WorldWideScience

Sample records for severe weather features

  1. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  2. Restoration of severely weathered wood

    Science.gov (United States)

    R. Sam. Williams; Mark. Knaebe

    2000-01-01

    Severely weathered window units were used to test various restoration methods and pretreatments. Sanded and unsanded units were pretreated with a consolidant or water repellent preservative, finished with an oil- or latex-based paint system, and exposed outdoors near Madison, WI, for five years. Pretreatments were applied to both window sashes (stiles and rails) and...

  3. Estuary wader capacity following severe weather mortality

    International Nuclear Information System (INIS)

    Clark, J.A.; Baillie, S.R.; Clark, N.A.; Langston, R.H.W.

    1993-01-01

    The building of a tidal power barrage across an estuary may lead to substantial changes in its ecology. Many of Britain's estuaries hold internationally important numbers of waders. Careful consideration, therefore, needs to be given to the likely effects of tidal power barrages on wader populations. The opportunity for increased understanding of the mechanisms which govern wader populations was provided by a period of severe winter weather in 1991, which resulted in a substantial mortality of waders in eastern England. Such conditions are known to be stressful to birds and the study objectives were to investigate both the effects of and recovery from severe weather. (author)

  4. Severe Weather Environments in Atmospheric Reanalyses

    Science.gov (United States)

    King, A. T.; Kennedy, A. D.

    2017-12-01

    Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.

  5. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    Science.gov (United States)

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  6. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  7. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    Science.gov (United States)

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing

  8. Hierarchical feature selection for erythema severity estimation

    Science.gov (United States)

    Wang, Li; Shi, Chenbo; Shu, Chang

    2014-10-01

    At present PASI system of scoring is used for evaluating erythema severity, which can help doctors to diagnose psoriasis [1-3]. The system relies on the subjective judge of doctors, where the accuracy and stability cannot be guaranteed [4]. This paper proposes a stable and precise algorithm for erythema severity estimation. Our contributions are twofold. On one hand, in order to extract the multi-scale redness of erythema, we design the hierarchical feature. Different from traditional methods, we not only utilize the color statistical features, but also divide the detect window into small window and extract hierarchical features. Further, a feature re-ranking step is introduced, which can guarantee that extracted features are irrelevant to each other. On the other hand, an adaptive boosting classifier is applied for further feature selection. During the step of training, the classifier will seek out the most valuable feature for evaluating erythema severity, due to its strong learning ability. Experimental results demonstrate the high precision and robustness of our algorithm. The accuracy is 80.1% on the dataset which comprise 116 patients' images with various kinds of erythema. Now our system has been applied for erythema medical efficacy evaluation in Union Hosp, China.

  9. Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations

    Science.gov (United States)

    Hitomi, N.; Selva, D.; Blackwell, W. J.

    2014-12-01

    MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can

  10. Protecting against natural hazards - Information seeking behaviour in anticipation of severe weather events

    NARCIS (Netherlands)

    Jeuring, Jelmer

    2011-01-01

    Protection against natural hazards - Information seeking behaviour in anticipation of severe weather events Severe weather events can have considerable impact on society, including tourism organisations and tourists. Providing accurate and timely information about possible risks due to environmental

  11. Decreasing trend in severe weather occurrence over China during the past 50 years

    Science.gov (United States)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  12. Severe Weather Field Experience: An Undergraduate Field Course on Career Enhancement and Severe Convective Storms

    Science.gov (United States)

    Godfrey, Christopher M.; Barrett, Bradford S.; Godfrey, Elaine S.

    2011-01-01

    Undergraduate students acquire a deeper understanding of scientific principles through first-hand experience. To enhance the learning environment for atmospheric science majors, the University of North Carolina at Asheville has developed the severe weather field experience. Participants travel to Tornado Alley in the Great Plains to forecast and…

  13. Use of the European Severe Weather Database to verify satllite-based storm detection or nowcasting

    OpenAIRE

    Dotzek, Nikolai; Forster, Caroline

    2008-01-01

    Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or nowcasting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 a...

  14. National Space Weather Program Advances on Several Fronts

    Science.gov (United States)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  15. Using PBL to Prepare Educators and Emergency Managers to Plan for Severe Weather

    Science.gov (United States)

    Stalker, Sarah L.; Cullen, Theresa A.; Kloesel, Kevin

    2015-01-01

    Within the past 10 years severe weather has been responsible for an annual average of 278 fatalities in the United States (National Weather Service, 2013). During severe weather special populations are populations of high concentrations of people that cannot respond quickly. Schools show both of these characteristics. The average lead time for…

  16. Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather

    Directory of Open Access Journals (Sweden)

    Colin Price

    2008-01-01

    Full Text Available Severe and extreme weather is a major natural hazard all over the world, oftenresulting in major natural disasters such as hail storms, tornados, wind storms, flash floods,forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence,etc. can only be observed at close distances, lightning activity in these damaging stormscan be monitored at all spatial scales, from local (using very high frequency [VHF]sensors, to regional (using very low frequency [VLF] sensors, and even global scales(using extremely low frequency [ELF] sensors. Using sensors that detect the radio wavesemitted by each lightning discharge, it is now possible to observe and track continuouslydistant thunderstorms using ground networks of sensors. In addition to the number oflightning discharges, these sensors can also provide information on lightningcharacteristics such as the ratio between intra-cloud and cloud-to-ground lightning, thepolarity of the lightning discharge, peak currents, charge removal, etc. It has been shownthat changes in some of these lightning characteristics during thunderstorms are oftenrelated to changes in the severity of the storms. In this paper different lightning observingsystems are described, and a few examples are provided showing how lightning may beused to monitor storm hazards around the globe, while also providing the possibility ofsupplying short term forecasts, called nowcasting.

  17. A statistical model to estimate the local vulnerability to severe weather

    Science.gov (United States)

    Pardowitz, Tobias

    2018-06-01

    We present a spatial analysis of weather-related fire brigade operations in Berlin. By comparing operation occurrences to insured losses for a set of severe weather events we demonstrate the representativeness and usefulness of such data in the analysis of weather impacts on local scales. We investigate factors influencing the local rate of operation occurrence. While depending on multiple factors - which are often not available - we focus on publicly available quantities. These include topographic features, land use information based on satellite data and information on urban structure based on data from the OpenStreetMap project. After identifying suitable predictors such as housing coverage or local density of the road network we set up a statistical model to be able to predict the average occurrence frequency of local fire brigade operations. Such model can be used to determine potential hotspots for weather impacts even in areas or cities where no systematic records are available and can thus serve as a basis for a broad range of tools or applications in emergency management and planning.

  18. How severe space weather can disrupt global supply chains

    Science.gov (United States)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  19. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-01-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  20. Phased Array Radar Network Experiment for Severe Weather

    Science.gov (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  1. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Kowalski, T.

    1993-01-01

    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  2. Towards benchmarking citizen observatories: Features and functioning of online amateur weather networks.

    Science.gov (United States)

    Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter

    2017-05-15

    Crowd-sourced environmental observations are increasingly being considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated observatories that are rooted in one of the oldest and most widely practiced citizen science activities, namely amateur weather observation. The objective of this paper is to introduce a conceptual framework that enables a systematic review of the features and functioning of these expanding networks. This is done by considering distinct dimensions, namely the geographic scope and types of participants, the network's establishment mechanism, revenue stream(s), existing communication paradigm, efforts required by data sharers, support offered by platform providers, and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run the networks, and their sustainability. This framework is then utilized to perform a critical review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) there are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks; (2) the revenue stream(s) of online amateur weather networks is one of the least discussed but arguably most important dimensions that is crucial for the sustainability of these networks; and (3) all of the networks included in this study have one or more explicit modes of bi-directional communication, however, this is limited to

  3. Severe weather over the Highveld of South Africa during November ...

    African Journals Online (AJOL)

    2016-11-09

    Nov 9, 2016 ... media was full of reports of water drives where ordinary people helped to collect water and distribute it to .... data such as radar, satellite images and synoptic maps. Photo evidence gathered from social ..... Natl Weather Dig. 28 13–24. DE CONING E (2014) Personal communication, 2 July 2014. Dr Estelle.

  4. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  5. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  6. Forecasting challenges during the severe weather outbreak in Central Europe on 25 June 2008

    Science.gov (United States)

    Púčik, Tomáš; Francová, Martina; Rýva, David; Kolář, Miroslav; Ronge, Lukáš

    2011-06-01

    On 25 June 2008, severe thunderstorms caused widespread damage and two fatalities in the Czech Republic. Significant features of the storms included numerous downbursts on a squall line that exhibited a bow echo reflectivity pattern, with sustained wind gusts over 32 m/s at several reporting stations. Moreover, a tornado and several downbursts of F2 intensity occurred within the convective system, collocated with the development of mesovortices within the larger scale bow echo. The extent of the event was sufficient to call it a derecho, as the windstorm had affected Eastern Germany, Southern Poland, Slovakia, Austria and Northern Hungary as well. Ahead of the squall line, several well-organized isolated cells occurred, exhibiting supercellular characteristics, both from a radar and visual perspective. These storms produced large hail and also isolated severe wind gusts. This paper deals mostly with the forecasting challenges that were experienced by the meteorologist on duty during the evolution of this convective scenario. The main challenge of the day was to identify the region that would be most affected by severe convection, especially as the numerical weather prediction failed to anticipate the extent and the progress of the derecho-producing mesoscale convective systems (MCSs). Convective storms developed in an environment conducive to severe thunderstorms, with strong wind shear confined mostly to the lower half of the troposphere. These developments also were strongly influenced by mesoscale factors, especially a mesolow centered over Austria and its trough stretching to Eastern Bohemia. The paper demonstrates how careful mesoscale analysis could prove useful in dealing with such convective situations. Remote-sensing methods are also shown to be useful in such situations, especially when they can offer sufficient lead time to issue a warning, which is not always the case.

  7. Vulnerability and adaptation to severe weather events in the American southwest

    OpenAIRE

    Boero, Riccardo; Bianchini, Laura; Pasqualini, Donatella

    2015-01-01

    Climate change can induce changes in the frequency of severe weather events representing a threat to socio-economic development. It is thus of uttermost importance to understand how the vulnerability to the weather of local communities is determined and how adaptation public policies can be effectively put in place. We focused our empirical analysis on the American Southwest. Results show that, consistently with the predictions of an investment model, economic characteristics signaling loc...

  8. Several required OWL features for indigenous knowledge management systems

    CSIR Research Space (South Africa)

    Alberts, R

    2012-05-01

    Full Text Available This paper describes the features required of OWL (Web Ontology Language) to realise and enhance Indigenous Knowledge (IK) digital repositories. Several needs for Indigenous Knowledge management systems (IKMSs) are articulated, based on extensive...

  9. Severe weather data near nuclear power station and reprocessing fuel facility in Japan

    International Nuclear Information System (INIS)

    Nagata, Tadahisa

    2017-01-01

    The main weather data are updated at any time. The strong wind and tornado (strong wind/tornado) data are opened until March 2016 in Japan. The main weather and the strong wind/tornado data near the nuclear power station (NPS) were investigated. The earthquake, Tunami and volcano were not mentioned on this report. The main weather data might not be severe. The maximum temperature had not been considered in the safety analysis of NPS. The weather data of some small observation posts near NPSs had not been considered. The unusual high temperature and the local severe rain near NPS by the global warming may be considered in future. The maximum intensities of the strong wind/tornado in Japan and near NPS were Fujita-scale 3 and 2, respectively. The maximum intensities of almost half NPSs were Fujita-scale 1. The intensity and the number of the strong winds/tornados differed depending on NPS. The Japanese main weather and strong wind/tornado might not be severe compared with other country. (author)

  10. Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report - Extended Summary

    Science.gov (United States)

    2009-01-01

    The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D

  11. Modeling crash injury severity by road feature to improve safety.

    Science.gov (United States)

    Penmetsa, Praveena; Pulugurtha, Srinivas S

    2018-01-02

    The objective of this research is 2-fold: to (a) model and identify critical road features (or locations) based on crash injury severity and compare it with crash frequency and (b) model and identify drivers who are more likely to contribute to crashes by road feature. Crash data from 2011 to 2013 were obtained from the Highway Safety Information System (HSIS) for the state of North Carolina. Twenty-three different road features were considered, analyzed, and compared with each other as well as no road feature. A multinomial logit (MNL) model was developed and odds ratios were estimated to investigate the effect of road features on crash injury severity. Among the many road features, underpass, end or beginning of a divided highway, and on-ramp terminal on crossroad are the top 3 critical road features. Intersection crashes are frequent but are not highly likely to result in severe injuries compared to critical road features. Roundabouts are least likely to result in both severe and moderate injuries. Female drivers are more likely to be involved in crashes at intersections (4-way and T) compared to male drivers. Adult drivers are more likely to be involved in crashes at underpasses. Older drivers are 1.6 times more likely to be involved in a crash at the end or beginning of a divided highway. The findings from this research help to identify critical road features that need to be given priority. As an example, additional advanced warning signs and providing enlarged or highly retroreflective signs that grab the attention of older drivers may help in making locations such as end or beginning of a divided highway much safer. Educating drivers about the necessary skill sets required at critical road features in addition to engineering solutions may further help them adopt safe driving behaviors on the road.

  12. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    Science.gov (United States)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi

  13. Evaluation of Lightning Jumps as a Predictor of Severe Weather in the Northeastern United States

    Science.gov (United States)

    Eck, Pamela

    Severe weather events in the northeastern United States can be challenging to forecast, given how the evolution of deep convection can be influenced by complex terrain and the lack of quality observations in complex terrain. To supplement existing observations, this study explores using lightning to forecast severe convection in areas of complex terrain in the northeastern United States. A sudden increase in lightning flash rate by two standard deviations (2sigma), also known as a lightning jump, may be indicative of a strengthening updraft and an increased probability of severe weather. This study assesses the value of using lightning jumps to forecast severe weather during July 2015 in the northeastern United States. Total lightning data from the National Lightning Detection Network (NLDN) is used to calculate lightning jumps using a 2sigma lightning jump algorithm with a minimum threshold of 5 flashes min-1. Lightning jumps are used to predict the occurrence of severe weather, as given by whether a Storm Prediction Center (SPC) severe weather report occurred 45 min after a lightning jump in the same cell. Results indicate a high probability of detection (POD; 85%) and a high false alarm rate (FAR; 89%), suggesting that lightning jumps occur in sub-severe storms. The interaction between convection and complex terrain results in a locally enhanced updraft and an increased probability of severe weather. Thus, it is hypothesized that conditioning on an upslope variable may reduce the FAR. A random forest is introduced to objectively combine upslope flow, calculated using data from the High Resolution Rapid Refresh (HRRR), flash rate (FR), and flash rate changes with time (DFRDT). The random forest, a machine-learning algorithm, uses pattern recognition to predict a severe or non-severe classification based on the predictors. In addition to upslope flow, FR, and DFRDT, Next-Generation Radar (NEXRAD) Level III radar data was also included as a predictor to compare its

  14. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  15. Development and Application of Syndromic Surveillance for Severe Weather Events Following Hurricane Sandy.

    Science.gov (United States)

    Tsai, Stella; Hamby, Teresa; Chu, Alvin; Gleason, Jessie A; Goodrow, Gabrielle M; Gu, Hui; Lifshitz, Edward; Fagliano, Jerald A

    2016-06-01

    Following Hurricane Superstorm Sandy, the New Jersey Department of Health (NJDOH) developed indicators to enhance syndromic surveillance for extreme weather events in EpiCenter, an online system that collects and analyzes real-time chief complaint emergency department (ED) data and classifies each visit by indicator or syndrome. These severe weather indicators were finalized by using 2 steps: (1) key word inclusion by review of chief complaints from cases where diagnostic codes met selection criteria and (2) key word exclusion by evaluating cases with key words of interest that lacked selected diagnostic codes. Graphs compared 1-month, 3-month, and 1-year periods of 8 Hurricane Sandy-related severe weather event indicators against the same period in the following year. Spikes in overall ED visits were observed immediately after the hurricane for carbon monoxide (CO) poisoning, the 3 disrupted outpatient medical care indicators, asthma, and methadone-related substance use. Zip code level scan statistics indicated clusters of CO poisoning and increased medicine refill needs during the 2 weeks after Hurricane Sandy. CO poisoning clusters were identified in areas with power outages of 4 days or longer. This endeavor gave the NJDOH a clearer picture of the effects of Hurricane Sandy and yielded valuable state preparation information to monitor the effects of future severe weather events. (Disaster Med Public Health Preparedness. 2016;10:463-471).

  16. Predicting motorcycle crash injury severity using weather data and alternative Bayesian multivariate crash frequency models.

    Science.gov (United States)

    Cheng, Wen; Gill, Gurdiljot Singh; Sakrani, Taha; Dasu, Mohan; Zhou, Jiao

    2017-11-01

    Motorcycle crashes constitute a very high proportion of the overall motor vehicle fatalities in the United States, and many studies have examined the influential factors under various conditions. However, research on the impact of weather conditions on the motorcycle crash severity is not well documented. In this study, we examined the impact of weather conditions on motorcycle crash injuries at four different severity levels using San Francisco motorcycle crash injury data. Five models were developed using Full Bayesian formulation accounting for different correlations commonly seen in crash data and then compared for fitness and performance. Results indicate that the models with serial and severity variations of parameters had superior fit, and the capability of accurate crash prediction. The inferences from the parameter estimates from the five models were: an increase in the air temperature reduced the possibility of a fatal crash but had a reverse impact on crashes of other severity levels; humidity in air was not observed to have a predictable or strong impact on crashes; the occurrence of rainfall decreased the possibility of crashes for all severity levels. Transportation agencies might benefit from the research results to improve road safety by providing motorcyclists with information regarding the risk of certain crash severity levels for special weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  18. Тhe features of severe community acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Avramenko I.V.

    2015-06-01

    Full Text Available Based on data from a prospective analysis for the year of observation, the article presents information about the features of severe community acquired pneumonia in patients who were hospitalized at the department of pulmonology (or therapy, as well as department of the intensive care from three teaching hospitals in Dnepropetrovsk, namely "Dnipropetrovsk City Hospital №6», "Dnipropetrovsk City Hospital №2», "Dnipropetrovsk City Hospital №16», which are the clinical ones of "Dnepropetrovsk Medical Academy of the Ministry of Health Ukraine". Dependence of the severity of the condition shown on duration of illness before admission, features of season character of disease. The effect of breathing exercises on the course of the disease. The results can be the basis for a more personal approach to the development of diagnostic and therapeutic programs for patients with severe community-acquired pneumonia.

  19. System 80+ design features for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Jacob, M.C.; Schneider, R.E.; Finnicum, D.J.

    1993-01-01

    ABB-CE, in cooperation with the US Department of Energy, is working to develop and certify the System 80+ design, which is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the EPRI's Utility Requirements Document, and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the system is discussed along with its conformance to EPRI URD guidance, as applicable. Computer simulation of a best estimate severe accident scenario is presented to illustrate the acceptable containment performance of the design. It is concluded that by considering severe accident prevention and mitigation early in the design process, the System 80+ design represents a robust plant design that has low core damage frequencies, low containment conditional failure probabilities, and acceptable deterministic containment performance under severe accident conditions

  20. Mapping fire probability and severity in a Mediterranean area using different weather and fuel moisture scenarios

    Science.gov (United States)

    Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.

    2009-04-01

    Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in

  1. Impacts of Severe Weather, Climate Zone, and Energy Factors on Base Realignment and Closure (BRAC)

    Science.gov (United States)

    2015-03-26

    Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Management Christopher L. Teke, Major, USAF Major...the science behind severe weather occurrences and climate zone. Chapter 3 further details the methodology used in the analysis and sets the stage... actuarial estimates and should be thought of as insurance premiums, and ought to remain a budgeted cost if a base stays open. In contrast, if a base is

  2. Ultrastructural hepatocellular features associated with severe hepatic lipidosis in cats.

    Science.gov (United States)

    Center, S A; Guida, L; Zanelli, M J; Dougherty, E; Cummings, J; King, J

    1993-05-01

    In this study, we compared hepatic ultrastructure in healthy cats, in cats with severe hepatic lipidosis, and in cats with experimentally induced, chronic, extrahepatic bile duct occlusion. Ultrastructural features unique to the lipidosis syndrome included an apparent reduction in number of peroxisomes and alteration in their morphologic features. The quantity of endoplasmic reticulum, Golgi complexes, and lysosomes was subjectively reduced, and paucity of cytosolic glycogen was observed. Bile canaliculi appeared collapsed because of cytosolic distention with lipid. Mitochondria were reduced in number and were markedly pleomorphic. Cristae assumed a variety of shapes, lengths, and orientations. Ultrastructural features of bile duct occlusion were similar to those described in other species and differed from those in cats with hepatic lipidosis.

  3. Tourists and severe weather : An exploration of the role of 'Locus of Responsibility' in protective behaviour decisions

    NARCIS (Netherlands)

    Jeuring, Jelmer; Becken, Susanne

    Severe weather events can impact negatively on tourism and put tourists at risk. To reduce vulnerability, tourists should be aware of and be prepared for possible severe weather. Seeking risk information, a type of protective action behaviour, is an important way to reduce vulnerability. This paper

  4. Weather conditions conducive to Beijing severe haze more frequent under climate change

    Science.gov (United States)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  5. Creating a comprehensive quality-controlled dataset of severe weather occurrence in Europe

    Science.gov (United States)

    Groenemeijer, P.; Kühne, T.; Liang, Z.; Holzer, A.; Feuerstein, B.; Dotzek, N.

    2010-09-01

    Ground-truth quality-controlled data on severe weather occurrence is required for meaningful research on severe weather hazards. Such data are collected by observation networks of several authorities in Europe, most prominently the National Hydrometeorological Institutes (NHMS). However, some events challenge the capabilities of such conventional networks by their isolated and short-lived nature. These rare and very localized but extreme events include thunderstorm wind gusts, large hail and tornadoes and are poorly resolved by synoptic observations. Moreover, their detection by remote-sensing techniques such as radar and satellites is in development and has proven to be difficult. Using the fact that all across across Europe there are many people with a special personal or professional interest in such events, who are typically organized in associations, allows pursuing a different strategy. Data delivered to the European Severe Weather Database is recorded and quality controlled by ESSL and a large number of partners including the Hydrometeorological Institutes of Germany, Finland, Austria, Italy and Bulgaria. Additionally, nine associations of storm spotters and centres of expertise in these and other countries are involved. The two categories of organizations (NHMSes/other) each have different privileges in the quality control procedure, which involves assigning a quality level of QC0+ (plausibility checked), QC1 (confirmed by reliable sources) or QC2 (verified) to each of the reports. Within the EWENT project funded by the EU 7th framework programme, the RegioExakt project funded by the German Ministry of Education and Research, and with support from the German Weather Service (DWD), several enhancements of the ESWD have been and will be carried out. Completed enhancements include the creation of an interface that allows partner organizations to upload data automatically, in the case of our German partner "Skywarn Germany" in near-real time. Moreover, the

  6. EPR design features to mitigate severe accident challenges

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Fischer, M.; Bittermann, D.

    2005-01-01

    The EPR, an evolutionary pressurized water reactor (PWR), is a 4300-4500 MWth that incorporates proven technology within an optimized configuration to enhance safety. EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product. Commercial EPR units are currently being built in Finland at the Olkiluoto site, and planned for France at the Flamanville site. In recent months, Framatome ANP announced their intention to market the EPR units to China in response to a request for vendor bids as well as their intent to pursue design certification in the United States under 10CFR52. The EPR safety philosophy is based on a deterministic consideration of defense-in-depth complemented by probabilistic analyses. Not only is the EPR designed to prevent and mitigate design basis accidents (DBAs), it employs an extra level of safety associated with severe accident response. Therefore, as a design objective, features are included to ensure that radiological consequences are limited such that the need for stringent counter measures, such as evacuation and relocation of the nearby population, can be reasonably excluded. This paper discusses some of the innovative features of the EPR to address severe accident challenges. (author)

  7. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    Science.gov (United States)

    Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony

    2016-01-01

    NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.

  8. The Airway Microbiome in Severe Asthma: Associations with Disease Features and Severity

    Science.gov (United States)

    Huang, Yvonne J.; Nariya, Snehal; Harris, Jeffrey M.; Lynch, Susan V.; Choy, David F.; Arron, Joseph R.; Boushey, Homer

    2015-01-01

    Background Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in mild-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. Objective To evaluate relationships between the bronchial microbiome and features of severe asthma. Methods Bronchial brushings from 40 participants in the BOBCAT study (Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma) were evaluated using 16S rRNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between severe asthmatics, and previously studied healthy controls (n=7), and mild-moderate asthma subjects (n=41). Results In severe asthma, bronchial bacterial composition was associated with several disease-related features, including body-mass index (BMI; Bray-Curtis distance PERMANOVA, p < 0.05), changes in Asthma Control Questionnaire (ACQ) scores (p < 0.01), sputum total leukocytes (p = 0.06) and bronchial biopsy eosinophils (per mm2; p = 0.07). Bacterial communities associated with worsening ACQ and sputum total leukocytes (predominantly Proteobacteria) differed markedly from those associated with BMI (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ and bronchial epithelial gene expression of FKBP5, an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophils and Proteobacteria. No taxa were associated with a T-helper type 2-related epithelial gene expression signature, but expression of Th17-related genes was associated with Proteobacteria. Severe asthma subjects, compared to healthy controls or mild-moderate asthmatics, were significantly enriched in Actinobacteria, although the largest differences observed involved a Klebsiella genus member (7.8 fold-increase in severe asthma, padj < 0.001) Conclusions

  9. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  10. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  11. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  12. Design features of ACR in severe accident mitigation

    International Nuclear Information System (INIS)

    Shapiro, H.; Krishnan, V.S.; Santamaura, P.; Lekakh, B.; Blahnik, C.

    2007-01-01

    New reactor designs require the evaluation of design alternatives to reduce the radiological risk by preventing severe accidents or by limiting releases from the plant in the event of such accidents. The Advanced CANDU Reactor TM (ACR TM ) design has provisions to prevent and mitigate severe accidents. This paper describes key ACR design features for severe accident mitigation. It provides a high-level overview of the findings to date. Several design provisions have not yet been finalized or decided, but the designers are keenly aware of the SAM concepts and their requirements. The active heat sinks for 'vessels' (i.e., the fuel channels, the calandria vessel, the calandria end-shields and the calandria vault) are all amply capable of dissipating the severe accident heat loads. These heat sinks are designed to be operable under severe accident environmental conditions; however, their operability is yet to be confirmed by assessments. The active heat sinks for the various process vessels are 'backed up' by passive heat sinks (i.e., steaming plus water make-up from the RWS). The supply side of passive heat sinks is simple, rugged, and not vulnerable to failures of plant systems. The importance of the steam relief side is recognized, and the adequate relief capacity will be provided. The passive heat sinks will give the SAM more than 1 day (likely several days) to diagnose the accident and to establish the ultimate heat sinks. The spray system for containment pressure suppression is designed for high reliability and has ample capacity to ensure low containment leakage without external intervention, after which time alternative supply to the sprays can be brought on line manually. The sprays are backed up by the LACs which are assessed for operability following a severe accident. The strong ACR containment will provide a long time of completely passive protection for any severe accident at decay power. Its characteristics are not prone to catastrophic failures. The

  13. The airway microbiome in patients with severe asthma: Associations with disease features and severity.

    Science.gov (United States)

    Huang, Yvonne J; Nariya, Snehal; Harris, Jeffrey M; Lynch, Susan V; Choy, David F; Arron, Joseph R; Boushey, Homer

    2015-10-01

    Asthma is heterogeneous, and airway dysbiosis is associated with clinical features in patients with mild-to-moderate asthma. Whether similar relationships exist among patients with severe asthma is unknown. We sought to evaluate relationships between the bronchial microbiome and features of severe asthma. Bronchial brushings from 40 participants in the Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma (BOBCAT) study were evaluated by using 16S ribosomal RNA-based methods. Relationships to clinical and inflammatory features were analyzed among microbiome-profiled subjects. Secondarily, bacterial compositional profiles were compared between patients with severe asthma and previously studied healthy control subjects (n = 7) and patients with mild-to-moderate asthma (n = 41). In patients with severe asthma, bronchial bacterial composition was associated with several disease-related features, including body mass index (P PERMANOVA), changes in Asthma Control Questionnaire (ACQ) scores (P < .01), sputum total leukocyte values (P = .06), and bronchial biopsy eosinophil values (per square millimeter, P = .07). Bacterial communities associated with worsening ACQ scores and sputum total leukocyte values (predominantly Proteobacteria) differed markedly from those associated with body mass index (Bacteroidetes/Firmicutes). In contrast, improving/stable ACQ scores and bronchial epithelial gene expression of FK506 binding protein (FKBP5), an indicator of steroid responsiveness, correlated with Actinobacteria. Mostly negative correlations were observed between biopsy eosinophil values and Proteobacteria. No taxa were associated with a TH2-related epithelial gene expression signature, but expression of TH17-related genes was associated with Proteobacteria. Patients with severe asthma compared with healthy control subjects or patients with mild-to-moderate asthma were significantly enriched in Actinobacteria, although the largest differences

  14. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  15. Severe hyperthyroidism: aetiology, clinical features and treatment outcome.

    Science.gov (United States)

    Iglesias, P; Dévora, O; García, J; Tajada, P; García-Arévalo, C; Díez, J J

    2010-04-01

    Severe hyperthyroidism (SH) is a serious medical disorder that can compromise life. There have not been systematic studies in which SH has been evaluated in detail. Here, our aims were: (1) to analyse both clinical and analytical features and outcome in patients with SH and (2) to compare these data with those found in more usual forms of hyperthyroidism. Patients and methods All patients diagnosed of SH (free thyroxine, FT4 > 100 pmol/l, NR: 11-23) seen in our endocrinology clinic in the last 15 years were studied and compared with a sample of patients with mild (mH; FT4, 23-50 pmol/l) and moderate (MH; FT4, 51-100 pmol/l) hyperthyroidism. Aetiology, clinical analytical and imaging data at diagnosis, therapeutic response and outcome were registered. Results A total of 107 patients with overt hyperthyroidism (81 females, mean age +/- SD 46.9 +/- 16.1 years) were evaluated. We studied a historic group with SH (n = 21; 14 females, 40.9 +/- 17.2 years) and, as a comparator group, we analyszed the data of 86 hyperthyroid patients (67 females, 48.4 +/- 15.5.6 years, NS) comparable in age and gender. The comparator group was classified in MH (n = 37, 26 females, 47.2 +/- 16.6 years) and mH (n = 49, 41 females, 49.4 +/- 14.8 years). In comparison with mH group, SH patients were significantly (P hyperthyroidism. FT4 was the only independent predictor of cure [OR 0.98 (CI 95%, 0.97-0.99), P hyperthyroidism is usually de novo and is accompanied by more clinical signs, symptoms, and analytical derangements, as well as higher titres of TRAb at diagnosis than milder forms of hyperthyroidism. The present data are not able to show differences in treatment modality, time to achieve cure, and remission rate among patients with mild, moderate and severe hyperthyroidism.

  16. Integration of Synthetic Aperture Radar (SAR) Imagery and Derived Products into Severe Weather Disaster Response

    Science.gov (United States)

    Schultz, L. A.; Molthan, A.; Nicoll, J. B.; Bell, J. R.; Gens, R.; Meyer, F. J.

    2017-12-01

    Disaster response efforts leveraging imagery from NASA, USGS, NOAA, and the European Space Agency (ESA) have continued to expand as satellite imagery and derived products offer an enhanced overview of the affected areas, especially in remote areas where terrain and the scale of the damage can inhibit response efforts. NASA's Short-term Prediction Research and Transition (SPoRT) Center has been supporting the NASA Earth Science Disaster Response Program by providing both optical and SAR imagery products to the NWS and FEMA to assist during domestic response efforts. Although optical imagery has dominated, the availability of ESA's Synthetic Aperture Radar (SAR) data from the Sentinel 1-A/B satellites offers a unique perspective to the damage response community as SAR imagery can be collected regardless of the time of day or the presence of clouds, two major hindrances to the use of satellite optical imagery. Through a partnership with the University of Alaska Fairbanks (UAF) and the collocated Alaska Satellite Facility (ASF), NASA's SAR Distributed Active Archive Center (DAAC), SPoRT has been investigating the use of SAR imagery products to support storm damage surveys conducted by the National Weather Service after any severe weather event. Additionally, products are also being developed and tested for FEMA and the National Guard Bureau. This presentation will describe how SAR data from the Sentinel 1A/B satellites are processed and developed into products. Examples from multiple tornado and hail events will be presented highlighting both the strengths and weaknesses of SAR imagery and how it integrates and compliments more traditional optical imagery collected post-event. Specific case study information from a large hail event in South Dakota and a long track tornado near Clear Lake, Wisconsin will be discussed as well as an overview of the work being done to support FEMA and the National Guard.

  17. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    Directory of Open Access Journals (Sweden)

    J. Hosek

    2011-02-01

    Full Text Available The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event.

    The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages.

  18. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    Science.gov (United States)

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts

  19. Features of Atopic Reactivity in Schoolchildren with Severe Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    U.I. Marusyk

    2014-11-01

    Full Text Available The study involved 30 students with severe bronchial asthma and 30 children with moderate to severe course. Patients with severe bronchial asthma revealed a clear tendency to increase the relative content of interleukin 4 in peripheral blood, which indirectly indicates the severity of inflammation in the bronchi. Almost every second child suffering from severe bronchial asthma reported an increase in the concentration of immunoglobulin E (more than 545.3 IU/ml, and the odds ratio was 1.9 (95% CI 1.1–3.4. In the group of patients with severe bronchial asthma, cases of increased skin sensitivity to household allergens were significantly more frequent compared to the second group. Thus, the size of hyperemia over 15.0 mm was recorded in 81.5 % of children of the first group and only in 51.9 % of persons (Pϕ < 0.05 in the second one. Clinical and epidemiological risk and diagnostic value of individual indicators of atopic reactivity were determined to verify the phenotype of severe bronchial asthma.

  20. Vulnerability and adaptation to severe weather events in the American southwest

    Directory of Open Access Journals (Sweden)

    Riccardo Boero

    2015-06-01

    In conclusion, our findings suggest that determinants of economic growth support lower vulnerability to the weather and increase options for financing adaptation and recovery policies, but also that only some communities are likely to benefit from those processes.

  1. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    Science.gov (United States)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved

  2. Features associated with underlying HIV infection in severe acute ...

    African Journals Online (AJOL)

    NRUs) in Malawi with severe acute malnutrition (SAM) are infected with HIV. There are many similarities in the clinical presentation of SAM and HIV. It is important to identify HIV infected children, in order to improve case management.

  3. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials.

    Science.gov (United States)

    Theofilatos, Athanasios

    2017-06-01

    The effective treatment of road accidents and thus the enhancement of road safety is a major concern to societies due to the losses in human lives and the economic and social costs. The investigation of road accident likelihood and severity by utilizing real-time traffic and weather data has recently received significant attention by researchers. However, collected data mainly stem from freeways and expressways. Consequently, the aim of the present paper is to add to the current knowledge by investigating accident likelihood and severity by exploiting real-time traffic and weather data collected from urban arterials in Athens, Greece. Random Forests (RF) are firstly applied for preliminary analysis purposes. More specifically, it is aimed to rank candidate variables according to their relevant importance and provide a first insight on the potential significant variables. Then, Bayesian logistic regression as well finite mixture and mixed effects logit models are applied to further explore factors associated with accident likelihood and severity respectively. Regarding accident likelihood, the Bayesian logistic regression showed that variations in traffic significantly influence accident occurrence. On the other hand, accident severity analysis revealed a generally mixed influence of traffic variations on accident severity, although international literature states that traffic variations increase severity. Lastly, weather parameters did not find to have a direct influence on accident likelihood or severity. The study added to the current knowledge by incorporating real-time traffic and weather data from urban arterials to investigate accident occurrence and accident severity mechanisms. The identification of risk factors can lead to the development of effective traffic management strategies to reduce accident occurrence and severity of injuries in urban arterials. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  4. Severe Weather Events over Southeastern Brazil during the 2016 Dry Season

    Directory of Open Access Journals (Sweden)

    Amanda Rehbein

    2018-01-01

    Full Text Available Southeastern Brazil is the most populated and economically developed region of this country. Its climate consists of two distinct seasons: the dry season, extending from April to September, the precipitation is significantly reduced in comparison to that of the wet season, which extends from October to March. However, during nine days of the 2016 dry season, successive convective systems were associated with atypical precipitation events, tornadoes and at least one microburst over the southern part of this region. These events led to flooding, damages to buildings, shortages of electricity and water in several places, many injuries, and two documented deaths. The present study investigates the synoptic and dynamical features related to these anomalous events. The convective systems were embedded in an unstable environment with intense low-level jet flow and strong wind shear and were supported by a sequence of extratropical cyclones occurring over the Southwest Atlantic Ocean. These features were intensified by the Madden–Julian oscillation (MJO in its phase 8 and by intense negative values of the Pacific South America (PSA 2 mode.

  5. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  6. EPRTM engineered features for core melt mitigation in severe accidents

    International Nuclear Information System (INIS)

    Fischer, Manfred; Henning, Andreas

    2009-01-01

    For the prevention of accident conditions, the EPR TM relies on the proven 3-level safety concepts inherited from its predecessors, the French 'N4' and the German 'Konvoi' NPP. In addition, a new, fourth 'beyond safety' level is implemented for the mitigation of postulated severe accidents (SA) with core melting. It is aimed at preserving the integrity of the containment barrier and at significantly reducing the frequency and magnitude of activity releases into the environment under such extreme conditions. Loss of containment integrity is prevented by dedicated design measures that address short- and long-term challenges, like: the melt-through of the reactor pressure vessel under high internal pressure, energetic hydrogen/steam explosions, containment overpressure failure, and basemat melt-through. The EPR TM SA systems and components that address these issues are: - the dedicated SA valves for the depressurization the primary circuit, - the provisions for H 2 recombination, atmospheric mixing, steam dilution, - the core melt stabilization system, - the dedicated SA containment heat removal system. The core melt stabilization system (CMSS) of the EPR TM is based on a two-stage ex-vessel approach. After its release from the RPV the core debris is first accumulated and conditioned in the (dry) reactor pit by the addition of sacrificial concrete. Then the created molten pool is spread into a lateral core catcher to establish favorable conditions for the later flooding, quenching and cooling with water passively drained from the Internal Refueling Water Storage Tank. Long-term heat removal from the containment is achieved by sprays that are supplied with water by the containment heat removal system. Complementing earlier publications focused on the principle function, basic design, and validation background of the EPR TM CMSS, this paper describes the state achieved after detailed design, as well as the technical solutions chosen for its main components, including

  7. Severe scrub typhus infection: Clinical features, diagnostic challenges and management

    Science.gov (United States)

    Peter, John Victor; Sudarsan, Thomas I; Prakash, John Anthony J; Varghese, George M

    2015-01-01

    Scrub typhus infection is an important cause of acute undifferentiated fever in South East Asia. The clinical picture is characterized by sudden onset fever with chills and non-specific symptoms that include headache, myalgia, sweating and vomiting. The presence of an eschar, in about half the patients with proven scrub typhus infection and usually seen in the axilla, groin or inguinal region, is characteristic of scrub typhus. Common laboratory findings are elevated liver transaminases, thrombocytopenia and leukocytosis. About a third of patients admitted to hospital with scrub typhus infection have evidence of organ dysfunction that may include respiratory failure, circulatory shock, mild renal or hepatic dysfunction, central nervous system involvement or hematological abnormalities. Since the symptoms and signs are non-specific and resemble other tropical infections like malaria, enteric fever, dengue or leptospirosis, appropriate laboratory tests are necessary to confirm diagnosis. Serological assays are the mainstay of diagnosis as they are easy to perform; the reference test is the indirect immunofluorescence assay (IFA) for the detection of IgM antibodies. However in clinical practice, the enzyme-linked immuno-sorbent assay is done due to the ease of performing this test and a good sensitivity and sensitivity when compared with the IFA. Paired samples, obtained at least two weeks apart, demonstrating a ≥ 4 fold rise in titre, is necessary for confirmation of serologic diagnosis. The mainstay of treatment is the tetracycline group of antibiotics or chloramphenicol although macrolides are used alternatively. In mild cases, recovery is complete. In severe cases with multi-organ failure, mortality may be as high as 24%. PMID:26261776

  8. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the

  9. Quantifying statistical uncertainty in the attribution of human influence on severe weather

    OpenAIRE

    Paciorek, CJ; Stone, DA; Wehner, MF

    2018-01-01

    © 2018 The Authors Event attribution in the context of climate change seeks to understand the role of anthropogenic greenhouse gas emissions on extreme weather events, either specific events or classes of events. A common approach to event attribution uses climate model output under factual (real-world) and counterfactual (world that might have been without anthropogenic greenhouse gas emissions) scenarios to estimate the probabilities of the event of interest under the two scenarios. Event a...

  10. Coral-rubble ridges as dynamic coastal features - short-term reworking and weathering processes

    Science.gov (United States)

    Spiske, Michaela

    2016-02-01

    A coral-rubble ridge built by storm waves at Anegada (British Virgin Islands) underwent remarkable changes in shape and weathering in a 23-month period. The ridge is located along the island's north shore, in the lee of a fringing reef and a reef flat. This coarse-clast ridge showed two major changes between March 2013, when first examined, and February 2015, when revisited. First, a trench dug in 2013, and intentionally left open for further examination, was found almost completely infilled in 2015, and the ridge morphology was modified by slumping of clasts down the slope and by reworking attributable to minor storm waves. In size, composition and overall condition, most of the clasts that filled the trench resemble reworked clasts from the ridge itself; only a small portion had been newly brought ashore. Second, a dark gray patina formed on the whitish exteriors of the carbonate clasts that had been excavated in 2013. These biologically weathered, darkened clasts had become indistinguishable from clasts that had been at the ridge surface for a much longer time. The findings have two broader implications. First, coastal coarse-clast ridges respond not solely to major storms, but also to tropical storms or minor hurricanes. The modification and reworking of the ridge on Anegada most probably resulted from hurricane Gonzalo which was at category 1-2 as it passed about 60 km north of the island in October 2014. Second, staining of calcareous clasts by cyanobacteria in the supralittoral zone occurs within a few months. In this setting, the degree of darkening quickly saturates as a measure of exposure age.

  11. Coastal Frontogenesis and Associated Severe Weather on 13 March 1986 (GALE IOP 13)

    Science.gov (United States)

    1989-01-01

    facilities used in this research are described as follows: a) Sounding operations The GALE sounding operations were designed to provide three-dimensional...airplanes were developed for a variety of weather scenarios. These tracks were designed to provide, but were not limited to, in situ measurements of...NU PA NJ Figur 2.. TpgahMfIh otesen ntdSae D ikea .,18) 32 3. CASE STUDY 3.1 Synoptic Overview On 12 March 1986 a back-door cold front (Carr, 1951

  12. Spectral Polarimetric Features Analysis of Wind Turbine Clutter in Weather Radar

    NARCIS (Netherlands)

    Yin, J.; Krasnov, O.A.; Unal, C.M.H.; Medagli, S.; Russchenberg, H.W.J.

    2017-01-01

    Wind turbine clutter has gradually become a concern for the radar community for its increasing size and quantity worldwide. Based on the S-band polarimetric Doppler PARSAX radar measurements, this paper demonstrates the micro-Doppler features and spectral-polarimetric characteristic of wind turbine

  13. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    Science.gov (United States)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  14. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests

    Science.gov (United States)

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; John T. Abatzoglou; Gregory K. Dillon; Andrew T. Hudak; Alistair M. S. Smith

    2015-01-01

    Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation,...

  15. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.; Castro, Christopher L.; Chang, Hsin-I; Lahmers, Timothy; Adams, David K.; Ochoa-Moya, Carlos A.

    2017-01-01

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  16. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.

    2017-07-03

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  17. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    Science.gov (United States)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  18. Oystercatcher Haematopus ostralegus winter mortality in The Netherlands : The effect of severe weather and food supply

    NARCIS (Netherlands)

    Camphuysen, CJ; Ens, B.J.; Heg, Dierik; Hulscher, JB; VanderMeer, J; Smit, CJ

    1996-01-01

    Wintering Oystercatchers in The Netherlands are concentrated in the Wadden Sea (c. 200 000), with substantial numbers in the Delta area (c. 90 000). Only 1% of the total wintering population is normally found along the North Sea coast. Cold-rushes under severe winter conditions lead to a reduction

  19. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  20. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  1. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  2. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    OpenAIRE

    J. Hosek; P. Musilek; E. Lozowski; P. Pytlak

    2011-01-01

    The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply...

  3. Seamless Modeling for Research & Predictability of Severe Tropical Storms from Weather-to-Climate Timescales

    Science.gov (United States)

    Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.

    2017-12-01

    Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.

  4. Pallid bands in feathers and associated stable isotope signatures reveal effects of severe weather stressors on fledgling sparrows.

    Science.gov (United States)

    Ross, Jeremy D; Kelly, Jeffrey F; Bridge, Eli S; Engel, Michael H; Reinking, Dan L; Boyle, W Alice

    2015-01-01

    = - 2.03; p = 0.042) and, in as much, suggested widespread nest losses during the storm. Severe weather events may represent major stressors to ground-nesting birds, especially for recent fledglings. We call for others to exploit opportunities to study the effects of severe weather when these rare but devastating stressors impact established field research sites.

  5. Pallid bands in feathers and associated stable isotope signatures reveal effects of severe weather stressors on fledgling sparrows

    Directory of Open Access Journals (Sweden)

    Jeremy D. Ross

    2015-03-01

    within our sample relative to expectations from past cohorts (z = − 2.03; p = 0.042 and, in as much, suggested widespread nest losses during the storm. Severe weather events may represent major stressors to ground-nesting birds, especially for recent fledglings. We call for others to exploit opportunities to study the effects of severe weather when these rare but devastating stressors impact established field research sites.

  6. Assessment of severe accident prevention and mitigation features: PWR, large dry containment design

    International Nuclear Information System (INIS)

    Perkins, K.R.; Hsu, C.J.; Lehner, J.R.; Luckas, W.J.; Cho, N.; Fitzpatrick, R.G.; Pratt, W.T.; Eltawila, F.; Maly, J.A.

    1988-07-01

    Plant features and operator actions which have been found to be important in either preventing or mitigating severe accidents in PWRs with large dry containments have been identified. These features and actions were developed from insights derived from reviews of risk assessments performed specifically for the Zion plant and from assessments of other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the large dry containment to severe accident containment loads were also identified. In addition, those features of a PWR with a large dry containment, which are important for preventing core damage and are available for mitigating fission-product release to the environment were identified. The report is issued to provide focus to the analyst examining an individual plant. The report calls attention to plant features and operator actions and provides a list of deterministic tributes for assessing those features and actions found to be helpful in reducing the overall risk for Zion and other PWRs with large dry containments. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance

  7. Assessment of severe accident prevention and mitigation features: PWR, ice-condenser containment design

    International Nuclear Information System (INIS)

    Hsu, C.J.; Perkins, K.R.; Luckas, W.J.; Fitzpatrick, R.G.; Cho, N.; Lehner, J.R.; Pratt, W.T.; Eltawila, F.; Maly, J.A.

    1988-07-01

    Plant features and operator actions which have been found to be important in either preventing and mitigating severe accidents in PWRs with ice-condenser containments have been identified. Thus features and actions were developed from insights derived from reviews of risk assessments performed specifically for the Sequoyah plant and from assessments of other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the ice-condenser containment to sever accident containment loads were also identified. In addition, those features of a PWR with an ice-condenser containment, which are important for preventing core damage and are available for mitigating fission-product release to the environment were identified. This report is issued to provide focus to an analyst examining an individual plant. The report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Sequoyah and other PWRs with ice-condenser containments. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance. 14 tabs

  8. Assessment of severe accident prevention and mitigation features: BWR, Mark II containment design

    International Nuclear Information System (INIS)

    Lehner, J.R.; Hsu, C.J.; Eltawila, F.; Perkins, K.R.; Luckas, W.J.; Fitzpatrick, R.G.; Pratt, W.T.

    1988-07-01

    Plant features and operator actions, which have been found to be important in either preventing or mitigating severe accidents in BWRs with Mark II containments (BWR Mark II's) have been identified. These features and actions were developed from insights derived from reviews of in-depth risk assessments performed specifically for the Limerick and Shoreham plants and from other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the BWR Mark II to severe-accident containment loads were also noted. In addition, those features of a BWR Mark II, which are important for preventing core damage and are available for mitigating fission-product release to the environment were also identified. This report is issued to provide focus to an analyst examining an individual plant. This report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Mark II plants. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance

  9. Clinical and Endoscopic Features of Undifferentiated Gastric Cancer in Patients with Severe Atrophic Gastritis.

    Science.gov (United States)

    Kishino, Maiko; Nakamura, Shinichi; Shiratori, Keiko

    2016-01-01

    Differentiated gastric cancer generally develops in the atrophic gastric mucosa, although undifferentiated cancer is sometimes encountered in patients with severe atrophic gastritis. We characterized the endoscopic features of undifferentiated gastric cancer in patients with severe atrophic gastritis. Stage IA early gastric cancer was diagnosed in 501 patients who were admitted to our hospital between April 2003 and March 2012. The endoscopic and pathological findings were compared among 29 patients with undifferentiated cancer and severe atrophic gastritis, 104 patients with undifferentiated cancer and mild/moderate atrophic gastritis and 223 patients with well-differentiated cancer and severe atrophic gastritis. Endoscopic atrophic gastritis was classified according to the Kimura-Takemoto classification as no gastritis, C-1 and C-2 (mild), C-3 and O-1 (moderate) or O-2 and O-3 (severe). The tumors were larger and showed deeper mural invasion in the patients with undifferentiated cancer and severe atrophic gastritis than in those with well-differentiated cancer and severe gastritis or undifferentiated cancer and mild/moderate gastritis. On endoscopy, undifferentiated cancer associated with severe gastritis was often red in color. It is often difficult to diagnose early undifferentiated gastric cancer, especially in patients with severe atrophic gastritis. The present study characterized the important endoscopic features of such tumors.

  10. Using Satellite Imagery to Identify Tornado Damage Tracks and Recovery from the April 27, 2011 Severe Weather Outbreak

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Bell, Jordan R.

    2014-01-01

    Emergency response to natural disasters requires coordination between multiple local, state, and federal agencies. Single, relatively weak tornado events may require comparatively simple response efforts; but larger "outbreak" events with multiple strong, long-track tornadoes can benefit from additional tools to help expedite these efforts. Meteorologists from NOAA's National Weather Service conduct field surveys to map tornado tracks, assess damage, and determine the tornado intensity following each event. Moderate and high resolution satellite imagery can support these surveys by providing a high-level view of the affected areas. Satellite imagery could then be used to target areas for immediate survey or to corroborate the results of the survey after it is completed. In this study, the feasibility of using satellite imagery to identify tornado damage tracks was determined by comparing the characteristics of tracks observed from low-earth orbit to tracks assessed during the official NWS storm survey process. Of the 68 NWS confirmed centerlines, 24 tracks (35.3%) could be distinguished from other surface features using satellite imagery. Within each EF category, 0% of EF-0, 3% of EF-1, 50% of EF-2, 77.7% of EF-3, 87.5% of EF-4 and 100% of EF-5 tornadoes were detected. It was shown that satellite data can be used to identify tornado damage tracks in MODIS and ASTER NDVI imagery, where damage to vegetation creates a sharp drop in values though the minimum EF-category which can be detected is dependent upon the type of sensor used and underlying vegetation. Near-real time data from moderate resolution sensors compare favorably to field surveys after the event and suggest that the data can provide some value in the assessment process.

  11. High C-Reactive Protein Predicts Delirium Incidence, Duration, and Feature Severity After Major Noncardiac Surgery.

    Science.gov (United States)

    Vasunilashorn, Sarinnapha M; Dillon, Simon T; Inouye, Sharon K; Ngo, Long H; Fong, Tamara G; Jones, Richard N; Travison, Thomas G; Schmitt, Eva M; Alsop, David C; Freedman, Steven D; Arnold, Steven E; Metzger, Eran D; Libermann, Towia A; Marcantonio, Edward R

    2017-08-01

    To examine associations between the inflammatory marker C-reactive protein (CRP) measured preoperatively and on postoperative day 2 (POD2) and delirium incidence, duration, and feature severity. Prospective cohort study. Two academic medical centers. Adults aged 70 and older undergoing major noncardiac surgery (N = 560). Plasma CRP was measured using enzyme-linked immunosorbent assay. Delirium was assessed from Confusion Assessment Method (CAM) interviews and chart review. Delirium duration was measured according to number of hospital days with delirium. Delirium feature severity was defined as the sum of CAM-Severity (CAM-S) scores on all postoperative hospital days. Generalized linear models were used to examine independent associations between CRP (preoperatively and POD2 separately) and delirium incidence, duration, and feature severity; prolonged hospital length of stay (LOS, >5 days); and discharge disposition. Postoperative delirium occurred in 24% of participants, 12% had 2 or more delirium days, and the mean ± standard deviation sum CAM-S was 9.3 ± 11.4. After adjusting for age, sex, surgery type, anesthesia route, medical comorbidities, and postoperative infectious complications, participants with preoperative CRP of 3 mg/L or greater had a risk of delirium that was 1.5 times as great (95% confidence interval (CI) = 1.1-2.1) as that of those with CRP less than 3 mg/L, 0.4 more delirium days (P delirium (3.6 CAM-S points higher, P delirium (95% CI = 1.0-2.4) as those in the lowest quartile (≤127.53 mg/L), had 0.2 more delirium days (P delirium (4.5 CAM-S points higher, P delirium incidence, duration, and feature severity. CRP may be useful to identify individuals who are at risk of developing delirium. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  12. AP1000{sup R} severe accident features and post-Fukushima considerations

    Energy Technology Data Exchange (ETDEWEB)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G. [Westinghouse Electric Company, LLC, 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, the AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)

  13. A newly recognized syndrome of severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features.

    Science.gov (United States)

    Vinkler, Chana; Leshinsky-Silver, Esther; Michelson, Marina; Haas, Dorothea; Lerman-Sagie, Tally; Lev, Dorit

    2014-01-01

    Genetic syndromes with proportionate severe short stature are rare. We describe two sisters born to nonconsanguineous parents with severe linear growth retardation, poor weight gain, microcephaly, characteristic facial features, cutaneous syndactyly of the toes, high myopia, and severe intellectual disability. During infancy and early childhood, the girls had transient hepatosplenomegaly and low blood cholesterol levels that normalized later. A thorough evaluation including metabolic studies, radiological, and genetic investigations were all normal. Cholesterol metabolism and transport were studied and no definitive abnormality was found. No clinical deterioration was observed and no metabolic crises were reported. After due consideration of other known hereditary causes of post-natal severe linear growth retardation, microcephaly, and intellectual disability, we propose that this condition represents a newly recognized autosomal recessive multiple congenital anomaly-intellectual disability syndrome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos.

    Science.gov (United States)

    Moghaddasi, Hanie; Nourian, Saeed

    2016-06-01

    Heart disease is the major cause of death as well as a leading cause of disability in the developed countries. Mitral Regurgitation (MR) is a common heart disease which does not cause symptoms until its end stage. Therefore, early diagnosis of the disease is of crucial importance in the treatment process. Echocardiography is a common method of diagnosis in the severity of MR. Hence, a method which is based on echocardiography videos, image processing techniques and artificial intelligence could be helpful for clinicians, especially in borderline cases. In this paper, we introduce novel features to detect micro-patterns of echocardiography images in order to determine the severity of MR. Extensive Local Binary Pattern (ELBP) and Extensive Volume Local Binary Pattern (EVLBP) are presented as image descriptors which include details from different viewpoints of the heart in feature vectors. Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Template Matching techniques are used as classifiers to determine the severity of MR based on textural descriptors. The SVM classifier with Extensive Uniform Local Binary Pattern (ELBPU) and Extensive Volume Local Binary Pattern (EVLBP) have the best accuracy with 99.52%, 99.38%, 99.31% and 99.59%, respectively, for the detection of Normal, Mild MR, Moderate MR and Severe MR subjects among echocardiography videos. The proposed method achieves 99.38% sensitivity and 99.63% specificity for the detection of the severity of MR and normal subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Severe myoclonic epilepsy of infancy (Dravet syndrome: Clinical and genetic features of nine Turkish patients

    Directory of Open Access Journals (Sweden)

    Meral Özmen

    2011-01-01

    Full Text Available Purpose: Mutations of the a-1 subunit sodium channel gene (SCN1A cause severe myoclonic epilepsy of infancy (SMEI. To date, over 300 mutations related to SMEI have been described. In the present study, we report new SCN1A mutations and the clinical features of SMEI cases. Materials and Methods: We studied the clinical and genetic features of nine patients diagnosed with SMEI at the Pediatric Neurology Department of Istanbul Medical Faculty. Results: Five patients had nonsense mutations, two had missense mutations, one had a splice site mutation and one had a deletion mutation of the SCN1A gene. Mutations at c.3705+5G splice site, p.trip153X nonsense mutation and deletion at c.2416_2946 have not been previously described. The seizures started following whole cell pertussis vaccination in all patients. The seizures ceased in one patient and continued in the other eight patients. Developmental regression was severe in three patients, with frequent status epilepticus. The type of mutation was not predictive for the severity of the disease. Two of the three patients with severe regression had nonsense and missense mutations. Conclusions : Dravet syndrome can be result of several different types of mutation in SCN1A gene. Onset of the seizures after pertussis vaccination is an important clue for the diagnosis and neuro- developmental delay should be expected in all patients.

  16. Value of sonography in establishing severity of liver cirrhosis:correlation of sonographic features with Childclass

    International Nuclear Information System (INIS)

    Choi, Byung Ihn; KIm, Ho Chul; Shin, Yong Moon; Kim, Chu Wan; Lee, Hyo suk; Kim, Chung Yong

    1993-01-01

    This prospective study was designed to investigate the utility of sonography in establishing severity of liver cirrhosis as compared with Child class in clinical creteria. Seventy-our consecutive patients with liver cirrhosis were examined with sonography. This study included 50 males and 24 females, aged 35 to 72 years (mean ; 51) The number of patients in child A,B, and C group was 30,29,15 respectively. Sonographic features evaluated were hepatic parenchymal echo pattern, presence of nodularity of hepatic surface, degree of hepatic sonic attenuation,degree of obliteration of wall echo of the intrahepatic portal vein, size of the main portal vein, thickness of the gallbladder wall, size of the spleen, and presence of ascites. Each sonographic features was graded from 0 to depending upon the degree of severity, and was correlated with Child class of liver cirrhosis. Hepatic parenchymal echo pattern, presence of nodularity of hepatic surface, thickness of gallbladder wall, and presence of ascites were correlated well with Child class (p 0.05). In conclusion, these results indicate that careful evaluation of sonographic features are helpful in predicting severity of liver cirrhosis

  17. Features that exacerbate fatigue severity in joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type.

    Science.gov (United States)

    Krahe, Anne Maree; Adams, Roger David; Nicholson, Leslie Lorenda

    2018-08-01

    To assess the prevalence, severity and impact of fatigue on individuals with joint hypermobility syndrome (JHS)/Ehlers-Danlos syndrome - hypermobility type (EDS-HT) and establish potential determinants of fatigue severity in this population. Questionnaires on symptoms and signs related to fatigue, quality of life, mental health, physical activity participation and sleep quality were completed by people with JHS/EDS-HT recruited through two social media sites. Multiple regression analysis was performed to identify predictors of fatigue in this population. Significant fatigue was reported by 79.5% of the 117 participants. Multiple regression analysis identified five predictors of fatigue severity, four being potentially modifiable, accounting for 52.3% of the variance in reported fatigue scores. Predictors of fatigue severity were: the self-perceived extent of joint hypermobility, orthostatic dizziness related to heat and exercise, levels of participation in personal relationships and community, current levels of physical activity and dissatisfaction with the diagnostic process and management options provided for their condition. Fatigue is a significant symptom associated with JHS/EDS-HT. Assessment of individuals with this condition should include measures of fatigue severity to enable targeted management of potentially modifiable factors associated with fatigue severity. Implications for rehabilitation Fatigue is a significant symptom reported by individuals affected by joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type. Potentially modifiable features that contribute to fatigue severity in this population have been identified. Targeted management of these features may decrease the severity and impact of fatigue in joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type.

  18. International Severe Weather and Flash Flood Hazard Early Warning Systems—Leveraging Coordination, Cooperation, and Partnerships through a Hydrometeorological Project in Southern Africa

    Directory of Open Access Journals (Sweden)

    Robert Jubach

    2016-06-01

    Full Text Available Climate, weather and water hazards do not recognize national boundaries. Transboundary/regional programs and cooperation are essential to reduce the loss of lives and damage to livelihoods when facing these hazards. The development and implementation of systems to provide early warnings for severe weather events such as cyclones and flash floods requires data and information sharing in real time, and coordination among the government agencies at all levels. Within a country, this includes local, municipal, provincial-to-national levels as well as regional and international entities involved in hydrometeorological services and Disaster Risk Reduction (DRR. Of key importance are the National Meteorological and Hydrologic Services (NMHSs. The NMHS is generally the authority solely responsible for issuing warnings for these hazards. However, in many regions of the world, the linkages and interfaces between the NMHS and other agencies are weak or non-existent. Therefore, there is a critical need to assess, strengthen, and formalize collaborations when addressing the concept of reducing risk and impacts from severe weather and floods. The U.S. Agency for International Development/Office of U.S. Foreign Disaster Assistance; the United Nations World Meteorological Organization (WMO; the WMO Southern Africa Regional Specialized Meteorological Center, hosted by the South African Weather Service; the U.S. National Oceanic and Atmospheric Administration/National Weather Service and the Hydrologic Research Center (a non-profit corporation are currently implementing a project working with Southern Africa NMHSs on addressing this gap. The project aims to strengthen coordination and collaboration mechanisms from national to local levels. The project partners are working with the NMHSs to apply and implement appropriate tools and infrastructure to enhance currently operational severe weather and flash flood early warning systems in each country in support of

  19. Design features which mitigate severe accident challenges in the GE ABWR and SBWR

    International Nuclear Information System (INIS)

    Buchholz, Carol E.

    2004-01-01

    A reduction of the requirements for the emergency planning zone (EPZ) is a goal of advanced light water reactors. The technical basis for reducing the EPZ requirements is based on a very low frequency of a severe accident and high confidence that the offsite dose would be low even if a severe accident was to occur. Design features have been included in both the ABWR and SBWR to ensure that both of these goals are achieved. Probabilistic Risk Assessments (PRAs) have been performed for both plants. The PRAs indicate a core damage frequency on the order of IE-7 for both plants. The PRAs also show that the containments will not fail even if a severe accident should occur. The potential offsite is extremely low. (author)

  20. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

    Science.gov (United States)

    Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro

    2017-11-01

    Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

  1. Acne severity grading: determining essential clinical components and features using a Delphi consensus.

    Science.gov (United States)

    Tan, Jerry; Wolfe, Barat; Weiss, Jonathan; Stein-Gold, Linda; Bikowski, Joseph; Del Rosso, James; Webster, Guy F; Lucky, Anne; Thiboutot, Diane; Wilkin, Jonathan; Leyden, James; Chren, Mary-Margaret

    2012-08-01

    There are multiple global scales for acne severity grading but no singular standard. Our objective was to determine the essential clinical components (content items) and features (property-related items) for an acne global grading scale for use in research and clinical practice using an iterative method, the Delphi process. Ten acne experts were invited to participate in a Web-based Delphi survey comprising 3 iterative rounds of questions. In round 1, the experts identified the following clinical components (primary acne lesions, number of lesions, extent, regional involvement, secondary lesions, and patient experiences) and features (clinimetric properties, ease of use, categorization of severity based on photographs or text, and acceptance by all stakeholders). In round 2, consensus for inclusion in the scale was established for primary lesions, number, sites, and extent; as well as clinimetric properties and ease of use. In round 3, consensus for inclusion was further established for categorization and acceptance. Patient experiences were excluded and no consensus was achieved for secondary lesions. The Delphi panel consisted solely of the United States (U.S.)-based acne experts. Using an established method for achieving consensus, experts in acne vulgaris concluded that an ideal acne global grading scale would comprise the essential clinical components of primary acne lesions, their quantity, extent, and facial and extrafacial sites of involvement; with features of clinimetric properties, categorization, efficiency, and acceptance. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Severe visceral leishmaniasis in children: the relationship between cytokine patterns and clinical features

    Directory of Open Access Journals (Sweden)

    Monica Elinor Alves Gama

    2013-12-01

    Full Text Available Introduction The relationship between severe clinical manifestations of visceral leishmaniasis (VL and immune response profiles has not yet been clarified, despite numerous studies on the subject. This study aimed to investigate the relationship between cytokine profiles and the presence of immunological markers associated with clinical manifestations and, particularly, signs of severity, as defined in a protocol drafted by the Ministry of Health (Brazil. Methods We conducted a prospective, descriptive study between May 2008 and December 2009. This study was based on an assessment of all pediatric patients with VL who were observed in a reference hospital in Maranhão. Results Among 27 children, 55.5% presented with more than one sign of severity or warning sign. Patients without signs of severity or warning signs and patients with only one warning sign had the highest interferon-gamma (IFN-γ levels, although their interleukin 10 (IL-10 levels were also elevated. In contrast, patients with the features of severe disease had the lowest IFN-γ levels. Three patients who presented with more than two signs of severe disease died; these patients had undetectable interleukin 2 (IL-2 and IFN-γ levels and low IL-10 levels, which varied between 0 and 36.8pg/mL. Conclusions Our results showed that disease severity was associated with low IFN-γ levels and elevated IL-10 levels. However, further studies with larger samples are needed to better characterize the relationship between disease severity and cytokine levels, with the aim of identifying immunological markers of active-disease severity.

  3. Clinical features and treatment of organ failure in severe acute pancreatitis

    Directory of Open Access Journals (Sweden)

    CUI Lijian

    2014-08-01

    Full Text Available Organ failure is an important factor causing death in patients with severe acute pancreatitis (SAP. In recent years, thanks to the further study of pathophysiology of SAP and the continuous accumulation of experience and technology, substantial progress has been made in the diagnosis and treatment of SAP complicated by organ failure. The clinical features of SAP complicated by organ failure and the measures to be strengthened in the treatment of SAP are summarized. Currently, it is thought that organ failure tends to appear once SAP occurs, so timely, standardized treatment can shorten the course of disease and significantly reduce mortality.

  4. Different clinical features of anaphylaxis according to cause and risk factors for severe reactions.

    Science.gov (United States)

    Kim, Sang-Yoon; Kim, Min-Hye; Cho, Young-Joo

    2018-01-01

    Anaphylaxis is a life-threatening allergic reaction. Several studies reported different anaphylactic reactions according to the causative substances. However, a comparison of anaphylaxis for each cause has not been done. This study was conducted to identify common causes of anaphylaxis, characteristics of anaphylactic reaction for each cause and to analyze the factors related to the severity of the reaction. Medical records of patients who visited the emergency room of Ewha Womans University Mokdong Hospital from March 2003 to April 2016 and diagnosed with anaphylactic shock were retrospectively reviewed. We compared the clinical features of anaphylaxis according to the cause. In addition, the severity of anaphylaxis was analyzed and contributing factors for severe anaphylaxis were reviewed. A total of 199 patients with anaphylaxis were analyzed. Food was the most common cause (49.7%), followed by drug reaction (36.2%), bee venom (10.1%), and unknown cause (4.0%). Cardiovascular symptoms of syncope and hypotension were more common in drug-induced anaphylaxis. The incidence of severe anaphylaxis was the highest in anaphylaxis due to drugs (54.2%). Urticaria and other skin symptoms were significantly more common in food-induced anaphylaxis. Risk factors for severe anaphylaxis included older age, male, and drug-induced one. Epinephrine treatment of anaphylaxis was done for 69.7% and 56.9% of patients with food-induced and drug-induced anaphylaxis, respectively. More severe anaphylaxis developed with drug treatment and in males. Low rate of epinephrine prescription was also observed. Male patients with drug induced anaphylaxis should be paid more attention. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  5. Implementation of special engineering safety features for severe accident management. New SAMG approach

    International Nuclear Information System (INIS)

    Grigorov, D.; Borisov, E.; Mancheva, K.

    2012-01-01

    Conclusions: As a result of the thermohydraulic analysis conducted the following main conclusions are formulated: The operator actions for accident management are effective and allow reaching conditions for application of the new engineering safety features for SAMG; The new engineering safety features application is effective and prevents severe core damage for Scenario 1. For the Scenario 2 they prevents degradation and relocation of the reactor core for a long period of time (in the analysis this period is 10 h, but the unit could be kept in safe condition for longer time which is not specifically analysed).The maximal fuel cladding temperature for Scenario 1 reaches 558 o C. This low fuel cladding temperature gradient is achieved by applying a complex of operator actions which prevent any core damage. If the additional discharge line with DN 100 mm from the PRZ is not opened then a severe core damage occurs; The maximal fuel cladding temperature for Scenario 2 reaches 1307 o C. One of the possibilities for keeping this temperature below 1200 o C is to mount second line (the first SFP line is between YT12S03.S04) from the SFP to the TQ22 pipeline which is connected to YT14B01 hydroaccumulator line, between the check valves YT14S03.S04

  6. Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013-2014.

    Directory of Open Access Journals (Sweden)

    Hirofumi Kato

    Full Text Available Although severe fever with thrombocytopenia syndrome (SFTS was first reported from Japan in 2013, the precise clinical features and the risk factors for SFTS have not been fully investigated in Japan. Ninety-six cases of severe fever with thrombocytopenia syndrome (SFTS were notified through the national surveillance system between April 2013 and September 2014 in Japan. All cases were from western Japan, and 82 cases (85% had an onset between April and August. A retrospective observational study of the notified SFTS cases was conducted to identify the clinical features and laboratory findings during the same period. Of 96 notified cases, 49 (51% were included in this study. Most case-patients were of advanced age (median age 78 years and were retired or unemployed, or farmers. These case-patients had a history of outdoor activity within 2 weeks before the onset of illness. The median serum C-reactive protein concentration was slightly elevated at admission. Fungal infections such as invasive aspergilosis were found in 10% of these case-patients. Hemophagocytosis was observed in 15 of the 18 case-patients (83% whose bone marrow samples were available. Fifteen cases were fatal, giving a case-fatality proportion of 31%. The proportion of neurological abnormalities and serum concentrations of lactate dehydrogenase and aspartate aminotransferase were significantly higher in the fatal cases than in the nonfatal cases during hospitalization. Appearance of neurological abnormality may be useful for predicting the prognosis in SFTS patients.

  7. Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013-2014.

    Science.gov (United States)

    Kato, Hirofumi; Yamagishi, Takuya; Shimada, Tomoe; Matsui, Tamano; Shimojima, Masayuki; Saijo, Masayuki; Oishi, Kazunori

    2016-01-01

    Although severe fever with thrombocytopenia syndrome (SFTS) was first reported from Japan in 2013, the precise clinical features and the risk factors for SFTS have not been fully investigated in Japan. Ninety-six cases of severe fever with thrombocytopenia syndrome (SFTS) were notified through the national surveillance system between April 2013 and September 2014 in Japan. All cases were from western Japan, and 82 cases (85%) had an onset between April and August. A retrospective observational study of the notified SFTS cases was conducted to identify the clinical features and laboratory findings during the same period. Of 96 notified cases, 49 (51%) were included in this study. Most case-patients were of advanced age (median age 78 years) and were retired or unemployed, or farmers. These case-patients had a history of outdoor activity within 2 weeks before the onset of illness. The median serum C-reactive protein concentration was slightly elevated at admission. Fungal infections such as invasive aspergilosis were found in 10% of these case-patients. Hemophagocytosis was observed in 15 of the 18 case-patients (83%) whose bone marrow samples were available. Fifteen cases were fatal, giving a case-fatality proportion of 31%. The proportion of neurological abnormalities and serum concentrations of lactate dehydrogenase and aspartate aminotransferase were significantly higher in the fatal cases than in the nonfatal cases during hospitalization. Appearance of neurological abnormality may be useful for predicting the prognosis in SFTS patients.

  8. Epidemiological and Clinical Features of Severe Fever with Thrombocytopenia Syndrome in Japan, 2013–2014

    Science.gov (United States)

    Shimada, Tomoe; Matsui, Tamano; Shimojima, Masayuki; Saijo, Masayuki; Oishi, Kazunori

    2016-01-01

    Although severe fever with thrombocytopenia syndrome (SFTS) was first reported from Japan in 2013, the precise clinical features and the risk factors for SFTS have not been fully investigated in Japan. Ninety-six cases of severe fever with thrombocytopenia syndrome (SFTS) were notified through the national surveillance system between April 2013 and September 2014 in Japan. All cases were from western Japan, and 82 cases (85%) had an onset between April and August. A retrospective observational study of the notified SFTS cases was conducted to identify the clinical features and laboratory findings during the same period. Of 96 notified cases, 49 (51%) were included in this study. Most case-patients were of advanced age (median age 78 years) and were retired or unemployed, or farmers. These case-patients had a history of outdoor activity within 2 weeks before the onset of illness. The median serum C-reactive protein concentration was slightly elevated at admission. Fungal infections such as invasive aspergilosis were found in 10% of these case-patients. Hemophagocytosis was observed in 15 of the 18 case-patients (83%) whose bone marrow samples were available. Fifteen cases were fatal, giving a case-fatality proportion of 31%. The proportion of neurological abnormalities and serum concentrations of lactate dehydrogenase and aspartate aminotransferase were significantly higher in the fatal cases than in the nonfatal cases during hospitalization. Appearance of neurological abnormality may be useful for predicting the prognosis in SFTS patients. PMID:27776187

  9. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  10. Clinical features and risk factors of acute hepatitis E with severe jaundice.

    Science.gov (United States)

    Xu, Bin; Yu, Hai-Bin; Hui, Wei; He, Jia-Li; Wei, Lin-Lin; Wang, Zheng; Guo, Xin-Hui

    2012-12-28

    To compares the clinical features of patients infected with hepatitis E virus (HEV) with or without severe jaundice. In addition, the risk factors for HEV infection with severe jaundice were investigated. We enrolled 235 patients with HEV into a cross-sectional study using multi-stage sampling to select the study group. Patients with possible acute hepatitis E showing elevated liver enzyme levels were screened for HEV infection using serologic and molecular tools.HEV infection was documented by HEV antibodies and by the detection of HEV-RNA in serum. We used χ(2) analysis, Fisher's exact test, and Student's t test where appropriate in this study. Significant predictors in the univariate analysis were then included in a forward, stepwise multiple logistic regression model. No significant differences in symptoms, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, or hepatitis B virus surface antigen between the two groups were observed. HEV infected patients with severe jaundice had significantly lower peak serum levels of γ-glutamyl-transpeptidase (GGT) (median: 170.31 U/L vs 237.96 U/L, P = 0.007), significantly lower ALB levels (33.84 g/L vs 36.89 g/L, P = 0.000), significantly lower acetylcholine esterase (CHE) levels (4500.93 U/L vs 5815.28 U/L, P = 0.000) and significantly higher total bile acid (TBA) levels (275.56 μmol/L vs 147.03 μmol/L, P = 0.000) than those without severe jaundice. The median of the lowest point time tended to be lower in patients with severe jaundice (81.64% vs 96.12%, P = 0.000). HEV infected patients with severe jaundice had a significantly higher viral load (median: 134 vs 112, P = 0.025) than those without severe jaundice. HEV infected patients with severe jaundice showed a trend toward longer median hospital stay (38.17 d vs 18.36 d, P = 0.073). Multivariate logistic regression indicated that there were significant differences in age, sex, viral load, GGT, albumin, TBA, CHE, prothrombin index, alcohol

  11. Prevalence, severity, and clinical features of acute and chronic pancreatitis in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Wang, Qiang; Shen, Min; Leng, Xiaomei; Zeng, Xiaofeng; Zhang, Fengchun; Qian, Jiaming

    2016-10-01

    Pancreatitis is a rare, life-threatening complication of systemic lupus erythematosus (SLE). This study aimed to describe the clinical features of acute pancreatitis (AP) and chronic pancreatitis (CP) in patients with SLE. Data of patients who fulfilled the revised criteria of the American Rheumatism Association for diagnosis of SLE were retrospectively analyzed. SLE activity was graded according to the SLE Disease Activity Index. Logistic regression analysis was conducted to find out independent associations. Survival rates were estimated by using Kaplan-Meier plots. This study included 5665 SLE patients admitted between January 1983 and January 2014, of whom 52 patients were diagnosed with pancreatitis. Pancreatitis prevalence in SLE patients was 0.92 % (52/5665). AP (0.8 %, 46/5665) was more prevalent than CP (0.1 %, 6/5665), presented mostly during active SLE, and affected more organs. Hypertriglyceridemia occurred in 76.9 % of AP patients and in none of the CP patients. AP patients were divided into severe (n = 10) or mild (n = 20) cases. The average triglyceride level in severe AP cases was higher than that in mild AP cases (P = 0.006), and the mortality rate of lupus-associated AP was 32.6 % (15/46). Concomitant infections and thrombocytopenia were independently associated with poor prognosis (P risk factors for poor prognosis.

  12. The interaction between awareness of one's own speech disorder with linguistics variables: distinctive features and severity of phonological disorder.

    Science.gov (United States)

    Dias, Roberta Freitas; Melo, Roberta Michelon; Mezzomo, Carolina Lisbôa; Mota, Helena Bolli

    2013-01-01

    To analyze the possible relationship among the awareness of one's own speech disorder and some aspects of the phonological system, as the number and the type of changed distinctive features, as well as the interaction among the severity of the disorder and the non-specification of distinctive features. The analyzed group has 23 children with diagnosis of speech disorder, aged 5:0 to 7:7. The speech data were analyzed through the Distinctive Features Analysis and classified by the Percentage of Correct Consonants. One also applied the Awareness of one's own speech disorder test. The children were separated in two groups: with awareness of their own speech disorder established (more than 50% of correct identification) and without awareness of their own speech disorder established (less than 50% of correct identification). Finally, the variables of this research were submitted to analysis using descriptive and inferential statistics. The type of changed distinctive features weren't different between the groups, as well as the total of changed features and the severity disorder. However, a correlation between the severity disorder and the non-specification of distinctive features was verified, because the more severe disorders have more changes in these linguistic variables. The awareness of one's own speech disorder doesn't seem to be directly influenced by the type and by the number of changed distinctive features, neither by the speech disorder severity. Moreover, one verifies that the greater phonological disorder severity, the greater the number of changed distinctive features.

  13. NWS Weather Fatality, Injury and Damage Statistics

    Science.gov (United States)

    ... Weather Awareness Floods, Wind Chill, Tornadoes, Heat... Education Weather Terms, Teachers, Statistics government web resources and services. Natural Hazard Statistics Statistics U.S. Summaries 78-Year List of Severe Weather Fatalities Preliminary Hazardous Weather Statistics for 2017 Now

  14. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    Science.gov (United States)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air

  15. Associations between speech features and phenotypic severity in Treacher Collins syndrome.

    Science.gov (United States)

    Asten, Pamela; Akre, Harriet; Persson, Christina

    2014-04-28

    Treacher Collins syndrome (TCS, OMIM 154500) is a rare congenital disorder of craniofacial development. Characteristic hypoplastic malformations of the ears, zygomatic arch, mandible and pharynx have been described in detail. However, reports on the impact of these malformations on speech are few. Exploring speech features and investigating if speech function is related to phenotypic severity are essential for optimizing follow-up and treatment. Articulation, nasal resonance, voice and intelligibility were examined in 19 individuals (5-74 years, median 34 years) divided into three groups comprising children 5-10 years (n = 4), adolescents 11-18 years (n = 4) and adults 29 years and older (n = 11). A speech composite score (0-6) was calculated to reflect the variability of speech deviations. TCS severity scores of phenotypic expression and total scores of Nordic Orofacial Test-Screening (NOT-S) measuring orofacial dysfunction were used in analyses of correlation with speech characteristics (speech composite scores). Children and adolescents presented with significantly higher speech composite scores (median 4, range 1-6) than adults (median 1, range 0-5). Nearly all children and adolescents (6/8) displayed speech deviations of articulation, nasal resonance and voice, while only three adults were identified with multiple speech aberrations. The variability of speech dysfunction in TCS was exhibited by individual combinations of speech deviations in 13/19 participants. The speech composite scores correlated with TCS severity scores and NOT-S total scores. Speech composite scores higher than 4 were associated with cleft palate. The percent of intelligible words in connected speech was significantly lower in children and adolescents (median 77%, range 31-99) than in adults (98%, range 93-100). Intelligibility of speech among the children was markedly inconsistent and clearly affecting the understandability. Multiple speech deviations were identified in

  16. Clinical features of severe wasp sting patients with dominantly toxic reaction: analysis of 1091 cases.

    Directory of Open Access Journals (Sweden)

    Cuihong Xie

    Full Text Available BACKGROUND: Massive wasp stings have been greatly underestimated and have not been systematically studied. The aim of this study was to identify the clinical features and treatment strategies of severe wasp stings. METHODS AND FINDINGS: A multicenter retrospective study was undertaken in 35 hospitals and medical centers including 12 tertiary care hospitals and 23 secondary care hospitals in the Hubei Province, China. The detailed clinical data of 1091 hospitalized wasp sting patients were investigated. Over three-fourths (76.9% of the cases had 10 or more stings and the in-hospital mortality of patients was 5.1%. Forty-eight patients died of organ injury following toxic reactions to the stings, whereas six died from anaphylactic shock. The in-hospital mortality in patients with >10 stings was higher than that of ≤10 stings (5.2% vs. 1.0%, p = 0.02. Acute kidney injury (AKI was seen in 21.0% patients and most patients required blood purification therapy. Rhabdomyolysis was seen in 24.1% patients, hemolysis in 19.2% patients, liver injury in 30.1% patients, and coagulopathy in 22.5% patients. Regression analysis revealed that high creatinine level, shock, oliguria, and anemia were risk factors for death. Blood purification therapy was beneficial for patients with ≥20 stings and delayed hospital admission of patients (≥4 hours after sting. CONCLUSIONS: In China, most patients with multiple wasp stings presented with toxic reactions and multiple organ dysfunction caused by the venom rather than an anaphylactic reaction. AKI is the prominent clinical manifestation of wasp stings with toxic reaction. High creatinine levels, shock, oliguria, and anemia were risk factors for death.

  17. Pregnancy Outcomes in Women with Preeclampsia Superimposed on Chronic Hypertension with and without Severe Features.

    Science.gov (United States)

    Moussa, Hind N; Leon, Mateo G; Marti, Ana; Chediak, Alissar; Pedroza, Claudia; Blackwell, Sean C; Sibai, Baha M

    2017-03-01

    Objective  The American Congress of Obstetricians and Gynecologists (ACOG) task force on hypertension in pregnancy introduced a new definition of superimposed preeclampsia (SIP) adding severe features (SF) as new criteria to define severe disease. They also recommended that those with SIP be delivered ≥ 37 weeks, whereas those with SF be delivered ≤ 34 weeks. Our aim was to investigate the validity of this new definition by comparing adverse pregnancy outcomes in SIP with (SIP-SF) and without SF (SIP). Study Design  Women with chronic hypertension (CHTN) enrolled in a multicenter trial were studied. SIP was reclassified according to the new definition to SIP and SIP-SF (persistent systolic blood pressure [BP] > 160 or diastolic BP > 110, platelets  70, creatinine > 1.1, or persistent central nervous system/abdominal symptoms). Composite adverse outcomes including rates of indicated preterm birth, abruptio placentae, postpartum hemorrhage, and maternal death were compared by chi-square. Adjustment was done with a multivariate logistic-regression analysis and all statistical tests were two-sided. Results  A total of 216 women (28%) out of 774 with CHTN developed SIP, 87 (11%) had SIP-SF, and 129 (17%) didn't have SF. Baseline characteristics including maternal age, baseline BP, and assignment to low-dose aspirin were similar between groups. Using univariate analysis, the composite adverse outcome was higher among the SIP-SF group ( p  = 0.04), as well as indicated preterm birth ( p  = 0.02), cesarean section ( p  = 0.02), and SGA ( p  = 0.02). After adjustment, composite adverse outcomes were not significantly different between groups. The rate of SGA, however, was higher among SIP-SF (adjusted odds ratio: 3.12, p  = 0.02). Conclusion  The rate of SIP-SF in this study was 11% of all women with CHTN. Surprisingly, pregnancy outcomes were not significantly different in those with and without SF. We suggest a

  18. Fruit Set of Several Sour Cherry Cultivars in Latvia Influenced by Weather Conditions Before and During Flowering

    Directory of Open Access Journals (Sweden)

    Feldmane Daina

    2017-06-01

    Full Text Available Fruit set is a crucial stage in the process of yield formation, which is influenced by environmental factors, growing technologies and peculiarities of genotype. The aim of the study was to evaluate the quality of pollen (viability and germination capacity and the effect of weather before and during flowering on fruit set in sour cherry cultivars ‘Latvijas Zemais’, ‘Zentenes’, ‘Bulatnikovskaya’, and ‘Orlica’. The research was carried out in Institute of Horticulture (Latvia University of Agriculture in 2009-2016. Good pollen viability and germination was found for cultivars ‘Latvijas Zemais’ and ‘Bulatnikovskaya’. Negative effects of increasing air temperature (in the range of 7.7 to 17.5 °C and relative humidity (in the range of 51.4 to 88.5% was observed for all cultivars during flowering. The effects of diurnal temperature fluctuations, wind and the amount of days with precipitation differed depending on sour cherry cultivar.

  19. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Science.gov (United States)

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  20. Effect of severe weather events on the shedding of Shiga toxigenic Escherichia coli in slaughter cattle and phenotype of serogroup O157 isolates.

    Science.gov (United States)

    Stanford, Kim; Reuter, Tim; Bach, Susan J; Chui, Linda; Ma, Angela; Conrad, Cheyenne C; Tostes, Renata; McAllister, Tim A

    2017-09-01

    High-event periods (HEPs) occur sporadically when beef carcasses and meat have episodes of acute contamination with Shiga toxin-producing Escherichia coli (STEC). In this study, severe weather events were investigated as catalysts for HEPs based on PCR and isolate prevalence of seven E. coli serogroups in slaughter cattle feces. Winter ambient temperatures with daily means 10.5oC warmer or 12.3°C colder than seasonal norms (-10.4°C) most altered STEC shedding. Fecal samples yielded increased proportions (P  10 min and one also had strong biofilm-forming potential. However, this isolate lacked eae and stx genes. Severe weather can influence STEC shedding, particularly of O157, and could possibly trigger HEPs. However, our data suggest that it is unlikely for isolates to carry virulence genes and possess phenotypes capable of evading post-harvest microbiological interventions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The severity of Internet addiction risk and its relationship with the severity of borderline personality features, childhood traumas, dissociative experiences, depression and anxiety symptoms among Turkish university students.

    Science.gov (United States)

    Dalbudak, Ercan; Evren, Cuneyt; Aldemir, Secil; Evren, Bilge

    2014-11-30

    The aim of this study was to investigate the relationship of Internet addiction (IA) risk with the severity of borderline personality features, childhood traumas, dissociative experiences, depression and anxiety symptoms among Turkish university students. A total of 271 Turkish university students participated in this study. The students were assessed through the Internet Addiction Scale (IAS), the Borderline Personality Inventory (BPI), the Dissociative Experiences Scale (DES), the Childhood Trauma Questionnaire (CTQ-28), the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI). The rates of students were 19.9% (n=54) in the high IA risk group, 38.7% (n=105) in the mild IA risk group and 41.3% (n=112) in the group without IA risk. Correlation analyses revealed that the severity of IA risk was related with BPI, DES, emotional abuse, CTQ-28, depression and anxiety scores. Univariate covariance analysis (ANCOVA) indicated that the severity of borderline personality features, emotional abuse, depression and anxiety symptoms were the predictors of IAS score, while gender had no effect on IAS score. Among childhood trauma types, emotional abuse seems to be the main predictor of IA risk severity. Borderline personality features predicted the severity of IA risk together with emotional abuse, depression and anxiety symptoms among Turkish university students. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Main features of licensing requirements for nuclear installations in several OECD member countries

    International Nuclear Information System (INIS)

    Reyners, P.

    1977-01-01

    The present paper contains a brief description of the main features of the above-mentioned six countries' licensing systems, namely the legal regime applicable, the appropriate licensing bodies, the general frame and scope of the respective national regimes, the involvement of the public and technical safety bodies as well as the inspection procedures. This description is supplemented by some introductory remarks. (orig.) [de

  3. Main features of licensing requirements for nuclear installations in several OECD member countries

    International Nuclear Information System (INIS)

    Reyners, P.

    1975-01-01

    The present paper contains a brief description of the main features of the above-mentioned six countries' licensing systems, namely the legal regime applicable, the appropriate licensing bodies, the general frame and scope of the respective national regimes, the involvement of the public and technical safety bodies as well as the inspection procedures. This description is supplemented by some introductory remarks. (orig.) [de

  4. Different clinical features of anaphylaxis according to cause and risk factors for severe reactions

    Directory of Open Access Journals (Sweden)

    Sang-Yoon Kim

    2018-01-01

    Conclusions: More severe anaphylaxis developed with drug treatment and in males. Low rate of epinephrine prescription was also observed. Male patients with drug induced anaphylaxis should be paid more attention.

  5. Severity and Features of Epistaxis in Children with a Mucocutaneous Bleeding Disorder

    NARCIS (Netherlands)

    Stokhuijzen, Eva; Segbefia, Catherine I.; Biss, Tina T.; Clark, Dewi S.; James, Paula D.; Riddel, Jim; Blanchette, Victor S.; Rand, Margaret L.

    2018-01-01

    Objective To use standardized bleeding questionnaires to compare the severity and patterns of epistaxis in children with a mucocutaneous bleeding disorder and control children. Study design The epistaxis sections of the Pediatric Bleeding Questionnaire (PBQ) administered to pediatric patients with

  6. Specific features of RBMK severe accidents progression and approach to the accident management

    International Nuclear Information System (INIS)

    Vasilevskij, V.P.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Cherkashov, Yu.M.

    2001-01-01

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated [ru

  7. Severe chronic bronchiolitis as the presenting feature of primary Sjögren's syndrome.

    Science.gov (United States)

    Borie, Raphael; Schneider, Sophie; Debray, Marie-Pierre; Adle-Biasssette, Homa; Danel, Claire; Bergeron, Anne; Mariette, Xavier; Aubier, Michel; Papo, Thomas; Crestani, Bruno

    2011-01-01

    Sjögren's syndrome is a frequent auto-immune disorder with a pulmonary location in almost 10% of the patients. Although bronchial involvement is very common, most patients only complain of cough and this involvement rarely results in severe symptoms or chronic respiratory failure are rarely observed. We describe here 5 patients with severe chronic bronchiolitis revealing primary Sjögren's syndrome. The lung involvement resulted in chronic bronchorrhea, recurrent sinusitis, diffuse bronchiolar nodules with bronchiectasis on the CT scan, and a severe obstructive airway pattern on lung function tests. Improvement was obtained in 4 patients with combination of inhaled corticosteroids, inhaled long acting beta-agonists, and a low dose of erythromycin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Cerebral scedosporiosis: an emerging fungal infection in severe neutropenic patients. CT features and CT pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Marco de Lucas, Enrique; Sadaba, Pablo; Lastra Garcia-Baron, Pedro; Ruiz Delgado, Maria Luisa; Gonzalez Mandly, Andres; Gutierrez, Agustin; Diez, Consuelo [Hospital Universitario Marques de Valdecilla, Department of Radiology, Santander, Cantabria (Spain); Cuevas, Jorge; Fernandez, Fidel [Hospital Universitario Marques de Valdecilla, Department of Pathology, Santander, Cantabria (Spain); Salesa, Ricardo [Hospital Universitario Marques de Valdecilla, Department of Microbiology, Santander, Cantabria (Spain); Bermudez, Arancha [Hospital Universitario Marques de Valdecilla, Department of Hematology, Santander, Cantabria (Spain); Marco de Lucas, Fernando [Hospital de Basurto, Department of Hematology, Bilbao, Vizcaya (Spain)

    2006-02-01

    Scedosporium prolificans is an emerging opportunistic fungal agent encountered in severely neutropenic patients. The purpose of this paper is to describe the main cranial CT findings from a retrospective review of six patients (four men and two women, 18-66 years old) afflicted with disseminated infection by S. prolificans with neurological symptoms. They were severely neutropenic and presented with severe respiratory failure and conscience deterioration, with a subsequent 100% mortality. The final diagnosis was established by autopsy (performed in five patients) and blood culture findings. Cranial CT showed multiple low-density lesions in four patients without contrast enhancement located in the basal ganglia and corticomedullary junction. Autopsy findings of these lesions demonstrated necrosis and hyphae proliferation inside brain infarcts. Also, two of the patients had a subarachnoid hemorrhage, but angiography could not be performed. CT and autopsy findings were fairly similar to those encountered in cerebral aspergillosis; however, possibly because of its rapid and fatal evolution, no edema or ring enhancing lesions were encountered. Thus, Scedosporium can be included as a rare but possible cause of invasive fungal disseminated central nervous system infections in severely neutropenic patients. (orig.)

  9. Cerebral scedosporiosis: an emerging fungal infection in severe neutropenic patients. CT features and CT pathologic correlation

    International Nuclear Information System (INIS)

    Marco de Lucas, Enrique; Sadaba, Pablo; Lastra Garcia-Baron, Pedro; Ruiz Delgado, Maria Luisa; Gonzalez Mandly, Andres; Gutierrez, Agustin; Diez, Consuelo; Cuevas, Jorge; Fernandez, Fidel; Salesa, Ricardo; Bermudez, Arancha; Marco de Lucas, Fernando

    2006-01-01

    Scedosporium prolificans is an emerging opportunistic fungal agent encountered in severely neutropenic patients. The purpose of this paper is to describe the main cranial CT findings from a retrospective review of six patients (four men and two women, 18-66 years old) afflicted with disseminated infection by S. prolificans with neurological symptoms. They were severely neutropenic and presented with severe respiratory failure and conscience deterioration, with a subsequent 100% mortality. The final diagnosis was established by autopsy (performed in five patients) and blood culture findings. Cranial CT showed multiple low-density lesions in four patients without contrast enhancement located in the basal ganglia and corticomedullary junction. Autopsy findings of these lesions demonstrated necrosis and hyphae proliferation inside brain infarcts. Also, two of the patients had a subarachnoid hemorrhage, but angiography could not be performed. CT and autopsy findings were fairly similar to those encountered in cerebral aspergillosis; however, possibly because of its rapid and fatal evolution, no edema or ring enhancing lesions were encountered. Thus, Scedosporium can be included as a rare but possible cause of invasive fungal disseminated central nervous system infections in severely neutropenic patients. (orig.)

  10. Operating features of decorative polymer-impregnated concretes under severe operating conditions

    International Nuclear Information System (INIS)

    Kapustina, I.B.; Lobasenok, V.A.; Yakimtsiv, V.P.

    1991-01-01

    The study was carried out to investigate the possibility of a decorative polymer-impregnated concrete as a lining material in radiation-endangered rooms. Their extreme properties such as radiation resistance, decontamination ability, fire resistance and melting-freezing cycle resistance were studied. The material proposed shows substantially high resistance under severe operating conditions

  11. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  12. A 27-Year-Old Severely Immunosuppressed Female with Misleading Clinical Features of Disseminated Cutaneous Sporotrichosis

    Science.gov (United States)

    Patel, Atiyah; Mudenda, Victor; Lakhi, Shabir; Ngalamika, Owen

    2016-01-01

    Sporotrichosis is a subacute or chronic granulomatous mycosis caused by fungus of the Sporothrix schenckii complex. It is considered to be a rare condition in most parts of the world. It mostly causes cutaneous infection but can also cause multisystemic disease. Unlike most deep cutaneous mycoses which have a primary pulmonary focus, it is usually caused by direct inoculation of the fungus into the skin causing a classical linear, lymphocutaneous nodular eruption. However, atypical presentations of the condition can occur especially in immunosuppressed individuals. We report the case of a severely immunosuppressed female who presented with disseminated cutaneous sporotrichosis which was initially diagnosed and treated as disseminated cutaneous Kaposi's sarcoma. PMID:26881148

  13. Thermodynamic Features of Benzene-1,2-Diphosphonic Acid Complexes with Several Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Syouhei Nishihama; Ryan P. Witty; Leigh R Martin; Kenneth L. Nash

    2013-08-01

    Among his many contributions to the advancement of f-element chemistry and separation science, Professor Gregory R. Choppin’s research group completed numerous investigations featuring the application of distribution techniques to the determination of metal complexation equilibrium quotients. Most of these studies focused on the chemistry of lanthanide and actinide complexes. In keeping with that tradition, this report discusses the complex formation equilibrium constants for complexes of trivalent europium (Eu3+) with benzene-1,2-diphosphonic acid (H4BzDP) determined using solvent extraction distribution experiments in 0.2 M (Na,H)ClO4 media in the temperature range of 5 – 45 degrees C. Protonation constants for HnBzDP4-n and stoichiometry and stability of BzDP4- complexes with Zn2+, Ni2+, and Cu2+ have also been determined using potentiometric titration (at I = 0.1 M) and 31P NMR spectroscopy. Heats of protonation of HnBzDPn-4 species have been determined by titration calorimetry. From the temperature dependence of the complex Eu3+-HnBzDPn-4 equilibrium constant, a composite enthalpy (?H = -15.1 (+/-1.0) kJ mol-1) of complexation has been computed. Comparing these thermodynamic parameters with literature reports on other diphosphonic acids and structurally similar carboxylic acids indicates that exothermic heats of complexation are unique to the Eu-BzDP system. Comparisons with thermodynamic data from the literature indicate that the fixed geometry imposed by the benzene ring enhances complex stability.

  14. A 27-Year-Old Severely Immunosuppressed Female with Misleading Clinical Features of Disseminated Cutaneous Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Atiyah Patel

    2016-01-01

    Full Text Available Sporotrichosis is a subacute or chronic granulomatous mycosis caused by fungus of the Sporothrix schenckii complex. It is considered to be a rare condition in most parts of the world. It mostly causes cutaneous infection but can also cause multisystemic disease. Unlike most deep cutaneous mycoses which have a primary pulmonary focus, it is usually caused by direct inoculation of the fungus into the skin causing a classical linear, lymphocutaneous nodular eruption. However, atypical presentations of the condition can occur especially in immunosuppressed individuals. We report the case of a severely immunosuppressed female who presented with disseminated cutaneous sporotrichosis which was initially diagnosed and treated as disseminated cutaneous Kaposi’s sarcoma.

  15. Micro-CT features of intermediate gunshot wounds severely damaged by fire.

    Science.gov (United States)

    Fais, Paolo; Giraudo, Chiara; Boscolo-Berto, Rafael; Amagliani, Alessandro; Miotto, Diego; Feltrin, Giampietro; Viel, Guido; Ferrara, S Davide; Cecchetto, Giovanni

    2013-03-01

    Incineration or extensive burning of the body, causing changes in the content and distribution of fluids, fixation and shrinking processes of tissues, can alter the typical macroscopic and microscopic characteristics of firearm wounds, hampering or at least complicating the reconstruction of gunshot fatalities. The present study aims at evaluating the potential role of micro-computed tomography (micro-CT) for detecting and quantifying gunshot residue (GSR) particles in experimentally produced intermediate-range gunshot wounds severely damaged by fire. Eighteen experimental shootings were performed on 18 sections of human calves surgically amputated for medical reasons at three different firing distances (5, 15 and 30 cm). Six stab wounds produced with an ice pick were used as controls. Each calf section underwent a charring cycle, being placed in a wood-burning stove for 4 min at a temperature of 400 °C. At visual inspection, the charred entrance wounds could not be differentiated from the exit lesions and the stab wounds. On the contrary, micro-CT analysis showed the presence of GSR particles in all burnt entrance gunshot wounds, while GSR was absent in the exit and stab wounds. The GSR deposits of the firearm lesions inflicted at very close distance (5 cm) were mainly constituted of huge particles (diameter >150 μm) with an irregular shape and well-delineated edges; at greater distances (15 and 30 cm), agglomerates of tiny radiopaque particles scattered in the epidermis and dermis layers were evident. Statistical analysis demonstrated that also in charred firearm wounds the amount of GSR roughly correlates with the distance from which the gun was fired. The obtained results suggest that micro-CT analysis can be a valid screening tool for identifying entrance gunshot wounds and for differentiating firearm wounds from sharp-force injuries in bodies severely damaged by fire.

  16. Some morphological and physiological features of several dwarf apple sports induced by gamma rays

    International Nuclear Information System (INIS)

    Ikeda, F.; Nishida, T.

    1982-01-01

    Various types of apple mutants have been induced by gamma-ray irradiation since 1962. Using several clones which had attained fruiting in 1975, investigation of the fruit quality was carried out. Desirable mutants were mostly obtained from chronic treatment. As a result of observations of pollen grains, pollen sterility was detected in almost all clones which originated from acute treatment. The characteristics of several mutants with weak growth habit were assessed for their morphological and anatomical characters. Spur-type mutants were characterized by a lesser formation of secondary wood and slightly longer fibre cells in their wood compared with those of the original cultivars. Also, dwarf-type mutants were characterized by weak secondary growth and by shorter fibre cells in the wood. Various morphological mutants were examined by anatomical methods if they arose as peripheral polyploidal chimeras. In comparison with the nuclear volume of each histogenic layer, almost all the original varieties and mutants show a larger nuclear volume in the subepidermal layer, L-2, than in the epidermal layer, L-1. However, a reverse situation was recognized in clone 500-18 which seems to be a polyploidal chimera such as 4-2-2. Clonal differences in the induction of a brown coloured substance developed in fresh leaves with mono-iodoacetic acid were compared with those of their original cultivars. Most mutants with weak growth habit showed a darker colour reaction than that of the original cultivar. Therefore, the colour reaction might be used as an early detection method of a mutation by a chemical procedure in apple. (author)

  17. Who is protecting tourists in New Zealand from severe weather hazards?: an exploration of the role of locus of responsibility in protective behaviour decisions

    NARCIS (Netherlands)

    Jeuring, Jelmer; Becken, Susanne

    2011-01-01

    Much of New Zealand's tourism industry is focused on 'the outdoors', capitalising on its natural environment and attractions. However, this 'product' makes New Zealand tourism vulnerable to environmental variability and disturbances, including the weather. As a consequence, New Zealand weather has a

  18. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels

    Directory of Open Access Journals (Sweden)

    Juha Hyyppä

    2013-01-01

    Full Text Available Detailed up-to-date ground reference data have become increasingly important in quantitative forest inventories. Field reference data are conventionally collected at the sample plot level by means of manual measurements, which are both labor-intensive and time-consuming. In addition, the number of attributes collected from the tree stem is limited. More recently, terrestrial laser scanning (TLS, using both single-scan and multi-scan techniques, has proven to be a promising solution for efficient stem mapping at the plot level. In the single-scan method, the laser scanner is placed at the center of the plot, creating only one scan, and all trees are mapped from the single-scan point cloud. Consequently, the occlusion of stems increases as the range of the scanner increases, depending on the forest’s attributes. In the conventional multi-scan method, several scans are made simultaneously inside and outside of the plot to collect point clouds representing all trees within the plot, and these scans are accurately co-registered by using artificial reference targets manually placed throughout the plot. The additional difficulty of applying the multi-scan method is due to the point-cloud registration of several scans not being fully automated yet. This paper proposes a multi-single-scan (MSS method to map the sample plot. The method does not require artificial reference targets placed on the plot or point-level registration. The MSS method is based on the fully automated processing of each scan independently and on the merging of the stem positions automatically detected from multiple scans to accurately map the sample plot. The proposed MSS method was tested on five dense forest plots. The results show that the MSS method significantly improves the stem-detection accuracy compared with the single-scan approach and achieves a mapping accuracy similar to that achieved with the multi-scan method, without the need for the point-level registration.

  19. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  20. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  1. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  2. Comparison of initial high resolution computed tomography features in viral pneumonia between metapneumovirus infection and severe acute respiratory syndrome

    International Nuclear Information System (INIS)

    Wong, Cheuk Kei Kathy; Lai, Vincent; Wong, Yiu Chung

    2012-01-01

    Objective: To review and compare initial high resolution computed tomography (HRCT) findings in patients with metapneumovirus pneumonia and severe acute respiratory syndrome (SARS-Coronovirus). Materials and methods: 4 cases of metapneumovirus pneumonia (mean age of 52.3 years) in an institutional outbreak (Castle Peak Hospital) in 2008 and 38 cases of SARS-coronovirus (mean age of 39.6 years) admitted to Tuen Mun hospital during an epidemic outbreak in 2003 were included. HRCT findings of the lungs for all patients were retrospectively reviewed by two independent radiologists. Results: In the metapneumovirus group, common HRCT features were ground glass opacities (100%), consolidation (100%), parenchymal band (100%), bronchiectasis (75%). Crazy paving pattern was absent. They were predominantly subpleural and basal in location and bilateral involvement was observed in 50% of patients. In the SARS group, common HRCT features were ground glass opacities (92.1%), interlobular septal thickening (86.8%), crazy paving pattern (73.7%) and consolidation (68%). Bronchiectasis was not seen. Majority of patient demonstrated segmental or lobar in distribution and bilateral involvement was observed in 44.7% of patients. Pleural effusion and lymphadenopathy were of consistent rare features in both groups. Conclusion: Ground glass opacities, interlobular septal thickening and consolidations were consistent HRCT manifestations in both metapneumovirus infection and SARS. The presence of bronchiectasis (0% in SARS) may point towards metapneumovirus while crazy paving pattern is more suggestive of SARS.

  3. Role of Passive Safety Features in Prevention And Mitigation of Severe Plant Conditions in Indian Advanced Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vikas; Nayak, A.; Dhiman, M.; Kulkarni, P. P.; Vijayan, P. K.; Vaze, K. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-10-15

    Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

  4. ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

    Directory of Open Access Journals (Sweden)

    VIKAS JAIN

    2013-10-01

    Full Text Available Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor ‘AHWR’ is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI, Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

  5. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  6. Autoimmune Pancreatitis Can Transform Into Chronic Features Similar to Advanced Chronic Pancreatitis With Functional Insufficiency Following Severe Calcification.

    Science.gov (United States)

    Kanai, Keita; Maruyama, Masahiro; Kameko, Fumiko; Kawasaki, Kenji; Asano, Junpei; Oguchi, Takaya; Watanabe, Takayuki; Ito, Tetsuya; Muraki, Takashi; Hamano, Hideaki; Matsumoto, Akihiro; Arakura, Norikazu; Kawa, Shigeyuki

    2016-09-01

    Because several studies for autoimmune pancreatitis (AIP) have revealed pancreatic calcification resembling that in chronic pancreatitis (CP), we sought to clarify whether AIP could transform into chronic features similar to advanced CP with severe pancreatic dysfunction. Pancreatic functions of 92 AIP patients, 47 definite CP patients, and 30 healthy controls were assessed by fecal elastase-1 concentration (FEC), fasting immunoreactive insulin (IRI), and homeostatic model assessment (HOMA)-R. The 92 AIP patients included 17 (18%) with severe calcification (SC) and 75 without. The FEC levels in AIP and CP patients were significantly lower than that in controls. Exocrine insufficiency defined as FEC less than 200 μg/g was 39% in AIP without SC, 56% in AIP with SC, and 74% in CP. Fasting IRI and C-peptide reactivity values in CP were significantly lower than those in AIP, with no significant differences between AIP subgroups. The prevalence of endocrine insufficiency according to fasting IRI less than 5.0 μU/mL was 26% in AIP without SC, 31% in AIP with SC, and 59% in CP, respectively. HOMA-R values were significantly higher in all AIP groups than in CP. Autoimmune pancreatitis can transform into a state of pancreatic insufficiency after calcification that is less severe than that in definite CP.

  7. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  8. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  9. Application of Lidar and other profiling techniques to study the impact that Severe weather hazards have on the New York City built environment

    Directory of Open Access Journals (Sweden)

    Arend Mark

    2018-01-01

    Full Text Available The complexity of urban boundary layer dynamics poses challenges to those responsible for the design and regulation of buildings and structures in the urban environment. Lidar systems in the New York City Metropolitan region have been used extensively to study urban boundary layer dynamics. These systems, in conjunction with other sensing platforms can provide an observatory to perform research and analysis of turbulent and inclement weather patterns of interest to developers and agencies.

  10. Application of Lidar and other profiling techniques to study the impact that Severe weather hazards have on the New York City built environment

    Science.gov (United States)

    Arend, Mark; Campmier, Mark; Fernandez, Aris; Moshary, Fred

    2018-04-01

    The complexity of urban boundary layer dynamics poses challenges to those responsible for the design and regulation of buildings and structures in the urban environment. Lidar systems in the New York City Metropolitan region have been used extensively to study urban boundary layer dynamics. These systems, in conjunction with other sensing platforms can provide an observatory to perform research and analysis of turbulent and inclement weather patterns of interest to developers and agencies.

  11. Managed aquifer recharge in weathered crystalline basement aquifers in India: Monitoring of the effect of tank infiltration on water quality over several monsoon events

    Science.gov (United States)

    Alazard, Marina; Boisson, Alexandre; Maréchal, Jean-Christophe; Dewandel, Benoît; Perrin, Jérôme; Pettenati, Marie; Picot-Colbeaux, Géraldine; Ahmed, Shakeel; Thiéry, Dominique; Kloppmann, Wolfram

    2015-04-01

    Managed aquifer recharge (MAR) structures like percolation tanks are considered by the Indian national and regional governments as major option for tackling declining groundwater levels due to overexploitation for irrigation purposes (Boisson et al., 2014). Their main purpose is to restore groundwater availability under strong climatic and anthropogenic pressure. Furthermore, MAR-induced dilution with fresh surface water is generally expected to improve groundwater quality with respect to both anthropogenic and geogenic contaminants (total mineralisation, nitrates, chlorides, sulphates and fluoride contents). The impact of a percolation tank on groundwater quality was investigated in a context that is typical for hydro-climatic and geological settings in southern and eastern India: fractured crystalline basement aquifers overlain by a weathering zone under semi-arid climate. Water level data and geochemical indicators (stable isotopes and major ions) were monitored for both groundwater and surface water, over several successive monsoon events. In case of high to very high water levels, the groundwater quality is globally improved. However, in a few cases, the quality of the groundwater can be negatively impacted due to leaching of salts under the tank, particularly during the first rain events of the monsoon. Geogenic fluoride contents in groundwater, induced by water-rock interaction and enhanced by recycling of agricultural return flow under paddy fields, is found to be relatively stable over the year. This finding points out that the underlying processes, mainly dissolution of F-bearing phases like fluorapatites combined with Ca/Na cation exchange and calcite precipitation, both limiting the possibility of F-removal via fluorite precipitation (Pettenati et al., 2013, 2014), are not impacted by the hydrological conditions. This work highlights the complexity of the recharge processes in crystalline aquifers, enhanced by the variability of hydrological conditions

  12. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  13. Evaluation of Short-Term Cepstral Based Features for Detection of Parkinson’s Disease Severity Levels through Speech signals

    Science.gov (United States)

    Oung, Qi Wei; Nisha Basah, Shafriza; Muthusamy, Hariharan; Vijean, Vikneswaran; Lee, Hoileong

    2018-03-01

    Parkinson’s disease (PD) is one type of progressive neurodegenerative disease known as motor system syndrome, which is due to the death of dopamine-generating cells, a region of the human midbrain. PD normally affects people over 60 years of age, which at present has influenced a huge part of worldwide population. Lately, many researches have shown interest into the connection between PD and speech disorders. Researches have revealed that speech signals may be a suitable biomarker for distinguishing between people with Parkinson’s (PWP) from healthy subjects. Therefore, early diagnosis of PD through the speech signals can be considered for this aim. In this research, the speech data are acquired based on speech behaviour as the biomarker for differentiating PD severity levels (mild and moderate) from healthy subjects. Feature extraction algorithms applied are Mel Frequency Cepstral Coefficients (MFCC), Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC), and Weighted Linear Prediction Cepstral Coefficients (WLPCC). For classification, two types of classifiers are used: k-Nearest Neighbour (KNN) and Probabilistic Neural Network (PNN). The experimental results demonstrated that PNN classifier and KNN classifier achieve the best average classification performance of 92.63% and 88.56% respectively through 10-fold cross-validation measures. Favourably, the suggested techniques have the possibilities of becoming a new choice of promising tools for the PD detection with tremendous performance.

  14. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  15. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  16. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  17. Broad autism phenotype features of Chinese parents with autistic children and their associations with severity of social impairment in probands.

    Science.gov (United States)

    Shi, Li-Juan; Ou, Jian-Jun; Gong, Jing-Bo; Wang, Su-Hong; Zhou, Yuan-Yue; Zhu, Fu-Rong; Liu, Xu-Dong; Zhao, Jing-Ping; Luo, Xue-Rong

    2015-07-23

    Parents of children with autism have higher rates of broad autism phenotype (BAP) features than parents of typically developing children (TDC) in Western countries. This study was designed to examine the rate of BAP features in parents of children with autism and the relationship between parental BAP and the social impairment of their children in a Chinese sample. A total of 299 families with autistic children and 274 families with TDC participated in this study. Parents were assessed using the Broad Autism Phenotype Questionnaire (BAPQ), which includes self-report, informant-report, and best-estimate versions. Children were assessed using the Chinese version of the Social Responsiveness Scale (SRS). Parents of children with autism were significantly more likely to have BAP features than were parents of TDC; mothers and fathers in families with autistic children had various BAP features. The total scores of the informant and best-estimate BAPQ versions for fathers were significantly associated with their children's SRS total scores in the autism group, whereas the total scores of the three BAPQ versions for mothers were significantly associated with their children's SRS total scores in the TDC group. In the autism group, the total SRS scores of children with "BAP present" parents (informant and best-estimate) were higher than the total SRS scores of children with"BAP absent" parents. In the TDC group, the total SRS scores of children with "BAP present" parents were higher than the total SRS scores of children with"BAP absent" parents (best-estimate). Parents of autistic children were found to have higher rates of BAP than parents of TDC in a sample of Chinese parents. The BAP features of parents are associated with their children's social functioning in both autism families and TDC families, but the patterns of the associations are different.

  18. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  19. Five Essential Features of Quality Educational Programs for Students with Moderate and Severe Intellectual Disability: A Guide for Administrators

    Science.gov (United States)

    Pennington, Robert; Courtade, Ginevra; Jones Ault, Melinda; Delano, Monica

    2016-01-01

    Despite encouraging changes in the expectations of programming for persons with moderate to severe intellectual disability (MSD), data suggest that programs for these individuals are still lacking in several critical areas. Building administrators play a key role in promoting high quality programs for students with MSD within local schools but may…

  20. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters.

    Directory of Open Access Journals (Sweden)

    D Campobello

    Full Text Available The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy, a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

  1. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters.

    Science.gov (United States)

    Campobello, D; Lindström, J; Di Maggio, R; Sarà, M

    2017-01-01

    The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

  2. Relation between childhood maltreatment and severe intrafamilial male-perpetrated physical violence in Chinese community: the mediating role of borderline and antisocial personality disorder features.

    Science.gov (United States)

    Liu, Na; Zhang, Yalin; Brady, Heward John; Cao, Yuping; He, Ying; Zhang, Yingli

    2012-01-01

    This study investigates the role of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) features as mediators of the effects of childhood maltreatment on severe intrafamilial physical violence amongst Chinese male perpetrators. A cross-sectional survey and face-to-face interview were conducted to examine childhood maltreatment, personality disorder features, impulsivity, aggression, and severe intrafamilial physical violence in a community sample of 206 abusive men in China. The results suggest that ASPD or BPD features mediate between childhood maltreatment and intimate partner violence perpetration in Chinese abusive men. These findings may yield clinical and forensic implications for assessing the psychopathology of abusive men, and may steer the intervention of intimate partner violence. © 2011 Wiley Periodicals, Inc.

  3. An Investigation of Non-Thesis Master's Program Geography Teacher Candidates' Attitudes towards Teaching Profession regarding Several Socio-Cultural Features

    Science.gov (United States)

    Sezer, Adem; Kara, Hasan; Pinar, Adnan

    2011-01-01

    The purpose of this study is to examine the attitudes of non-thesis master's degree program: geography teacher candidates towards teaching profession regarding several socio-cultural features. The study was conducted in different universities with 218 geography teacher candidates enrolled in the geography education non-thesis master's degree…

  4. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    International Nuclear Information System (INIS)

    Chatelard, P.; Reinke, N.; Arndt, S.; Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F.; Eckel, J.; Jacq, F.; Marchetto, C.; Mun, C.; Piar, L.

    2014-01-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants

  5. Central American Flying Weather

    Science.gov (United States)

    1985-12-01

    CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic

  6. Unusual bone dysplasia featuring severe platyspondyly and vertebral 'coronal cleft' in infancy, and changes of metaphyseal chondrodysplasia in childhood

    International Nuclear Information System (INIS)

    Currarino, G.; Texas Univ., Dallas

    1986-01-01

    This is the report of a boy who presented at birth with severe generalized platyspondyly, a vertebral ''coronal cleft'', and an abnormal configuration of the pelvis with short and broad iliac and ischial bones and horizontal acetabular roofs. The rest of the skeleton was normal. In the ensuing years the vertebral bodies and pelvis assumed a near normal configuration, but the patient developed changes of metaphyseal chondrodysplasia in the long bones of the lower limbs with progressive shortness of stature. (orig.)

  7. Enhanced safety features of CHASHMA NPP UNIT-2 to encounter selected severe accidents, various challenges involved to prove the adequacy of severe accidents prevention/mitigation measures and to write management guidelines with one possible solution to these challenges

    International Nuclear Information System (INIS)

    Iqbal, Z.; Minhaj, A.

    2007-01-01

    This paper describes enhanced safety features of Chashma Nuclear Power Plant Unit-2 (C-2), a 325 MWe PWR to encounter selected severe accidents and discusses various challenges involved to prove the adequacy of severe accidents encountering measures and to write severe accident management guidelines (SAMGs) in compliance with the recently introduced national regulations based on the new IAEA nuclear safety standards. C-2 is being built by China National Nuclear Corporation (CNNC) for Pakistan Atomic Energy Commission (PAEC). Its twin, Unit-1 (C-1) also a 325 MWe PWR, was commissioned in 2000. Nuclear power safety with reference to severe accidents should be treated as a global issue and therefore the developed countries should include the people of developing countries in nuclear power industry's various severe accidents based research and development programs. The implementation of this idea may also deliver few other useful and mutually beneficial byproducts. (author)

  8. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  9. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    Science.gov (United States)

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  10. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  11. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  12. Severe dysautonomia as a main feature of anti-GAD encephalitis: Report of a paediatric case and literature review.

    Science.gov (United States)

    Ben Achour, Nedia; Ben Younes, Thouraya; Rebai, Ibtihel; Ben Ahmed, Melika; Kraoua, Ichraf; Ben Youssef-Turki, Ilhem

    2018-05-01

    Anti-glutamic acid decarboxylase (anti-GAD65) antibodies are a rare cause of autoimmune encephalitis. This entity is mainly recognized in adults and very few cases were reported in children. We report on a paediatric case of anti-GAD encephalitis with severe presentation and uncontrollable dysautonomia. A 9-year-old girl was referred to our department for refractory seizures and behavioral disturbances. Brain magnetic resonance imaging (MRI) was normal. Repeat screening for antineuronal antibodies showed negative results for anti-NMDA receptor antibodies but positive results for anti-GAD65 with a low positivity of anti-Ma2 antibodies. Although a transient improvement was noticed after immunomodulatory treatment, the patient developed severe intractable autonomic imbalance including dysrythmia, alternating bradycardia/tachycardia, hypotension/hypertension, hypothermia/hyperthermia and hyperhidrosis. She deceased six months after onset. Our report intends to raise awareness of autoimmune encephalitis with anti-GAD65 antibodies which may involve extralimbic brain regions and manifest with fatal dysautonomia. We highlight the need for prompt diagnosis and aggressive management for this underdiagnosed entity in children. Copyright © 2018 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Relationship between seasonal weather changes, risk of dehydration, and incidence of severe bradyarrhythmias requiring urgent temporary transvenous cardiac pacing in an elderly population

    Science.gov (United States)

    Palmisano, Pietro; Accogli, Michele; Zaccaria, Maria; Vergari, Alessandra; De Luca De Masi, Gabriele; Negro, Luca; De Blasi, Sergio

    2014-09-01

    There is little information on any seasonal variations or meteorological factors associated with symptomatic bradyarrhythmias requiring cardiac pacing. The aim of this single-center study was to investigate the seasonal distribution of the incidence of severe, life-threatening bradyarrhythmias requiring urgent temporary transvenous cardiac pacing in an elderly population. Consecutive patients who underwent urgent temporary transvenous cardiac pacing between 2007 and 2012 were enrolled. The baseline characteristics of the patients and some meteorological parameters, including the calculation the daily heat index (HI), were recorded. During the study period, 79 consecutive patients (mean age 82 ± 8 years, 41 % male) underwent urgent temporary transvenous cardiac pacing, mainly for third-degree atrioventricular block (79 %). The incidence of bradyarrhythmias was significantly higher in summer than in the other seasons ( P 90 °F for >3 h per day for at least 10 days ( P renal function impairment and hyperkalemia (all P < 0.05). This study showed an increased incidence of severe bradyarrhythmias in an elderly population during the hottest months of the year. In these months, in subjects characterized by increased susceptibility to dehydration, the risk of developing bradyarrhythmias was increased significantly.

  14. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  15. Severe respiratory failure as a presenting feature of an interstitial lung disease associated with anti-synthetase syndrome (ASS).

    Science.gov (United States)

    Piroddi, Ines Maria Grazia; Ferraioli, Gianluca; Barlascini, Cornelius; Castagneto, Corrado; Nicolini, Antonello

    2016-07-01

    Anti-synthetase syndrome (ASS) is defined as a heterogeneous connective tissue disorder characterized by the association of an interstitial lung disease (ILD) with or without inflammatory myositis with the presence of anti-aminoacyl-tRNA-synthetase antibodies. ILD is one of the major extra-muscular manifestations of polymyositis and dermatomyositis. We report a case of a patient with dyspnea, cough, and intermittent fever as well as ILD associated ASS in the absence of muscular involvement. This patient was admitted to the emergency department with severe respiratory failure requiring non-invasive ventilation. Our patient's case demonstrates that the diagnosis of ASS may not be obvious. However, its diagnosis leads to appropriate and potentially life-saving treatment. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  16. Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features

    DEFF Research Database (Denmark)

    Philippe, Marc; Cuny, Gilles Guy Roger; Bashforth, Arden Roy

    2010-01-01

    Fossil wood specimens from the late Early–early Middle Jurassic of Jameson Land, Eastern Greenland, have several unexpected features: tracheids of irregular size and shape, thinly pitted ray cell walls, heterogeneous rays, partially scalariform radial pitting, both areolate and simple pits, and p...... is an early bench-mark in the evolution that led from homoxylous conifer-like wood to that of the angiosperms. Its particular biogeography (Arctic) could renew the discussion about the area of origin of the angiosperms....

  17. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  18. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    Science.gov (United States)

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury. © The Author(s) 2014.

  19. Positive behavioral support planning in the inpatient treatment of severe disruptive behaviors: A description of service features.

    Science.gov (United States)

    Hamlett, Nakia M; Carr, Erika R; Hillbrand, Marc

    2016-05-01

    Positive behavior support (PBS) plans are increasingly used on inpatient units to assess and treat serious and dangerous behaviors displayed by patients with serious psychiatric impairment. A contemporary extension of traditional applied behavior analytic procedures, PBS plans integrate theories from several domains with perspectives on community psychology, positive psychology, and recovery-oriented care. Because there is little evidence to suggest that more invasive, punitive disciplinary strategies lead to long-term positive behavioral change (Parkes, 1996), PBS plans have emerged as an alternative to the use of seclusion and restraint or other forms of restrictive measures typically used on inpatient psychiatric units (Hammer et al., 2011). Moreover, PBS plans are a preferred method of intervention because more invasive interventions often cause more harm than good to all involved (Elliott et al., 2005). This article seeks to provide an integrated framework for the development of positive behavior support plans in inpatient psychiatric settings. In addition to explicating the philosophy and core elements of PBS plans, this work includes discussion of the didactic and pragmatic aspects of training clinical staff in inpatient mental health settings. A case vignette is included for illustration and to highlight the use of PBS plans as a mechanism for helping patients transition to less restrictive settings. This work will add to the scant literature examining the use of positive behavioral support plans in inpatient psychiatric settings. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  1. The relevance and legibility of radio/TV weather reports to the Austrian public

    Science.gov (United States)

    Keul, A. G.; Holzer, A. M.

    2013-03-01

    The communicative quality of media weather reports, especially warnings, can be evaluated by user research. It is an interdisciplinary field, still uncoordinated after 35 years. The authors suggest to shift from a cognitive learning model to news processing, qualitative discourse and usability models as the media audience is in an edutainment situation where it acts highly selective. A series of field surveys 2008-2011 tested the relevance and legibility of Austrian radio and television weather reports on fair weather and in warning situations. 247 laypeople heard/saw original, mostly up-to-date radio/TV weather reports and recalled personally relevant data. Also, a questionnaire on weather knowledge was answered by 237 Austrians. Several research hypotheses were tested. The main results were (a) a relatively high level of meteorological knowledge of the general population, with interest and participation of German-speaking migrants, (b) a pluralistic media usage with TV, radio and internet as the leading media, (c) higher interest and attention (also for local weather) after warnings, but a risk of more false recalls after long warnings, (d) more recall problems with radio messages and a wish that the weather elements should always appear in the same order to faciliate processing for the audience. In their narrow time windows, radio/TV weather reports should concentrate on main features (synoptic situation, tomorrow's temperature and precipitation, possible warnings), keep a verbal “speed limit” and restrict show elements to serve the active, selective, multioptional, multicultural audience.

  2. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  3. Severe Weather Forecasting for Laughlin AFB, TX

    National Research Council Canada - National Science Library

    Cercone, Eric J

    2007-01-01

    .... Indices, including convective available potential energy (CAPE) and mean layer CAPE (MLCAPE), along with sounding parameters and combinations of such as 0-2 and 0-6 km bulk shear, 700-500 mb lapse rate, lifted condensation level...

  4. Severe Weather Guide Mediterranean Ports - 33. Tangier

    Science.gov (United States)

    1990-11-01

    building tctt, eas. : .u’.d r.i f on l’ues. b. North to northwest wrrds usually accompany cold frontal passages. .2 or vato :an rayoe Strongest fronts...principal A-S-Nao2.s A. , 0 Rue Du Clateii-Lor, B.P. 426 irect-or, Tec!!. Info~at-,cn A-aPo11 x 292075 - Brost Cadex, Franc. Defense Adv. Rach. projects

  5. Severe Weather Guide Mediterranean Ports. 36. Limassol

    Science.gov (United States)

    1991-06-01

    By the end of the month, the extratropical storm track has moved southward from its summertime location over Europe , and extratropical storms again...restricted mountain gaps or valleys and, as a result of the venturi effect, strengthen to storm intensity in a short period of time. As these winds exit...tendered vessels. Moderate to heavy swell may also propagate outward in advance of a storm resulting in uncomfortable and sometimes dangerous

  6. Severe persistent pulmonary hypertension of the newborn and dysmorphic features in neonate with a deletion involving TWIST1 and PHF14: a case report.

    Science.gov (United States)

    Schinagl, Carina; Melum, Guro Reinholt; Rødningen, Olaug Kristin; Bjørgo, Kathrine; Andresen, Jannicke Hanne

    2017-08-17

    Persistent pulmonary hypertension is a well-known disease of the newborn that in most cases responds well to treatment with nitric oxide and treatment of any underlying causes. Genetic causes of persistent pulmonary hypertension of the newborn are rare. The TWIST1 gene is involved in morphogenetics, and deletions are known to cause Saethre-Chotzen syndrome. Deletions of PHF14 have never been reported in neonates, but animal studies have shown a link between severe defects in lung development and deletions of this gene. There have not, to the best of our knowledge, been any publications of a link between the genes TWIST1 and PHF14 and persistent pulmonary hypertension of the newborn, making this a novel finding. We describe a white male neonate born at term to non-consanguineous white parents; he presented with dysmorphic features and a therapy-refractory persistent pulmonary hypertension. Array-based comparative genomic hybridization revealed the presence of a 14.7 Mb interstitial deletion on chromosome 7, encompassing the genes TWIST1 and PHF14. The TWIST1 gene can explain our patient's dysmorphic features. His severe persistent pulmonary hypertension has, however, not been described before in conjunction with the TWIST1 gene, but could be explained by involvement of PHF14, consistent with findings in animal experiments showing lethal respiratory failure with depletion of PHF14. These findings are novel and of importance for the clinical management and diagnostic workup of neonates with severe persistent pulmonary hypertension of the newborn and dysmorphic features.

  7. Features of RAPTA-SFD code modelling of chemical interactions of basic materials of the WWER active zone in accident conditions with severe fuel damage

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Sokolov, N.B.; Salatov, A.V.; Nechaeva, O.A.; Andreyeva-Andrievskaya, L.N.; Vlasov, F.Yu.

    1996-01-01

    A brief description of RAPTA-SFD code intended for computer simulations of WWER-type fuel elements (simulator or absorber element) in conditions of accident with severe damage of fuel. Presented are models of chemical interactions of basic materials of the active zone, emphasized are special feature of their application in carrying out of the CORA-W2 experiment within the framework of International Standard Problem ISP-36. Results obtained confirm expediency of phenomenological models application. (author). 6 refs, 7 figs, 1 tab

  8. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  9. Clinical, general, hemocoagulation and pathologicanatomical features of patients with moderate and severe community acquired pneumonia by the data of retrospective analysis

    Directory of Open Access Journals (Sweden)

    Pertseva T.A.

    2017-10-01

    Full Text Available According to literature data, patients with community acquired pneumonia (CAP fall into several groups of unfavorable prognostic factors. Development of thrombotic complications is one of causes of mortality of hospitalized patients. In this case systemic inflammation, which is always present in moderate and severe CAP, is the starting mechanism of formation of disorders in the hemostasis system. The aim of our work was to determine anamnestic, clinical, laboratory and pathologic anatomical features in patients with CAP, taking into account markers of systemic inflammation and coagulogram indices, as well as predicting the occurrence of complications. In the course of the work, a retrospective analysis of 151 medical histories of hospitalized patients with CAP was made. We analyzed anthropometric indicators, complaints at the time of hospitalization, results of physical examination, results of the chest X-ray, clinical and laboratory indicators, microbiological sputum analysis and to assess the possibility of thrombotic complications a RAM scale was used. It was found that late asking for medical help, the presence of mixed infection, underestimation of the severity of condition and severe systemic inflammation increase the risk of lethal outcome in patients with CAP. Considering a high risk of thrombosis in patients with CAP, it is necessary to assess the risk of thrombotic complications with the help of special scales, as well as timely detection and correction of disorders from the hemostasis system.

  10. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  11. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  12. Effect of ibuprofen vs acetaminophen on postpartum hypertension in preeclampsia with severe features: a double-masked, randomized controlled trial.

    Science.gov (United States)

    Blue, Nathan R; Murray-Krezan, Cristina; Drake-Lavelle, Shana; Weinberg, Daniel; Holbrook, Bradley D; Katukuri, Vivek R; Leeman, Lawrence; Mozurkewich, Ellen L

    2018-06-01

    Nonsteroidal antiinflammatory drug use has been shown to increase blood pressure in nonpregnant adults. Because of this, the American College of Obstetricians and Gynecologists suggests avoiding their use in women with postpartum hypertension; however, evidence to support this recommendation is lacking. Our goal was to test the hypothesis that nonsteroidal antiinflammatory drugs, such as ibuprofen, adversely affect postpartum blood pressure control in women with preeclampsia with severe features. At delivery, we randomized women with preeclampsia with severe features to receive around-the-clock oral dosing with either 600 mg of ibuprofen or 650 mg of acetaminophen every 6 hours. Dosing began within 6 hours after delivery and continued until discharge, with opioid analgesics available as needed for breakthrough pain. Study drugs were encapsulated in identical capsules such that patients, nurses, and physicians were masked to study allocation. Exclusion criteria were serum aspartate aminotransferase or alanine aminotransferase >200 mg/dL, serum creatinine >1.0 mg/dL, infectious hepatitis, gastroesophageal reflux disease, age <18 years, or current incarceration. Our primary outcome was the duration of severe-range hypertension, defined as the time (in hours) from delivery to the last blood pressure ≥160/110 mm Hg. Secondary outcomes were time from delivery to last blood pressure ≥150/100 mm Hg, mean arterial pressure, need for antihypertensive medication at discharge, prolongation of hospital stay for blood pressure control, postpartum use of short-acting antihypertensives for acute blood pressure control, and opioid use for breakthrough pain. We analyzed all outcome data according to intention-to-treat principles. We assessed 154 women for eligibility, of whom 100 met entry criteria, agreed to participate, and were randomized to receive postpartum ibuprofen or acetaminophen for first-line pain control. Seven patients crossed over or did not receive their

  13. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  14. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  15. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  16. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  17. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  18. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  19. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  20. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  1. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  2. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  3. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  4. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  5. Graphical tools for TV weather presentation

    Science.gov (United States)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  6. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  7. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  8. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  9. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  10. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  11. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  12. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  13. Molecular features of the complementarity determining region 3 motif of the T cell population and subsets in the blood of patients with chronic severe hepatitis B

    Directory of Open Access Journals (Sweden)

    Yang Jiezuan

    2011-12-01

    Full Text Available Abstract Background T cell receptor (TCR reflects the status and function of T cells. We previously developed a gene melting spectral pattern (GMSP assay, which rapidly detects clonal expansion of the T cell receptor β variable gene (TCRBV in patients with HBV by using quantitative real-time reverse transcription PCR (qRT-PCR with DNA melting curve analysis. However, the molecular profiles of TCRBV in peripheral blood mononuclear cells (PBMCs and CD8+, CD8- cell subsets from chronic severe hepatitis B (CSHB patients have not been well described. Methods Human PBMCs were separated and sorted into CD8+ and CD8- cell subsets using density gradient centrifugation and magnetic activated cell sorting (MACS. The molecular features of the TCRBV CDR3 motif were determined using GMSP analysis; the TCRBV families were cloned and sequenced when the GMSP profile showed a single-peak, indicative of a monoclonal population. Results The number of skewed TCRBV in the CD8+ cell subset was significantly higher than that of the CD8- cell subset as assessed by GMSP analysis. The TCRBV11 and BV7 were expressed more frequently than other members of TCRBV family in PBMCs and CD8+, CD8- subsets. Also the relatively conserved amino acid motifs were detected in the TCRBV22, BV18 and BV11 CDR3 in PBMCs among patients with CSHB. Conclusions The molecular features of the TCRBV CDR3 were markedly different among PBMCs and CD8+, CD8- cell subsets derived from CSHB patients. Analysis of the TCRBV expression in the CD8+ subset was more accurate in assessing the status and function of circulating T cells. The expression of TCRBV11, BV7 and the relatively conserved CDR3 amino acid motifs could also help to predict and treat patients with CSHB.

  14. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  15. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  16. Prognostic significance of several histological features in intermediate and high-risk endometrial cancer patients treated with curative intent using surgery and adjuvant radiotherapy

    International Nuclear Information System (INIS)

    Narayan, K.; Bernshaw, D.; Quinn, M.; Allen, D.; Rejeki, V.; Herschtal, A.; Jobling, T.

    2009-01-01

    Full text: The purpose of the present study was to explore the prognostic significance of several histological features with respect to lymph node metastasis, failure-free survival (FeS), and overall survival (Os) in intermediate and high-risk endometrial cancer patients treated with curative intent. One hundred and eighty patients with endometrial cancer were treated with hysterectomy with or without lymphadenectomy and received external beam radiotherapy (EBRT). The mean follow-up period was 4.25 years (range 0.44-10.45 years). In multifactor analysis, fractional myometrial invasion (MI) (P = 0.047), histology (P < 0.001) and lymph-vascular space invasion (LVSI) (P = 0.025) were significant predictors for FFS when nodal status was not included. When lymph node status was known, histology (P - 0.007) and LVSI (P = 0.014) remained significant factors for FFS. For OS, histology (P < 0.001) and fractional MI (P = 0.004) were the significant factors. Lymph node status could be predicted by tumour grading (P = 0.016) and absolute MI (P 0.002). Histology type and the presence of LVSI were the most important prognostic factors in high-risk endometrial cancer patients treated by surgery and postoperative radiotherapy. Absolute MI and tumour grading were useful predictors of nodal spread.

  17. The employment of weather satellite imagery in an effort to identify and locate the forest-tundra ecotone in Canada

    Science.gov (United States)

    Aldrich, S. A.; Aldrich, F. T.; Rudd, R. D.

    1969-01-01

    Weather satellite imagery provides the only routinely available orbital imagery depicting the high latitudes. Although resolution is low on this imagery, it is believed that a major natural feature, notably linear in expression, should be mappable on it. The transition zone from forest to tundra, the ecotone, is such a feature. Locational correlation is herein established between a linear signature on the imagery and several ground truth positions of the ecotone in Canada.

  18. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  19. AWE: Aviation Weather Data Visualization Environment

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  20. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  1. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  2. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  3. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  4. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  5. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  6. Third Space Weather Summit Held for Industry and Government Agencies

    Science.gov (United States)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  7. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  8. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  9. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  10. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  11. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  12. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  13. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  14. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    Science.gov (United States)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  15. Piloting and Evaluating a Workshop to Teach Georgia Teachers about Weather Science and Safety

    Science.gov (United States)

    Stewart, Alan E.; Knox, John A.; Schneider, Pat

    2015-01-01

    A survey of 691 Georgia teachers suggested that their students generally were not prepared for severe weather. Teachers also were somewhat dissatisfied with the quality of the teaching resources on weather and weather safety. Only 46 (7%) of the teachers were aware of the American Red Cross Masters of Disaster (MoD) weather science and safety…

  16. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  17. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  18. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  19. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  20. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  1. NOAA Weather Radio

    Science.gov (United States)

    del tiempo incluido. Si eres quieres ser avisado de las advertencias y relojes de día o de noche, un Weather Radio relojes son independientes o basadas en el Condado (parroquia basados en Luisiana), aunque

  2. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  3. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  4. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  5. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  6. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  7. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  8. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  9. NATO Advanced Research Workshop on The Chemistry of Weathering

    CERN Document Server

    1985-01-01

    Several important developments in our understanding of the chemistry of weathering have occurred in the last few years: 1. There has been a major breakthrough in our understanding of the mechanisms controlling the kinetics of sil icate dissolution, and there have been major advances in computer modeling of weathering processes. 2. There has been a growing recognition of the importance of organic solutes in the weathering process, and hence of the inter-relationships between mineral weathering and the terrestrial ecosystem. 3. The impact of acid deposition ("acid rain") has been widely recognized. The processes by which acid deposition is neutral ized are closely related to the processes of normal chemical weathering; an understanding of the chemistry of weathering is thus essential for predicting the effects of acid deposition. 4. More high-qual ity data have become available on the chemical dynamics of smal I watersheds and large river systems, which represent the integrated effects of chemical weathering.

  10. Assessing Weather Curiosity in University Students

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  11. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  12. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  13. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  14. Chemical Weathering on Venus

    Science.gov (United States)

    Zolotov, Mikhail

    2018-01-01

    Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal

  15. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    's integrated FMS/datalink. Auxiliary(lat/long) waypoints define a minimum delay reroute between current position and a downstream capture fix beyond the weather. These auxiliary waypoints can be uplinked to equipped aircraft and auto-loaded into the FMS. Alternatively, for unequipped aircraft, auxiliary waypoints can be replaced by nearby named fixes, but this could reduce potential savings. The presentation includes an overview of the automation approach and focuses on several cases in terms of potential savings, reroute complexity, best auxiliary waypoint solution vs. named fix solution, and other metrics.

  16. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    Science.gov (United States)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological observations with physico-mechanical field tests and petrographic, mineralogical and geochemical analyses. We focused our attention on the main weathering and pedogenetic processes, trying to understand apparent discrepancies between weathering grade classes based on field description and geomechanical properties, and two common weathering indices, such as the micropetrographic index (Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and biotite chloritization, that represent inherited features formed during late-stage hydrothermal alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in addition to those formed in situ), both at the macro- and microscale, may also explain an overestimation of the weathering degree with respect to field-based classifications. Finally, some apparent inconsistencies between field geomechanical responses and chemical weathering were interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead to rock breakdown even when chemical weathering is not well developed. Hence, our study showed that particular caution is needed for evaluating weathering grades, because traditional field and geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the Sila Massif upland, a first attempt to estimate

  17. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  18. Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study.

    Science.gov (United States)

    Buse, Dawn C; Loder, Elizabeth W; Gorman, Jennifer A; Stewart, Walter F; Reed, Michael L; Fanning, Kristina M; Serrano, Daniel; Lipton, Richard B

    2013-09-01

    The strikingly higher prevalence of migraine in females compared with males is one of the hallmarks of migraine. A large global body of evidence exists on the sex differences in the prevalence of migraine with female to male ratios ranging from 2:1 to 3:1 and peaking in midlife. Some data are available on sex differences in associated symptoms, headache-related disability and impairment, and healthcare resource utilization in migraine. Few data are available on corresponding sex differences in probable migraine (PM) and other severe headache (ie, nonmigraine-spectrum severe headache). Gaining a clear understanding of sex differences in a range of severe headache disorders may help differentiate the range of headache types. Herein, we compare sexes on prevalence and a range of clinical variables for migraine, PM, and other severe headache in a large sample from the US population. This study analyzed data from the 2004 American Migraine Prevalence and Prevention Study. Total and demographic-stratified sex-specific, prevalence estimates of headache subtypes (migraine, PM, and other severe headache) are reported. Log-binomial models are used to calculate sex-specific adjusted prevalence ratios and 95% confidence intervals for each across demographic strata. A smoothed sex prevalence ratio (female to male) figure is presented for migraine and PM. One hundred sixty-two thousand seven hundred fifty-six individuals aged 12 and older responded to the 2004 American Migraine Prevalence and Prevention Study survey (64.9% response rate). Twenty-eight thousand two hundred sixty-one (17.4%) reported "severe headache" in the preceding year (23.5% of females and 10.6% of males), 11.8% met International Classification of Headache Disorders-2 criteria for migraine (17.3% of females and 5.7% of males), 4.6% met criteria for PM (5.3% of females and 3.9% of males), and 1.0% were categorized with other severe headache (0.9% of females and 1.0% of males). Sex differences were observed in

  19. Cloudy with a Chance of Pain: Engagement and Subsequent Attrition of Daily Data Entry in a Smartphone Pilot Study Tracking Weather, Disease Severity, and Physical Activity in Patients With Rheumatoid Arthritis.

    Science.gov (United States)

    Reade, Samuel; Spencer, Karen; Sergeant, Jamie C; Sperrin, Matthew; Schultz, David M; Ainsworth, John; Lakshminarayana, Rashmi; Hellman, Bruce; James, Ben; McBeth, John; Sanders, Caroline; Dixon, William G

    2017-03-24

    The increasing ownership of smartphones provides major opportunities for epidemiological research through self-reported and passively collected data. This pilot study aimed to codesign a smartphone app to assess associations between weather and joint pain in patients with rheumatoid arthritis (RA) and to study the success of daily self-reported data entry over a 60-day period and the enablers of and barriers to data collection. A patient and public involvement group (n=5) and 2 focus groups of patients with RA (n=9) supported the codesign of the app collecting self-reported symptoms. A separate "capture app" was designed to collect global positioning system (GPS) and continuous raw accelerometer data, with the GPS-linking providing local weather data. A total of 20 patients with RA were then recruited to collect daily data for 60 days, with entry and exit interviews. Of these, 17 were loaned an Android smartphone, whereas 3 used their own Android smartphones. Of the 20 patients, 6 (30%) withdrew from the study: 4 because of technical challenges and 2 for health reasons. The mean completion of daily entries was 68% over 2 months. Patients entered data at least five times per week 65% of the time. Reasons for successful engagement included a simple graphical user interface, automated reminders, visualization of data, and eagerness to contribute to this easily understood research question. The main barrier to continuing engagement was impaired battery life due to the accelerometer data capture app. For some, successful engagement required ongoing support in using the smartphones. This successful pilot study has demonstrated that daily data collection using smartphones for health research is feasible and achievable with high levels of ongoing engagement over 2 months. This result opens important opportunities for large-scale longitudinal epidemiological research. ©Samuel Reade, Karen Spencer, Jamie C Sergeant, Matthew Sperrin, David M Schultz, John Ainsworth, Rashmi

  20. Effects of Personality Disorder and Other Variables on Professionals' Evaluation of Treatment Features in Individuals with Mild Intellectual Disabilities and Severe Behavior Problems

    Science.gov (United States)

    van den Hazel, Teunis; Didden, Robert; Korzilius, Hubert

    2009-01-01

    The diagnosis personality disorder is often found among samples of adults with mild intellectual disability and severe behavioral and mental health disorders. The number of studies on the adverse effects of this diagnosis are scarce. Using vignettes in the present study, we have explored the relationship between the diagnosis personality disorder…

  1. Proposal for Classifying the Severity of Speech Disorder Using a Fuzzy Model in Accordance with the Implicational Model of Feature Complexity

    Science.gov (United States)

    Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia

    2012-01-01

    The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…

  2. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  3. Climate, weather, and hops

    Science.gov (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  4. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  5. A new precipitation and drought climatology based on weather patterns.

    Science.gov (United States)

    Richardson, Douglas; Fowler, Hayley J; Kilsby, Christopher G; Neal, Robert

    2018-02-01

    Weather-pattern, or weather-type, classifications are a valuable tool in many applications as they characterize the broad-scale atmospheric circulation over a given region. This study analyses the aspects of regional UK precipitation and meteorological drought climatology with respect to a new set of objectively defined weather patterns. These new patterns are currently being used by the Met Office in several probabilistic forecasting applications driven by ensemble forecasting systems. Weather pattern definitions and daily occurrences are mapped to Lamb weather types (LWTs), and parallels between the two classifications are drawn. Daily precipitation distributions are associated with each weather pattern and LWT. Standardized precipitation index (SPI) and drought severity index (DSI) series are calculated for a range of aggregation periods and seasons. Monthly weather-pattern frequency anomalies are calculated for SPI wet and dry periods and for the 5% most intense DSI-based drought months. The new weather-pattern definitions and daily occurrences largely agree with their respective LWTs, allowing comparison between the two classifications. There is also broad agreement between weather pattern and LWT changes in frequencies. The new data set is shown to be adequate for precipitation-based analyses in the UK, although a smaller set of clustered weather patterns is not. Furthermore, intra-pattern precipitation variability is lower in the new classification compared to the LWTs, which is an advantage in this context. Six of the new weather patterns are associated with drought over the entire UK, with several other patterns linked to regional drought. It is demonstrated that the new data set of weather patterns offers a new opportunity for classification-based analyses in the UK.

  6. Clinical Features and Outcome of Children with Severe Lower Respiratory Tract Infection Admitted to a Pediatric Intensive Care Unit in South Africa.

    Science.gov (United States)

    Hutton, Hayley K; Zar, Heather J; Argent, Andrew C

    2018-03-09

    Severe acute lower respiratory tract infection (ALRTI) remains an important cause of childhood morbidity and mortality. This is a 12-month retrospective cohort study of children (0-12 years) admitted to a pediatric intensive care unit (PICU) with ALRTI to investigate risk factors, clinical course and in-hospital survival. In total, 265 patients (median age = 4 months [2-12 months]) were identified. In all,102 (38.5%) had co-morbid disease. Twenty-seven (10.2%) were HIV-infected and 87 (32.8%) were HIV-exposed. In-hospital mortality was 34 (12.8%)-24 (9.1%) in PICU and 10 in the wards. Median duration of intensive care unit was 4.0 days (2.0-8.0) and hospital stay was 12.5 days (7.9-28.0). In total, 192 (72.5%) children required invasive ventilation and 42 (15.8%) required inotropic support. Risk factors for mortality included severe malnutrition (odds ratio [OR] = 8.25; 95% confidence interval [CI] = 1.47-46.21), informal housing (OR = 11.87; CI = 1.89-20.81) or inotropic support (OR = 44.35; CI = 8.20-239.92). HIV exposure or infection was associated with a longer duration of hospital stay (OR = 4.41; CI = 2.44-6.39). Severe ALRTI is associated with a high mortality with several factors impacting on in-hospital survival.

  7. ASSESSMENT OF FIRE SEVERITY AND POST-FIRE REGENERATION BASED ON TOPOGRAPHICAL FEATURES USING MULTITEMPORAL LANDSAT IMAGERY: A CASE STUDY in MERSIN, TURKEY

    Directory of Open Access Journals (Sweden)

    H. Tonbul

    2016-06-01

    Full Text Available Satellite based remote sensing technologies and Geographical Information Systems (GIS present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR algorithm. Also, the Normalized Vegetation Index (NDVI and Soil Adjusted Vegetation Index (SAVI were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  8. Assessment of Fire Severity and Post-Fire Regeneration Based on Topographical Features Using Multitemporal Landsat Imagery: a Case Study in Mersin, Turkey

    Science.gov (United States)

    Tonbul, H.; Kavzoglu, T.; Kaya, S.

    2016-06-01

    Satellite based remote sensing technologies and Geographical Information Systems (GIS) present operable and cost-effective solutions for mapping fires and observing post-fire regeneration. Mersin-Gülnar wildfire, which occurred in August 2008 in Turkey, selected as study site. The fire was devastating and continued 55 days. According to Turkish General Directorate of Forestry reports, it caused two deaths and left hundreds of people homeless. The aim of this study is to determine the fire severity and monitor vegetation recovery with using multitemporal spectral indices together with topographical factors. Pre-fire and post-fire Landsat ETM+ images were obtained to assess the related fire severity with using the widely-used differenced Normalized Burn Ratio (dNBR) algorithm. Also, the Normalized Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) were used to determine vegetation regeneration dynamics for a period of six consecutive years. In addition, aspect image derived from Aster Global Digital Elevation Model (GDEM) were used to determine vegetation regeneration regime of the study area. Results showed that 5388 ha of area burned with moderate to high severity damage. As expected, NDVI and SAVI values distinctly declined post-fire and then began to increase in the coming years. Mean NDVI value of burned area changed from 0.48 to 0.17 due to wildfire, whilst mean SAVI value changed from 0.61 to 0.26. Re-growth rates calculated for NDVI and SAVI 57% and 63% respectively, six years after the fire. Moreover, NDVI and SAVI were estimated six consecutive year period by taking into consideration east, south, north and west facing slopes. Analysis showed that north-facing and east-facing slopes have higher regeneration rates in compared to other aspects. This study serves as a window to an understanding of the process of fire severity and vegetation regeneration that is vital in wildfire management systems.

  9. Weatherization Works: Weatherization Assistance Program Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. Space Weather Forecasting and Supporting Research in the USA

    Science.gov (United States)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  11. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  12. Climatic and weather factors affecting fire occurrence and behavior

    Science.gov (United States)

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  13. [Decision making and executive function in severe traumatic brain injured patients: validation of a decision-making task and correlated features].

    Science.gov (United States)

    Wiederkehr, S; Barat, M; Dehail, P; de Sèze, M; Lozes-Boudillon, S; Giroire, J-M

    2005-02-01

    At the chronic stage, severe traumatic brain injured (TBI) patients experience difficulty in making decisions. Several studies have demonstrated the involvement of the prefrontal cortex, in particular the orbitofrontal region, in decision-making. The aim of the present study was to validate a decision-making task in this population and to ascertain whether the components of their dysexecutive syndrome may affect their decision-making and lead to difficulties for social rehabilitation. Fifteen TBI patients and 15 controlled subjects matched for age, sex and years of education were assessed by a battery of executive tests (GREFEX) and by the gambling task (GT). The TBI subjects performed significantly worse than the controlled group in five out of six GREFEX tests. The TBI choices are significantly more disadvantageous than the choices of the control group when considering the three last blocks of 20 cards of the GT. The GT total score correlated significantly with execution time of the Stroop interference condition and the Trail Making Task B, as well as with the two measures (correct sequence span and number of crossed boxes) of the double condition of Baddeley's task. We postulate that executive functioning (supervisory attentional system) influence performance in the gambling task through mechanisms of inhibitory control, divided attention and working memory. Thus, this task seems to be determined by multiple factors; the process of decision-making may depend on frontal integrity.

  14. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Science.gov (United States)

    Ballew, Bari J; Joseph, Vijai; De, Saurav; Sarek, Grzegorz; Vannier, Jean-Baptiste; Stracker, Travis; Schrader, Kasmintan A; Small, Trudy N; O'Reilly, Richard; Manschreck, Chris; Harlan Fleischut, Megan M; Zhang, Liying; Sullivan, John; Stratton, Kelly; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Alter, Blanche P; Boland, Joseph; Burdett, Laurie; Offit, Kenneth; Boulton, Simon J; Savage, Sharon A; Petrini, John H J

    2013-08-01

    Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  15. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

    Directory of Open Access Journals (Sweden)

    Bari J Ballew

    2013-08-01

    Full Text Available Dyskeratosis congenita (DC is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.

  16. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  17. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  18. The influence of sublingual immunotherapy on several parameters of immunological response in children suffering from atopic asthma and allergic rhinitis depending on asthma features.

    Science.gov (United States)

    Ciepiela, Olga; Zawadzka-Krajewska, Anna; Kotuła, Iwona; Demkow, Urszula

    2014-01-01

    The clinical efficacy of sublingual immunotherapy (SLIT) has already been proven and is known to be high. Its influence on the immunological system of patients suffering from bronchial asthma was also examined. However, it is still unclear how the polysensitisation, coexistence of other atopic disease and asthma treatment step influence the response to treatment with specific immunotherapy. Herein we evaluate the impact of one-year SLIT on selected markers of immunological response depending on different individual and clinical factors of children suffering from atopic asthma and allergic rhinitis. Twenty-five patients aged 8.1 ± 3.1 years (range 5-15 years), 21 boys and 4 girls, suffering from asthma and allergic rhinitis with polysensitisation to seasonal and non-seasonal allergens, shortlisted for SLIT, were included in the study. Th1 cell and Th2 cell percentages, Bcl-2 expression in T cells, and basophil activation after allergen challenge (house dust mite and/or grass pollen antigen in solution used for skin prick tests) in peripheral blood were measured using flow cytometry. The association between clinical features of asthma and the influence of SLIT on immunological parameters was evaluated with exact Fisher test. No association between the influence of one-year sublingual immunotherapy on immunological system and patients' age, polysensitisation, asthma treatment step, or coexistence of any other atopic diseases was observed. However, an increase of the Th1 percentage in children sensitised against more than three allergens was found more often (at the limit of statistical significance) than in the group of children sensitised against three or less allergens. Based on our results, we cannot point to any subgroup isolated in the study, in which the response of the immunological system to sublingual immunotherapy is more satisfactory than any other. Nevertheless, the increase of Th1 cells may be more specific for polysensitised children.

  19. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    reported that the climate based extreme weather event is increasing throughout the world. One of the major chal- lenges before the scientists is to determine whether the ob- served change in extreme weather events exceeds the vari- ability expected through... was recorded in July 1943 on the hills of Mewar and Merwara. Unprecedent flood in Ajmer and Merwara devasted 50 villages and took a toll of 5000 lives (De et al., 2005). Severe Floods occurred to Godavari and Tungabhadra rivers in the last week of August...

  20. Correlation of Ki-67, p53, and Adnab-9 immunohistochemical staining and ploidy with clinical and histopathologic features of severely dysplastic colorectal adenomas.

    Science.gov (United States)

    Sheikh, Rafiq A; Min, Byung Hee; Yasmeen, Shagufta; Teplitz, Raymond; Tesluk, Henry; Ruebner, Boris Henry; Tobi, Martin; Hatfield, James; Fligiel, Suzanne; Lawson, Michael J

    2003-01-01

    Variations of Ki-67, p53, and Adnab-9 monoclonal antibody reactions in colonic adenomas may be associated with colonic cancer risk. We studied the predictive value of these markers for adverse behavior in severely dysplastic colorectal adenomas, such as an associated carcinoma, multiplicity of adenomas, and subsequent development of adenomas. For this purpose we compared theclinical, gross, and histologic characteristics of highly dysplastic index polyps in 42 patients with Ki 67, p53, and Adnab-9 immunostaining and other molecular markers. Polyps were removed endoscopically, and severely dysplastic polyps were stained immunohistochemically with Ki-67, Adnab-9, and p53 protein by the avidin biotin conjugate (ABC) technique. Quantitative DNA (QDNA) was analyzed by computer-assisted image analysis. Ki-67 immunohistochemistry showed reversal of normal distribution of nuclear staining from the normal basal position to the upper third of the colonic crypts. This abnormality of immunostaining in dysplastic adenomas was the earliest detected by the panel we used. A statistically significant correlation was seen between invasiveness of carcinoma in the index polyp and polyp size (P = 0.003), sessile morphology (P = 0.037), and villous or tubulovillous histology (P = 0.019). In the index adenoma, p53 positivity was correlated with multiplicity at initial examination (P = 0.053), villous histology (P = 0.053), invasiveness of carcinoma (P < 0.003), and recurrence of colorectal adenomas (P = 0.025). Although p53 positivity and aneuploidy were correlated with invasiveness of carcinoma in the index polyp (P = 0.025), Adnab-9 positivity was not. However, Adnab-9 positivity in the index polyp was associated with multiplicity of adenomas (P = 0.04) as well as recurrence of adenomas (P < 0.024). In conclusion, in addition to the morphologic and histologic markers already known, Ki-67, Adnab-9 antibody, and p53 protein may be prognostic indicators useful in follow-up of patients

  1. Clinical features and risk factors for severe and critical pregnant women with 2009 pandemic H1N1 influenza infection in China

    Directory of Open Access Journals (Sweden)

    Zhang Peng-jun

    2012-02-01

    Full Text Available Abstract Background 2009 pandemic H1N1 (pH1N1 influenza posed an increased risk of severe illness among pregnant women. Data on risk factors associated with death of pregnant women and neonates with pH1N1 infections are limited outside of developed countries. Methods Retrospective observational study in 394 severe or critical pregnant women admitted to a hospital with pH1N1 influenza from Sep. 1, 2009 to Dec. 31, 2009. rRT-PCR testing was used to confirm infection. In-hospital mortality was the primary endpoint of this study. Univariable logistic analysis and multivariate logistic regression analysis were used to investigate the potential factors on admission that might be associated with the maternal and neonatal mortality. Results 394 pregnant women were included, 286 were infected with pH1N1 in the third trimester. 351 had pneumonia, and 77 died. A PaO2/FiO2 ≤ 200 (odds ratio (OR, 27.16; 95% confidence interval (CI, 2.64-279.70 and higher BMI (i.e. ≥ 30 on admission (OR, 1.26; 95% CI, 1.09 to 1.47 were independent risk factors for maternal death. Of 211 deliveries, 146 neonates survived. Premature delivery (OR, 4.17; 95% CI, 1.19-14.56 was associated neonatal mortality. Among 186 patients who received mechanical ventilation, 83 patients were treated with non-invasive ventilation (NIV and 38 were successful with NIV. The death rate was lower among patients who initially received NIV than those who were initially intubated (24/83, 28.9% vs 43/87, 49.4%; p = 0.006. Septic shock was an independent risk factor for failure of NIV. Conclusions Severe hypoxemia and higher BMI on admission were associated with adverse outcomes for pregnant women. Preterm delivery was a risk factor for neonatal death among pregnant women with pH1N1 influenza infection. NIV may be useful in selected pregnant women without septic shock.

  2. A Case of Adult-Onset Alexander Disease Featuring Severe Atrophy of the Medulla Oblongata and Upper Cervical Cord on Magnetic Resonance Imaging

    Science.gov (United States)

    Yonezu, Tadahiro; Ito, Shoichi; Kanai, Kazuaki; Masuda, Saeko; Shibuya, Kazumoto; Kuwabara, Satoshi

    2012-01-01

    Adult-onset Alexander disease (AOAD) has been increasingly recognized since the identification of the glial fibrillary acidic protein gene mutation in 2001. We report on a 56-year-old man who was genetically confirmed as AOAD with the glial fibrillary acidic protein mutation of p.M74T. He developed spastic tetraparesis, sensory disturbances in four limbs, and mild cognitive impairment without apparent dysarthria and dysphagia. The case was characterized by severe atrophy of the medulla oblongata and upper cervical cord with intramedullary signal intensity changes on magnetic resonance imaging. While AOAD is diverse in clinical presentation, the peculiar magnetic resonance imaging findings of marked atrophy of the medulla oblongata and cervical cord are thought to be highly suggestive of the diagnosis of AOAD. PMID:23185175

  3. Clinical, virological and immunological features from patients infected with re-emergent avian-origin human H7N9 influenza disease of varying severity in Guangdong province.

    Directory of Open Access Journals (Sweden)

    Zi Feng Yang

    Full Text Available The second wave of avian influenza H7N9 virus outbreak in humans spread to the Guangdong province of China by August of 2013 and this virus is now endemic in poultry in this region.Five patients with H7N9 virus infection admitted to our hospital during August 2013 to February 2014 were intensively investigated. Viral load in the respiratory tract was determined by quantitative polymerase chain reaction (Q-PCR and cytokine levels were measured by bead-based flow cytometery.Four patients survived and one died. Viral load in different clinical specimens was correlated with cytokine levels in plasma and broncho-alveolar fluid (BALF, therapeutic modalities used and clinical outcome. Intravenous zanamivir appeared to be better than peramivir as salvage therapy in patients who failed to respond to oseltamivir. Higher and more prolonged viral load was found in the sputum or endotracheal aspirates compared to throat swabs. Upregulation of proinflammatory cytokines IP-10, MCP-1, MIG, MIP-1α/β, IL-1β and IL-8 was found in the plasma and BALF samples. The levels of cytokines in the plasma and viral load were correlated with disease severity. Reactivation of herpes simplex virus type 1(HSV-1 was found in three out of five patients (60%.Expectorated sputum or endotracheal aspirate specimens are preferable to throat swabs for detecting and monitoring H7N9 virus. Severity of the disease was correlated to the viral load in the respiratory tract as well as the extents of cytokinemia. Reactivation of HSV-1 may contribute to clinical outcome.

  4. Using fire-weather forecasts and local weather observations in predicting burning index for individual fire-danger stations.

    Science.gov (United States)

    Owen P. Cramer

    1958-01-01

    Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...

  5. LOCAL WEATHER CLASSIFICATIONS FOR ENVIRONMENTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Katarzyna PIOTROWICZ

    2013-03-01

    Full Text Available Two approaches of local weather type definitions are presented and illustrated for selected stations of Poland and Hungary. The subjective classification, continuing long traditions, especially in Poland, relies on diurnal values of local weather elements. The main types are defined according to temperature with some sub-types considering relative sunshine duration, diurnal precipitation totals, relative humidity and wind speed. The classification does not make a difference between the seasons of the year, but the occurrence of the classes obviously reflects the annual cycle. Another important feature of this classification is that only a minor part of the theoretically possible combination of the various types and sub-types occurs in all stations of both countries. The objective version of the classification starts from ten possible weather element which are reduced to four according to factor analysis, based on strong correlation between the elements. This analysis yields 3 to 4 factors depending on the specific criteria of selection. The further cluster analysis uses four selected weather elements belonging to different rotated factors. They are the diurnal mean values of temperature, of relative humidity, of cloudiness and of wind speed. From the possible ways of hierarchical cluster analysis (i.e. no a priori assumption on the number of classes, the method of furthest neighbours is selected, indicating the arguments of this decision in the paper. These local weather types are important tools in understanding the role of weather in various environmental indicators, in climatic generalisation of short samples by stratified sampling and in interpretation of the climate change.

  6. Probability for Weather and Climate

    Science.gov (United States)

    Smith, L. A.

    2013-12-01

    decision making versus advance science, are noted. It is argued that, just as no point forecast is complete without an estimate of its accuracy, no model-based probability forecast is complete without an estimate of its own irrelevance. The same nonlinearities that made the electronic computer so valuable links the selection and assimilation of observations, the formation of ensembles, the evolution of models, the casting of model simulations back into observables, and the presentation of this information to those who use it to take action or to advance science. Timescales of interest exceed the lifetime of a climate model and the career of a climate scientist, disarming the trichotomy that lead to swift advances in weather forecasting. Providing credible, informative climate services is a more difficult task. In this context, the value of comparing the forecasts of simulation models not only with each other but also with the performance of simple empirical models, whenever possible, is stressed. The credibility of meteorology is based on its ability to forecast and explain the weather. The credibility of climatology will always be based on flimsier stuff. Solid insights of climate science may be obscured if the severe limits on our ability to see the details of the future even probabilistically are not communicated clearly.

  7. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  8. The Features of the Clinical Course and Treatment of Moderately Severe Graves’ Ophthalmopathy in Patients with Graves’ Disease in Response to Catamnesis

    Directory of Open Access Journals (Sweden)

    E K Fattakhova

    2005-03-01

    Full Text Available Objective. To document the course of Graves’ ophthalmopathy (GO, following immunosuppressive therapy and the spontaneous course of the disease in patients with Graves’ disease (GD. Design. Randomized study with three-year follow-up. Patients. 150 euthyroid patients with moderately severe GO. Intervention. In group 1 (n = 52 patients received glucocorticoids (GC alone (prednisolone per os for 5 months, starting dose, 50—80 mg/d; or intravenous, 500—1000 mg/d, given during 3 days weekly; 5—6 cycles in all. Group 2 (n = 51 treated by GC in combination with orbital radiotherapy (16—20 Gy. None of 47 patients of group 3 treated with immunosuppressive therapy either due to contraindications to corticosteroids, or refusal of patients (spontaneous course of GO. Measurements: The activity of GO was scored by the method of Mourits et al., 1997, (Clinical Activity Score, CAS and confirmed by the assessment of serum sICAM-1 (soluble form of intercellular adhesion molecule-1 and uGAGs (the urinary excretion of glycosaminoglycans. Results. Group 2 was characterized with the earliest establishment of the inactive GO (CAS J 2 (in 2.7 ± 1.4 months after beginning of the treatment (p < 0.05, and the lowest frequency of deteriorations (p < 0,05. In the end of observation the “burnt out” stage of GO (fibrosis was revealed in 98% of patients of group 2, that statistically differs from two other groups (p < 0.001. Group 3, in this respect, statistically did not differ from group 1 (45% vs 38%, P = 0.39, detected by comparison of CAS values, uGAGs, sICAM-1, obtained in inactive GO. Conclusions. 1 the absence of statistical verified differences of parameters, obtained in the inactive GO in groups 3 and 1 allow to use active observation at the planning of GO treatment; 2 the most effective strategy of treatment of moderately severe GO should be considered combined immunosuppressive therapy. Key words: graves’disease, ophthalmopathy, hyperthyroidism.

  9. World Weather Extremes. Revision,

    Science.gov (United States)

    1985-12-01

    Ext r-,ncs, Weekl Weather and Crop Bull, Vol. 43, No. 9, pp. 6-8, 27 Feb 56. 21A. ntoli, La Piu Alta Temperatura del Mondo," [The HiLhest Temperi... Temperatura in Libia", Boll Soc Geogr Ita’iana, ser. 8, Vol. 7, pp. 59-71, 1954. 23J. Gentilli, "Libyan Climate", Geograph Rev, V0 l. 45, No. 2, p. 269 S" Apr

  10. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  11. Hypoxaemia in Mozambican children <5 years of age admitted to hospital with clinical severe pneumonia: clinical features and performance of predictor models.

    Science.gov (United States)

    Bassat, Quique; Lanaspa, Miguel; Machevo, Sónia; O'Callaghan-Gordo, Cristina; Madrid, Lola; Nhampossa, Tacilta; Acácio, Sozinho; Roca, Anna; Alonso, Pedro L

    2016-09-01

    To determine the prevalence of hypoxaemia among under-five children admitted to hospital with clinical severe pneumonia and to assess the performance to diagnose hypoxaemia of models based on clinical signs. We conducted a hospital-based survey in a district hospital from Southern Mozambique. A total of 825 children were recruited after obtaining an informed consent. The prevalence of hypoxaemia on admission was 27.9%, and 19.8% of these children died (OR compared with non-hypoxaemic children 3.22, 95% CI 1.98-5.21, P < 0.001). The model with larger area under the ROC curve (AUC-ROC) to predict hypoxaemia included cyanosis or thoracoabdominal breathing or respiratory rate ≥70 breaths per minute. None of the models performed well when tested in different case scenarios of oxygen availability through mathematical modelling, with over 50% of hypoxaemic children not receiving oxygen even in favourable case scenarios. Clinical signs alone or in combination are not suitable to diagnose hypoxaemia. The use of pulse oximeters should be strongly encouraged. © 2016 John Wiley & Sons Ltd.

  12. Clinical features of infants treated for severe retinopathy of prematurity: 8-yearstudy from a large tertiary neonatal intensive care unit in Turkey.

    Science.gov (United States)

    Özen Tunay, Zühal; Özdemir, Özdemir; Ergintürk Acar, Damla; Petriçli, İkbal Seza; Oğuz, Şerife Suna

    2016-01-05

    The aim of this study was to report the gestational age (GA) and birth weight (BW) distribution of premature babies who needed treatment for retinopathy of prematurity (ROP) and to assess the timing of the treatment. The records of 9008 infants who were screened for ROP were examined and 556 infants who underwent laser therapy for ROP were reviewed. Sex, GA, BW, postnatal age, and postmenstrual (PM) age at the time of laser therapy were recorded. The babies were classified as in-born (Group 1) and out-born infants (Group 2). The mean GA was 27.3 weeks (range: 22-33 weeks) and the mean BW was 991.1 g (range: 520-2160 g). Of the treated infants, 7.0% were born later than 32 weeks and 8.3% were born over 1500 g. The mean postnatal age was 9.48 weeks (range: 5-22 weeks) and the mean PM age was 36.72 weeks (range: 29-48 weeks) at the time of treatment. Mean BWs and GAs were significantly higher and the mean postnatal age at the time of laser therapy was significantly earlier in Group 2. Infants with severe ROP had a wider range of BWs and GAs compared to those from developed countries and earlier treatment was needed for out-born infants.

  13. Geochemical behavior under tropical weathering of the Barama-Mazaruni greenstone belt at Omai gold mine, Guiana Shield

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, G. [Universite du Quebec a Montreal (Canada). Dept. des Sciences de la Terre et de l' Atmosphere; Omai Gold Mines, Georgetown (Guyana); Bardoux, M. [Universite du Quebec a Montreal (Canada). Dept. des Sciences de la Terre et de l' Atmosphere

    2002-07-01

    Mineralogical, petrographical, and geochemical studies of the weathering profile have been carried out at Omai Au mine, Guyana. The area is underlain by felsic to mafic volcanic and sedimentary rocks of the Barama-Mazaruni Supergroup, part of the Paleoproterozoic greenstone belts of the Guiana Shield. Tropical rainy climate has favoured extensive lateritization processes and formation of a deeply weathered regolith. The top of the weathering profile consists of lateritic gravel or is masked by the Pleistocene continental-deltaic Berbice Formation. Mineralogical composition of regolith consists mainly of kaolinite, goethite and quark, and subordinately sericite, feldspar, hematite, pyrite, smectite, heavy minerals, and uncommon mineral phases (nacrite, ephesite, corrensite, guyanaite). A specific feature of the weathering profile at Omai is the preservation of fresh hydrothermal pyrite in the saprolith horizon. Chemical changes during the weathering processes depend on various physicochemical and structural parameters. Consequently, the depth should not be the principal criterion for comparison purposes of the geochemical behavior within the weathering profile, but rather an index that measures the degree of supergene alteration that has affected each analyzed sample, independently of the depth of sampling. Thus, the mineralogical index of alteration (MIA) can provide more accurate information about the behavior of major and trace elements in regolith as opposed to unweathered bedrock. It can also aid in establishing a quantitative relationship between intensity of weathering and mobility (leaching or accumulation) of each element in each analyzed sample. At Omai, some major and trace elements that are commonly considered as immobile (ex: TiO{sub 2}, Zr, etc.) during weathering could become mobile in several rock types and cannot be used to calculate the mass and volume balance. In addition, due to higher ''immobile element'' ratios, the

  14. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  15. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  16. NextGen Weather Plan, Version 1.1

    Science.gov (United States)

    2009-09-17

    to-point transport of the weather products. Some data such as the Aviation Digital Data Service (ADDS) are also available via access to special web ...Aeronautics and Space Administration NCV National Ceiling & Visibility NDFD National Digital Forecast Database NEO Net Enabled Operations NEVS Network...World Area Forecast Center WAFS World Area Forecast System WBS Work Breakdown Structure WCS Web Coverage Service WFS Web Feature Service Wx Weather

  17. Weather Support for the 2008 Olympic and Paralympic Sailing Events

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2013-01-01

    Full Text Available The Beijing 2008 Olympic and Paralympic Sailing Competitions (referred to as OPSC hereafter were held at Qingdao during August 9–23 and September 7–13 2008, respectively. The Qingdao Meteorological Bureau was the official provider of weather support for the OPSC. Three-dimensional real-time information with high spatial-temporal resolution was obtained by the comprehensive observation system during the OPSC, which included weather radars, wind profile radars, buoys, automated weather stations, and other conventional observations. The refined forecasting system based on MM5, WRF, and statistical modules provided point-specific hourly wind forecasts for the five venues, and the severe weather monitoring and forecasting system was used in short-term forecasts and nowcasts for rainstorms, gales, and hailstones. Moreover, latest forecasting products, warnings, and weather information were communicated conveniently and timely through a synthetic, speedy, and digitalized network system to different customers. Daily weather information briefings, notice boards, websites, and community short messages were the main approaches for regatta organizers, athletes, and coaches to receive weather service products at 8:00 PM of each day and whenever new updates were available. During the period of OPSC, almost one hundred people were involved in the weather service with innovative service concept, and the weather support was found to be successful and helpful to the OPSC.

  18. A Preliminary Assessment of Daily Weather Conditions in Nuclear Site for Development of Effective Emergency Plan

    International Nuclear Information System (INIS)

    Han, Seok Jung; Ahn, Kwang Il

    2012-01-01

    A radiological emergency preparedness for nuclear sites is recognized as an important measure against anticipated severe accidents with environmental releases of radioactive materials. While there are many individual means in the emergency preparedness for nuclear accidents, one of most important means is to make a decision of evacuation or shelter of the public residents with the emergency plan zone (EPZ) of a nuclear site. In order to prepare an effective strategy for the evacuation as a basis of the emergency preparedness, it may need the understanding of atmospheric dispersion characteristics of radiation releases to the environment, mainly depending upon the weather conditions of a radiation releases location, i.e., a nuclear site. As a preliminary study for the development of an effective emergency plan, the basic features of the weather conditions of a specific site were investigated. A main interest of this study is to identify whether or not the site weather conditions have specific features helpful for a decision making of evacuation of the public residents

  19. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  20. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  1. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  2. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  3. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  4. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  5. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  6. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  7. Screening for Plant Features

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Polder, G.

    2015-01-01

    In this chapter, an overview of different plant features is given, from (sub)cellular to canopy level. A myriad of methods is available to measure these features using image analysis, and often, multiple methods can be used to measure the same feature. Several criteria are listed for choosing a

  8. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  9. SUVI Thematic Maps: A new tool for space weather forecasting

    Science.gov (United States)

    Hughes, J. M.; Seaton, D. B.; Darnel, J.

    2017-12-01

    The new Solar Ultraviolet Imager (SUVI) instruments aboard NOAA's GOES-R series satellites collect continuous, high-quality imagery of the Sun in six wavelengths. SUVI imagers produce at least one image every 10 seconds, or 8,640 images per day, considerably more data than observers can digest in real time. Over the projected 20-year lifetime of the four GOES-R series spacecraft, SUVI will provide critical imagery for space weather forecasters and produce an extensive but unwieldy archive. In order to condense the database into a dynamic and searchable form we have developed solar thematic maps, maps of the Sun with key features, such as coronal holes, flares, bright regions, quiet corona, and filaments, identified. Thematic maps will be used in NOAA's Space Weather Prediction Center to improve forecaster response time to solar events and generate several derivative products. Likewise, scientists use thematic maps to find observations of interest more easily. Using an expert-trained, naive Bayesian classifier to label each pixel, we create thematic maps in real-time. We created software to collect expert classifications of solar features based on SUVI images. Using this software, we compiled a database of expert classifications, from which we could characterize the distribution of pixels associated with each theme. Given new images, the classifier assigns each pixel the most appropriate label according to the trained distribution. Here we describe the software to collect expert training and the successes and limitations of the classifier. The algorithm excellently identifies coronal holes but fails to consistently detect filaments and prominences. We compare the Bayesian classifier to an artificial neural network, one of our attempts to overcome the aforementioned limitations. These results are very promising and encourage future research into an ensemble classification approach.

  10. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  11. Designing a better weather display

    Science.gov (United States)

    Ware, Colin; Plumlee, Matthew

    2012-01-01

    The variables most commonly displayed on weather maps are atmospheric pressure, wind speed and direction, and surface temperature. But they are usually shown separately, not together on a single map. As a design exercise, we set the goal of finding out if it is possible to show all three variables (two 2D scalar fields and a 2D vector field) simultaneously such that values can be accurately read using keys for all variables, a reasonable level of detail is shown, and important meteorological features stand out clearly. Our solution involves employing three perceptual "channels", a color channel, a texture channel, and a motion channel in order to perceptually separate the variables and make them independently readable. We conducted an experiment to evaluate our new design both against a conventional solution, and against a glyph-based solution. The evaluation tested the abilities of novice subjects both to read values using a key, and to see meteorological patterns in the data. Our new scheme was superior especially in the representation of wind patterns using the motion channel, and it also performed well enough in the representation of pressure using the texture channel to suggest it as a viable design alternative.

  12. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  13. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Directory of Open Access Journals (Sweden)

    S. Carretier

    2018-03-01

    Full Text Available The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains

  14. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Science.gov (United States)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  15. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space

  16. Terminal weather information management

    Science.gov (United States)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  17. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. The Challenge of Weather Prediction Old and Modern Ways of Weather Forecasting. B N Goswami. Series Article Volume 2 Issue 3 March 1997 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  19. Weatherization Assistance Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  20. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  1. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  2. Space weather monitoring by groundbased means

    CERN Document Server

    Troshichev, Oleg

    2012-01-01

    This book demonstrates that the method, based on the ground polar cap magnetic observations is a reliable diagnosis of the solar wind energy coming into the magnetosphere Method for the uninterruptive monitoring of the magnetosphere state (i.e. space weather). It shows that the solar wind energy pumping power, can be described by the PC growth rate, thus, the magnetospheric substorms features are predetermined by the PC dynamics. Furthermore, it goes on to show that the beginning and ending of magnetic storms is predictable. The magnetic storm start only if the solar energy input into the magn

  3. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  4. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  5. WIRE: Weather Intelligence for Renewable Energies

    Science.gov (United States)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of

  6. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  7. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  8. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Java programs called Featureous that addresses this issue. Featureous allows a programmer to easily establish feature-code traceability links and to analyze their characteristics using a number of visualizations. Featureous is an extension to the NetBeans IDE, and can itself be extended by third...

  9. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  10. Next generation of weather generators on web service framework

    Science.gov (United States)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.

    2016-12-01

    Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.

  11. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  12. Identifying Patterns in the Weather of Europe for Source Term Estimation

    Science.gov (United States)

    Klampanos, Iraklis; Pappas, Charalambos; Andronopoulos, Spyros; Davvetas, Athanasios; Ikonomopoulos, Andreas; Karkaletsis, Vangelis

    2017-04-01

    parameters, using the Java flavour of the Euratom-supported funded RODOS (Real-time On-line DecisiOn Support) system2 for off-site emergency management after nuclear accidents. Once dispersions have been pre-computed, and immediately after a detected release, the currently observed weather can be matched to the derived weather classes. Since each weather class corresponds to a different plume dispersion pattern, the closest classes to an unseen weather sample, say the current weather, are the most likely to lead us to the release origin. In addressing the above problem, we make use of multiple years of weather reanalysis data from NCAR's version3 of ECMWF's ERA-Interim4. To derive useful weather classes, we evaluate several algorithms, ranging from straightforward unsupervised clustering to more complex methods, including relevant neural-network algorithms, on multiple variables. Variables and feature sets, clustering algorithms and evaluation approaches are all dealt with and presented experimentally. The Big Data Europe platform allows for the implementation and execution of the above tasks in the cloud, in a scalable, robust and efficient way.

  13. Impacts of Severe Space Weather on the Electric Grid

    Science.gov (United States)

    2011-11-01

    human infrastructure are examined, particularly in how they generate geomagnetically induced currents (GICs) in electric grids. The solar origins of...capacitors and AC and HVDC transmission lines all have tripped in prior storms due to relay mis-operations’ (J. Kappenman, Jason Presentation 2011). Over...called quasi-satellite orbits because many large bodies , including the Earth have small "companion" objects in quasi-spacecraft orbits around them

  14. Severe Weather Guide - Mediterranean Ports. 4. Augusta Bay

    Science.gov (United States)

    1988-03-01

    the year. The track o-f strong extratropical storms has moved northward and poses little tiireat to Augusta Bay. Sea breezes are daily occurrences...as temperatures, begin to moderate. Extratropi cal systems begin to transit Europe as the storm track moves southward in advance of the winter...SUB-GROUP 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Augusta Bay

  15. Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868

    International Nuclear Information System (INIS)

    Stucki, Peter; Rickli, Ralph; Broennimann, Stefan; Martius, Olivia; Wanner, Heinz; Bern Univ.; Grebner, Dietmar; Luterbacher, Juerg

    2012-01-01

    The generation of 24 extreme floods in large catchments of the central Alps is analyzed from instrumental and documentary data, newly digitized observations of precipitation (DigiHom) and 20 th Century Reanalysis (20CR) data. Extreme floods are determined by the 95 th percentile of differences between an annual flood and a defined contemporary flood. For a selection of six events between 1868 and 1910, we describe preconditioning elements such as precipitation, temperature, and snow cover anomalies. Specific weather patterns are assessed through a subjective analysis of three-dimensional atmospheric circulation. A focus is placed on synoptic-scale features including mid-tropospheric ascent, low-level moisture transport, propagation of cyclones, and temperature anomalies. We propose a hydro-meteorological classification of all 24 investigated events according to flood-generating weather conditions. Key elements of the upper-level synoptic-scale flow are summarized by five types: (i) pivoting cut-off lows, (ii) elongated cut-off lows, (iii) elongated troughs, (iv) waves (with a kink), and (v) approximately zonal flow over the Alpine region. We found that the most extreme floods (as above, but ≥ 98 th percentile) in Switzerland since 1868 were caused by the interaction of severe hydro-climatologic conditions with a flood-inducing weather situation. The 20CR data provide plausible synoptic-scale meteorological patterns leading to heavy precipitation. The proposed catalogue of weather patterns and hydro-climatologic precursors can give direction when anticipating the possibility of severe floods in the Alpine region. (orig.)

  16. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  17. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    Science.gov (United States)

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  18. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    Science.gov (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  19. Classification of weathered crude oils

    International Nuclear Information System (INIS)

    Vogt, N.B.; Sjoegren, C.E.; Lichtenthaler, G.

    1987-01-01

    The NORDTEST procedure (1) for oil spill identification has been applied successfully at several occasions. The NORDTEST procedure includes analyses of sulfur (XRF), vanadium and nickel (ICP/AAS), GC, HPLC and UV-fluorescence. The NORDTEST procedure does not include GC-MS as an analytical method. As part of a joint Nordic to evaluate the NORDTEST procedure for oil identification, with participants from Denmark, Sweden, Finland and Norway, thirty artificially weathered crude oils from four geographical regions have been analyzed (2). The analytical methods evaluated include sulfur analysis, vanadium and nickel analysis, infrared analysis, UV-fluorescence, gas chromatography, high pressure liquid chromatography and high resolution GC-mass spectrometry. Figure 1 shows the distribution of variables analyzed in each analytical method. The 190 variables from GC-MS were split into 7 groups according to chemical considerations. These were steranes (25 var.), triterpanes (16 var.), di(+)aromatics (63 var.), sulf. aromatics (30 var.), monoaromatics (19 var.), cycloalkanes (15 var.) and n-alkanes (22) variables. The data from these chemical analyses have been evaluated for use in oil spill identification purposes

  20. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer

    2006-08-01

    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  1. Space Weather: The Solar Perspective

    Science.gov (United States)

    Schwenn, Rainer

    2006-08-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  2. Feature Article

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Feature Article. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 80-85 Feature Article. What's New in Computers Windows 95 · Vijnan Shastri · More Details Fulltext PDF. Volume 1 Issue 1 January 1996 pp 86-89 Feature ...

  3. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    2006-01-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  4. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  5. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  6. KZHU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  7. Practical Weathering for Geology Students.

    Science.gov (United States)

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  8. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  9. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    around the sun. If weather is also governed by physical laws, why ... radiate according to Planck's law (higher the temperature of the black body ..... First law of thermodynamics. Relates ... (Third Edition) Charles E Merrill Publishing. Company.

  10. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  11. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  12. KZJX Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  13. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  14. KZFW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  15. KZSE Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  16. KZME Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  17. KZDV Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  18. KZNY Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. KZDC Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  20. KZAU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  1. US Weather Bureau Storm Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  2. The Social and Economic Impacts of Space Weather (US Project)

    Science.gov (United States)

    Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.

    2017-12-01

    The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.

  3. Broadcast media and the dissemination of weather information

    Science.gov (United States)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  4. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  5. Weatherization Works: Final Report of the National Weatherization Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    2001-02-01

    In 1990, the US Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation's largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year. The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it saves energy, lowers fuel bills, and improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years. The Program's mission is to reduce the heating and cooling costs for low-income families--particularly the elderly, persons with disabilities, and children by improving the energy efficiency of their homes and ensuring their health and safety. Substantial progress has been made, but the job is far from over. The Department of Health and Human Services (HHS) reports that the average low-income family spends 12 percent of its income on residential energy, compared to only 3% for the average-income family. Homes where low-income families live also have a greater need for energy efficiency improvements, but less money to pay for them.

  6. Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland

    Directory of Open Access Journals (Sweden)

    R. Auchmann

    2012-02-01

    Full Text Available We analyze weather and climate during the "Year without Summer" 1816 using sub-daily data from Geneva, Switzerland, representing one of the climatically most severely affected regions. The record includes twice daily measurements and observations of air temperature, pressure, cloud cover, wind speed, and wind direction as well as daily measurements of precipitation. Comparing 1816 to a contemporary reference period (1799–1821 reveals that the coldness of the summer of 1816 was most prominent in the afternoon, with a shift of the entire distribution function of temperature anomalies by 3–4 °C. Early morning temperature anomalies show a smaller change for the mean, a significant decrease in the variability, and no changes in negative extremes. Analyzing cloudy and cloud-free conditions separately suggests that an increase in the number of cloudy days was to a significant extent responsible for these features. A daily weather type classification based on pressure, pressure tendency, and wind direction shows extremely anomalous frequencies in summer 1816, with only one day (compared to 20 in an average summer classified as high-pressure situation but a tripling of low-pressure situations. The afternoon temperature anomalies expected from only a change in weather types was much stronger negative in summer 1816 than in any other year. For precipitation, our analysis shows that the 80% increase in summer precipitation compared to the reference period can be explained by 80% increase in the frequency of precipitation, while no change could be found neither in the average intensity of precipitation nor in the frequency distribution of extreme precipitation. In all, the analysis shows that the regional circulation and local cloud cover played a dominant role. It also shows that the summer of 1816 was an example of extreme climate, not extreme weather.

  7. Integration of Weather Avoidance and Traffic Separation

    Science.gov (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  8. Climate Prediction - NOAA's National Weather Service

    Science.gov (United States)

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  9. Space Weather Research in Armenia

    Science.gov (United States)

    Chilingarian, A. A.

    DVIN for ASEC (Data Visualization interactive Network for Aragats Space Environmental Center) is product for accessing and analysis the on-line data from Solar Monitors located at high altitude research station on Mt. Aragats in Armenia. Data from ASEC monitors is used worldwide for scientific purposes and for monitoring of severe solar storms in progress. Alert service, based on the automatic analysis of variations of the different species of cosmic ray particles is available for subscribers. DVIN advantages: DVIN is strategically important as a scientific application to help develop space science and to foster global collaboration in forecasting potential hazards of solar storms. It precisely fits with the goals of the new evolving information society to provide long-term monitoring and collection of high quality scientific data, and enables adequate dialogue between scientists, decision makers, and civil society. The system is highly interactive and exceptional information is easily accessible online. Data can be monitored and analyzed for desired time spans in a fast and reliable manner. The ASEC activity is an example of a balance between the scientific independence of fundamental research and the needs of civil society. DVIN is also an example of how scientific institutions can apply the newest powerful methods of information technologies, such as multivariate data analysis, to their data and also how information technologies can provide convenient and reliable access to this data and to new knowledge for the world-wide scientific community. DVIN provides very wide possibilities for sharing data and sending warnings and alerts to scientists and other entities world-wide, which have fundamental and practical interest in knowing the space weather conditions.

  10. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Science.gov (United States)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division

  11. Weather Advisory: Tornados | Poster

    Science.gov (United States)

    Summer months carry the threat of severe storms and tornados in our area. Take a few moments to consider how well you are prepared in the event of a tornado warning. The time to prepare for a tornado is before it happens. The Federal Emergency Management Agency (FEMA) provides information on how to prepare and what to do in the event of a tornado. Take a few moments to read

  12. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  13. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  14. Weather Derivatives – Origin, Types and Application

    OpenAIRE

    Piotr Binkowski

    2008-01-01

    The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europ...

  15. Energy, variability and weather finance engineering

    Science.gov (United States)

    Roussis, Dimitrios; Parara, Iliana; Gournari, Panagiota; Moustakis, Yiannis; Dimitriadis, Panayiotis; Iliopoulou, Theano; Koutsoyiannis, Demetris; Karakatsanis, Georgios

    2017-04-01

    Most types of renewable energies are characterized by intense intermittency, causing significant instabilities to the grid; further requiring additional infrastructure (e.g. pumped-storage) for buffering hydrometeorological uncertainties, as well as complex operational rules for load balancing. In addition, most intermittent renewable units are subsidized, creating significant market inefficiencies. Weather derivatives comprise mature financial tools for integrating successfully the intermittent-load and base-load components into a unified hybrid energy system and establish their operation within a generalized uncertainty management market. With a growing global market share and 46% utilization of this financial tool by the energy industry and 12% by agriculture (that partially concerns biofuel resources), weather derivatives are projected to constitute a critical subsystem of many grids for buffering frequent hydrometeorological risks of low and medium impacts -which are not covered by standard insurance contracts that aim exclusively at extreme events and high financial damages. In this context, we study the attributes of hydrometeorological time series in a remote and small island in Greece, powered by an autonomous hybrid energy system. Upon the results we choose the optimal underlying index and we further compose and engineer a weather derivative with features of a typical option contract -which we consider most flexible and appropriate for the case- to test our assumptions on its beneficiary effects for both the budget of private energy producers and the island's public administration. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  16. Lanzerotti to Head New AGU Journal on Space Weather

    Science.gov (United States)

    Lifland, Jonathan

    Louis J. Lanzerotti has been named editor of a new AGU online publication devoted to the emerging field of near-Earth space conditions and their effects on technical systems. Space Weather: The International Journal of Research and Applications, will be the first journal dedicated solely to the subject, and will include peer-reviewed research, as well as news, features, and opinion articles. A quarterly magazine digest will also be published from the online edition and distributed free of charge to space weather professionals. Lanzerotti, a longtime AGU member who was elected an AGU Fellow in 1985, is currently a consulting physicist at Lucent Technologies Bell Laboratories, and a distinguished research professor at the New Jersey Institute of Technology. He also serves on the governing board of the American Institute of Physics. He is author or co-author of more than 500 publications, including many related to space weather and its effects on communications.

  17. Acidic weathering of carbonate building stones: experimental assessment

    Directory of Open Access Journals (Sweden)

    Ryszard Kryza

    2009-06-01

    Full Text Available Three types of carbonate rocks, travertine, limestone and marble have been studied to determine their selected technical parameters (water absorption, resistance to salt crystallization damage and reaction to experimentally modelled acid rain weathering imitating the polluted urban atmospheric conditions. The acidic agents present in natural acid rain precipitation, H2SO4, HCl, HNO3, CH3COOH and mixture of all the acids, “Acid mix”, were tested. The initial stages of acid weathering involve, apart from chemical dissolution, particularly intense physical detachment of rock particles (granular disintegration significantly contributing to the total mass loss. Travertine was found to be most prone to salt crystallization damage and to acid weathering, and these features should be taken into account especially in external architectural usage of this stone in cold climate conditions and polluted urban atmosphere.

  18. 911 Call Center (PSAP) Service Areas, Master coverage of "atom" features used as a source to generate several derivative layers for the Sheriff RMS and E-911 map rolls. Cover is painstakingly maintained interactively by GIS staff. All atom boundaries are snapped to the road centerline cover, Published in 2008, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — 911 Call Center (PSAP) Service Areas dataset current as of 2008. Master coverage of "atom" features used as a source to generate several derivative layers for the...

  19. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  20. Trusted Spotter Network Austria - a new standard to utilize crowdsourced weather and impact observations

    Science.gov (United States)

    Krennert, Thomas; Kaltenberger, Rainer; Pistotnik, Georg; Holzer, Alois M.; Zeiler, Franz; Stampfl, Mathias

    2018-05-01

    Information from voluntary storm spotters has been an increasingly important part for the severe weather warning process at the Zentralanstalt für Meteorologie and Geodynamik (ZAMG), Austria's National Weather Service, for almost 15 years. In 2010 a collaboration was formalized and an annual training was established to educate voluntary observers into Trusted Spotters. The return of this investment is a higher credibility of their observations after these spotters have undergone a basic meteorological training and have become aware of their responsibility. The European Severe Storms Laboratory (ESSL) was included to this collaboration to adopt their successful quality control system of severe weather reports, which is employed in the European Severe Weather Database ESWD. That way, reports from Trusted Spotters automatically obtain a higher quality flag, which enables a faster processing by forecasters on duty for severe weather warnings, when time is a critical issue. The concept of combining training for voluntary storm spotters and a thorough quality management was recognized as a Best Practice Model by the European Meteorological Society. We propose to apply this concept also in other European countries and present its advancement into an even broader, pan-European approach. The European Weather Observer app EWOB, recently released by ESSL, provides a novel and easy-to-handle tool to submit weather and respective impact observations. We promote its use to provide better data and information for a further real-time improvement of severe weather warnings.

  1. Research on weathering and biomarkers in heavy fuel oil

    International Nuclear Information System (INIS)

    Ma, Q.; Li, Z.; Yu, Z.

    2008-01-01

    The fate of oil spilled in the ocean depends on several physicochemical and biological factors such as evaporation, dissolution, microbial degradation and photo-oxidation. These weathering processes decrease the low molecules in spilled oils which reduces the harmful effects of spilled oil to the ocean and biota near the spill. In addition to changing the composition of the oil, some weathering processes are key to identifying the spilled oil. As such, the relationship between the weathering processes and the changes in oil composition must be well understood. This paper used gas chromatography and mass spectrometry (GC/MS) to analyze changes of chemical components in heavy fuel oil by weathering in static seawater. The major alkanes of heavy fuel oil include C8 to C33, while the major aromatics include benzene, naphthalene, phenanthrene and dibenzothiophene. After 24 weeks of weathering in seawater, the alkanes from n-C8 to n-C15 evaporated in order of increasing carbon number. The susceptibility of n-alkanes was correlated with carbon numbers. The aromatics evaporated in order of increasing carbon and ring number as weathering time increased. 8 refs., 3 tabs., 5 figs

  2. Recent Progress of Solar Weather Forecasting at Naoc

    Science.gov (United States)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  3. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  4. Feature Extraction

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  5. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  6. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  7. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  8. Vodcasting space weather: The Space Weather FX vodcast series

    Science.gov (United States)

    Collins Petersen, C.; Erickson, P. J.

    2008-06-01

    The topic of space weather is the subject of a series of nine vodcasts (video podcasts) being created by MIT Haystack Observatory (Westford, Massachusetts, USA) and Loch Ness Productions (Groton, Massachusetts, USA). This paper describes the project, its science and outreach goals, and introduces the principal participants.

  9. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  10. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  11. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  12. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  13. Space weathering of small Koronis family members

    Science.gov (United States)

    Thomas, Cristina A.; Rivkin, Andrew S.; Trilling, David E.; Enga, Marie-therese; Grier, Jennifer A.

    2011-03-01

    The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160-163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259-294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9-L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1-5 km that shows the

  14. Weather swap as an instrument for weather risk management in wheat production

    Directory of Open Access Journals (Sweden)

    Marković Todor

    2012-01-01

    Full Text Available A special type of weather derivatives are weather forwards and they exists mostly in the form of weather swaps. Hedging effectiveness in wheat production with and without weather swap was analyzed in this paper using stochastic dominance. The results show that the effect of risk reduction is significant using weather swap, but geographical- basis risk and production-related basis risk are important factor that reduce the utility of weather derivatives.

  15. Periodic weather and climate variations

    International Nuclear Information System (INIS)

    Ivanov, Vladimir V

    2002-01-01

    Variations in meteorological parameters are largely due to periodic processes and can be forecast for several years. Many such processes are related to astronomical factors such as the gravitational influences of the Moon and the Sun, and the modulation of solar irradiance by lunar and planetary motion. The Moon, Jupiter, and Venus have the strongest effect. These influences produce lines in the spectra of meteorological variations, which are combinations of the harmonics of the frequencies of revolution of the planets, the Earth, and the Moon around the Sun with the harmonics of the lunar revolution around the Earth. Due to frequency differences between the orbital and radial motions, fine spectral features of three types appear: line splitting, line-profile complications due to radial oscillations, and additional lines due to the combination of radial-oscillation frequencies with perturbation harmonics. (reviews of topical problems)

  16. The effect of inclement weather on trauma orthopaedic workload.

    LENUS (Irish Health Repository)

    Cashman, J P

    2012-01-31

    BACKGROUND: Climate change models predict increasing frequency of extreme weather. One of the challenges hospitals face is how to make sure they have adequate staffing at various times of the year. AIMS: The aim of this study was to examine the effect of this severe inclement weather on hospital admissions, operative workload and cost in the Irish setting. We hypothesised that there is a direct relationship between cold weather and workload in a regional orthopaedic trauma unit. METHODS: Trauma orthopaedic workload in a regional trauma unit was examined over 2 months between December 2009 and January 2010. This corresponded with a period of severe inclement weather. RESULTS: We identified a direct correlation between the drop in temperature and increase in workload, with a corresponding increase in demand on resources. CONCLUSIONS: Significant cost savings could be made if these injuries were prevented. While the information contained in this study is important in the context of resource planning and staffing of hospital trauma units, it also highlights the vulnerability of the Irish population to wintery weather.

  17. Weather delay costs to trucking.

    Science.gov (United States)

    2012-11-01

    Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...

  18. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sions when the strong wind field appeared spread over the peninsula and central India. This was also seen both in OLR and in vertical velocity fields prepared by National Centre for Medium. Range Weather Forecasting (NCMRWF). A band of low OLR (150–160watts/sqm) could be seen in the south and adjoining central ...

  19. NOAA Weather Radio - All Hazards

    Science.gov (United States)

    Non-Zero All Hazards Logo Emergency Alert Description Event Codes Fact Sheet FAQ Organization Search -event information for all types of hazards: weather (e.g., tornadoes, floods), natural (e.g Management or Preparedness, civil defense, police or mayor/commissioner sets up linkages to send messages on

  20. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  1. Fatigue Strength of Weathering Steel

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Klusák, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 18-22 ISSN 1392-1320 Grant - others:GA MPO(CZ) FT/TA5/076 Institutional support: RVO:68081723 Keywords : fatigue of weathering steel * corrosion pits * fatigue notch factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.522, year: 2012

  2. Dynamic Weather Routes Architecture Overview

    Science.gov (United States)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  3. Skywatch: The Western Weather Guide.

    Science.gov (United States)

    Keen, Richard A.

    The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…

  4. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  5. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    Science.gov (United States)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    the ionospheric profiles in two equatorial sites and in two low latitude sites; (b) several solar radio telescopes to monitor solar activity (under development); (c) the matrix of the GNSS TEC map over South America; (d) the Embrace Airglow All-sky Imagers Network (Embrace GlowNet); and (d) the Embrace Magnetometer Network (Embrace Magnet), all of them in South America. Also, the system allows subscription to space weather alerts and reports. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)

  6. New features in MEDM

    International Nuclear Information System (INIS)

    Evans, K. Jr.

    1999-01-01

    MEDM, which is derived from Motif Editor and Display Manager, is the primary graphical interface to the EPICS control system. This paper describes new features that have been added to MEDM in the last two years. These features include new editing capabilities, a PV Info dialog box, a means of specifying limits and precision, a new implementation of the Cartesian Plot, new features for several objects, new capability for the Related Display, help, a user-configurable Execute Menu, reconfigured start-up options, and availability for Windows 95/98/NT. Over one hundred bugs have been fixed, and the program is quite stable and in extensive use

  7. Geomorphology's role in the study of weathering of cultural stone

    Science.gov (United States)

    Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.

    2002-10-01

    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does

  8. A Real-Time Offshore Weather Risk Advisory System

    Science.gov (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  9. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  10. Vehicle automation and weather : challenges and opportunities.

    Science.gov (United States)

    2016-12-25

    Adverse weather has major impacts on the safety and operations of all roads, from signalized arterials to Interstate highways. Weather affects driver behavior, vehicle performance, pavement friction, and roadway infrastructure, thereby increasing the...

  11. National Weather Service: Watch, Warning, Advisory Display

    Science.gov (United States)

    weather.gov Site Map News Organization Search for: SPC NCEP All NOAA Search by city or zip ... Fire Wx Outlooks RSS Feeds E-Mail Alerts Weather Information Storm Reports Storm Reports Dev. NWS Hazards ...

  12. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  13. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  14. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  15. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  16. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  17. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  18. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  19. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-01-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  20. Scaling in nature: From DNA through heartbeats to weather

    Science.gov (United States)

    Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Ivanov, P. Ch.; Peng, C.-K.; Stanley, H. E.

    1999-12-01

    The purpose of this talk is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent α quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent α is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.

  1. Benefits Analysis of Multi-Center Dynamic Weather Routes

    Science.gov (United States)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  2. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  3. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  4. The Early Years: The Wonders of Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  5. 36 CFR 910.71 - Weather protection.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  6. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are

  7. Cave breakdown by vadose weathering.

    Directory of Open Access Journals (Sweden)

    Osborne R. Armstrong L.

    2002-01-01

    Full Text Available Vadose weathering is a significant mechanism for initiating breakdown in caves. Vadose weathering of ore bodies, mineral veins, palaeokarst deposits, non-carbonate keystones and impure, altered or fractured bedrock, which is intersected by caves, will frequently result in breakdown. Breakdown is an active, ongoing process. Breakdown occurs throughout the vadose zone, and is not restricted to large diameter passages, or to cave ceilings. The surfaces of disarticulated blocks are commonly coated, rather than having fresh broken faces, and blocks continue to disintegrate after separating from the bedrock. Not only gypsum, but also hydromagnesite and aragonite are responsible for crystal wedging. It is impossible to study or identify potential breakdown foci by surface surveys alone, in-cave observation and mapping are essential.

  8. Games and Simulations for Climate, Weather and Earth Science Education

    Science.gov (United States)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  9. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  10. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarpa

    2018-02-01

    Full Text Available Sensitivity to weather conditions, and specially to clouds, is a severe limiting factor to the use of optical remote sensing for Earth monitoring applications. A possible alternative is to benefit from weather-insensitive synthetic aperture radar (SAR images. In many real-world applications, critical decisions are made based on some informative optical or radar features related to items such as water, vegetation or soil. Under cloudy conditions, however, optical-based features are not available, and they are commonly reconstructed through linear interpolation between data available at temporally-close time instants. In this work, we propose to estimate missing optical features through data fusion and deep-learning. Several sources of information are taken into account—optical sequences, SAR sequences, digital elevation model—so as to exploit both temporal and cross-sensor dependencies. Based on these data and a tiny cloud-free fraction of the target image, a compact convolutional neural network (CNN is trained to perform the desired estimation. To validate the proposed approach, we focus on the estimation of the normalized difference vegetation index (NDVI, using coupled Sentinel-1 and Sentinel-2 time-series acquired over an agricultural region of Burkina Faso from May–November 2016. Several fusion schemes are considered, causal and non-causal, single-sensor or joint-sensor, corresponding to different operating conditions. Experimental results are very promising, showing a significant gain over baseline methods according to all performance indicators.

  11. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  12. The waviness of the extratropical jet and daily weather extremes

    Science.gov (United States)

    Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan

    2016-04-01

    In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.

  13. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  14. Extreme Space Weather Events: From Cradle to Grave

    Science.gov (United States)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  15. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    Science.gov (United States)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  16. Weather, Climate and Food Security

    Science.gov (United States)

    Beer, T.

    2016-12-01

    To climatologists food security is dominated by the impacts of weather and climate on food systems. But the link between the atmosphere and food security is more complex. Extreme weather events such as tropical cyclones impact directly on agriculture, but they also impact on the logistical distribution of food and can thus disrupt the food supply chain, especially in urban areas. Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that it is important "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." This talk will review the historical link between weather, climate, drought and food supplies; examine the international situation; and summarise the response of the scientific community

  17. FEATURE ARTICLES

    African Journals Online (AJOL)

    2008-06-01

    Jun 1, 2008 ... Mr. Vice-Chancellor sir, as I ponder on this title many days later, I .... tremendously, the quality of medical research as .... this simple mathematical model is the bedrock of .... Several hypotheses based on quantitative data have.

  18. Space weather and power grids: findings and outlook

    Science.gov (United States)

    Krausmann, Elisabeth; Andersson, Emmelie; Murtagh, William; Mitchison, Neil

    2014-05-01

    in industry against moderate space weather, the vulnerability of the power grid with respect to Carrington-type events is less conclusive and needs to be assessed. • The assessment of space-weather impact on society needs to consider possible interdependencies between critical infrastructures. These interdependencies are not routinely assessed. • Effective risk communication is required to bridge the gap between science and policy and to convey the significance of scientific results to decision makers. • Emergency-response planning for a severe space-weather event needs to consider the full range of potential impacts on critical infrastructure. • For a severe geomagnetic storm inter-institutional and probably international emergency planning efforts are required as response capabilities of individual countries might be overloaded. • In the USA work is in progress to augment the existing regulatory requirements for power-grid operations by introducing new standards to better meet the challenges posed by space-weather risk.

  19. The RMI Space Weather and Navigation Systems (SWANS) Project

    Science.gov (United States)

    Warnant, Rene; Lejeune, Sandrine; Wautelet, Gilles; Spits, Justine; Stegen, Koen; Stankov, Stan

    The SWANS (Space Weather and Navigation Systems) research and development project (http://swans.meteo.be) is an initiative of the Royal Meteorological Institute (RMI) under the auspices of the Belgian Solar-Terrestrial Centre of Excellence (STCE). The RMI SWANS objectives are: research on space weather and its effects on GNSS applications; permanent mon-itoring of the local/regional geomagnetic and ionospheric activity; and development/operation of relevant nowcast, forecast, and alert services to help professional GNSS/GALILEO users in mitigating space weather effects. Several SWANS developments have already been implemented and available for use. The K-LOGIC (Local Operational Geomagnetic Index K Calculation) system is a nowcast system based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, and calculating the local geomagnetic K index. Simultaneously, the planetary Kp index is estimated from solar wind measurements, thus adding to the service reliability and providing forecast capabilities as well. A novel hybrid empirical model, based on these ground-and space-based observations, has been implemented for nowcasting and forecasting the geomagnetic index, issuing also alerts whenever storm-level activity is indicated. A very important feature of the nowcast/forecast system is the strict control on the data input and processing, allowing for an immediate assessment of the output quality. The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution. A key module is the real-time estimation of the ionospheric slab thickness, offering additional infor-mation on the local ionospheric dynamics. The RTK (Real Time Kinematic) status mapping provides a quick look at the small-scale ionospheric effects on the RTK

  20. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simulation and Data Analytics for Mobile Road Weather Sensors

    Science.gov (United States)

    Chettri, S. R.; Evans, J. D.; Tislin, D.

    2016-12-01

    Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the

  2. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  3. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  4. The impact of weather variation on energy consumption in residential houses

    International Nuclear Information System (INIS)

    Fikru, Mahelet G.; Gautier, Luis

    2015-01-01

    Highlights: • There is evidence for significant intraday variation of energy use. • The sensitivity of energy use to weather variation falls via efficiency features. • The sensitivity of energy use to weather depends on the specific time of day/night. • High frequency data helps to accurately model the energy use-weather relationship. - Abstract: This paper studies the impact of weather variation on energy use by using 5-minutes interval weather–energy data obtained from two residential houses: house 1 is a conventional house with advanced efficiency features and house 2 is a net-zero solar house with relatively more advanced efficiency features. Our result suggests that energy consumption in house 2 is not as sensitive to changes in weather variables as the conventional house. On average, we find that a one unit increase in heating and cooling degree minutes increases energy use by about 9% and 5% respectively for house 1 and 5% and 4% respectively for house 2. In addition, our findings suggest that non-temperature variables such as solar radiation and humidity affect energy use where the sensitivity rates for house 2 are consistently lower than that of house 1. Furthermore our result suggests that the sensitivity of energy use to weather depends on the season and specific time of the day/night

  5. Data mining and gap analysis for weather responsive traffic management studies.

    Science.gov (United States)

    2010-12-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the : delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, : hurric...

  6. [Perceived pain and weather changes in rheumatic patients].

    Science.gov (United States)

    Miranda, L Cunha; Parente, M; Silva, C; Clemente-Coelho, P; Santos, H; Cortes, S; Medeiros, D; Ribeiro, J Saraiva; Barcelos, F; Sousa, M; Miguel, C; Figueiredo, R; Mediavilla, M; Simões, E; Silva, M; Patto, J Vaz; Madeira, H; Ferreira, J; Micaelo, M; Leitão, R; Las, V; Faustino, A; Teixeira, A

    2007-01-01

    Rheumatic patients with chronic pain describe in a vivid way the influence of climate on pain and disease activity. Several studies seem to confirm this association. To evaluate and compare in a population of rheumatic patients the perceived influence of weather changes on pain and disease activity This is a retrospective cross-sectional study. For three weeks an assisted self-reported questionnaire with nine dimensions and a VAS pain scale was performed on consecutive out-patients in our clinic. 955 patients 787 female 168 male mean age 57.9 years with several rheumatologic diagnosis were evaluated. Overall 70 of the patients believed that the weather influenced their disease and 40 believed that the influence was high. Morning stiffness was influenced in 54 high influenced in 34 . Autumn and Winter were the most influential periods as well as humidity 67 and low temperatures 59 . In our study as well as in literature we found that a high percentage of patients 70 perceived that weather conditions influenced their pain and disease. Fibromyalgia patients seemed to be strongly influenced by weather changes. Our study confirms that patients perception on the influence of climate on pain and therefore their disease is an important clinical factor and it should be considered when evaluating rheumatic patients.

  7. Federal Aviation Administration weather program to improve aviation safety

    Science.gov (United States)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  8. Featuring animacy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ritter

    2015-01-01

    Full Text Available Algonquian languages are famous for their animacy-based grammatical properties—an animacy based noun classification system and direct/inverse system which gives rise to animacy hierarchy effects in the determination of verb agreement. In this paper I provide new evidence for the proposal that the distinctive properties of these languages is due to the use of participant-based features, rather than spatio-temporal ones, for both nominal and verbal functional categories (Ritter & Wiltschko 2009, 2014. Building on Wiltschko (2012, I develop a formal treatment of the Blackfoot aspectual system that assumes a category Inner Aspect (cf. MacDonald 2008, Travis 1991, 2010. Focusing on lexical aspect in Blackfoot, I demonstrate that the classification of both nouns (Seinsarten and verbs (Aktionsarten is based on animacy, rather than boundedness, resulting in a strikingly different aspectual system for both categories. 

  9. Interactive effects of prey and weather on golden eagle reproduction

    Science.gov (United States)

    Steenhof, Karen; Kochert, Michael N.; McDonald, T.L.

    1997-01-01

    1. The reproduction of the golden eagle Aquila chrysaetos was studied in southwestern Idaho for 23 years, and the relationship between eagle reproduction and jackrabbit Lepus californicus abundance, weather factors, and their interactions, was modelled using general linear models. Backward elimination procedures were used to arrive at parsimonious models.2. The number of golden eagle pairs occupying nesting territories each year showed a significant decline through time that was unrelated to either annual rabbit abundance or winter severity. However, eagle hatching dates were significantly related to both winter severity and jackrabbit abundance. Eagles hatched earlier when jackrabbits were abundant, and they hatched later after severe winters.3. Jackrabbit abundance influenced the proportion of pairs that laid eggs, the proportion of pairs that were successful, mean brood size at fledging, and the number of young fledged per pair. Weather interacted with prey to influence eagle reproductive rates.4. Both jackrabbit abundance and winter severity were important in predicting the percentage of eagle pairs that laid eggs. Percentage laying was related positively to jackrabbit abundance and inversely related to winter severity.5. The variables most useful in predicting percentage of laying pairs successful were rabbit abundance and the number of extremely hot days during brood-rearing. The number of hot days and rabbit abundance were also significant in a model predicting eagle brood size at fledging. Both success and brood size were positively related to jackrabbit abundance and inversely related to the frequency of hot days in spring.6. Eagle reproduction was limited by rabbit abundance during approximately twothirds of the years studied. Weather influenced how severely eagle reproduction declined in those years.7. This study demonstrates that prey and weather can interact to limit a large raptor population's productivity. Smaller raptors could be affected more

  10. Understanding the weather signal in national crop-yield variability

    Science.gov (United States)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  11. Geochemical Weathering in Glacial and Proglacial Environments

    Science.gov (United States)

    Tranter, M.

    2003-12-01

    solution, typically monitored by electrical conductivity, is often inverse with discharge on both a diurnal and a seasonal basis at lower latitudes, but ismore complex at higher latitudes (Figure 1, Figure 2 and Figure 3). Figure 1, Figure 2 and Figure 3 also show that the total flux of glacial solutes is usually dominated by fluxes associated with high discharge, dilute waters. The chemical weathering reactions that are inferred to occur from the field studies have been supported, in part, by controlled laboratory studies (e.g., Brown et al., 1993a). Recent stable-isotope studies have reported the key involvement of microbial processes in certain regions of the glacier bed ( Bottrell and Tranter, 2002), and these processes are yet to be incorporated in lab-based chemical weathering studies. (14K)Figure 1. (a) The temporal variation of discharge and in non-sea-salt calcium (*Ca2+) concentration in runoff from Haut Glacier d'Arolla, a small, warm-based, valley glacier in the Swiss Alps, during 1989 (Brown et al., 1993a). (b) The temporal variation in *Ca2+ flux from Haut Glacier d'Arolla during 1989. Maximum fluxes are associated with higher discharge waters. (9K)Figure 2. (a) The temporal variation of discharge (Q) and non-sea-salt *Ca2+ concentration in runoff from Manitsoq Glacier, a small outlet glacier on the SW margin of the Greenland Ice Sheet, during 1999. The glacier is warm based, but has a cold-based margin during the winter and early ablation season, so displays polythermal-based hydrological features (Skidmore et al., in preparation). (b) The temporal variation in *Ca2+ flux from Manitsoq Glacier during 1999. Maximum flux is associated with an early season "outburst" event, where longer stored subglacial water first exits the glacier. Otherwise, maximum fluxes are associated with higher discharge waters. (10K)Figure 3. (a) The temporal variation of discharge and *Ca2+ concentration in runoff from Scott Turnerbreen, a small, cold-based, valley glacier on

  12. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  13. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  14. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  15. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  16. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    Science.gov (United States)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be

  17. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  18. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  19. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  20. Models of Weather Impact on Air Traffic

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  1. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  2. Scaling a Survey Course in Extreme Weather

    Science.gov (United States)

    Samson, P. J.

    2013-12-01

    "Extreme Weather" is a survey-level course offered at the University of Michigan that is broadcast via the web and serves as a research testbed to explore best practices for large class conduct. The course has led to the creation of LectureTools, a web-based student response and note-taking system that has been shown to increase student engagement dramatically in multiple courses by giving students more opportunities to participate in class. Included in this is the capacity to pose image-based questions (see image where question was "Where would you expect winds from the south") as well as multiple choice, ordered list, free response and numerical questions. Research in this class has also explored differences in learning outcomes from those who participate remotely versus those who physically come to class and found little difference. Moreover the technologies used allow instructors to conduct class from wherever they are while the students can still answer questions and engage in class discussion from wherever they are. This presentation will use LectureTools to demonstrate its features. Attendees are encouraged to bring a mobile device to the session to participate.

  3. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  4. The Spirit of North Dakota: Alive in Weatherization; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    North Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  5. A Tribute to Weatherization Solutions in South Dakota: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    South Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  6. Weatherization Savings Takes Root in New Mexico: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New Mexico demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  7. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  8. Weatherization in Arkansas: A Gem of a Program: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Arkansas demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  9. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. Weatherization is a Hit in Michigan: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Michigan demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  11. Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  12. Taking Weatherization to New Heights in Colorado: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Colorado demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  13. Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  14. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  15. Road weather information for travelers : improving road weather messages and dissemination methods.

    Science.gov (United States)

    2010-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently completed a study titled Human Factors Analysis of Road Weather Advisory and Control Information (Publication No. FHWAJPO- 10-053). The goal of the study was to...

  16. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  17. Weatherization Sails on Maryland's Legacy of Innovation: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Maryland demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  18. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  19. Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  20. Weathering of oils at sea: model/field data comparisons

    International Nuclear Information System (INIS)

    Daling, Per S.; Stroem, Tove

    1999-01-01

    The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predications provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate 'window of opportunity' for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway. (Author)

  1. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems. SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  2. Weather Effects on Crop Diseases in Eastern Germany

    Science.gov (United States)

    Conradt, Tobias

    2017-04-01

    Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.

  3. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems.

    SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  4. Connecting the Pioneers, Current Leaders and the Nature and History of Space Weather with K-12 Classrooms and the General Public

    Science.gov (United States)

    Ng, C.; Thompson, B. J.; Cline, T.; Lewis, E.; Barbier, B.; Odenwald, S.; Spadaccini, J.; James, N.; Stephenson, B.; Davis, H. B.; Major, E. R.; Space Weather Living History

    2011-12-01

    The Space Weather Living History program will explore and share the breakthrough new science and captivating stories of space environments and space weather by interviewing space physics pioneers and leaders active from the International Geophysical Year (IGY) to the present. Our multi-mission project will capture, document and preserve the living history of space weather utilizing original historical materials (primary sources). The resulting products will allow us to tell the stories of those involved in interactive new media to address important STEM needs, inspire the next generation of explorers, and feature women as role models. The project is divided into several stages, and the first stage, which began in mid-2011, focuses on resource gathering. The goal is to capture not just anecdotes, but the careful analogies and insights of researchers and historians associated with the programs and events. The Space Weather Living History Program has a Scientific Advisory Board, and with the Board's input our team will determine the chronology, key researchers, events, missions and discoveries for interviews. Education activities will be designed to utilize autobiographies, newspapers, interviews, research reports, journal articles, conference proceedings, dissertations, websites, diaries, letters, and artworks. With the help of a multimedia firm, we will use some of these materials to develop an interactive timeline on the web, and as a downloadable application in a kiosk and on tablet computers. In summary, our project augments the existing historical records with education technologies, connect the pioneers, current leaders and the nature and history of space weather with K-12 classrooms and the general public, covering all areas of studies in Heliophysics. The project is supported by NASA award NNX11AJ61G.

  5. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  6. Biomass converted carbon quantum dots for all-weather solar cells

    International Nuclear Information System (INIS)

    Meng, Yuanyuan; Zhang, Yue; Sun, Weiyin; Wang, Min; He, Benlin; Chen, Haiyan; Tang, Qunwei

    2017-01-01

    Highlights: •CQDs are converted from soybean powders by a hydrothermal method. •The biomass converted CQDs are used for all-weather DSSCs. •The so-called all-weather DSSCs can generate electricity in the daytime and dark. •A dark efficiency as high as 7.97% is determined on the all-weather photovoltaics. •The launched solar cell extend our knowledge of advanced all-weather solar cells. -- Abstract: A great challenge for state-of-the-art photovoltaic devices is to realize electric power generation in all weathers. We constructively demonstrate here the conversion from biomass to carbon quantum dots for all-weather carbon quantum dot solar cells that can generate electricity in the daytime and in the dark. The combination of green-emitting long persistence phosphors with mesoscopic titanium dioxide realizes optical storage by composite photoanode under illumination and excitation to monochromatic green light in the dark. The optimized all-weather solar cell yields maximized dark power conversion efficiency as high as 7.97% along with persistent electricity output for several hours. This work begins a photovoltaic revolution to forward all-weather solar cells as future energy solutions.

  7. Recent trends of severe head injury in Japan Neurotrauma Data Bank with special reference to road traffic accident. Comparison of clinical features and outcome between Project 1998 and Project 2004

    International Nuclear Information System (INIS)

    Ono, Junichi; Sakamoto, Tetsuya; Kawamata, Tatsuro; Tokutomi, Takashi; Ogawa, Takeki; Shigemori, Minoru; Yamaura, Akira; Nakamura, Norio

    2009-01-01

    This study was conducted to clarify the recent trends of severe head injury in the Japan Neurotrauma Data Bank (JNTDB) with special reference to traffic accident. In the JNTDB, the number of severely head-injured patients (Glasgow Coma Scale (GCS) score of 8 or less) were 832 in Project 1998 and 797 in Project 2004. Those were divided into 2 groups: traffic accident (TA) group, and non-TA (nTA) group. In addition, the former group was classified into 4 groups: 4 wheel vehicle (4WV) group, motorcycle (MC) group, bicycle (BC) group, and pedestrian (P) group. Analyzed here were cause of injury, age distribution, incidence of alcohol intake, means of transportation, clinical severity (GCS and injury severity score), initial CT findings (Traumatic Coma Data Bank), and outcome at discharge (Glasgow Outcome Scale). In the Project 2004; Traffic accident was less common as the cause of injury. The proportion of younger patients was lower in the TA group, especially in the 4WV and MC groups. Incidence of alcohol intake was lower in the TA group, particularly in the MC groups. Patient transfer by helicopter was more common in both the TA and nTA groups. The proportion of GCS of 3 to 5 was lower in the TA group, especially in the MC group. In the initial CT findings, type 3 of diffuse injury and evacuated mass were less frequent in both groups, and in the 4WV, BC, and P groups. Outcome at discharge: Mortality rate was lower in both groups, and in the 4WV, MC and P groups, but the percentage of good outcomes was unchanged. These results indicated the recent trends of severely head-injured patients who were injured by traffic accident. But there were some problems, such as study protocol and meaningless results, so that further verification is indispensable in the JNTDB study. (author)

  8. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    Science.gov (United States)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic

  9. F-radiographic study of uranium distribution in iron hydroxides from crusts of weathering

    International Nuclear Information System (INIS)

    Zhmodik, S.M.; Mironov, A.G.; Nemirovskaya, N.A.

    1980-01-01

    Presented are the results of study of uranium concentrations and peculiarities of its distribution in iron hydroxides from crusts of weathering of aluminium silicate and carbonate rocks. The age of one crusts of weathering is Quaternary, of others - Tertiary. The effect of climatic conditions, composition of source rocks, hydrochemical zoning of the crust of weathering on the uranium fixation by iron hydroxides has been studied. Gamma-spectroscopy, luminescence and autoradiography methods have been used. The mechanism of formation of increased uranium concentrations in iron hydroxides is considered. A conclusion is made that increased uranium concentrations in iron hydroxides may appear in the process of weathering both of aluminium-silicate and carbonate-containing rocks as a result of uranium sorption by fine dispersed iron hydrates. The use of iron hydroxides with increased (anomalous) uranium concentrations as a direct search feature without additional investigations can lead to wrong conclusions

  10. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  11. Crowdsourcing of weather observations at national meteorological and hydrological services in Europe

    Science.gov (United States)

    Krennert, Thomas; Pistotnik, Georg; Kaltenberger, Rainer; Csekits, Christian

    2018-05-01

    National Meteorological and Hydrological Services (NMHSs) increase their efforts to deliver impact-based weather forecasts and warnings. At the same time, a desired increase in cost-efficiency prompts these services to automatize their weather station networks and to reduce the number of human observers, which leads to a lack of ground truth information about weather phenomena and their impact. A possible alternative is to encourage the general public to submit weather observations, which may include crucial information especially in high-impact situations. We wish to provide an overview of the state and properties of existing collaborations between NMHSs and voluntary weather observers or storm spotters across Europe. For that purpose, we performed a survey among 30 European NMHSs, from which 22 NMHSs returned our questionnaire. This study summarizes the most important findings and evaluates the use of crowdsourced information. 86 % of the surveyed NMHSs utilize information provided by the general public, 50 % have established official collaborations with spotter groups, and 18 % have formalized them. The observations are most commonly used for a real-time improvement of severe weather warnings, their verification, and an establishment of a climatology of severe weather events. The importance of these volunteered weather and impact observations has strongly risen over the past decade. We expect that this trend will continue and that storm spotters will become an essential part in severe weather warning, like they have been for decades in the United States of America. A rising number of incoming reports implies that quality management will become an increasing issue, and we finally discuss an idea how to handle this challenge.

  12. Feature extraction using fractal codes

    NARCIS (Netherlands)

    B.A.M. Ben Schouten; Paul M. de Zeeuw

    1999-01-01

    Fast and successful searching for an object in a multimedia database is a highly desirable functionality. Several approaches to content based retrieval for multimedia databases can be found in the literature [9,10,12,14,17]. The approach we consider is feature extraction. A feature can be seen as a

  13. Feature Extraction Using Fractal Codes

    NARCIS (Netherlands)

    B.A.M. Schouten (Ben); P.M. de Zeeuw (Paul)

    1999-01-01

    htmlabstractFast and successful searching for an object in a multimedia database is a highly desirable functionality. Several approaches to content based retrieval for multimedia databases can be found in the literature [9,10,12,14,17]. The approach we consider is feature extraction. A feature can

  14. Features of Fragile X Syndrome

    Science.gov (United States)

    ... Disabilities in FXS include a range from moderate learning disabilities to more severe intellectual disabilities. Physical features may ... intellectual disability. Others may have moderate or mild learning disabilities, emotional/mental health issues, general anxiety and/or ...

  15. Producing Daily and Embedded Hourly Rainfall Data Using a Novel Weather Generator

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2013-01-01

    Full Text Available The number of worldwide extreme drought and flood events has risen significantly in recent years. Many studies confer that climate change may cause more intensive and extreme events. Simulating the impact of climate change often requires weather data as inputs to assessment models. Stochastic weather generators have been developed to produce weather data with the same temporal resolution based on the outputs of GCMs. Reservoir simulation normally uses operational rules in daily and hourly time steps for water supply and flood reduction, respectively. Simulating consecutive drought and flood events simultaneously requires a weather generator to produce different temporal resolution data. This work develops a continuous weather generator to generate daily and hourly precipitation data for regular wet days and severe storms, respectively. Daily rainfall data is generated for regular wet days using Exponential distribution or Weibull distribution, while the total rainfall data for severe storms is generated using the Pearson type III or Log Pearson type III distribution. Moreover, hourly rainfall is determined based on generated hyetographs. Simulation results indicate that the proposed continuous weather generator can generate daily and hourly rainfall reasonably. The proposed weather generator is thus highly promising for use in evaluating how climate change impacts reservoir operations that are significantly influenced by more frequent and intensive consecutive drought and flood events.

  16. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  17. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  18. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  19. The Early Years: About the Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2015-01-01

    Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…

  20. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...