM2A as a potential contributor to the sexual dimorphism in height. In conclusion, our study provides a clear motivation for including chrX in large-scale genetic studies of complex diseases and traits.

  11. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  12. Frequent gene conversion events between the X and Y homologous chromosomal regions in primates

    Directory of Open Access Journals (Sweden)

    Hirai Hirohisa

    2010-07-01

    Full Text Available Abstract Background Mammalian sex-chromosomes originated from a pair of autosomes. A step-wise cessation of recombination is necessary for the proper maintenance of sex-determination and, consequently, generates a four strata structure on the X chromosome. Each stratum shows a specific per-site nucleotide sequence difference (p-distance between the X and Y chromosomes, depending on the time of recombination arrest. Stratum 4 covers the distal half of the human X chromosome short arm and the p-distance of the stratum is ~10%, on average. However, a 100-kb region, which includes KALX and VCX, in the middle of stratum 4 shows a significantly lower p-distance (1-5%, suggesting frequent sequence exchanges or gene conversions between the X and Y chromosomes in humans. To examine the evolutionary mechanism for this low p-distance region, sequences of a corresponding region including KALX/Y from seven species of non-human primates were analyzed. Results Phylogenetic analysis of this low p-distance region in humans and non-human primate species revealed that gene conversion like events have taken place at least ten times after the divergence of New World monkeys and Catarrhini (i.e., Old World monkeys and hominoids. A KALY-converted KALX allele in white-handed gibbons also suggests a possible recent gene conversion between the X and Y chromosomes. In these primate sequences, the proximal boundary of this low p-distance region is located in a LINE element shared between the X and Y chromosomes, suggesting the involvement of this element in frequent gene conversions. Together with a palindrome on the Y chromosome, a segmental palindrome structure on the X chromosome at the distal boundary near VCX, in humans and chimpanzees, may mediate frequent sequence exchanges between X and Y chromosomes. Conclusion Gene conversion events between the X and Y homologous regions have been suggested, mainly in humans. Here, we found frequent gene conversions in the

  13. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    2010-05-01

    Full Text Available Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates.To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus.These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type

  14. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  15. A NEW HYPOTHESIS ON THE EVOLUTION OF SEX DETERMINATION IN VERTEBRATES - BIG FEMALES ZW, BIG MALES XY

    NARCIS (Netherlands)

    KRAAK, SBM; DELOOZE, EMA

    1993-01-01

    Why are there two chromosomal sex-determining mechanisms in vertebrates; ZW/ZZ, meaning female heterogamety, and XX/XY, meaning male heterogamety? We propose an evolutionary explanation. Transition from environmental sex determination to genetic sex determination can result when an allele that

  16. Complementary sex determination in the parasitic wasp Diachasmimorpha longicaudata.

    Directory of Open Access Journals (Sweden)

    Leonela Carabajal Paladino

    Full Text Available We studied the sex determination in Diachasmimorpha longicaudata, a parasitoid braconid wasp widely used as biological control agent of fruit pest tephritid flies. We tested the complementary sex determination hypothesis (CSD known in at least 60 species of Hymenoptera. According to CSD, male or female development depends on the allelic composition of one sex locus (single-locus CSD or multiple sex loci (multiple-locus CSD. Hemizygote individuals are normal haploid males, and heterozygotes for at least one sex locus are normal diploid females, but homozygotes for all the sex loci are diploid males. In order to force the occurrence of diploid males in D. longicaudata, we established highly inbred lines and examined their offspring using chromosome counting, flow cytometry, and sex ratio analysis. We found that when mother-son crosses were studied, this wasp produced about 20% of diploid males out of the total male progeny. Our results suggest that this parasitoid may represent the second genus with multiple-locus CSD in Hymenoptera. Knowledge about the sex determination system in D. longicaudata is relevant for the improvement of mass rearing protocols of this species. This information also provides the necessary background for further investigations on the underlying molecular mechanisms of sex determination in this species, and a better insight into the evolution of this pathway in Hymenoptera in particular and insects in general.

  17. Studies on protective effects of superoxide dismutase on radiation induced-chromosomal aberrations

    International Nuclear Information System (INIS)

    Zheng Siying; Jiang Jiagui; Lin Xingcheng

    1987-09-01

    This study demonstrates that radiation induced-chromosomal aberrations are not only due to the direct effect of radiation h it , but the indirect effect of free radical as well. Therefore, chromosome damage induced by radiation may be reduced by adding exogenous SOD into the radiation exposed lymphocyte culture to eliminate the superoxide free radical which damages DNA. On the other hand, however, the radiosensitivity of lymphocytes can be raised by adding SOD inhibitor (DDC) into the lymphocyte culture, which makes radiation induced-chromosomal damages more severely

  18. Chromosome Territories

    OpenAIRE

    Cremer, Thomas; Cremer, Marion

    2010-01-01

    Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions wit...

  19. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    Science.gov (United States)

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  20. [Mobile genetic elements in plant sex evolution].

    Science.gov (United States)

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  1. Sex differences and stress across the lifespan

    Science.gov (United States)

    Bale, Tracy L; Epperson, C Neill

    2015-01-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan. PMID:26404716

  2. Sex differences and stress across the lifespan.

    Science.gov (United States)

    Bale, Tracy L; Epperson, C Neill

    2015-10-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan.

  3. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  4. Cytological studies of sterility in male progeny of mutagen-exposed male parents

    International Nuclear Information System (INIS)

    Cacheiro, N.L.A.; Cornett, C.V.

    1987-01-01

    Genetic male sterility results primarily from certain types of balanced reciprocal translocations, and, more rarely, from certain numerical sex-chromosome anomalies. Sterile male offspring sired following exposure of male meiotic or postmeiotic stages to radiation or chemical mutagens are not uncommon and are predominantly carriers of balanced translocations. The chromosome breakpoints of these translocations are generally located near the ends of autosomes or anywhere in the sex chromosomes. Sterile offspring from mutagen-treated spermatogonial stem cells, on the other hand, are not only rare but most of them have no readily detectable chromosomal anomalies. Those that have are either carriers of balanced translocations, or are sex-chromosome trisomics or mosaics (XYY, XXY, XY//XYY, XO//XY, etc.). The nature of the exchange in spermatogonia-derived sterile translocations is not clear and awaits detailed study. In addition, the data base is not yet sufficient for determining the role of induced nondisjunction in the production of genetic male sterility. Accordingly, they have an ongoing project that attempts to study associations between the nature of genetic fertility impairments and the detailed chromosomal genotype, and between chromosomal causes of sterility and the nature of mutagenic treatments that produce them

  5. chromosome study of some grasshopper species from different

    African Journals Online (AJOL)

    Admin

    College of Natural Sciences, Addis Ababa University, 2012 ... ABSTRACT: Around 200 grasshopper species have been identified in ... degree of karyotypic conservatism. ... This leaves a gap in further molecular studies of .... various minor differences observed are briefly ... chromosome are of about equal size with only.

  6. Isolation of a sex-linked DNA sequence in cranes.

    Science.gov (United States)

    Duan, W; Fuerst, P A

    2001-01-01

    A female-specific DNA fragment (CSL-W; crane sex-linked DNA on W chromosome) was cloned from female whooping cranes (Grus americana). From the nucleotide sequence of CSL-W, a set of polymerase chain reaction (PCR) primers was identified which amplify a 227-230 bp female-specific fragment from all existing crane species and some other noncrane species. A duplicated versions of the DNA segment, which is found to have a larger size (231-235 bp) than CSL-W in both sexes, was also identified, and was designated CSL-NW (crane sex-linked DNA on non-W chromosome). The nucleotide similarity between the sequences of CSL-W and CSL-NW from whooping cranes was 86.3%. The CSL primers do not amplify any sequence from mammalian DNA, limiting the potential for contamination from human sources. Using the CSL primers in combination with a quick DNA extraction method allows the noninvasive identification of crane gender in less than 10 h. A test of the methodology was carried out on fully developed body feathers from 18 captive cranes and resulted in 100% successful identification.

  7. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  8. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  9. Chromosomal abnormalities in amenorrhea: a retrospective study and review of 637 patients in South India.

    Science.gov (United States)

    Dutta, Usha R; Ponnala, Rajitha; Pidugu, Vijaya Kumar; Dalal, Ashwin B

    2013-05-01

    The aim of the present study was to investigate the chromosomal abnormalities and to identify the most prevalent or frequent type of chromosomal abnormalities in cases of amenorrhea from the southern region of India. A total of 637 cases with amenorrhea were analyzed using G- banding, C-banding, Silver staining, and fluorescence in situ hybridization was done wherever necessary. Out of the 637 cases involved in our study, 132 abnormalities were detected. The incidence of chromosomal abnormalities in cases with primary and secondary amenorrhea was around 20.7 %. In addition to the numerical anomalies, various structural aberrations of the X chromosome like deletions, isochromosomes, duplications, ring chromosome, and also male karyotype were detected. Review of the literature and overall incidence of chromosomal abnormalities in patients with amenorrhea suggests the need for cytogenetic analysis to be performed in all the cases referred for amenorrhea with or without short stature. Precise identification of chromosomal abnormalities helps in confirming the provisional diagnosis; it helps the secondary amenorrhea patients in assisted reproduction and to understand the clinical heterogeneity involved and in efficient genetic counseling.

  10. Location of the handedness gene on the X and Y chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Corballis, M.C.; Lee, K. [Univ. of Auckland (New Zealand); McManus, I.C. [Univ. College London (United Kingdom); Crow, T.J. [Warneford Hospital, Oxford (United Kingdom)

    1996-02-16

    Accumulated data from five handedness surveys show that concordance for sex is slightly but reliably higher among siblings of the same handedness than among those of opposite handedness. This is consistent with Crow`s theory that the genetic locus for handedness is in an X-Y homologous region of the sex chromosomes. The small size of the effect is predicted from genetic models in which there is a substantial random component underlying phenotypic left handedness. The findings are relevant to the putative role of cerebral asymmetry in the aetiology of psychosis. 15 refs., 3 tabs.

  11. Studies on radiation-induced chromosome damage in humans: Semi-annual progress report, October 1, 1986-March 31, 1987

    International Nuclear Information System (INIS)

    Littlefield, L.G.

    1987-01-01

    This report summarizes recent research to determine and report the frequency of somatic cell chromosome aberrations in approximately 200 lymphocyte metaphases from each of 200 control patients or persons who received radiation for enlarged thymus, and from an additional 475 irradiated and control subjects selected by NCI from populations exposed to therapeutic ionizing radiation during the period 1930 to 1970. The priority of populations to be studied will be determined by NCI in consultation with the contractor and with advice from NCI consultants. Additional research will determine and report dose response curves among the several populations, to determine how differences with respect to radiation dose, quality of radiation, fractionation, sex and age within and among groups affect the ''dose-response relationship.'' 7 tabs

  12. Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon.

    OpenAIRE

    Afonso, Luis O B; Smith, Jack L; Ikonomou, Michael G; Devlin, Robert H

    2002-01-01

    Chinook salmon alevins were exposed during their labile period for sex differentiation to different concentrations of bleached kraft mill effluent (BKME), primary sewage effluent, secondary sewage effluent (SE), 17ss-estradiol, testosterone, and nonylphenol. After exposure for 29 days post hatching (DPH), fish were allowed to grow until 103 and 179 DPH, at which time their genetic sex was determined using Y-chromosomal DNA markers and their gonadal sex was determined by histology. Independent...

  13. The contribution of the Y chromosome to hybrid male sterility in house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  14. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  15. The genetic content of chromosomal inversions across a wide latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Pedro Simões

    Full Text Available There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U and the sex chromosome (A, taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands in the north to Málaga (Spain in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.

  16. Interphase Chromosome Profiling: A Method for Conventional Banded Chromosome Analysis Using Interphase Nuclei.

    Science.gov (United States)

    Babu, Ramesh; Van Dyke, Daniel L; Dev, Vaithilingam G; Koduru, Prasad; Rao, Nagesh; Mitter, Navnit S; Liu, Mingya; Fuentes, Ernesto; Fuentes, Sarah; Papa, Stephen

    2018-02-01

    - Chromosome analysis on bone marrow or peripheral blood samples fails in a small proportion of attempts. A method that is more reliable, with similar or better resolution, would be a welcome addition to the armamentarium of the cytogenetics laboratory. - To develop a method similar to banded metaphase chromosome analysis that relies only on interphase nuclei. - To label multiple targets in an equidistant fashion along the entire length of each chromosome, including landmark subtelomere and centromere regions. Each label so generated by using cloned bacterial artificial chromosome probes is molecularly distinct with unique spectral characteristics, so the number and position of the labels can be tracked to identify chromosome abnormalities. - Interphase chromosome profiling (ICP) demonstrated results similar to conventional chromosome analysis and fluorescence in situ hybridization in 55 previously studied cases and obtained useful ICP chromosome analysis results on another 29 cases in which conventional methods failed. - ICP is a new and powerful method to karyotype peripheral blood and bone marrow aspirate preparations without reliance on metaphase chromosome preparations. It will be of particular value for cases with a failed conventional analysis or when a fast turnaround time is required.

  17. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  18. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    Science.gov (United States)

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  19. Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Blavet, Nicolas; Blavet, Hana; Muyle, A.; Käfer, J.; Cegan, R.; Deschamps, C.; Zemp, N.; Mousset, S.; Aubourg, S.; Bergero, R.; Charlesworth, D.; Hobza, Roman; Widmer, A.; Marais, G.A.B.

    2015-01-01

    Roč. 16, JUL 25 (2015), s. 546 ISSN 1471-2164 R&D Projects: GA ČR GAP501/12/2220 Institutional support: RVO:61389030 Keywords : Sex chromosomes * Sex-linked genes * Plant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  20. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse.

    Science.gov (United States)

    Yamauchi, Yasuhiro; Riel, Jonathan M; Stoytcheva, Zoia; Ward, Monika A

    2014-01-03

    The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.

  1. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    Science.gov (United States)

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.

  2. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species

    KAUST Repository

    Wang, Xueying

    2013-05-24

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Mechanisms of chromosomal evolution and its possible relation to natural history characteristics in Ancistrus catfishes (Siluriformes: Loricariidae).

    Science.gov (United States)

    de Oliveira, R R; Feldberg, E; Dos Anjos, M B; Zuanon, J

    2009-12-01

    Ancistrus is the most speciose genus of the tribe Ancistrini, with 58 valid species and many yet to be described. Cytogenetic studies were conducted on five apparently undescribed species from the Amazon basin, which showed different diploid numbers: Ancistrus sp. Purus (2n = 34); Ancistrus sp. Macoari (2n = 46); Ancistrus sp. Dimona (2n = 52); Ancistrus sp. Vermelho (2n = 42) and Ancistrus sp. Trombetas (2n = 38). All species possessed only one pair of NOR-carrying chromosomes, but with extensive variation in both the location on the chromosome as well as in the position of the ribosomal sites on the karyotype. The karyotypic evolution of Ancistrus species seems to be based on chromosomal rearrangements, with a tendency to a reduction of the diploid number. Two new instances of XX/XY sex chromosomes for Ancistrus species, based on the heteromorphism in the male karyotype, were also recorded. The large karyotypic diversity among Ancistrus species may be related to biological and behavioural characteristics of these fish that include microhabitat preferences, territoriality and specialized reproductive tactics. These characteristics may lead to a fast rate of fixation of chromosomal mutations and eventually speciation across the basin.

  4. Effects of caffeine upon material repair systems involved in the rejoining of x-ray-induced chromosome breaks in the paternal genome of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Osgood, C.J.

    1977-01-01

    Experiments were carried out in which ring-X/B/sup s/Yy + males were x-irradiated and mated with females which had been fed on either 1.0% caffeine in 10% sucrose, 0.2% caffeine in 10% sucrose, or on 10% sucrose alone. F1 progeny were scored for dominant lethals and sex chromosome losses, while in the F2 generation the frequency of translocations was monitored. In line with previous reports it was found that at a concentration of 0.2% caffeine the frequencies of dominant lethals and sex chromosome losses were increased while the frequency of translocations was depressed. At the higher concentration of 1.0% caffeine the frequencies of dominant lethals and sex chromosome losses were depressed. With respect to translocations, while the formation of translocations between autosomes was enhanced in the presence of 1.0% caffeine, the frequency of translocations between the Y and the autosomes was depressed relative to sucrose controls. The proposal is made that at high effective concentrations, caffeine promotes the rejoining of breaks induced in sperm, supported by evidence of an enhancement in the frequency of autosomal translocations in the 1.0% caffeine series and consistent with the depression in the frequencies of dominant lethals and sex chromosome losses in the 1.0% series as compared to sucrose controls

  5. The unique genomic properties of sex-biased genes: Insights from avian microarray data

    Directory of Open Access Journals (Sweden)

    Webster Matthew T

    2008-03-01

    Full Text Available Abstract Background In order to develop a framework for the analysis of sex-biased genes, we present a characterization of microarray data comparing male and female gene expression in 18 day chicken embryos for brain, gonad, and heart tissue. Results From the 15982 significantly expressed coding regions that have been assigned to either the autosomes or the Z chromosome (12979 in brain, 13301 in gonad, and 12372 in heart, roughly 18% were significantly sex-biased in any one tissue, though only 4 gene targets were biased in all tissues. The gonad was the most sex-biased tissue, followed by the brain. Sex-biased autosomal genes tended to be expressed at lower levels and in fewer tissues than unbiased gene targets, and autosomal somatic sex-biased genes had more expression noise than similar unbiased genes. Sex-biased genes linked to the Z-chromosome showed reduced expression in females, but not in males, when compared to unbiased Z-linked genes, and sex-biased Z-linked genes were also expressed in fewer tissues than unbiased Z coding regions. Third position GC content, and codon usage bias showed some sex-biased effects, primarily for autosomal genes expressed in the gonad. Finally, there were several over-represented Gene Ontology terms in the sex-biased gene sets. Conclusion On the whole, this analysis suggests that sex-biased genes have unique genomic and organismal properties that delineate them from genes that are expressed equally in males and females.

  6. Dahl (S x R congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp.

    Directory of Open Access Journals (Sweden)

    Victoria L M Herrera

    Full Text Available The detection of multiple sex-specific blood pressure (BP quantitative trait loci (QTLs in independent total genome analyses of F2 (Dahl S x R-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl challenge, identified only S.R5B congenic rats with lower SBP (-26.5 mmHg, P = 0.002, DBP (-23.7 mmHg, P = 0.004 and MAP (-25.1 mmHg, P = 0.002 compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9-141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.

  7. Dahl (S x R) congenic strain analysis confirms and defines a chromosome 5 female-specific blood pressure quantitative trait locus to <7 Mbp.

    Science.gov (United States)

    Herrera, Victoria L M; Pasion, Khristine A; Moran, Ann Marie; Ruiz-Opazo, Nelson

    2012-01-01

    The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (-26.5 mmHg, P = 0.002), DBP (-23.7 mmHg, P = 0.004) and MAP (-25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9-141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.

  8. Sex-specific genetic determinants for arterial stiffness in Dahl salt-sensitive hypertensive rats.

    Science.gov (United States)

    Decano, Julius L; Pasion, Khristine A; Black, Nicole; Giordano, Nicholas J; Herrera, Victoria L; Ruiz-Opazo, Nelson

    2016-01-11

    Arterial stiffness is an independent predictor of cardiovascular outcomes in hypertensive patients including myocardial infarction, fatal stroke, cerebral micro-bleeds which predicts cerebral hemorrhage in hypertensive patients, as well as progression to hypertension in non-hypertensive subjects. The association between arterial stiffness and various cardiovascular outcomes (coronary heart disease, stroke) remains after adjusting for age, sex, blood pressure, body mass index and other known predictors of cardiovascular disease, suggesting that arterial stiffness, measured via carotid-femoral pulse wave velocity, has a better predictive value than each of these factors. Recent evidence shows that arterial stiffening precedes the onset of high blood pressure; however their molecular genetic relationship (s) and sex-specific determinants remain uncertain. We investigated whether distinct or shared genetic determinants might underlie susceptibility to arterial stiffening in male and female Dahl salt-sensitive rats. Thus, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting arterial stiffness in six-week old F2 (Dahl S x R)-intercross male and female rats characterized for abdominal aortic pulse wave velocity and aortic strain by high-resolution ultrasonography. We detected five highly significant QTLs affecting aortic stiffness: two interacting QTLs (AS-m1 on chromosome 4 and AS-m2 on chromosome16, LOD 8.8) in males and two distinct interacting QTLs (AS-f1 on chromosome 9 and AS-f2 on chromosome11, LOD 8.9) in females affecting pulse wave velocity. One QTL (AS-1 on chromosome 3, LOD 4.3) was found to influence aortic strain in a sex-independent manner. None of these arterial stiffness QTLs co-localized with previously reported blood pressure QTLs detected in equivalent genetic intercrosses. These data reveal sex-specific genetic determinants for aortic pulse wave velocity and suggest distinct polygenic susceptibility for arterial stiffness and

  9. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris).

    Science.gov (United States)

    Meyers-Wallen, Vicki N; Boyko, Adam R; Danko, Charles G; Grenier, Jennifer K; Mezey, Jason G; Hayward, Jessica J; Shannon, Laura M; Gao, Chuan; Shafquat, Afrah; Rice, Edward J; Pujar, Shashikant; Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew H

    2017-01-01

    Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C. familiaris). Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1) a variant associated with XX DSD in the canine model and 2) gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS) and whole genome sequencing (WGS), we identified a variant on C. familiaris autosome 9 (CFA9) that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq) in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.

  11. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris.

    Directory of Open Access Journals (Sweden)

    Vicki N Meyers-Wallen

    Full Text Available Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens and dogs (C. familiaris. Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1 a variant associated with XX DSD in the canine model and 2 gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS and whole genome sequencing (WGS, we identified a variant on C. familiaris autosome 9 (CFA9 that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.

  12. The eXtraordinarY Kids Clinic: an interdisciplinary model of care for children and adolescents with sex chromosome aneuploidy

    Directory of Open Access Journals (Sweden)

    Tartaglia N

    2015-07-01

    Full Text Available Nicole Tartaglia,1,2 Susan Howell,1,2 Rebecca Wilson,2 Jennifer Janusz,1,2 Richard Boada,1,2 Sydney Martin,2 Jacqueline B Frazier,2 Michelle Pfeiffer,2 Karen Regan,2 Sarah McSwegin,2 Philip Zeitler1,2 1Department of Pediatrics, University of Colorado School of Medicine, 2Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA Purpose: Individuals with sex chromosome aneuploidies (SCAs are born with an atypical number of X and/or Y chromosomes, and present with a range of medical, developmental, educational, behavioral, and psychological concerns. Rates of SCA diagnoses in infants and children are increasing, and there is a need for specialized interdisciplinary care to address associated risks. The eXtraordinarY Kids Clinic was established to provide comprehensive and experienced care for children and adolescents with SCA, with an interdisciplinary team composed of developmental–behavioral pediatrics, endocrinology, genetic counseling, child psychology, pediatric neuropsychology, speech–language pathology, occupational therapy, nursing, and social work. The clinic model includes an interdisciplinary approach to care, where assessment results by each discipline are integrated to develop unified diagnostic impressions and treatment plans individualized for each patient. Additional objectives of the eXtraordinarY Kids Clinic program include prenatal genetic counseling, research, education, family support, and advocacy. Methods: Satisfaction surveys were distributed to 496 patients, and responses were received from 168 unique patients. Results: Satisfaction with the overall clinic visit was ranked as “very satisfied” in 85%, and as “satisfied” in another 9.8%. Results further demonstrate specific benefits from the clinic experience, the importance of a knowledgeable clinic coordinator, and support the need for similar clinics across the country. Three case examples of the interdisciplinary approach to assessment and

  13. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Dai R

    2014-03-01

    Full Text Available Rujuan Dai, S Ansar Ahmed Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA Abstract: Autoimmune diseases encompass a diverse group of diseases which emanate from a dysregulated immune system that launches a damaging attack on its own tissues. Autoimmune attacks on self tissues can occur in any organ or body system. A notable feature of autoimmune disease is that a majority of these disorders occur predominantly in females. The precise basis of sex bias in autoimmune diseases is complex and potentially involves sex chromosomes, sex hormones, and sex-specific gene regulation in response to internal and external stimuli. Epigenetic regulation of genes, especially by microRNAs (miRNAs, is now attracting significant attention. miRNAs are small, non-protein-coding RNAs that are predicted to regulate a majority of human genes, including those involved in immune regulation. Therefore, it is not surprising that dysregulated miRNAs are evident in many diseases, including autoimmune diseases. Because there are marked sex differences in the incidence of autoimmune diseases, this review focuses on the role of sex factors on miRNA expression in the context of autoimmune diseases, an aspect not addressed thus far. Here, we initially review miRNA biogenesis and miRNA regulation of immunity and autoimmunity. We then summarize the recent findings of sexual dimorphism of miRNA expression in diverse tissues, which imply a critical role of miRNA in sex differentiation and in sex-specific regulation of tissue development and/or function. We also discuss the important contribution of the X chromosome and sex hormones to the sexual dimorphism of miRNA expression. Understanding sexually dimorphic miRNA expression in sex-biased autoimmune diseases not only offers us new insight into the mechanism of sex bias of the disease but will also aid us in developing new sex

  14. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    Science.gov (United States)

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  15. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Lengerová, Martina; Svoboda, J.; Kubeková, H.; Kejnovský, Eduard; Vyskot, Boris

    2006-01-01

    Roč. 115, č. 5 (2006), s. 376-382 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GA521/06/0056; GA ČR(CZ) GA204/05/2097 Institutional research plan: CEZ:AV0Z50040507 Keywords : plant melandrium-album * dioecious plant * X-chromosome Subject RIV: BO - Biophysics Impact factor: 4.065, year: 2006

  16. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  17. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes.

    Directory of Open Access Journals (Sweden)

    Marco Barchi

    2008-05-01

    Full Text Available During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm-/- spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm(-/- meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/-Atm-/- spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics.

  18. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine

    Science.gov (United States)

    2013-01-01

    Background Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes. Results In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes. Conclusions The constructed cytological maps of lampbrush chromosomes of P

  19. Coronary collateralization shows sex and racial-ethnic differences in obstructive artery disease patients.

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    Full Text Available Coronary collateral circulation protects cardiac tissues from myocardial infarction damage and decreases sudden cardiac death. So far, it is unclear how coronary collateralization varies by race-ethnicity groups and by sex.We assessed 868 patients with obstructive CAD. Patients were assessed for collateral grades based on Rentrop grading system, as well as other covariates. DNA samples were genotyped using the Affymetrix 6.0 genotyping array. To evaluate genetic contributions to collaterals, we performed admixture mapping using logistic regression with estimated local and global ancestry.Overall, 53% of participants had collaterals. We found difference between sex and racial-ethnic groups. Men had higher rates of collaterals than women (P-value = 0.000175. White Hispanics/Latinos showed overall higher rates of collaterals than African Americans and non-Hispanic Whites (59%, 50% and 48%, respectively, P-value = 0.017, and especially higher rates in grade 1 and grade 3 collateralization than the other two populations (P-value = 0.0257. Admixture mapping showed Native American ancestry was associated with the presence of collaterals at a region on chromosome 17 (chr17:35,243,142-41,251,931, β = 0.55, P-value = 0.000127. African ancestry also showed association with collaterals at a different region on chromosome 17 (chr17: 32,266,966-34,463,323, β = 0.38, P-value = 0.00072.In our study, collateralization showed sex and racial-ethnic differences in obstructive CAD patients. We identified two regions on chromosome 17 that were likely to harbor genetic variations that influenced collateralization.

  20. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  1. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  2. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    Science.gov (United States)

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  3. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster.

    Science.gov (United States)

    Abbott, Jessica K; Innocenti, Paolo; Chippindale, Adam K; Morrow, Edward H

    2013-01-01

    When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome-a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila's X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.

  4. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  5. Fluorescence- and NOR-studies at chromosomes of several vertebrate-species

    International Nuclear Information System (INIS)

    Maurer, F.

    1984-05-01

    In the investigated species of fishes clear-cut Chromomycin-positive blocks were visualised. This holds true as well for Lecaspius delineatus, Gobio gobio, Perca fluciatilis, Cyprinus carpio, Carassius and auratus gibelio. In contrast, DA-DAPI-Fluorescence was homogenous along the entire chromosome. The silver-impregnation-technique proved useful in all investigated species of fisches. In the chicken certain chromosome-districts the Chromomycin-fluorescence was more pronounced than in others; Distamycin-DAPI led to a homogeneous staining along hole the arms. The investigations in mouse-chromosomes revealed an R-banding-pattern. The Distamycin-DAPI-pattern of mouse-chromosomes were complementary to the Chromomycin-pattern and strongly pronounced centromeres. Again Distmycin-DAPI-staining did not allow an unquastinable bandling resolution; simularities to Actimomycin-DAPI-fluorochrome-included patterns were observed. By means of silver-impragnation-techniques the presence of double-point-formed NOR's on more chromosomes were highlighted. However an exact destination of the number was not possible and remains reserved to further investigations. (Author)

  6. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Science.gov (United States)

    Deng, Chuanliang; Bai, Lili; Fu, Shulan; Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R-C; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  7. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  8. Drosophila as a model for the study of sex determination in anopheline and aedine mosquitoes

    International Nuclear Information System (INIS)

    Pannuti, A.; Kocacitak, T.; Lucchesi, J.C.

    2000-01-01

    Sterile insect technique control strategies consist of releasing laboratory produced male insects that have been sterilised by irradiation. These strategies require the production of massive quantities of males. Population-replacement strategies rely on the genetically engineered interruption of that portion of the malaria parasite's life cycle that occurs in the mosquito. This could be achieved by the inundative introduction of transformed males or the more limited introduction of males carrying an infective agent capable of driving a parasite-inhibiting transgene into the vector population. Once again, the release of genetically engineered males would require genetic systems for their mass production. Mass production of males can be accomplished most effectively through genetic sexing techniques. Genetic sexing can be achieved by identifying the key steps in the genetic regulation of sex differentiation and by modifying one or more of these steps so that their execution would result in sex-specific lethality. As the necessary and seminal first step towards this goal, we set out to identify and isolate a gene whose primary transcript is processed differently in males and females of Anopheles gambiae Giles. A survey of sex determination among insects reveals a vast array of different mechanisms. Our understanding of these mechanisms consists only of information derived from classical cytological and genetic studies. Using the knowledge derived from the study of Drosophila, it has been possible to discern a fundamental pattern in the sex determining mechanisms of many diverse insect species (Noethiger and Steinmann-Zwicky 1985). The challenge now, is to determine if there has been an evolutionary conservation of the genes responsible for the fundamental pattern, i.e., if the molecular mechanisms that underlie sex determination in Drosophila are the same in other insects of interest or if in these insects, the apparent fundamental pattern is achieved by completely

  9. A genetic study of various enzyme polymorphisms in Pleurodeles waltlii (Urodele Amphibian). II. Peptidases: demonstration of sex linkage.

    Science.gov (United States)

    Ferrier, V; Gasser, F; Jaylet, A; Cayrol, C

    1983-06-01

    The existence of four peptidases was demonstrated by starch gel electrophoresis in Pleurodeles waltlii: PEP-1, PEP-2, PEP-3, and PEP-4. Peptidases-3 and -4 are monomorphic, and peptidases-1 and -2 are polymorphic. The heredity of the polymorphisms was studied using individuals arising from crosses or of gynogenetic origin. Peptidase-1 is dimeric; its polymorphism depends on a pair of codominant alleles, Pep-1A and Pep-1B, which are situated on the Z and W sex chromosomes, respectively, in close proximity to, or even within, the sex differential segment. As the differential segment is very close to the centromere, the PEP-1 locus therefore also appears to be closely linked to it. Expression of the PEP-1 locus was shown to be independent of the sex hormone environment. This locus is the first case reported in amphibians of an enzyme marker linked to the genetic sex. It allows the sex of PLeurodeles to be determined before they reach sexual maturity. Peptidase-2 is monomeric. Its polymorphism depends on a pair of codominant alleles on an autosomal PEP-2 locus. The high proportion of heterozygous animals in the gynogenetic offspring of females heterozygous for the PEP-2 locus indicates segregation which is independent of the centromere. Analysis of the offspring of doubly heterozygous females (i.e., for two of the loci--LDH-B, G6PDH, PEP-1, and PEP-2) shows that the four loci are independent.

  10. Evaluation of Chromosomal Disorders in Tissue and Blood Samples in Patients with Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    A. Parvaneroo

    2004-12-01

    Full Text Available Statement of Problem: Many studies have indicated that genetic disturbances are common findings in patients with Oral Squamous Cell Carcinoma (OSCC. Identification of these changes can be helpful in diagnostic procedures of these tumors.Purpose: The aim of this study was to appraise the chromosomal disorders in blood and tissue patients with OSCC.Methods and Materials: In this descriptive study, the study group consisted of all OSCC patients who were referred to the Faculty of Dentistry, Tehran University of Medical Sciences, Maxillofacial Surgery Clinic of Shariati Hospital, and Amir Aalam Hospital fromSeptember 2000 to November 2002. In order to study chromosomal disorders in the peripheral blood lymphocytes, 5 mL of blood was obtained from each patient In patients with the large lesion, a piece of involved tissue were obtained and cultured for 24 hours.This led to 29 blood samples and 16 tissue specimens and any relation between OSCC and age, sex, smoking and alcohol use were evaluated.Results: In this study, OSCC was more common in males than in females (3 to 5. 31% of our patients were smokers, and one had a history of alcoholic consumption. There was an increase in incidence of OSCC with age. In this study, all patients had numerical(aneuploidy, polyploidy and structural chromosomal disorders (double minute, fragment,breakage and dicentric. There was significant difference between blood and tissue chromosomal disorders (aneuploidy, polyploidy,breakage in OSCC patients.Conclusion: It can be concluded that chromosomes in patients with OSCC might show some genetic aberration and evaluation of involved tissue might be better way for determining this disorders.

  11. Model selection emphasises the importance of non-chromosomal information in genetic studies.

    Directory of Open Access Journals (Sweden)

    Reda Rawi

    Full Text Available Ever since the case of the missing heritability was highlighted some years ago, scientists have been investigating various possible explanations for the issue. However, none of these explanations include non-chromosomal genetic information. Here we describe explicitly how chromosomal and non-chromosomal modifiers collectively influence the heritability of a trait, in this case, the growth rate of yeast. Our results show that the non-chromosomal contribution can be large, adding another dimension to the estimation of heritability. We also discovered, combining the strength of LASSO with model selection, that the interaction of chromosomal and non-chromosomal information is essential in describing phenotypes.

  12. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  13. 46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.

    Science.gov (United States)

    DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun

    2014-10-01

    Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.

  14. Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra

    Directory of Open Access Journals (Sweden)

    Domínguez Ana

    2011-09-01

    Full Text Available Abstract Background The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe. Results We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles. Conclusions The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests

  15. Vertebrate sex-determining genes play musical chairs.

    Science.gov (United States)

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.

  16. Sex differences in the genetic architecture of lifespan in a seed beetle: extreme inbreeding extends male lifespan

    DEFF Research Database (Denmark)

    Bilde, T.; Maklakov, Alexei A.; Meisner, Katrine

    2009-01-01

    Background Sex differences in lifespan are ubiquitous throughout the animal kingdom but the causes underlying this phenomenon remain poorly understood. Several explanations based on asymmetrical inheritance patterns (sex chromosomes or mitochondrial DNA) have been proposed, but these ideas have...

  17. Why women see differently from the way men see? A review of sex differences in cognition and sports.

    Science.gov (United States)

    Li, Rena

    2014-09-01

    The differences of learning and memory between males and females have been well documented and confirmed by both human and animal studies. The sex differences in cognition started from early stage of neuronal development and last through entire life span. The major biological basis of the gender-dependent cognitive activity includes two major components: sex hormone and sex-related characteristics, such as sex-determining region of the Y chromosome (SRY) protein. However, the knowledge of how much biology of sex contributes to normal cognitive function and elite athletes in various sports are still pretty limited. In this review, we will be focusing on sex differences in spatial learning and memory - especially the role of male- and female-type cognitive behaviors in sports.

  18. Why women see differently from the way men see? A review of sex differences in cognition and sports

    Directory of Open Access Journals (Sweden)

    Rena Li

    2014-09-01

    Full Text Available The differences of learning and memory between males and females have been well documented and confirmed by both human and animal studies. The sex differences in cognition started from early stage of neuronal development and last through entire lifespan. The major biological basis of the gender-dependent cognitive activity includes two major components: sex hormone and sex-related characteristics, such as sex-determining region of the Y chromosome (SRY protein. However, the knowledge of how much biology of sex contributes to normal cognitive function and elite athletes in various sports are still pretty limited. In this review, we will be focusing on sex differences in spatial learning and memory – especially the role of male- and female-type cognitive behaviors in sports.

  19. Follow-Up Genotoxic Study: Chromosome Damage Two and Six Years after Exposure to the Prestige Oil Spill.

    Directory of Open Access Journals (Sweden)

    Kristin Hildur

    Full Text Available The north-west coast of Spain was heavily contaminated by the Prestige oil spill, in 2002. Individuals who participated in the clean-up tasks showed increased chromosome damage two years after exposure. Long-term clinical implications of chromosome damage are still unknown.To realize a follow-up genotoxic study to detect whether the chromosome damage persisted six years after exposure to the oil.Follow-up study.Fishermen cooperatives in coastal villages.Local fishermen who were highly exposed (n = 52 and non-exposed (n = 23 to oil seven years after the spill.Chromosome damage in circulating lymphocytes.Chromosome damage in exposed individuals persists six years after oil exposure, with a similar incidence than those previously detected four years before. A surprising increase in chromosome damage in non-exposed individual was found six years after Prestige spill vs. those detected two years after the exposure.The sample size and the possibility of some kind of selection bias should be considered. Genotoxic results cannot be extrapolated to the approximately 300,000 individuals who participated occasionally in clean-up tasks.The persistence of chromosome damage detected in exposed individuals six years after oil exposure seems to indicate that the cells of the bone marrow are affected. A surprising increase in chromosome damage in non-exposed individuals detected in the follow-up study suggests an indirect exposition of these individuals to some oil compounds or to other toxic agents during the last four years. More long-term studies are needed to confirm the presence of chromosome damage in exposed and non-exposed fishermen due to the association between increased chromosomal damage and increased risk of cancer. Understanding and detecting chromosome damage is important for detecting cancer in its early stages. The present work is the first follow-up cytogenetic study carried out in lymphocytes to determine genotoxic damage evolution between two

  20. Follow-Up Genotoxic Study: Chromosome Damage Two and Six Years after Exposure to the Prestige Oil Spill

    Science.gov (United States)

    Hildur, Kristin; Templado, Cristina; Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Frances, Alexandra; Monyarch, Gemma; Rodríguez-Trigo, Gema; Rodriguez-Rodriguez, Emma; Souto, Ana; Gómez, Federico P.; Antó, Josep M.; Barberà, Joan Albert; Fuster, Carme

    2015-01-01

    Background The north-west coast of Spain was heavily contaminated by the Prestige oil spill, in 2002. Individuals who participated in the clean-up tasks showed increased chromosome damage two years after exposure. Long-term clinical implications of chromosome damage are still unknown. Objective To realize a follow-up genotoxic study to detect whether the chromosome damage persisted six years after exposure to the oil. Design Follow-up study. Setting Fishermen cooperatives in coastal villages. Participants Local fishermen who were highly exposed (n = 52) and non-exposed (n = 23) to oil seven years after the spill. Measurements Chromosome damage in circulating lymphocytes. Results Chromosome damage in exposed individuals persists six years after oil exposure, with a similar incidence than those previously detected four years before. A surprising increase in chromosome damage in non-exposed individual was found six years after Prestige spill vs. those detected two years after the exposure. Limitations The sample size and the possibility of some kind of selection bias should be considered. Genotoxic results cannot be extrapolated to the approximately 300,000 individuals who participated occasionally in clean-up tasks. Conclusion The persistence of chromosome damage detected in exposed individuals six years after oil exposure seems to indicate that the cells of the bone marrow are affected. A surprising increase in chromosome damage in non-exposed individuals detected in the follow-up study suggests an indirect exposition of these individuals to some oil compounds or to other toxic agents during the last four years. More long-term studies are needed to confirm the presence of chromosome damage in exposed and non-exposed fishermen due to the association between increased chromosomal damage and increased risk of cancer. Understanding and detecting chromosome damage is important for detecting cancer in its early stages. The present work is the first follow-up cytogenetic

  1. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

    DEFF Research Database (Denmark)

    Belling, Kirstine González-Izarzugaza; Russo, Francesco; Jensen, Anders Boeck

    2017-01-01

    Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level...

  2. Multiple roles of the Y chromosome in the biology of Drosophila melanogaster.

    Science.gov (United States)

    Piergentili, Roberto

    2010-09-01

    The X and Y chromosomes of Drosophila melanogaster were the first examples of chromosomes associated with genetic information. Thanks to the serendipitous discovery of a male with white eyes in 1910, T.H. Morgan was able to associate the X chromosome of the fruit fly with a phenotypic character (the eye color) for the first time. A few years later, his student, C.B. Bridges, demonstrated that X0 males, although phenotypically normal, are completely sterile. This means that the X chromosome, like the autosomes, harbors genes that control several phenotypic traits, while the Y chromosome is important for male fertility only. Notwithstanding its long history--almost 100 years in terms of genetic studies--most of the features of the Y chromosome are still a mystery. This is due to the intrinsic nature of this genetic element, namely, (1) its molecular composition (mainly transposable elements and satellite DNA), (2) its genetic inertia (lack of recombination due to its heterochromatic nature), (3) the absence of homology with the X (with the only exception of the nucleolar organizer), (4) the lack of visible phenotypes when it is missing (indeed, except for their sterility, X0 flies are normal males), and (5) its low density as for protein-coding sequences (to date, only 13 genes out of approximately 14,000 have been mapped on this chromosome in D. melanogaster, i.e., ~0.1% of the total). Nonetheless, a more accurate analysis reveals that this chromosome can influence several complex phenotypes: (1) it has a role in the fertility of both sexes and viability of males when over-represented; (2) it can unbalance the intracellular nucleotide pool; (3) it can interfere with the gene expression either by recruiting proteins involved in chromatin remodeling (PEV) or, to a higher extent, by influencing the expression of up to 1,000 different genes, probably by changing the availability of transcription factors; (4) it plays a major role (up to 50%) in the resistance to heat

  3. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.

    Science.gov (United States)

    Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi

    2008-07-01

    Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.

  4. Impact of Repetitive Elements on the Y Chromosome Formation in Plants

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Čegan, Radim; Jesionek, Wojciech; Kejnovský, Eduard; Vyskot, Boris; Kubát, Zdeněk

    2017-01-01

    Roč. 8, č. 11 (2017), č. článku 302. ISSN 2073-4425 R&D Projects: GA ČR GA16-08698S; GA ČR GJ15-21523Y Institutional support: RVO:68081707 Keywords : papaya sex-chromosomes * male-specific region * transposable elements * silene-latifolia Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 3.600, year: 2016

  5. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  6. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  7. Studies on chromosome aberrations in workers occupationally exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyung; Oh, Hyeon Joo; Shim, Sun Bo; Roh, Hye Won; Lee, Hai Yong [Korea Food and Drug Administration, Seoul (Korea, Republic of); Kang, Soon Ja [Ewha Womens Univ., Seoul (Korea, Republic of)

    1998-06-01

    Cytogenetic assays for unstable chromosomes were performed on 54 medical radiation workers who are occupationally exposed to radiation and 42 controls. A total of 15,577 metaphase cells were scored. The frequencies of dicentrics and acentric chromosomes on controls were 0.52*10{sup -3} and 0.82*10{sup -2}, respectively. On radiation workers those were 2.28*10{sup -3} and 1.34*10{sup -2}, respectively. Though the frequencies of all types of chromosome aberrations in the workers were higher than those in the controls, the only significant difference was found in the case of dicentrics (P < 0.01). When we considered exposure dose of recent one year, duration of employment and smoking habit in radiation worker, a slight increase was shown in frequency of unstable chromosome aberrations on these workers, but no statistical differences were observed (P > 0.05) except exposure dose of recent one year (P < 0.05). These results could indicate that low level exposure to ionizing radiation can induce unstable chromosome aberrations in blood lymphocytes.

  8. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  9. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  10. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae)

    Czech Academy of Sciences Publication Activity Database

    Král, J.; Kořínková, T.; Krkavcová, L.; Musilová, J.; Forman, M.; Ávila Herrera, I. M.; Haddad, C. R.; Vítková, Magda; Henriques, S.; Palacios Vargas, J. G.; Hedin, M.

    2013-01-01

    Roč. 109, č. 2 (2013), s. 377-408 ISSN 0024-4066 Grant - others:AV ČR(CZ) IAA601110808; GA ČR(CZ) GA206/08/0813; Univerzita Karlova v Praze(CZ) SVV-2013-267205; Univerzita Karlova v Praze(CZ) SVV-2012-265202 Institutional support: RVO:60077344 Keywords : achiasmatic * chromosome pairing * deactivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.535, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/bij.12056/pdf

  11. Reduced polymorphism associated with X chromosome meiotic drive in the stalk-eyed fly Teleopsis dalmanni.

    Directory of Open Access Journals (Sweden)

    Sarah J Christianson

    Full Text Available Sex chromosome meiotic drive has been suggested as a cause of several evolutionary genetic phenomena, including genomic conflicts that give rise to reproductive isolation between new species. In this paper we present a population genetic analysis of X chromosome drive in the stalk-eyed fly, Teleopsis dalmanni, to determine how this natural polymorphism influences genetic diversity. We analyzed patterns of DNA sequence variation at two X-linked regions (comprising 1325 bp approximately 50 cM apart and one autosomal region (comprising 921 bp for 50 males, half of which were collected in the field from one of two allopatric locations and the other half were derived from lab-reared individuals with known brood sex ratios. These two populations are recently diverged but exhibit partial postzygotic reproductive isolation, i.e. crosses produce sterile hybrid males and fertile females. We find no nucleotide or microsatellite variation on the drive X chromosome, whereas the same individuals show levels of variation at autosomal regions that are similar to field-collected flies. Furthermore, one field-caught individual collected 10 years previously had a nearly identical X haplotype to the drive X, and is over 2% divergent from other haplotypes sampled from the field. These results are consistent with a selective sweep that has removed genetic variation from much of the drive X chromosome. We discuss how this finding may relate to the rapid evolution of postzygotic reproductive isolation that has been documented for these flies.

  12. Sex differences in microRNA regulation of gene expression: no smoke, just miRs

    Directory of Open Access Journals (Sweden)

    Morgan Christopher P

    2012-09-01

    Full Text Available Abstract Males and females differ widely in morphology, physiology, and behavior leading to disparities in many health outcomes, including sex biases in the prevalence of many neurodevelopmental disorders. However, with the exception of a relatively small number of genes on the Y chromosome, males and females share a common genome. Therefore, sexual differentiation must in large part be a product of the sex biased expression of this shared genetic substrate. microRNAs (miRs are small non-coding RNAs involved in the post-transcriptional regulation of up to 70% of protein-coding genes. The ability of miRs to regulate such a vast amount of the genome with a high degree of specificity makes them perfectly poised to play a critical role in programming of the sexually dimorphic brain. This review describes those characteristics of miRs that make them particularly amenable to this task, and examines the influences of both the sex chromosome complement as well as gonadal hormones on their regulation. Exploring miRs in the context of sex differences in disease, particularly in sex-biased neurodevelopmental disorders, may provide novel insight into the pathophysiology and potential therapeutic targets in disease treatment and prevention.

  13. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Directory of Open Access Journals (Sweden)

    Chuanliang Deng

    Full Text Available In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome and pDbH12 (a J(s genome specific probe as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s , J and St in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of

  14. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  15. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  16. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    Directory of Open Access Journals (Sweden)

    Octavio M Palacios-Gimenez

    Full Text Available A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂ = 29,X0 (Gryllus assimilis and 2n = 9, neo-X1X2Y (Eneoptera surinamensis. The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the

  17. Manipulation of arthropod sex determination by endosymbionts : Diversity and molecular mechanisms

    NARCIS (Netherlands)

    Ma, W. -J.; Vavre, F.; Beukeboom, L. W.

    2014-01-01

    Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium, Rickettsia, and

  18. Effects of bleomycin and x irradiation on the frequency of chromosomal aberrations in selected connective tissue diseases

    International Nuclear Information System (INIS)

    Burkhardt, W.C. Jr.

    1978-01-01

    Whole blood lymphocytes from 28 patients with selected connective tissue disorders (6 progressive systemic sclerosis (PSS), 6 anti-nuclear antibody positive rheumatoid arthritis, 6 anti-nuclear antibody negative rheumatoid arthritis, 6 systemic lupus erythematosus, and 4 mixed connective tissue disease) and 17 controls matched for sex, age, and race were studied to determine the frequency of spontaneous as well as bleomycin and/or x-irradiation induced chromosomal aberrations. The effects of bleomycin on cultured lymphocytes were tested, but differential susceptibilities to this clastogen were not demonstrated among the disease groups and controls investigated. However, the combined effect of bleomycin and x irradiation were found to be additive in control lymphocytes, nearly additive in PSS, RA+, and SLE cultures, but reduced considerably from the expected additive value in Ra- cultures. This study indicated that peripheral blood lymphocytes from patients with connective tissue disease, as a whole, possess greater frequencies of spontaneous chromosomal aberrations than matched controls and that x rays can produce greater frequencies of chromosomal aberrations in whole blood lymphocytes of PSS patients than in suitably matched control individuals

  19. Do sex reversal procedures differentially affect agonistic behaviors and sex steroid levels depending on the sexual genotype in Nile tilapia?

    Science.gov (United States)

    Gennotte, Vincent; Akonkwa, Balagizi; Mélard, Charles; Denoël, Mathieu; Cornil, Charlotte A; Rougeot, Carole

    2017-04-01

    In Nile tilapia Oreochromis niloticus, phenotypic males and females with different sexual genotypes (XX, XY, YY) have particular behavioral and physiological traits. Compared to natural XX females and XY males, XY and YY females and XX males expressed higher level of aggressiveness that could be related to higher levels of 17β-estradiol and 11-ketotestosterone, respectively. Our results suggest that the presence of a Y chromosome increases aggressiveness in females. However, since the same relationship between aggressiveness and the Y chromosome is not observed in males, we can hypothesize that the differences in aggressiveness are not directly dependent on the genotype but on the sex reversal procedures applied on young fry during their sexual differentiation to produce these breeders. These hormonal treatments could have permanently modified the development of the brain and consequently influenced the behavior of adults independently of their genotype. In both hypotheses (genotype or sex reversal influence), the causes of behavioral modifications have to be searched in an early modification of the brain sexual differentiation. © 2017 Wiley Periodicals, Inc.

  20. Parental Reports of Stigma Associated with Child’s Disorder of Sex Development

    OpenAIRE

    Rolston, Aimee M.; Gardner, Melissa; Vilain, Eric; Sandberg, David E.

    2015-01-01

    Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or anatomic sex development is atypical. DSD-associated stigma is purported to threaten positive psychosocial adaptation. Parental perceptions of DSD-related stigma were assessed in 154 parents of 107 children (newborn?17 years) questionnaire comprising two scales, child-focused and parent-focused, and three subscales, perceived stigmatization, future worries, and feelings about the child's condition. ...