WorldWideScience

Sample records for severe lung inflammation

  1. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy.

    Science.gov (United States)

    Song, Jeong Ah; Park, Hyun-Ju; Yang, Mi-Jin; Jung, Kyung Jin; Yang, Hyo-Seon; Song, Chang-Woo; Lee, Kyuhong

    2014-07-01

    Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Iron supplementation decreases severity of allergic inflammation in murine lung.

    Directory of Open Access Journals (Sweden)

    Laura P Hale

    Full Text Available The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.

  3. Low Tidal Volume Reduces Lung Inflammation Induced by Liquid Ventilation in Piglets With Severe Lung Injury.

    Science.gov (United States)

    Jiang, Lijun; Feng, Huizhen; Chen, Xiaofan; Liang, Kaifeng; Ni, Chengyao

    2017-05-01

    Total liquid ventilation (TLV) is an alternative treatment for severe lung injury. High tidal volume is usually required for TLV to maintain adequate CO 2 clearance. However, high tidal volume may cause alveolar barotrauma. We aim to investigate the effect of low tidal volume on pulmonary inflammation in piglets with lung injury and under TLV. After the establishment of acute lung injury model by infusing lipopolysaccharide, 12 piglets were randomly divided into two groups, TLV with high tidal volume (25 mL/kg) or with low tidal volume (6 mL/kg) for 240 min, respectively. Extracorporeal CO 2 removal was applied in low tidal volume group to improve CO 2 clearance and in high tidal volume group as sham control. Gas exchange and hemodynamic status were monitored every 30 min during TLV. At the end of the study, pulmonary mRNA expression and plasmatic concentration of interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured by collecting lung tissue and blood samples from piglets. Arterial blood pressure, PaO 2 , and PaCO 2 showed no remarkable difference between groups during the observation period. Compared with high tidal volume strategy, low tidal volume resulted in 76% reduction of minute volume and over 80% reduction in peak inspiratory pressure during TLV. In addition, low tidal volume significantly diminished pulmonary mRNA expression and plasmatic level of IL-6 and IL-8. We conclude that during TLV, low tidal volume reduces lung inflammation in piglets with acute lung injury without compromising gas exchange. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  5. Myricetin attenuates lung inflammation and provides protection ...

    African Journals Online (AJOL)

    stress in lungs ... Table 1: Effect of myricetin on oxidative stress biomarkers in the lung; mean ± SEM (n = 20); # compared with .... known to release MPO during acute inflammation .... on acute hypoxia-induced exercise intolerance and.

  6. Absence of the common gamma chain (γ(c)), a critical component of the Type I IL-4 receptor, increases the severity of allergic lung inflammation.

    Science.gov (United States)

    Dasgupta, Preeta; Qi, Xiulan; Smith, Elizabeth P; Keegan, Achsah D

    2013-01-01

    The T(H)2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates T(H)2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling T(H)2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γ(c)) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4⁺ OT-II T cells were adoptively transferred into RAG2⁻/⁻ and γ(c)⁻/⁻ mice and allergic lung disease was induced. Both γ(c)⁻/⁻ and γcxRAG2⁻/⁻ mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2⁻/⁻ mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γ(c)⁻/⁻ mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher T(H)2 cytokine levels in the BAL and an altered DC phenotype in the γ(c)⁻/⁻ recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γ(c)-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of T(H)2 effectors. However, the Type I R regulates AAM protein expression in macrophages.

  7. Inflammation and angiogenesis in fibrotic lung disease.

    Science.gov (United States)

    Keane, Michael P; Strieter, Robert M; Lynch, Joseph P; Belperio, John A

    2006-12-01

    The pathogenesis of pulmonary fibrosis is poorly understood. Although inflammation has been presumed to have an important role in the development of fibrosis this has been questioned recently, particularly with regard to idiopathic pulmonary fibrosis (IPF). It is, however, increasingly recognized that the polarization of the inflammatory response toward a type 2 phenotype supports fibroproliferation. Increased attention has been on the role of noninflammatory structural cells such as the fibroblast, myofibroblast, epithelial cell, and endothelial cells. Furthermore, the origin of these cells appears to be multifactorial and includes resident cells, bone marrow-derived cells, and epithelial to mesenchymal transition. Increasing evidence supports the presence of vascular remodeling in fibrotic lung disease, although the precise role in the pathogenesis of fibrosis remains to be determined. Therefore, the pathogenesis of pulmonary fibrosis is complex and involves the interaction of multiple cell types and compartments within the lung.

  8. A dual role for the immune response in a mouse model of inflammation-associated lung cancer

    OpenAIRE

    Dougan, Michael; Li, Danan; Neuberg, Donna; Mihm, Martin; Googe, Paul; Wong, Kwok-Kin; Dranoff, Glenn

    2011-01-01

    Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary in...

  9. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  10. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  11. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    Science.gov (United States)

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  12. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  13. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.

    Science.gov (United States)

    Gavina, Manuela; Luciani, Alessandro; Villella, Valeria R; Esposito, Speranza; Ferrari, Eleonora; Bressani, Ilaria; Casale, Alida; Bruscia, Emanuela M; Maiuri, Luigi; Raia, Valeria

    2013-08-01

    Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy. Copyright © 2012 Wiley Periodicals, Inc.

  14. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  15. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  16. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  17. Size effects of latex nanomaterials on lung inflammation in mice

    International Nuclear Information System (INIS)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 μg/animal) with three sizes (25, 50, and 100 nm), LPS (75 μg/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 μg/animal), allergen (ovalbumin: OVA; 1 μg/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation

  18. PET imaging of lung inflammation with [18F]FEDAC, a radioligand for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available PURPOSE: The translocator protein (18 kDa (TSPO is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET imaging of lung inflammation with [(18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung. METHODS: An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [(18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays. RESULTS: The uptake of [(18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [(18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [(18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs. CONCLUSION: From this study we conclude that PET with [(18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [(18F]FEDAC-PET is promising.

  19. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    Science.gov (United States)

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  20. Voriconazole metabolism is influenced by severe inflammation : a prospective study

    NARCIS (Netherlands)

    Veringa, Anette; ter Avest, Mendy; Span, Lambert F. R.; van den Heuvel, Edwin R.; Touw, Daan J.; Zijlstra, Jan G.; Kosterink, Jos G. W.; van der Werf, Tjip S.; Alffenaar, Jan-Willem C.

    Background: During an infection or inflammation, several drug-metabolizing enzymes in the liver are downregulated, including cytochrome P450 iso-enzymes. Since voriconazole is extensively metabolized by cytochrome P450 iso-enzymes, the metabolism of voriconazole can be influenced during inflammation

  1. The assessment of severity of lung injury in sepsis

    Directory of Open Access Journals (Sweden)

    Arsenijević Ljubica

    2004-01-01

    Full Text Available Adult respiratory distress syndrome (ARDS is an acute and severe pulmonary dysfunction. It is clinically characterized by dyspnea and tachypnea, progressive hypoxemia (within 12-48 hours, reduction of pulmonary compliance and diffuse bilateral infiltrates seen on pulmonary radiogram. Etiological factors giving rise to development of the syndrome are numerous. The acute lung injury (AU is defined as the inflammation syndrome and increased permeability, which is associated with radiological and physiological disorders. Lung injury score (LIS, which is composed of four components, is used for making a distinction between two separate but rather similar syndromes. The study was aimed at the assessment of the severity of the lung injury in patients who had suffered from sepsis of the gynecological origin and its influence on the outcome of the disease. The total of 43 female patients was analyzed. Twenty patients (46.51% were diagnosed as having ARDS based on the lung injury score, while 23 patients (53.48% were diagnosed with acute lung injury. In our series, lung injury score ranged from 0.7 to 3.3 in ARDS patients, and lethal outcome ensued in 11 (55% cases in this group. As for the patients with the acute lung injury, the score values ranged from 0.3 to 1.3 and only one patient from this group died (4.34%. The obtained results indicate that high values of the lung injury score are suggestive of the severe respiratory dysfunction as well as that lethal outcome is dependent on LIS value.

  2. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  3. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  4. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  5. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung.

    Science.gov (United States)

    De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R

    2007-12-01

    Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.

  6. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.

  7. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  8. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Science.gov (United States)

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  9. Lung inflammation caused by inhaled toxicants: a review

    Directory of Open Access Journals (Sweden)

    Wong J

    2016-06-01

    Full Text Available John Wong, Bruce E Magun, Lisa J Wood School of Nursing, MGH Institute of Health Professions, Boston, MA, USA Abstract: Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials and those of heavy metals (from paint are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7 may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Keywords: cigarette, mycotoxin, trichothecene, ricin, inflammasome, macrophage, inhibitors

  10. Role of glutathione in immunity and inflammation in the lung

    Directory of Open Access Journals (Sweden)

    Pietro Ghezzi

    2011-01-01

    Full Text Available Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH, regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology, the role of thiols (the topic of this review in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.Keywords: antioxidants, oxidative stress, sepsis, infection, cysteine

  11. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Abdulaleem Alnajar

    Full Text Available Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2 is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.

  12. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap. © 2015 The British Pharmacological Society.

  13. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  15. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  16. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury.

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Monteiro-Neto, Valério; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack; Lima-Neto, Lidio Gonçalves

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100-300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF- α and IL-1 β expression in comparison with vehicle controls ( p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100  μ g/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.

  17. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Javier Freire

    2013-08-01

    Full Text Available The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1, transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1, lymphocyte-activation gene 3 (LAG3, and forkhead box P3 (FOXP3, as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung.

  18. Intermittent Hypoxia Increases the Severity of Bleomycin-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Thomas Gille

    2018-01-01

    Full Text Available Background. Severe obstructive sleep apnea (OSA with chronic intermittent hypoxia (IH is common in idiopathic pulmonary fibrosis (IPF. Here, we evaluated the impact of IH on bleomycin- (BLM- induced pulmonary fibrosis in mice. Methods. C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day or intermittent air (IA. In the four experimental groups, we evaluated (i survival; (ii alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii lung cell apoptosis; and (iv pulmonary fibrosis. Results. Survival at day 21 was lower in the BLM-IH group (p<0.05. Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p=0.02 and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p<0.001. Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p<0.05 versus BLM-IA group. At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. Conclusion. These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.

  19. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico); Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gandolfi, A. Jay, E-mail: gandolfi@pharmacy.arizona.edu [Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ (United States); Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Lantz, R. Clark, E-mail: lantz@email.arizona.edu [Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States); González-Cortes, Tania, E-mail: taniagc2201@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gonzalez-De Alba, Cesar, E-mail: cesargonzalezalba@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Froines, John R., E-mail: jfroines@ucla.edu [Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, CA (United States); Espinosa-Fematt, Jorge A., E-mail: dr.jorge.espinosa@gmail.com [School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico)

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  20. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi

    2017-01-01

    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that invo......Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms...... that involve oxidative stress, inflammation and genotoxicity. The aim of this study was to compare pulmonary effects of candle light combustion particles (CP) with two benchmark diesel exhaust particles (A-DEP and SRM2975). Intratracheal (i.t.) instillation of CP (5mg/kg bodyweight) in C57BL/6n mice produced......-DEP or SRM2975. The i.t. instillation of CP did not generate oxidative damage to DNA in lung tissue, measured as DNA strand breaks and human 8-oxoguanine glycosylase-sensitive sites by the comet assay. The lack of genotoxic response was confirmed in lung epithelial (A549) cells, although the exposure to CP...

  1. Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model.

    Science.gov (United States)

    Wang, Hao; Anthony, Desiree; Yatmaz, Selcuk; Wijburg, Odilia; Satzke, Catherine; Levy, Bruce; Vlahos, Ross; Bozinovski, Steven

    2017-09-15

    Formyl peptide receptor 2/lipoxin A 4 (LXA 4 ) receptor (Fpr2/ALX) co-ordinates the transition from inflammation to resolution during acute infection by binding to distinct ligands including serum amyloid A (SAA) and Resolvin D1 (RvD1). Here, we evaluated the proresolving actions of aspirin-triggered RvD1 (AT-RvD1) in an acute coinfection pneumonia model. Coinfection with Streptococcus pneumoniae and influenza A virus (IAV) markedly increased pneumococcal lung load and neutrophilic inflammation during the resolution phase. Fpr2/ALX transcript levels were increased in the lungs of coinfected mice, and immunohistochemistry identified prominent Fpr2/ALX immunoreactivity in bronchial epithelial cells and macrophages. Levels of circulating and lung SAA were also highly increased in coinfected mice. Therapeutic treatment with exogenous AT-RvD1 during the acute phase of infection (day 4-6 post-pneumococcal inoculation) significantly reduced the pneumococcal load. AT-RvD1 also significantly reduced neutrophil elastase (NE) activity and restored total antimicrobial activity in bronchoalveolar lavage (BAL) fluid (BALF) of coinfected mice. Pneumonia severity, as measured by quantitating parenchymal inflammation or alveolitis was significantly reduced with AT-RvD1 treatment, which also reduced the number of infiltrating lung neutrophils and monocytes/macrophages as assessed by flow cytometry. The reduction in distal lung inflammation in AT-RvD1-treated mice was not associated with a significant reduction in inflammatory and chemokine mediators. In summary, we demonstrate that in the coinfection setting, SAA levels were persistently increased and exogenous AT-RvD1 facilitated more rapid clearance of pneumococci in the lungs, while concurrently reducing the severity of pneumonia by limiting excessive leukocyte chemotaxis from the infected bronchioles to distal areas of the lungs. © 2017 The Author(s).

  2. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Directory of Open Access Journals (Sweden)

    Rhea Bhargava

    Full Text Available Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury, intraperitoneal (IP endotoxin administration (indirect lung injury and, for comparison, intratracheal (IT endotoxin administration (direct lung injury with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation.Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10, BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration], and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping, IP endotoxin (10 µg, or IT endotoxin (80 µg with and without intratracheal (IT IL-6 (25 ng or 200 ng treatment.Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin.IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of

  4. Airway inflammation in severe chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Turato, Graziella; Zuin, Renzo; Miniati, Massimo

    2002-01-01

    Very few studies have been made in-patient with severe chronic obstructive pulmonary disease and some of them carried out, have demonstrated an increment in the intensity of the inflammatory answer in the space and these patients' alveolar walls. However, there are not enough studies on the inflammatory answer in the small airway and in the lung glasses, object of the present study, comparing it with patient with light (COPD) or without COPD, in spite of similar history of smoker

  5. Cyclooxygenase-2 Regulates Th17 Cell Differentiation during Allergic Lung Inflammation

    OpenAIRE

    Li, Hong; Bradbury, J. Alyce; Dackor, Ryan T.; Edin, Matthew L.; Graves, Joan P.; DeGraff, Laura M.; Wang, Ping Ming; Bortner, Carl D.; Maruoka, Shuichiro; Lih, Fred B.; Cook, Donald N.; Tomer, Kenneth B.; Jetten, Anton M.; Zeldin, Darryl C.

    2011-01-01

    Rationale: Th17 cells comprise a distinct lineage of proinflammatory T helper cells that are major contributors to allergic responses. It is unknown whether cyclooxygenase (COX)-derived eicosanoids regulate Th17 cells during allergic lung inflammation.

  6. Lung inhalation scintigraphy with radioactive aerosols in several pulmonary diseases

    International Nuclear Information System (INIS)

    Martins, L.R.; Marioni Filho, H.; Romaldini, H.; Uehara, C.; Alonso, G.

    1983-01-01

    The pulmonary ventilation scintigraphy with 99m Tc diethylene-triamine-pentaacetate (99mTc-DTPA) delivered through a new nebulizer system when analyzed together with the classic lung perfusion scintigraphy with 99mTc-labeled albumin macroaggregates (99mTcMAA) is a very important diagnostic tool in several pulmonary diseases. Several aspects of the lung ventilation-perfusion scintigraphy are studied in 15 people with no lung disease, smokers and nonsmokers. The findings with the lung ventilation-perfusion scintigraphy are also discussed in 34 patients with several pulmonary diseases: lung cancer, chronic obstructive lung disease, policystic pulmonary disease, and pulmonary embolims. The authors concluded that the procedure is a valuable diagnostic tool in several pulmonary diseases, especially because good lung images are obtained, no side effects were detected, the technique is ease and low cost, and it brings new informations, not available with other diagnostic methods. (author)

  7. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  8. New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate

    National Research Council Canada - National Science Library

    Montuschi, Paolo

    2005-01-01

    ... diseases might be relevant to differential diagnosis. Given its noninvasiveness, this method might be suitable for longitudinal studies in patients with lung disease, including children. This book provides an introduction to the analysis of exhaled breath condensate. To provide an overview of lung inflammation, basic and clinical pharmacology of leukotrie...

  9. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  10. Inflammation aggravates disease severity in Marfan syndrome patients.

    Directory of Open Access Journals (Sweden)

    Teodora Radonic

    Full Text Available BACKGROUND: Marfan syndrome (MFS is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-β signaling. However, the contribution of tissue inflammation is not addressed so far. METHODOLOGY/PRINCIPAL FINDINGS: Here we showed that both TGF-β and inflammation are up-regulated in patients with MFS. We analyzed transcriptome-wide gene expression in 55 MFS patients using Affymetrix Human Exon 1.0 ST Array and levels of TGF-β and various cytokines in their plasma. Within our MFS population, increased plasma levels of TGF-β were found especially in MFS patients with aortic root dilatation (124 pg/ml, when compared to MFS patients with normal aorta (10 pg/ml; p = 8×10(-6, 95% CI: 70-159 pg/ml. Interestingly, our microarray data show that increased expression of inflammatory genes was associated with major clinical features within the MFS patients group; namely severity of the aortic root dilatation (HLA-DRB1 and HLA-DRB5 genes; r = 0.56 for both; False Discovery Rate(FDR = 0%, ocular lens dislocation (RAET1L, CCL19 and HLA-DQB2; Fold Change (FC = 1.8; 1.4; 1.5, FDR = 0% and specific skeletal features (HLA-DRB1, HLA-DRB5, GZMK; FC = 8.8, 7.1, 1.3; FDR = 0%. Patients with progressive aortic disease had higher levels of Macrophage Colony Stimulating Factor (M-CSF in blood. When comparing MFS aortic root vessel wall with non-MFS aortic root, increased numbers of CD4+ T-cells were found in the media (p = 0.02 and increased number of CD8+ T-cells (p = 0.003 in the adventitia of the MFS patients. CONCLUSION/SIGNIFICANCE: In conclusion, our results imply a modifying role of inflammation in MFS. Inflammation might be a novel therapeutic target in these patients.

  11. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation.  Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children.......  Results: The neonatal forced expiratory volume at 0.5 seconds was inversely associated with hs-CRP (β-coefficient, −0.12; 95% CI, −0.21 to −0.04; P approach, including hs-CRP, IL-6...

  13. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    Science.gov (United States)

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  14. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  15. Intracerebral abscess: A complication of severe cystic fibrosis lung disease

    OpenAIRE

    Fenton, Mark E; Cockcroft, Donald W; Gjevre, John A

    2008-01-01

    Intracerebral abscess is an uncommon complication of severe cystic fibrosis lung disease. The present report describes a case of fatal multiple intracerebral abscesses in a patient with a severely bronchiectatic, nonfunctioning right lung and chronic low-grade infection. The patient was previously turned down for pneumonectomy. Intracerebral abscess in cystic fibrosis and the potential role of pneumonectomy in the present patient are discussed.

  16. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation

    DEFF Research Database (Denmark)

    Ciofu, Oana; Riis, Bente; Pressler, Tacjana

    2005-01-01

    Oxidative stress caused by chronic lung inflammation in patients with cystic fibrosis (CF) and chronic lung infection with Pseudomonas aeruginosa is characterized by the reactive oxygen species (ROS) liberated by polymorphonuclear leukocytes (PMNs). We formulated the hypothesis that oxidation...

  17. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Science.gov (United States)

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  18. Soyabean oil supplementation effects on perivascular inflammation in lungs induced by bisphenol a: a histological study

    International Nuclear Information System (INIS)

    Shaukat, S.; Hamid, S.; Umbreen, F.

    2017-01-01

    To determine the effect of soyabean oil supplementation on perivascular inflammation in lungs of adult mice induced by Bisphenol A (BPA). Study Design: An experimental study. Place and Duration of Study: Department of Anatomy, Army Medical College, Rawalpindi, in collaboration with the Animal House, National Institute of Health, Islamabad, from June to November 2016. Methodology:Thirty male and female BALB/c mice were divided into three groups, of 10 animals each. Group A animals served as control. Group B animals were given BPA at a dose of 50 mg/Kg body weight/day. Group C animals were given BPA and soyabean oil at doses of 50 mg/Kg body weight/day and 500 mg/day, respectively. All treatments were given once daily for a period of eight weeks. Animals were dissected 24 hours after receiving the last dose. Lung tissue specimen processing and H and E staining was carried out for routine histological study. Perivascular inflammation was morphometrically graded and statistically analysed using Chi-square test with p<0.05. Results: Grade 2 inflammation was recorded in two (20%) animals and grade 3 perivascular inflammation in 80% specimens in Group B; whereas 20% specimens of Group C had grade 2 inflammation and eight (80%) showed grade 1 inflammation. None of the control animals showed any inflammation. All groups were significantly different at p<0.001. Conclusion: BPA produced perivascular inflammation and con-commitant administration of soyabean oil diet protected against it in rodent. (author)

  19. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  20. Lung function and airway inflammation in rats following exposure to combustion products of carbon-graphite/epoxy composite material: comparison to a rodent model of acute lung injury.

    Science.gov (United States)

    Whitehead, Gregory S; Grasman, Keith A; Kimmel, Edgar C

    2003-02-01

    Pulmonary function and inflammation in the lungs of rodents exposed by inhalation to carbon/graphite/epoxy advanced composite material (ACM) combustion products were compared to that of a rodent model of acute lung injury (ALI) produced by pneumotoxic paraquat dichloride. This investigation was undertaken to determine if short-term exposure to ACM smoke induces ALI; and to determine if smoke-related responses were similar to the pathogenic mechanisms of a model of lung vascular injury. We examined the time-course for mechanical lung function, infiltration of inflammatory cells into the lung, and the expression of three inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Male Fischer-344 rats were either exposed to 26.8-29.8 g/m(3) nominal concentrations of smoke or were given i.p. injections of paraquat dichloride. Measurements were determined at 1, 2, 3, and 7 days post exposure. In the smoke-challenged rats, there were no changes in lung function indicative of ALI throughout the 7-day observation period, despite the acute lethality of the smoke atmosphere. However, the animals showed signs of pulmonary inflammation. The expression of TNF-alpha was significantly increased in the lavage fluid 1 day following exposure, which preceded the maximum leukocyte infiltration. MIP-2 levels were significantly increased in lavage fluid at days 2, 3, and 7. This followed the leukocyte infiltration. IFN-gamma was significantly increased in the lung tissue at day 7, which occurred during the resolution of the inflammatory response. The paraquat, which was also lethal to a small percentage of the animals, caused several physiologic changes characteristic of ALI, including significant decreases in lung compliance, lung volumes/capacities, distribution of ventilation, and gas exchange capacity. The expression of TNF-alpha and MIP-2 increased significantly in the lung tissue as well as in the

  1. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium

    International Nuclear Information System (INIS)

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.

    2009-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis

  2. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease.

    Science.gov (United States)

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 ( 67 Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67 Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.

  3. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice

    DEFF Research Database (Denmark)

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang

    2016-01-01

    sensitization and challenge in mice led to the development of allergic lung inflammation (ALI). Subcutaneous infusion of angiotensin II into mice produced AAA. Simultaneous production of ALI in AAA mice doubled abdominal aortic diameter and increased macrophage and mast cell content, arterial media smooth...... and reduced lesion inflammation, plasma IgE, and bronchioalveolar inflammation. Pre-establishment of ALI also increased AAA lesion size, lesion accumulation of macrophages and mast cells, media smooth muscle cell loss, and plasma IgE, reduced plasma interleukin-5, interleukin-13, and transforming growth...... factor-β, and increased bronchioalveolar inflammation. Consequent production of ALI also doubled lesion size of pre-established AAA and increased lesion mast cell and T-cell accumulation, media smooth muscle cell loss, lesion cell proliferation and apoptosis, plasma IgE, and bronchioalveolar inflammation...

  4. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  5. Increased alveolar soluble Annexin V promotes lung inflammation and fibrosis

    OpenAIRE

    Buckley, S.; Shi, W.; Xu, W.; Frey, M.R.; Moats, R.; Pardo, A.; Selman, M.; Warburton, D.

    2015-01-01

    The causes underlying the self-perpetuating nature of idiopathic pulmonary fibrosis (IPF), a progressive and usually lethal disease, remain unknown. We hypothesized that alveolar soluble Annexin V contributes to lung fibrosis, based on the observation that human IPF BALF containing high Annexin V levels promoted fibroblast involvement in alveolar epithelial wound healing that was reduced when Annexin V was depleted from the BALF.

  6. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo

    Science.gov (United States)

    Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647

  7. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  8. Secondhand tobacco smoke and severity in wheezing children: Nasal oxidant stress and inflammation.

    Science.gov (United States)

    Yilmaz, Ozge; Turkeli, Ahmet; Onur, Ece; Bilge, Sema; Yuksel, Hasan

    2018-05-01

    Prenatal and postnatal smoke exposures are associated with many lung diseases in children due to impaired lung function, increased inflammation, and oxidative stress. We aimed to determine the influence of secondhand tobacco smoke exposure on the levels of nasal glutathione, IL-8, IL-17, MMP-9, and TIMP-1, as well as serum surfactant protein-D (SP-D) in wheezy children. We enrolled 150 children with recurrent wheezing and recorded wheezing characteristics at enrollment. We measured the levels of serum cotinine, SP-D, nasal glutathione, IL-8, IL-17, MMP-9, and TIMP-1. Serum cotinine levels between 3 and 12 ng/mL, and above 12 ng/mL were defined as lower and higher level secondhand tobacco smoke exposure, respectively. The ANOVA test, Pearson's correlation analysis and multivariate analysis with a linear regression test were used for the statistical analysis. Ninety-one children had been exposed to lower level secondhand tobacco smoke, while 24 children were exposed to higher level secondhand tobacco smoke. Thirty-five children were not exposed to cigarette smoke. Wheezing symptom scores were higher in exposed children (p = 0.03). Levels of other biomarkers showed no significant difference. Secondhand tobacco smoke exposure is associated with more severe respiratory symptoms in wheezing children. However, levels of nasal or serum inflammatory markers fail to explain this association, either because of different mechanical factors in the process or due to low levels of the biomarkers especially in nasal secretions.

  9. Protease Inhibitors Extracted from Caesalpinia echinata Lam. Affect Kinin Release during Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Ilana Cruz-Silva

    2016-01-01

    Full Text Available Inflammation is an essential process in many pulmonary diseases in which kinins are generated by protease action on kininogen, a phenomenon that is blocked by protease inhibitors. We evaluated kinin release in an in vivo lung inflammation model in rats, in the presence or absence of CeKI (C. echinata kallikrein inhibitor, a plasma kallikrein, cathepsin G, and proteinase-3 inhibitor, and rCeEI (recombinant C. echinata elastase inhibitor, which inhibits these proteases and also neutrophil elastase. Wistar rats were intravenously treated with buffer (negative control or inhibitors and, subsequently, lipopolysaccharide was injected into their lungs. Blood, bronchoalveolar lavage fluid (BALF, and lung tissue were collected. In plasma, kinin release was higher in the LPS-treated animals in comparison to CeKI or rCeEI groups. rCeEI-treated animals presented less kinin than CeKI-treated group. Our data suggest that kinins play a pivotal role in lung inflammation and may be generated by different enzymes; however, neutrophil elastase seems to be the most important in the lung tissue context. These results open perspectives for a better understanding of biological process where neutrophil enzymes participate and indicate these plant inhibitors and their recombinant correlates for therapeutic trials involving pulmonary diseases.

  10. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  11. Severe exacerbations and decline in lung function in asthma

    DEFF Research Database (Denmark)

    O'Byrne, Paul M; Pedersen, Søren; Lamm, Carl Johan

    2009-01-01

    RATIONALE: To evaluate the association between asthma exacerbations and the decline in lung function, as well as the potential effects of an inhaled corticosteroid, budesonide, on exacerbation-related decline in patients with asthma. OBJECTIVES: To determine whether severe asthma exacerbations...... with low-dose inhaled budesonide prevents severe asthma-related events (exacerbations requiring hospitalization or emergency treatment) and decline in lung function. MEASUREMENTS AND MAIN RESULTS: There were 315 patients who experienced at least one severe asthma exacerbation, of which 305 were analyzable...... of reduction afforded by budesonide, in patients who experienced at least one severe asthma-related event compared with those who did not, was statistically significant (P = 0.042). CONCLUSIONS: Severe asthma exacerbations are associated with a more rapid decline in lung function. Treatment with low doses...

  12. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Cormier Stephania A

    2009-07-01

    Full Text Available Abstract Background Atrial natriuretic peptide (ANP and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126 of pro-atrial natriuretic factor (proANF and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD, another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma. Methods A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2 through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid. Results pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation. Conclusion VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.

  13. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  14. Does advanced lung inflammation index (ALI) have prognostic significance in metastatic non-small cell lung cancer?

    Science.gov (United States)

    Ozyurek, Berna Akinci; Ozdemirel, Tugce Sahin; Ozden, Sertac Buyukyaylaci; Erdoğan, Yurdanur; Ozmen, Ozlem; Kaplan, Bekir; Kaplan, Tugba

    2018-01-22

    Lung cancer is the most commonly diagnosed and death-related cancer type and is more frequent in males. Non-small-cell lung cancer (NSCLC) accounts for about 85% of all case. In this study, it was aimed to research the relationship between advanced lung inflammation index (ALI) and the primary mass maximum standardized uptake value (SUVmax) and C-reactive protein (CRP) at initial diagnosis and the prognostic value of ALI in determining the survival in metastatic NSCLC. A total of 112 patients diagnosed as stage 4 non-small-lung cancer in our hospital between January 2006 and December 2013 were included in this study. ALI was calculated as body mass index (BMI) × serum albumin/neutrophil-to-lymphocyte ratio (NLR). The patients were divided into two groups as ALI ALI ≥ 18 (low inflammation). The log-rank test and Cox proportional hazard model were used to identify predictors of mortality. Evaluation was made of 94 male and 18 female patients with a mean age of 59.7 ± 9.9 years. A statistically significant negative relationship was determined between ALI and CRP values (P ALI and SUVmax values (P = .436). The median survival time in patients with ALI ALI ≥ 18, it was 16 months (P = .095). ALI is an easily calculated indicator of inflammation in lung cancer patients. Values <18 can be considered to predict a poor prognosis. © 2018 John Wiley & Sons Ltd.

  15. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    NARCIS (Netherlands)

    Verheijden, Kim A T; Henricks, Paul A J; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild

  16. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Cao, Xin; Wang, Fan; Jiang, Haijing; Guo, Hao; Du, Lei; Guo, Qinglong; Yin, Xiaoxing

    2016-08-01

    Acute lung injury (ALI) often causes significant morbidity and mortality worldwide. Improved treatment and effective strategies are still required for ALI patients. Our previous studies demonstrated that LFG-500, a novel synthesized flavonoid, has potent anti-cancer activities, while its anti-inflammatory effect has not been revealed. In the present study, the in vivo protective effect of LFG-500 on the amelioration of lipopolysaccharide (LPS)-induced ALI and inflammation was detected. LFG-500 attenuated LPS-induced histological alterations, suppressed the infiltration of inflammatory cells in lung tissues and bronchoalveolar lavage fluid, as well as inhibited the secretion of several inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in lung tissues after LPS challenge. In addition, the in vitro effects and mechanisms were studied in LPS stimulated RAW 264.7 cells and THP-1 cells. LFG-500 significantly decreased the secretion and expression of TNF-α, IL-1β, and IL-6 through inhibiting the transcriptional activation of NF-κB. Moreover, overexpression of NF-κB p65 reversed the inhibitory effect of LFG-500 on LPS-induced NF-κB activation and inflammatory cytokine secretion. Further elucidation of the mechanism revealed that p38 and JNK MAPK pathways were involved in the anti-inflammation effect of LFG-500, through which LFG-500 inhibited the classical IKK-dependent pathway and led to inactivation of NF-κB. More importantly, LFG-500 suppressed the expression and nuclear localization of NF-κB in LPS-induced ALI mice. Taken together, these results demonstrated that LFG-500 could attenuate LPS-induced ALI and inflammation by suppressing NF-κB activation, which provides new evidence for the anti-inflammation activity of LFG-500. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  18. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  19. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  20. Spirometry quality in adults with very severe lung function impairment.

    Science.gov (United States)

    Torre-Bouscoulet, Luis; Velázquez-Uncal, Mónica; García-Torrentera, Rogelio; Gochicoa-Rangel, Laura; Fernández-Plata, Rosario; Enright, Paul; Pérez-Padilla, Rogelio

    2015-05-01

    Some technologists worry that patients with very severe lung disease are unable to complete several spirometry maneuvers, which require considerable effort. We retrospectively selected all spirometry tests with an FEV1 30,000 subjects tested during the 3-y period) had adequate quality spirometry. Subjects with airway obstruction were less likely to meet FVC repeatability goals. A poor spirometry quality grade was associated with a very low FVC and a low body mass index, but not older age. Severe lung disease should not be used as an excuse for not meeting spirometry quality goals. Copyright © 2015 by Daedalus Enterprises.

  1. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice.

    Science.gov (United States)

    Mariotto, Sofia; Esposito, Emanuela; Di Paola, Rosanna; Ciampa, Anna; Mazzon, Emanuela; de Prati, Alessandra Carcereri; Darra, Elena; Vincenzi, Simone; Cucinotta, Giovanni; Caminiti, Rocco; Suzuki, Hisanori; Cuzzocrea, Salvatore

    2008-02-01

    In the present study, we show that an aqueous extract of Arbutus unedo L. (AuE), a Mediterranean endemic plant widely employed as an astringent, diuretic and urinary anti-septic, in vitro down-regulates the expression of some inflammatory genes, such as those encoding inducible nitric oxide synthase (iNOS) and intracellular adhesion molecule-(ICAM)-1, exerting a inhibitory action on both IFN-gamma-elicited STAT1 activation and IL-6-elicited STAT3 activation. To evaluate further the effect of AuE in animal models of acute inflammation, we examined whether AuE administration attenuates inflammatory response of murine induced by intrapleural injection of carrageenan. For this purpose we studied: (1) STAT1/3 activation, (2) TNF-alpha, IL-1beta and IL-6 production in pleural exudate, (3) lung iNOS, COX-2 and ICAM-1 expression, (4) neutrophil infiltration, (5) the nitration of cellular proteins by peroxynitrite, (6) lipid peroxidation, (7) prostaglandin E2 and nitrite/nitrate levels and (8) lung injury. We show that AuE strongly down-regulates STAT3 activation induced in the lung by carrageenan with concomitant attenuation of all parameters examined associated with inflammation, suggesting that STAT3 should be a new molecular target for anti-inflammatory treatment. This study demonstrates that acute lung inflammation is significantly attenuated by the treatment with AuE.

  2. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    Science.gov (United States)

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  3. Eosinophils in the lung – modulating apoptosis and efferocytosis in airway inflammation

    Directory of Open Access Journals (Sweden)

    Jennifer M Felton

    2014-07-01

    Full Text Available Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defence against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis. In terms of therapeutic approaches for treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways.

  4. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    Science.gov (United States)

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  5. Euthanasia and Lavage Mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation.

    Science.gov (United States)

    Tighe, Robert M; Birukova, Anastasiya; Yeager, Michael J; Reece, Sky W; Gowdy, Kymberly M

    2018-02-26

    Accurate and reproducible assessments of experimental lung injury and inflammation are critical to basic and translational research. In particular, investigators use varied methods of bronchoalveolar lavage and euthanasia but their impact to assessments of injury and inflammation are unknown. To define potential effects, we compared methods of lavage and euthanasia in uninjured mice and following a mild lung injury model (ozone). C57BL/6J male mice age 8-10 weeks underwent BAL following euthanasia with ketamine/xylazine, carbon dioxide (C0 2 ), or isoflurane. BAL methods included 800-μL instilled and withdrawn three times, and 1 or 3 passive fill(s) and drainage to 20cm H20. Parallel experiments were performed 24hr following 3hr of ozone (O 3 ) exposure at 2 parts per million (ppm). BAL total cell counts/differentials and total protein/albumin were determined. Lung histology was evaluated for lung inflammation/injury. BAL cells were cultured and stimulated with PBS, phorbol myristate acetate (PMA) or lipopolysaccharide (LPS) for 4hr and supernatants were evaluated for cytokine content. In uninjured mice, we observed differences due to the lavage and euthanasia methods. The lavage method increased uninjured and O 3 exposure total cells and total protein/albumin with 800-μL instillation having the highest values. Isoflurane increased uninjured total BAL cells, while C0 2 euthanasia increased the uninjured total protein/albumin levels. These effects limited the ability to detect differences in BAL injury measures following O 3 exposure. In conclusion, the method of lavage and euthanasia affects measures of lung inflammation/injury and should be considered a variable in model assessment.

  6. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C; Schins, R P F [Institut fuer Umweltmedizinische Forschung (IUF) at the Heinrich Heine University Duesseldorf (Germany); Demircigil, G Cakmak; Coskun, Erdem [Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara (Turkey); Schooten, F J van [Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology, University of Maastricht (Netherlands); Borm, P J A [Centre of Expertise in Life Sciences (Cel), Hogeschool Zuyd, Heerlen (Netherlands); Knaapen, A M, E-mail: catrin.albrecht@uni-duesseldorf.d

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with

  7. [Lung dysfunction in patients with severe chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2005-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Raw, Rin, Rex, DLCO-SS, PaO2, and PaCO2 were determined in 36 patients with severe chronic obstructive lung disease (FEV1 volumes and capacities; 83.3% of the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, Raw, Rin, Rex; altered lung volumes and capacities manifested by increased RV, TGV, and TLC, and by decreased VC and FVC; pulmonary gas exchange dysfunction showed up as lowered PaO2 and DLCO-SS, as decreased or increased PaCO2. The observed bronchial patency disorders varied from significant to severe; functional changes in lung volumes and capacities were mild to severe.

  8. Effects of mycobacteria major secretion protein, Ag85B, on allergic inflammation in the lung.

    Directory of Open Access Journals (Sweden)

    Yusuke Tsujimura

    Full Text Available Many epidemiological studies have suggested that the recent increase in prevalence and severity of allergic diseases such as asthma is inversely correlated with Mycobacterium bovis bacillus Calmette Guerin (BCG vaccination. However, the underlying mechanisms by which mycobacterial components suppress allergic diseases are not yet fully understood. Here we showed the inhibitory mechanisms for development of allergic airway inflammation by using highly purified recombinant Ag85B (rAg85B, which is one of the major protein antigens secreted from M. tuberculosis. Ag85B is thought to be a single immunogenic protein that can elicit a strong Th1-type immune response in hosts infected with mycobacteria, including individuals vaccinated with BCG. Administration of rAg85B showed a strong inhibitory effect on the development of allergic airway inflammation with induction of Th1-response and IL-17and IL-22 production. Both cytokines induced by rAg85B were involved in the induction of Th17-related cytokine-production innate immune cells in the lung. Administration of neutralizing antibodies to IL-17 or IL-22 in rAg85B-treated mice revealed that IL-17 induced the infiltration of neutrophils in BAL fluid and that allergen-induced bronchial eosinophilia was inhibited by IL-22. Furthermore, enhancement of the expression of genes associated with tissue homeostasis and wound healing was observed in bronchial tissues after rAg85B administration in a Th17-related cytokine dependent manner. The results of this study provide evidence for the potential usefulness of rAg85B as a novel approach for anti-allergic effect and tissue repair other than the role as a conventional TB vaccine.

  9. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice

    Directory of Open Access Journals (Sweden)

    Barfod Kenneth K

    2010-09-01

    Full Text Available Abstract Background The aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt based biopesticides in mice. Endpoints were lung inflammation evaluated by presence of inflammatory cells in bronchoalveolar lavage fluid (BALF, clearance of bacteria from the lung lumen and histological alterations of the lungs. Hazard identifications of the biopesticides were carried out using intratracheal (i.t. instillation, followed by an inhalation study. The two commercial biopesticides used were based on the Bt. subspecies kurstaki and israelensis, respectively. Groups of BALB/c mice were i.t instilled with one bolus (3.5 × 105 or 3.4 × 106 colony forming units (CFU per mouse of either biopesticide. Control mice were instilled with sterile water. BALFs were collected and the inflammatory cells were counted and differentiated. The BALFs were also subjected to CFU counts. Results BALF cytology showed an acute inflammatory response dominated by neutrophils 24 hours after instillation of biopesticide. Four days after instillation, the neutrophil number was normalised and inflammation was dominated by lymphocytes and eosinophils, whereas 70 days after instillation, the inflammation was interstitially located with few inflammatory cells present in the lung lumen. Half of the instilled mice had remaining CFU recovered from BALF 70 days after exposure. To gain further knowledge with relevance for risk assessment, mice were exposed to aerosols of biopesticide one hour per day for 2 × 5 days. Each mouse received 1.9 × 104 CFU Bt israelensis or 2.3 × 103 CFU Bt kurstaki per exposure. Seventy days after end of the aerosol exposures, 3 out of 17 mice had interstitial lung inflammation. CFU could be recovered from 1 out of 10 mice 70 days after exposure to aerosolised Bt kurstaki. Plethysmography showed that inhalation of Bt aerosol did not induce airway irritation. Conclusions Repeated low dose aerosol

  10. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  11. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  12. Increased lung neutrophil apoptosis and inflammation resolution in nonresponding pneumonia.

    Science.gov (United States)

    Moret, I; Lorenzo, M J; Sarria, B; Cases, E; Morcillo, E; Perpiñá, M; Molina, J M; Menéndez, R

    2011-11-01

    Neutrophil activation state and its relationship with an inflammatory environment in community-acquired pneumonia (CAP) remain insufficiently elucidated. We aimed to evaluate the neutrophil apoptosis and cytokine pattern in CAP patients after 72 h of treatment, and their impact on infection resolution. Apoptosis of blood and bronchoalveolar lavage (BAL) neutrophils was measured in nonresponding CAP (NCAP), in responding CAP (blood only) and in patients without infection (control). Pro-inflammatory (interleukin (IL)-6, IL-8) and anti-inflammatory (IL-10) cytokines were measured. Main outcomes were clinical stability and days of hospitalisation. Basal neutrophil apoptosis was higher in the BAL and blood of NCAP, whereas spontaneous apoptosis (after 24 h culture) was lower. Cytokines in NCAP were higher than in responding CAP and control: IL-6 was increased in BAL and blood, IL-8 in BAL and IL-10 in blood. An increased basal apoptosis (≥20%) in BAL of NCAP was associated with lower systemic IL-10 (p<0.01), earlier clinical stability (p=0.05) and shorter hospital stay (p=0.02). A significant correlation was found for systemic IL-6 and IL-10 with days to reach stability and length of stay. After 72 h of treatment, an increased basal alveolar neutrophil apoptosis might contribute to downregulation of inflammation and to faster clinical stability.

  13. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    International Nuclear Information System (INIS)

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-01-01

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known

  15. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice.

    Science.gov (United States)

    Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C

    2018-02-01

    Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  17. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    OpenAIRE

    da Rosa, Darlan Pase; Forgiarini, Luiz Felipe; Baronio, Diego; Feijó, Cristiano Andrade; Martinez, Dênis; Marroni, Norma Possa

    2012-01-01

    Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice...

  18. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  19. Mannose binding lectin (MBL levels predict lung function decline in severe asthma

    Directory of Open Access Journals (Sweden)

    Ilonka. H. van Veen

    2006-12-01

    Full Text Available There is increasing evidence that activation of the complement system in asthma contributes to ongoing inflammation, tissue damage and airway remodeling. Mannose binding lectin (MBL is a pattern recognition molecule that serves as the key mediator of the lectin pathway of complement activation. MBL levels are genetically determined and vary widely amongst individuals. In the present study we hypothesized that high MBL levels in asthma are associated with increased loss of lung function over time, as a consequence of inflammatory tissue damage. We measured serum MBL levels by ELISA in 68 patients with severe asthma and prospectively determined the change in post-bronchodilator (pb FEV1 over a mean period of 5.7 years. The relationship between MBL and change in pbFEV1 (FEV1 was analysed using (multiple regression analysis and corrected for possible confounders (age, sex, age of onset, asthma duration, and pbFEV1. The median (range MBL level was 332 (10.8-3587 ng·ml–1. MBL was significantly associated with FEV1 (p<0.04. Patients with a high MBL level (332 ng·ml–1 had an increased risk of lung function decline compared to those with low MBL levels (OR (CI: 3.16 (1.14-8.79, p = 0.027; the excess decline being 42 ml·yr–1 (p = 0.01. We conclude that a high MBL level is associated with an increased decline in lung function in patients with severe asthma. MBL might provide a clue towards better understanding of the pathophysiology of ongoing inflammation and subsequent decline in lung function of patients with severe asthma.

  20. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    Science.gov (United States)

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  1. Systemic Inflammation and Lung Function Impairment in Morbidly Obese Subjects with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Astrid van Huisstede

    2013-01-01

    Full Text Available Background. Obesity and asthma are associated. There is a relationship between lung function impairment and the metabolic syndrome. Whether this relationship also exists in the morbidly obese patients is still unknown. Hypothesis. Low-grade systemic inflammation associated with the metabolic syndrome causes inflammation in the lungs and, hence, lung function impairment. Methods. This is cross-sectional study of morbidly obese patients undergoing preoperative screening for bariatric surgery. Metabolic syndrome was assessed according to the revised NCEP-ATP III criteria. Results. A total of 452 patients were included. Patients with the metabolic syndrome (n=293 had significantly higher blood monocyte (mean 5.3 versus 4.9, P=0.044 and eosinophil percentages (median 1.0 versus 0.8, P=0.002, while the total leukocyte count did not differ between the groups. The FEV1/FVC ratio was significantly lower in patients with the metabolic syndrome (76.7% versus 78.2%, P=0.032. Blood eosinophils were associated with FEV1/FVC ratio (adj. B −0.113, P=0.018. Conclusion. Although the difference in FEV1/FVC ratio between the groups is relatively small, in this cross-sectional study, and its clinical relevance may be limited, these data indicate that the presence of the metabolic syndrome may influence lung function impairment, through the induction of relative eosinophilia.

  2. Lung sound analysis helps localize airway inflammation in patients with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Shimoda T

    2017-03-01

    Full Text Available Terufumi Shimoda,1 Yasushi Obase,2 Yukio Nagasaka,3 Hiroshi Nakano,1 Akiko Ishimatsu,1 Reiko Kishikawa,1 Tomoaki Iwanaga1 1Clinical Research Center, Fukuoka National Hospital, Fukuoka, 2Second Department of Internal Medicine, School of Medicine, Nagasaki University, Nagasaki, 3Kyoto Respiratory Center, Otowa Hospital, Kyoto, Japan Purpose: Airway inflammation can be detected by lung sound analysis (LSA at a single point in the posterior lower lung field. We performed LSA at 7 points to examine whether the technique could identify the location of airway inflammation in patients with asthma. Patients and methods: Breath sounds were recorded at 7 points on the body surface of 22 asthmatic subjects. Inspiration sound pressure level (ISPL, expiration sound pressure level (ESPL, and the expiration-to-inspiration sound pressure ratio (E/I were calculated in 6 frequency bands. The data were analyzed for potential correlation with spirometry, airway hyperresponsiveness (PC20, and fractional exhaled nitric oxide (FeNO. Results: The E/I data in the frequency range of 100–400 Hz (E/I low frequency [LF], E/I mid frequency [MF] were better correlated with the spirometry, PC20, and FeNO values than were the ISPL or ESPL data. The left anterior chest and left posterior lower recording positions were associated with the best correlations (forced expiratory volume in 1 second/forced vital capacity: r=–0.55 and r=–0.58; logPC20: r=–0.46 and r=–0.45; and FeNO: r=0.42 and r=0.46, respectively. The majority of asthmatic subjects with FeNO ≥70 ppb exhibited high E/I MF levels in all lung fields (excluding the trachea and V50%pred <80%, suggesting inflammation throughout the airway. Asthmatic subjects with FeNO <70 ppb showed high or low E/I MF levels depending on the recording position, indicating uneven airway inflammation. Conclusion: E/I LF and E/I MF are more useful LSA parameters for evaluating airway inflammation in bronchial asthma; 7-point lung

  3. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  4. [Lung volume reduction surgery for severe pulmonary emphysema in Iceland].

    Science.gov (United States)

    Gunnarsson, Sverrir I; Johannsson, Kristinn B; Guðjónsdóttir, Marta; Jónsson, Steinn; Beck, Hans J; Magnusson, Bjorn; Gudbjartsson, Tomas

    2011-12-01

    Lung volume reduction surgery (LVRS) can benefit patients with severe emphysema. The aim of this study was to evaluate the outcome of LVRS performed in Iceland. A prospective study of 16 consecutive patients who underwent bilateral LVRS through median sternotomy between January 1996 and December 2008. All patients had disabling dyspnea, lung hyperinflation, and emphysema with upper lobe predominance. Preoperatively all patients underwent pulmonary rehabilitation. Spirometry, lung volumes, arterial blood gases and exercise capacity were measured before and after surgery. Mean follow-up time was 8.7 years. Mean age was 59.2 ± 5.9 years. All patients had a history of heavy smoking. There was no perioperative mortality and survival was 100%, 93%, and 63% at 1, 5, and 10 years, respectively. The forced expiratory volume in 1 second (FEV1) and the forced vital capacity (FVC) improved significantly after surgery by 35% (plung capacity, residual volume and partial pressure of CO2 also showed statistically significant improvements but exercise capacity, O2 consumption and diffusing capacity of the lung for CO did not change. Prolonged air leak (≥ 7 days) was the most common complication (n=7). Five patients required reoperation, most commonly for sternal dehiscence (n=4). In this small prospective study, FEV1 and FVC increased and lung volumes and PaCO2 improved after LVRS. Long term survival was satisfactory although complications such as reoperations for sternal dehiscence were common and hospital stay therefore often prolonged.

  5. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Arya A

    2013-11-01

    intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. Conclusion: Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response. Keywords: nanoceria, high altitude, nanomedicine

  6. Influenza Virus-Induced Lung Inflammation Was Modulated by Cigarette Smoke Exposure in Mice

    Science.gov (United States)

    Han, Yan; Ling, Man To; Mao, Huawei; Zheng, Jian; Liu, Ming; Lam, Kwok Tai; Liu, Yuan; Tu, Wenwei; Lau, Yu-Lung

    2014-01-01

    Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might

  7. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice.

    Directory of Open Access Journals (Sweden)

    Yan Han

    Full Text Available Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1 or avian H9N2 (H9N2/G1 virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed

  8. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  9. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia

    NARCIS (Netherlands)

    Hanusch, Christine; Nowak, Kai; Toerlitz, Patrizia; Gill, Ishar S.; Song, Hui; Rafat, Neysan; Brinkkoetter, Paul T.; Leuvenink, Henri G.; Van Ackern, Klaus C.; Yard, Benito A.; Beck, Grietje C.

    2008-01-01

    Background. Endothelial barrier dysfunction severely compromises organ function after reperfusion. Because dopamine pretreatment improves hypothermia mediated barrier dysfunction, we tested the hypothesis that dopamine treatment of lung allografts positively affects tissue damage associated with

  10. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  11. Severe nitrofurantoin lung disease resolving without the use of steroids

    Directory of Open Access Journals (Sweden)

    Bhullar S

    2007-01-01

    Full Text Available We report a case of an elderly woman who developed a severe, chronic pulmonary reaction to nitrofurantoin therapy that she had taken continuously for three years to prevent urinary tract infections. The patient was taking no other drug known to cause lung disease but the diagnosis was delayed by failure to recognize the association between nitrofurantoin and adverse drug reactions affecting the lung. When originally seen, the patient was unable to care for herself due to dyspnea. Bronchoscopy with biopsy ruled out other causes of her pulmonary disease. Immediate withdrawal of nitrofurantoin led to substantial, sustained improvement and disappearance of symptoms over several months without administration of corticosteroids. Nitrofurantoin toxicity should always be considered in any person taking that drug who develops bilateral infiltrates.

  12. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  13. Discrepancy between severity of lung impairment and seniority on the lung transplantation list.

    Science.gov (United States)

    Travaline, J M; Cordova, F C; Furukawa, S; Criner, G J

    2004-12-01

    Organ allocation for lung transplantation, based mainly on accrued time on a waiting list, may not be an equitable system of organ allocation. To provide an objective view of the current practice concerning lung allocation, and timing for transplantation, we examined illness severity and list seniority in patients on a lung transplantation waiting list. Adult patients awaiting lung transplantation underwent testing for mean pulmonary artery pressure (mPpa), maximum oxygen consumption (VO2 max), 6-minute walk distance (6MWD), forced expiratory volume in 1 second, mean partial pressure of carbon dioxide, partial pressure of oxygen/fractional concentration of inspired oxygen, and diffusing capacity of the lung for carbon monoxide. Relationships between physiological variables and waiting list rankings were then determined. Thirty-four patients were tested and there was no correlation between time spent waiting on the list and mPpa (r=0.01; P=.94), VO2 max percentage predicted (r=0.07; P=.71), or 6MWD (r=0.15; P=.42). Many patients with functional impairments as indicated by low maximum VO2 or by short 6MWD are scheduled to receive their transplant after patients with levels that indicate a lower degree of risk. When compared with a hypothetical reranking based on mean Ppa, 24 of the 34 patients (71%) on our current waiting list were found to be 5 positions higher or lower than this new risk-based ranking. Sixteen patients (47%) were 10 or more positions away from their hypothetical severity-based ranking, and 9 (26%) were at least 15 positions out of place. Sixteen of the 34 patients were ranked lower than they would be based on a severity of illness using the pulmonary artery pressure alone, 17 were ranked higher than "should be" based on pulmonary artery mean, and only 1 patient (ranked in position 15) was appropriately positioned based on seniority and severity of disease based on PA mean. Rank order for lung transplantation has no relationship with illness

  14. Pathogenic TH17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling.

    Science.gov (United States)

    Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N

    2017-11-14

    Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.

  15. Role of Quzhou Fructus Aurantii Extract in Preventing and Treating Acute Lung Injury and Inflammation.

    Science.gov (United States)

    Li, Lili; Zhang, Sheng; Xin, Yanfei; Sun, Junying; Xie, Feng; Yang, Lin; Chen, Zhiqin; Chen, Hao; Liu, Fang; Xuan, Yaoxian; You, Zhenqiang

    2018-01-26

    Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO 4 ·5H 2 O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO 4 ·5H 2 O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO 4 ·5H 2 O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.

  16. Increased Intestinal Inflammation and Digestive Dysfunction in Preterm Pigs with Severe Necrotizing Enterocolitis

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Heegaard, Peter M. H.; Skovgaard, Kerstin

    2017-01-01

    The risk factors for necrotizing enterocolitis (NEC) are well known, but the factors involved in the different NEC presentations remain unclear. We hypothesized that digestive dysfunction and intestinal inflammation are mainly affected by severe NEC lesions. In 48 preterm pigs, the association...... between the macroscopic NEC score (range 1-6) and the expression of 48 genes related to inflammation, morphological, and digestive parameters in the distal small intestine was investigated. Only severe NEC cases (score of 5-6) were associated with the upregulation of genes involved in inflammation (CCL2...... and decreased hydrolase activity. A severe inflammatory response and digestive dysfunction are associated mainly with severe NEC. Still, it remains difficult to separate the initial causes of NEC and the later intestinal consequences of NEC in both infants and experimental models....

  17. Histopathological Correlations between Mediastinal Fat-Associated Lymphoid Clusters and the Development of Lung Inflammation and Fibrosis following Bleomycin Administration in Mice.

    Science.gov (United States)

    Elewa, Yaser Hosny Ali; Ichii, Osamu; Takada, Kensuke; Nakamura, Teppei; Masum, Md Abdul; Kon, Yasuhiro

    2018-01-01

    Bleomycin (BLM) has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6) mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs) under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d) following a single 50 μL intranasal (i.n.) instillation of either BLM sulfate (5 mg/kg) (BLM group) or phosphate-buffered saline (control group). The lung fibrosis was examined by Masson's trichrome (MT) stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd) was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs), and high endothelial venules (HEVs). We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT) and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations within the

  18. Histopathological Correlations between Mediastinal Fat-Associated Lymphoid Clusters and the Development of Lung Inflammation and Fibrosis following Bleomycin Administration in Mice

    Directory of Open Access Journals (Sweden)

    Yaser Hosny Ali Elewa

    2018-02-01

    Full Text Available Bleomycin (BLM has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6 mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d following a single 50 μL intranasal (i.n. instillation of either BLM sulfate (5 mg/kg (BLM group or phosphate-buffered saline (control group. The lung fibrosis was examined by Masson’s trichrome (MT stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs, and high endothelial venules (HEVs. We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations

  19. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  20. Aerobic Exercise Decreases Lung Inflammation by IgE Decrement in an OVA Mice Model.

    Science.gov (United States)

    Camargo Hizume-Kunzler, Deborah; Greiffo, Flavia R; Fortkamp, Bárbara; Ribeiro Freitas, Gabriel; Keller Nascimento, Juliana; Regina Bruggemann, Thayse; Melo Avila, Leonardo; Perini, Adenir; Bobinski, Franciane; Duarte Silva, Morgana; Rocha Lapa, Fernanda; Paula Vieira, Rodolfo; Vargas Horewicz, Verônica; Soares Dos Santos, Adair Roberto; Cattelan Bonorino, Kelly

    2017-06-01

    Aerobic exercise (AE) reduces lung function decline and risk of exacerbations in asthmatic patients. However, the inflammatory lung response involved in exercise during the sensitization remains unclear. Therefore, we evaluated the effects of exercise for 2 weeks in an experimental model of sensitization and single ovalbumin-challenge. Mice were divided into 4 groups: mice non-sensitized and not submitted to exercise (Sedentary, n=10); mice non-sensitized and submitted to exercise (Exercise, n=10); mice sensitized and exposed to ovalbumin (OVA, n=10); and mice sensitized, submitted to exercise and exposed to OVA (OVA+Exercise, n=10). 24 h after the OVA/saline exposure, we counted inflammatory cells from bronchoalveolar fluid (BALF), lung levels of total IgE, IL-4, IL-5, IL-10 and IL-1ra, measurements of OVA-specific IgG1 and IgE, and VEGF and NOS-2 expression via western blotting. AE reduced cell counts from BALF in the OVA group (p<0.05), total IgE, IL-4 and IL-5 lung levels and OVA-specific IgE and IgG1 titers (p<0.05). There was an increase of NOS-2 expression, IL-10 and IL-1ra lung levels in the OVA groups (p<0.05). Our results showed that AE attenuated the acute lung inflammation, suggesting immunomodulatory properties on the sensitization process in the early phases of antigen presentation in asthma. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver.

    Science.gov (United States)

    da Rosa, Darlan Pase; Forgiarini, Luiz Felipe; Baronio, Diego; Feijó, Cristiano Andrade; Martinez, Dênis; Marroni, Norma Possa

    2012-01-01

    Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n = 6) or a simulated IH (SIH) (n = 6) for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS), vascular endothelial growth factor (VEGF), and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  2. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    Directory of Open Access Journals (Sweden)

    Darlan Pase da Rosa

    2012-01-01

    Full Text Available Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH. IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n=6 or a simulated IH (SIH (n=6 for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α, nuclear factor kappa B (NF-κB, and tumor necrosis factor (TNF-α, inducible NO synthase (iNOS, vascular endothelial growth factor (VEGF, and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  3. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  4. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  5. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  6. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  7. Targeting neutrophilic inflammation in severe neutrophilic asthma : can we target the disease-relevant neutrophil phenotype?

    NARCIS (Netherlands)

    Bruijnzeel, Piet L B; Uddin, Mohib; Koenderman, Leo

    2015-01-01

    In severe, neutrophilic asthma, neutrophils are thought to have an important role in both the maintenance of the disease and during exacerbations. These patients often display excessive, mucosal airway inflammation with unresolving neutrophilia. Because this variant of asthma is poorly controlled by

  8. Significance of single lung transplantation in the current situation of severe donor shortage in Japan.

    Science.gov (United States)

    Miyoshi, Ryo; Chen-Yoshikawa, Toyofumi F; Hijiya, Kyoko; Motoyama, Hideki; Aoyama, Akihiro; Menju, Toshi; Sato, Toshihiko; Sonobe, Makoto; Date, Hiroshi

    2016-02-01

    Although bilateral lung transplantation is the procedure of choice internationally, single lung transplantation is preferred in Japan because of the severe donor shortage except in cases of contraindications to single lung transplantation. This study aimed to evaluate the clinical characteristics of single lung transplant recipients and outcomes of this procedure at one of the largest lung transplant centers in Japan. Between April 2002 and May 2015, 57 cadaveric lung transplantations (33 single and 24 bilateral) were performed in Kyoto University Hospital. The clinical characteristics of the lung transplant recipients and outcomes of these procedures, including overall survival and postoperative complications, were investigated. Overall, the 1-, 3-, and 5-year survival rates were 86, 77, and 72 %, respectively, with a median follow-up period of 1.9 years. There was no significant difference in survival between patients who underwent single lung transplantations and those who underwent bilateral lung transplantations (p = 0.92). The median waiting time was significantly shorter for single lung transplant patients than for bilateral lung transplant patients (p = 0.02). Native lung complications were seen in 14 out of 33 patients (42 %) who underwent single lung transplantation. There was no significant difference in survival between patients with and without postoperative native lung complications. Single lung transplantation has been performed with acceptable outcomes in our institution. In the current situation of severe donor shortage in Japan, single lung transplantation can remain the first choice of treatment except in cases of contraindications to single lung transplantation.

  9. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    Directory of Open Access Journals (Sweden)

    Ladefoged Ole

    2009-01-01

    Full Text Available Abstract Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-. We studied the effects instillation or inhalation Printex 90 of carbon black (CB and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60 and single walled carbon nanotubes (SWCNT as well as gold particles and quantum dots (QDs. Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.

  10. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

    Directory of Open Access Journals (Sweden)

    O'Shaughnessy Patrick T

    2011-01-01

    Full Text Available Abstract Background There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. Results In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES was 31 μg/g lung (dry weight immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. Conclusions Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.

  11. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  12. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  13. Extraskeletal myxoid chondrosarcoma in the lung: asymptomatic lung mass with severe anemia

    Directory of Open Access Journals (Sweden)

    Zhou Qianjun

    2012-08-01

    Full Text Available Abstract Extraskeletal myxoid chondrosarcoma (EMC is a rare soft-tissue sarcoma, which primarily occurs deep in the extremities, especially in skeletal muscle, or tendon. EMC of the pleura has been described, however, no case of primary EMC arising from lung has been previously reported. We describe herein, a 51-year-old Asian female initially manifested with signs of severe anemia who presented with a lung mass unrelated to pleura that was morphologically typical EMC, with strong immunoreactivity for vimentin and NSE. Two weeks after resection, the anemia was cured. The patient continued with follow-up, without sign of abnormality 32 months after operation. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2882199847396682

  14. 15-Deoxy-Delta-12,14-Prostaglandin J2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma

    Directory of Open Access Journals (Sweden)

    Diego S. Coutinho

    2017-06-01

    Full Text Available 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2 has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA or house dust mite extract (HDM. Characteristics of lung inflammation, airway hyper-reactivity (AHR, mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.

  15. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    Science.gov (United States)

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Protocols to Evaluate Cigarette Smoke-Induced Lung Inflammation and Pathology in Mice.

    Science.gov (United States)

    Vlahos, Ross; Bozinovski, Steven

    2018-01-01

    Cigarette smoking is a major cause of chronic obstructive pulmonary disease (COPD). Inhalation of cigarette smoke causes inflammation of the airways, airway wall remodelling, mucus hypersecretion and progressive airflow limitation. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, in particular skeletal muscle wasting, cardiovascular disease and lung cancer markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we describe a mouse model that we have developed to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.

  17. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    DEFF Research Database (Denmark)

    Raun Jacobsen, Nicklas; Møller, Peter; Alstrup Jensen, Keld

    2009-01-01

    of three carbonaceous particles; CB, fullerenes C-60 (C-60) and single walled carbon nanotubes (SWCNT) as well as gold particles and quantum dots (QDs). Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2...... and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C-60 particles caused much weaker inflammatory responses....... Conclusion: Our data suggest that ApoE(-/-) model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C-60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles...

  18. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  19. Postmortem changes in lungs in severe closed traumatic brain injury complicated by acute respiratory failure

    Directory of Open Access Journals (Sweden)

    V. A. Tumanskiy

    2013-08-01

    Full Text Available V.А. Tumanskіy, S.І. Ternishniy, L.M. Tumanskaya Pathological changes in the lungs were studied in the work of 42 patiens who died from severe closed intracranial injury (SCII. It was complicated with acute respiratory insufficient (ARI. The most modified subpleural areas were selected from every lobe of the lungs for pathological studies. Prepared histological sections were stained by means of hemotoxylin and eosin and by Van Giеson for light microscopy. The results of the investigation have shown absence of the significant difference of pathological changes in the lungs of patients who died from ARI because of severe brain injury and traumatic intracranial hemorrhage. Pathognomic pathological changes in the lungs as a result of acute lung injury syndrome (ALIS were found in deceased patients on the third day since the SCII (n=8. There was a significant bilateral interstitial edema and mild alveolar edema with the presence of red and blood cells in the alveoli, vascular plethora of the septum interalveolar and stasis of blood in the capillaries, the slight pericapillary leukocyte infiltration, subpleural hemorrhage and laminar pulmonary atelectasis. In deceased patients on 4-6 days after SCII that was complicated with ARI (n=14, morphological changes had been detected in the lungs. It was pathognomic for acute respiratory distress syndrome (ARDS with local pneumonic to be layered. A significant interstitial pulmonary edema was observed in the respiratory part of the lungs. The edema has spread from the walls of the alveoli into the interstitial spaces of the bronchioles and blood vessels, and also less marked serous-hemorrhagic alveolar edema with presence of the fibrin in the alveoli and macrophages. The ways of intrapleural lymphatic drainage were dilatated. Histopathological changes in the lungs of those who died on the 7-15th days after severe closed craniocerebral injury with ARI to be complicated (n=12 have been indicative of two

  20. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  1. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity.

    Science.gov (United States)

    Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge

    2015-01-01

    To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  2. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity.

    Science.gov (United States)

    Kelly, A S; Ryder, J R; Marlatt, K L; Rudser, K D; Jenkins, T; Inge, T H

    2016-02-01

    Inflammation, oxidative stress and dysregulation of adipokines are thought to be pathophysiological mechanisms linking obesity to the development of insulin resistance and atherosclerosis. In adults, bariatric surgery reduces inflammation and oxidative stress, and beneficially changes the levels of several adipokines, but little is known about the postsurgical changes among adolescents. In two separate longitudinal cohorts we evaluated change from baseline of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemo-attractant protein-1 (MCP-1), oxidized low-density lipoprotein cholesterol (oxLDL), adiponectin, leptin and resistin up to 12 months following elective laparoscopic Roux-en-Y gastric bypass (RYGB) or vertical sleeve gastrectomy (VSG) surgery in adolescents with severe obesity. In cohort 1, which consisted of 39 adolescents (mean age 16.5±1.6 years; 29 females) undergoing either RYGB or VSG, IL-6 (baseline: 2.3±3.4 pg ml(-1) vs 12 months: 0.8±0.6 pg ml(-1), Padolescents (mean age 16.5±1.6 years; 10 females) undergoing RYGB, results were similar: IL-6 (baseline: 1.7±0.9 pg ml(-1) vs 12 months: 0.4±0.9 pg ml(-1), PBariatric surgery produced robust improvements in markers of inflammation, oxidative stress and several adipokines among adolescents with severe obesity, suggesting potential reductions in risk for type 2 diabetes and cardiovascular disease.

  3. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Relationship between severe obesity and gut inflammation in children: what's next?

    Directory of Open Access Journals (Sweden)

    Assante Luca

    2010-10-01

    Full Text Available Abstract Background Preliminary evidence suggests an association between obesity and gut inflammation. Aims To evaluate the frequency of glucose abnormalities and their correlation with systemic and intestinal inflammation in severely obese children. Patients and Methods Thirty-four children (25 males; median age 10.8 ± 3.4 yrs with severe obesity (BMI >95% were screened for diabetes with oral glucose tolerance test (OGTT, systemic inflammation with C-reactive protein (CRP and gut inflammation with rectal nitric oxide (NO and faecal calprotectin. Results BMI ranged from 23 to 44 kg/m2, and BMI z-score between 2.08 e 4.93 (median 2.69 ± 0.53. Glucose abnormalities were documented in 71% of patients: type 2 diabetes in 29%, impaired fasting glucose (IFG in 58%, and impaired glucose tolerance (IGT in 37.5%. Thirty-one patients (91% were hyperinsulinemic. CRP was increased in 73.5% with a correlation between BMI z-score and CRP (p 0.03. Faecal calprotectin was increased in 47% patients (mean 77 ± 68, and in 50% of children with abnormal glucose metabolism (mean 76 ± 68 μg/g, with a correlation with increasing BMI z-score. NO was pathological in 88%, and in 87.5% of glucose impairment (mean 6.8 ± 5 μM. Conclusions In this study, the prevalence of glucose abnormalities in obese children is higher than in other series; furthermore, a correlation is present between markers of systemic and intestinal inflammation and glucose abnormalities.

  5. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Reed, William; Maronpot, Robert R; Henríquez-Roldán, Carlos; Delgado-Chavez, Ricardo; Calderón-Garcidueñas, Ana; Dragustinovis, Irma; Franco-Lira, Maricela; Aragón-Flores, Mariana; Solt, Anna C; Altenburg, Michael; Torres-Jardón, Ricardo; Swenberg, James A

    2004-01-01

    Air pollution is a complex mixture of gases (e.g., ozone), particulate matter, and organic compounds present in outdoor and indoor air. Dogs exposed to severe air pollution exhibit chronic inflammation and acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by pollutants. We investigated whether residency in cities with high levels of air pollution is associated with human brain inflammation. Expression of cyclooxygenase-2 (COX2), an inflammatory mediator, and accumulation of the 42-amino acid form of beta-amyloid (Abeta42), a cause of neuronal dysfunction, were measured in autopsy brain tissues of cognitively and neurologically intact lifelong residents of cities having low (n:9) or high (n:10) levels of air pollution. Genomic DNA apurinic/apyrimidinic sites, nuclear factor-kappaB activation and apolipoprotein E genotype were also evaluated. Residents of cities with severe air pollution had significantly higher COX2 expression in frontal cortex and hippocampus and greater neuronal and astrocytic accumulation of Abeta42 compared to residents in low air pollution cities. Increased COX2 expression and Abeta42 accumulation were also observed in the olfactory bulb. These findings suggest that exposure to severe air pollution is associated with brain inflammation and Abeta42 accumulation, two causes of neuronal dysfunction that precede the appearance of neuritic plaques and neurofibrillary tangles, hallmarks of Alzheimer's disease.

  6. Tobacco smoke exposure suppresses radiation-induced inflammation in the lung

    International Nuclear Information System (INIS)

    Bjermer, L.; Cai, Y.; Nilsson, K.; Hellstroem, S.; Henriksson, R.

    1993-01-01

    Previous studies on patients with breast cancer, who received postsurgical irradiation, displayed a markedly suppressed inflammatory response in the lung of smoking patients compared to nonsmokers. The aim of the present study was to investigate further the effect of exposure to tobacco smoke on the development of irradiation-induced pneumonitis in the rat. Four groups of animals were used: controls (C); those exposed to tobacco smoke (S); those irradiated but not exposed to smoke (RNS); and those irradiated and exposed to tobacco smoke (RS). The rats were exposed to a diluted main stream of cigarette smoke, at a concentration of about 0.4 mgxl -1 , in a nose-only exposure system for 1 hxday -1 , 5 daysxweek -1 for 10 weeks. Exposure to tobacco smoke started 3 weeks before irradiation. The basal one third of both lungs was exposed to a single radiation dose of 28 Gy (6 MeV photons). All animals were killed 7 weeks after irradiation. We compared findings in bronchoalveolar lavage (BAL) and tissue morphology. The alveolar tissue showed less inflammation in the RS-group than in the RNS-group. Most strikingly, mast cells were increased one hundredfold in the lung interstitium and thirty fold in the peribronchial area in the RNS-group, whereas no increase was found in the RS-group or in the controls. The alveolar septa of the RNS-group were thickened, with occurrence of inflammatory cells and mast cells, whereas the RS-group displayed no difference as compared to the non-irradiated, nonsmoking group (C). There was a marked discrepancy between the findings in BAL and tissue of the alveolar space or lung interstitium. In BAL, neutrophils, and to a lesser extent lymphocytes, were increased both in the RS- and RNS-group; however, with significantly higher numbers in the RNS-group. In contrast, the cells in the alveolar space and interstitium were dominated by mononuclear cells, mainly macrophages. Moreover, a more than twenty fold increase in total cells in the alveolar

  7. Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Menk M

    2018-05-01

    Full Text Available Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2 receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21 might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9, a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9, and a control group that received mechanical ventilation only (control, n=9. Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6

  8. Dysregulated cytokine expression by CD4+ T cells from post-septic mice modulates both Th1 and Th2-mediated granulomatous lung inflammation.

    Directory of Open Access Journals (Sweden)

    William F Carson

    Full Text Available Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative and TH2-(Schistosoma mansoni egg antigen driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of T(H2 cytokines in TH1 inflammation, and increased production of T(H1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression.

  9. Plasma Zonulin and its Association with Kidney Function, Severity of Heart Failure, and Metabolic Inflammation.

    Science.gov (United States)

    Dschietzig, Thomas B; Boschann, Felix; Ruppert, Jana; Armbruster, Franz P; Meinitzer, Andreas; Bankovic, Dragic; Mitrovic, Veselin; Melzer, Christoph

    2016-12-01

    The tight junction regulator zonulin has attracted clinical attention as a biomarker of increased gastrointestinal permeability. Recent work also suggests zonulin to represent a general regulator of tissue barriers and a player in metabolic inflammation. Here, we investigated the associations of zonulin with chronic heart failure (CHF), kidney function, and metabolic inflammation. Using multiple linear regression (Generalized Linear Model), this study determined the association of plasma zonulin with different laboratory and clinical parameters in 225 patients carrying automatic implantable cardioverters/defibrillators (AICD) for primary or secondary prevention. In another 115 patients with diastolic or systolic CHF, we investigated a possible relationship between zonulin and CHF severity. In the AICD cohort, zonulin associated inversely with serum creatinine (p = 0.013), carboxymethyl-lysine calprotectin (p zonulin increased significantly with high-sensitivity CRP (p = 0.014). In the CHF cohort, we found a highly significant rise of NT-proBNP, but not of zonulin with NYHA functional classes I-IV or other parameters of CHF severity. The inverse associations of zonulin with creatinine and markers of cardio-vascular risk (high CMLcalprotectin and kynurenine, low homoarginine) are novel findings that need further experimental and clinical clarification. Our study indicates zonulin involvement in metabolic inflammation in T2D, but no association with disease status in CHF.

  10. β-Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation

    OpenAIRE

    Berga-Bolaños, Rosa; Sharma, Archna; Steinke, Farrah C.; Pyaram, Kalyani; Kim, Yeung-Hyen; Sultana, Dil A.; Fang, Jessie X.; Chang, Cheong-Hee; Xue, Hai-Hui; Heller, Nicola M.; Sen, Jyoti Misra

    2015-01-01

    Background Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cel...

  11. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  12. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice.

    Science.gov (United States)

    Chandler, Joshua D; Hu, Xin; Ko, Eun-Ju; Park, Soojin; Lee, Young-Tae; Orr, Michael; Fernandes, Jolyn; Uppal, Karan; Kang, Sang-Moo; Jones, Dean P; Go, Young-Mi

    2016-11-01

    Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation. Copyright © 2016 the American Physiological Society.

  13. Angiotensin-(1?7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    OpenAIRE

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Li, Y.; Xu, L.

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180–200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1–7)-treated normoxia control (N-A), and Ang-(1–7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured ...

  14. Aspiration, Localized Pulmonary Inflammation, and Predictors of Early-Onset Bronchiolitis Obliterans Syndrome after Lung Transplantation

    Science.gov (United States)

    Fisichella, P Marco; Davis, Christopher S; Lowery, Erin; Ramirez, Luis; Gamelli, Richard L; Kovacs, Elizabeth J

    2014-01-01

    BACKGROUND We hypothesized that immune mediator concentrations in the bronchoalveolar fluid (BALF) are predictive of bronchiolitis obliterans syndrome (BOS) and demonstrate specific patterns of dysregulation, depending on the presence of acute cellular rejection, BOS, aspiration, and timing of lung transplantation. STUDY DESIGN We prospectively collected 257 BALF samples from 105 lung transplant recipients. The BALF samples were assessed for absolute and differential white blood cell counts and 34 proteins implicated in pulmonary immunity, inflammation, fibrosis, and aspiration. RESULTS There were elevated BALF concentrations of interleukin (IL)-15, IL-17, basic fibroblast growth factor, tumor necrosis factor–α, and myeloperoxidase, and reduced concentrations of α1-antitrypsin, which were predictive of early-onset BOS. Patients with BOS had an increased percentage of BALF lymphocytes and neutrophils, with a reduced percentage of macrophages (p < 0.05). The BALF concentrations of IL-1β; IL-8; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; neutrophil elastase; and pepsin were higher in patients with BOS (p < 0.05). Among those with BOS, BALF concentrations of IL-1RA; IL-8; eotaxin; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; myeloperoxidase; and neutrophil elastase were positively correlated with time since transplantation (p < 0.01). Those with worse grades of acute cellular rejection had an increased percentage of lymphocytes in their BALF (p < 0.0001) and reduced BALF concentrations of IL-1β, IL-7, IL-9, IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, and vascular endothelial growth factor (p ≤ 0.001). Patients with aspiration based on detectable pepsin had increased percentage of neutrophils (p < 0.001) and reduced BALF concentrations of IL-12 (p < 0.001). CONCLUSIONS The BALF levels

  15. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis

    Science.gov (United States)

    Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren

    2013-01-01

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765

  16. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    Science.gov (United States)

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  17. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants

    Directory of Open Access Journals (Sweden)

    Díaz-Sánchez David

    2009-12-01

    Full Text Available Abstract Introduction Air pollutant exposure has been associated with an increase in inflammatory markers and a decline in lung function in asthmatic children. Several studies suggest that dietary intake of fruits and vegetables might modify the adverse effect of air pollutants. Methods A total of 158 asthmatic children recruited at the Children's Hospital of Mexico and 50 non-asthmatic children were followed for 22 weeks. Pulmonary function was measured and nasal lavage collected and analyzed every 2 weeks. Dietary intake was evaluated using a 108-item food frequency questionnaire and a fruit and vegetable index (FVI and a Mediterranean diet index (MDI were constructed. The impact of these indices on lung function and interleukin-8 (IL-8 and their interaction with air pollutants were determined using mixed regression models with random intercept and random slope. Results FVI was inversely related to IL-8 levels in nasal lavage (p 1 (test for trend p 1 and FVC as was with MDI and ozone for FVC. No effect of diet was observed among healthy children. Conclusion Our results suggest that fruit and vegetable intake and close adherence to the Mediterranean diet have a beneficial effect on inflammatory response and lung function in asthmatic children living in Mexico City.

  18. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    International Nuclear Information System (INIS)

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-01-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment

  19. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Maiellaro, Marília [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Correa-Costa, Matheus [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Câmara, Niels Olsen Saraiva [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Tavares-de-Lima, Wothan [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Farsky, Sandra Helena Poliselli [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Lino-dos-Santos-Franco, Adriana, E-mail: adrilino@usp.br [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil)

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  20. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  1. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  2. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    International Nuclear Information System (INIS)

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2013-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure

  3. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  4. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Rossi, G.A.; Bitterman, P.B.; Rennard, S.I.; Ferrans, V.J.; Crystal, R.G.

    1985-01-01

    Progressive systemic sclerosis (PSS) is a generalized disorder characterized by fibrosis of many organs including the lung parenchyma. Unlike most other interstitial disorders, traditional concepts of the interstitial lung disease associated with PSS have held it to be a ''pure'' fibrotic disorder without a significant inflammatory component. To directly evaluate whether an active alveolitis is associated with this disorder, patients with chronic interstitial lung disease and PSS were studied by open lung biopsy, gallium-67 scanning, and bronchoalveolar lavage. Histologic evaluation of the biopsies demonstrated that the interstitial fibrosis of PSS is clearly associated with the presence of macrophages, lymphocytes, and polymorphonuclear leukocytes, both in the interstitium and on the alveolar epithelial surface. Gallium-67 scans were positive in 77% of the patients, showing diffuse, primarily lower zone uptake, suggestive of active inflammation. Consistent with the histologic findings, bronchoalveolar lavage studies demonstrated a mild increase in the proportions of neutrophils and eosinophils with occasional increased numbers of lymphocytes. Importantly, alveolar macrophages from patients with PSS showed increased release of fibronectin and alveolar-macrophage-derived growth factor, mediators that together stimulate lung fibroblasts to proliferate, thus suggesting at least one mechanism modulating the lung fibrosis of these patients

  5. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  6. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma.

    Science.gov (United States)

    Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H

    2014-01-01

    Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that

  7. Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Hung, Rayjean J; Ulrich, Cornelia M; Goode, Ellen L; Brhane, Yonathan; Muir, Kenneth; Chan, Andrew T; Marchand, Loic Le; Schildkraut, Joellen; Witte, John S; Eeles, Rosalind; Boffetta, Paolo; Spitz, Margaret R; Poirier, Julia G; Rider, David N; Fridley, Brooke L; Chen, Zhihua; Haiman, Christopher; Schumacher, Fredrick; Easton, Douglas F; Landi, Maria Teresa; Brennan, Paul; Houlston, Richard; Christiani, David C; Field, John K; Bickeböller, Heike; Risch, Angela; Kote-Jarai, Zsofia; Wiklund, Fredrik; Grönberg, Henrik; Chanock, Stephen; Berndt, Sonja I; Kraft, Peter; Lindström, Sara; Al Olama, Ali Amin; Song, Honglin; Phelan, Catherine; Wentzensen, Nicholas; Peters, Ulrike; Slattery, Martha L; Sellers, Thomas A; Casey, Graham; Gruber, Stephen B; Hunter, David J; Amos, Christopher I; Henderson, Brian

    2015-11-01

    Inflammation has been hypothesized to increase the risk of cancer development as an initiator or promoter, yet no large-scale study of inherited variation across cancer sites has been conducted. We conducted a cross-cancer genomic analysis for the inflammation pathway based on 48 genome-wide association studies within the National Cancer Institute GAME-ON Network across five common cancer sites, with a total of 64 591 cancer patients and 74 467 control patients. Subset-based meta-analysis was used to account for possible disease heterogeneity, and hierarchical modeling was employed to estimate the effect of the subcomponents within the inflammation pathway. The network was visualized by enrichment map. All statistical tests were two-sided. We identified three pleiotropic loci within the inflammation pathway, including one novel locus in Ch12q24 encoding SH2B3 (rs3184504), which reached GWAS significance with a P value of 1.78 x 10(-8), and it showed an association with lung cancer (P = 2.01 x 10(-6)), colorectal cancer (GECCO P = 6.72x10(-6); CORECT P = 3.32x10(-5)), and breast cancer (P = .009). We also identified five key subpathway components with genetic variants that are relevant for the risk of these five cancer sites: inflammatory response for colorectal cancer (P = .006), inflammation related cell cycle gene for lung cancer (P = 1.35x10(-6)), and activation of immune response for ovarian cancer (P = .009). In addition, sequence variations in immune system development played a role in breast cancer etiology (P = .001) and innate immune response was involved in the risk of both colorectal (P = .022) and ovarian cancer (P = .003). Genetic variations in inflammation and its related subpathway components are keys to the development of lung, colorectal, ovary, and breast cancer, including SH2B3, which is associated with lung, colorectal, and breast cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e

  8. Incidental lung volume reduction following fulminant pulmonary hemorrhage in a patient with severe emphysema.

    Science.gov (United States)

    Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael

    2015-06-01

    Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.

  9. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  10. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  11. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation.

    Science.gov (United States)

    Chambers, L; Finch, J; Edwards, K; Jeanjean, A; Leigh, R; Gonem, S

    2018-03-11

    There is evidence that air pollution increases the risk of asthma hospitalizations and healthcare utilization, but the effects on day-to-day asthma control are not fully understood. We undertook a prospective single-centre panel study to test the hypothesis that personal air pollution exposure is associated with asthma symptoms, lung function and airway inflammation. Thirty-two patients with a clinical diagnosis of asthma were provided with a personal air pollution monitor (Cairclip NO 2 /O 3 ) which was kept on or around their person throughout the 12-week follow-up period. Ambient levels of NO 2 and particulate matter were modelled based upon satellite imaging data. Directly measured ozone, NO 2 and particulate matter levels were obtained from a monitoring station in central Leicester. Participants made daily electronic records of asthma symptoms, peak expiratory flow and exhaled nitric oxide. Spirometry and asthma symptom questionnaires were completed at fortnightly study visits. Data were analysed using linear mixed effects models and cross-correlation. Cairclip exposure data were of good quality with clear evidence of diurnal variability and a missing data rate of approximately 20%. We were unable to detect consistent relationships between personal air pollution exposure and clinical outcomes in the group as a whole. In an exploratory subgroup analysis, total oxidant exposure was associated with increased daytime symptoms in women but not men. We did not find compelling evidence that air pollution exposure impacts on day-to-day clinical control in an unselected asthma population, but further studies are required in larger populations with higher exposure levels. Women may be more susceptible than men to the effects of air pollution, an observation which requires confirmation in future studies. © 2018 John Wiley & Sons Ltd.

  12. Chronic urticaria in patients with autoimmune thyroiditis: Significance of severity of thyroid gland inflammation

    Directory of Open Access Journals (Sweden)

    Mustafa Gulec

    2011-01-01

    Full Text Available Background: There is a clear association between autoimmune thyroiditis (AT and chronic urticaria/angioedema (CUA. However, not all patients with AT demonstrate urticaria. Aims: The aim of the study was to investigate in which patients with AT did CUA become a problem. A sensitive inflammation marker, neopterine (NP was used to confirm whether the severity of inflammation in the thyroid gland was responsible for urticaria or not. Methods: Neopterine levels were assessed in patients with AT with urticaria and without urticaria. Furthermore, levels were compared in relation to pre and post levothyroxine treatment. Twenty-seven patients with urticaria (Group 1 and 28 patients without urticaria (Group 2 were enrolled in the study. A course of levothyroxine treatment was given to all patients, and urine neopterine levels before and after the trial were obtained. Results: All patients completed the trial. Mean age in Group 1 and Group 2 was similar (35.70 ± 10.86 years and 38.36 ± 10.38 years, respectively (P=0.358. Pre-treatment urine neopterine levels were significantly higher in Group 1 (P=0.012. Post-treatment levels decreased in each group, as expected. However, the decrease in the neopterine level was insignificant in the patients of Group 2 (P=0.282. In Group 1, a significant decrease in post-treatment neopterine levels (P=0.015 was associated with the remission of urticaria. Conclusion: In patients with CUA and AT, pre-treatment elevated levels of NP, and its decrease with levothyroxine treatment along with symptomatic relief in urticaria, may be evidence of the relationship between the degree of inflammation in thyroid and presence of urticaria.

  13. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  14. Dynamic FDG-PET Imaging to Differentiate Malignancies from Inflammation in Subcutaneous and In Situ Mouse Model for Non-Small Cell Lung Carcinoma (NSCLC).

    Science.gov (United States)

    Yang, Zhen; Zan, Yunlong; Zheng, Xiujuan; Hai, Wangxi; Chen, Kewei; Huang, Qiu; Xu, Yuhong; Peng, Jinliang

    2015-01-01

    [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations. Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared. Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (pPET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.

  15. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  16. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    Science.gov (United States)

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  18. Angiotensin-(1–7 inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    Directory of Open Access Journals (Sweden)

    W. Lu

    2016-01-01

    Full Text Available Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7] on lung injury in rats induced by chronic intermittent hypoxia (CIH. We randomly assigned 32 male Sprague-Dawley rats (180–200 g to normoxia control (NC, CIH-untreated (uCIH, Ang-(1–7-treated normoxia control (N-A, and Ang-(1–7-treated CIH (CIH-A groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4 and Nox subunits (p22phox, and p47phox was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01. Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1–7 treatment. In summary, treatment with Ang-(1-7 reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress.

  19. Bronchoscopic Lung Volume Reduction Coil Treatment of Patients With Severe Heterogeneous Emphysema

    NARCIS (Netherlands)

    Slebos, Dirk-Jan; Klooster, Karin; Ernst, Armin; Herth, Felix J. F.; Kerstjens, Huib A. M.

    Background: The lung volume reduction coil (LVR-coil), a new experimental device to achieve lung volume reduction by bronchoscopy in patients with severe emphysema, works in a manner unaffected by collateral airflow. We investigated the safety and efficacy of LVR-coil treatment in patients with

  20. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ursula G. [Scientific Consultancy — Animal Welfare, Neubiberg (Germany); Vogel, Sandra [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Product Stewardship Water Solutions, BASF SE, Ludwigshafen (Germany); Aumann, Alexandra; Hess, Annemarie; Kolle, Susanne N.; Ma-Hock, Lan [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wohlleben, Wendel [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Material Physics, BASF SE, Ludwigshafen (Germany); Dammann, Martina; Strauss, Volker; Treumann, Silke; Gröters, Sibylle [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wiench, Karin [Product Safety, BASF SE, Ludwigshafen (Germany); Ravenzwaay, Bennard van [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Landsiedel, Robert, E-mail: robert.landsiedel@basf.com [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany)

    2014-04-01

    The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO{sub 2}, ZnO, CeO{sub 2}, SiO{sub 2}, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO{sub 2} NMs, CeO{sub 2} NMs, and two MWCNT caused significant (determined by trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO{sub 2} NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO{sub 2} NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO{sub 2} only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization. - Highlights: • 16 OECD reference nanomaterials were tested in rat precision-cut lung slices. • Nanomaterial cytotoxicity, apoptose, oxidative stress, and inflammation were

  1. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  2. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  3. Serum progranulin as an indicator of neutrophilic airway inflammation and asthma severity.

    Science.gov (United States)

    Park, So Young; Hong, Gyong Hwa; Park, Sunjoo; Shin, Bomi; Yoon, Sun-Young; Kwon, Hyouk-Soo; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-12-01

    Progranulin, a protein secreted from the airway epithelium, is known to attenuate the downstream cascade of neutrophilic inflammation in particular. We hypothesized that progranulin may have a role in inflammatory regulation in asthma. To investigate the association between serum progranulin levels and various clinical features in patients with asthma. Serum samples and clinical data of 475 patients with asthma and 35 healthy controls at a tertiary referral hospital and its affiliated health promotion center were collected. Serum progranulin levels were compared between patients with asthma and healthy controls and then were compared within the patients with asthma in terms of pulmonary function and measures of inflammatory status. Univariate and multivariate analyses were performed to identify factors associated with severity of asthma. Serum progranulin levels were significantly lower in the asthma group than in healthy group and were positively correlated with prebronchodilator forced expiratory volume in 1 second predicted within patients with asthma. We found a negative correlation between serum progranulin levels and blood neutrophil counts. Multivariate analysis revealed that higher serum progranulin levels were associated with a lower risk of severe asthma (odds ratio, 0.888; 95% confidence interval, 0.846-0.932; P progranulin remains unknown, we suggest that serum progranulin may be an indicator of severe asthma with airflow limitation. Future studies with comprehensive airway sampling strategies are warranted to clarify its role, particularly in neutrophilic asthma. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China 230032 (China); Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Zhang, Zhuo; Shi, Xianglin [Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5 g/kg, 25% ethanol w/v) daily for 3 days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3 days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas. - Highlights: • Chronic plus binge alcohol drinking causes more pancreatic injury. • Chronic plus binge alcohol drinking induces more pancreatic inflammation. • Chronic plus binge alcohol causes more endoplasmic reticulum stress and oxidative stress.

  5. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation

    International Nuclear Information System (INIS)

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-01-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5 g/kg, 25% ethanol w/v) daily for 3 days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3 days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas. - Highlights: • Chronic plus binge alcohol drinking causes more pancreatic injury. • Chronic plus binge alcohol drinking induces more pancreatic inflammation. • Chronic plus binge alcohol causes more endoplasmic reticulum stress and oxidative stress.

  6. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    Science.gov (United States)

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  7. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    Science.gov (United States)

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Long-term activation of TLR3 by Poly(I:C induces inflammation and impairs lung function in mice

    Directory of Open Access Journals (Sweden)

    Alexopoulou Lena

    2009-06-01

    Full Text Available Abstract Background The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. Methods TLR3 knock-out (KO mice and C57B6 (WT mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C. Results There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C, the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. Conclusion These findings demonstrate that TLR3 activation by poly(I:C modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.

  9. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer.

    Science.gov (United States)

    Shiroyama, Takayuki; Suzuki, Hidekazu; Tamiya, Motohiro; Tamiya, Akihiro; Tanaka, Ayako; Okamoto, Norio; Nakahama, Kenji; Taniguchi, Yoshihiko; Isa, Shun-Ichi; Inoue, Takako; Imamura, Fumio; Atagi, Shinji; Hirashima, Tomonori

    2018-01-01

    Programmed death-ligand 1 (PD-L1) expression status is inadequate for indicating nivolumab in patients with non-small cell lung cancer (NSCLC). Because the baseline advanced lung cancer inflammation index (ALI) is reportedly associated with patient outcomes, we investigated whether the pretreatment ALI is prognostic in NSCLC patients treated with nivolumab. We retrospectively reviewed the medical records of all patients treated with nivolumab for advanced NSCLC between December 2015 and May 2016 at three Japanese institutes. Multivariate logistic regression and Cox proportional hazards models were used to assess the impact of the pretreatment ALI (and other inflammation-related parameters) on progression-free survival (PFS) and early progression (i.e., within 8 weeks after starting nivolumab). A total of 201 patients were analyzed; their median age was 68 years (range, 27-87 years), 67% were men, and 24% had an Eastern Cooperative Oncology Group (ECOG) performance status of 2 or higher. An ECOG performance status ≥2, serum albumin ALI ALI ALI was found to be a significant independent predictor of early progression in patients with advanced NSCLC receiving nivolumab, and may help identify patients likely to benefit from continued nivolumab treatment in routine clinical practice. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Nebulized anticoagulants limit pulmonary coagulopathy, but not inflammation, in a model of experimental lung injury

    NARCIS (Netherlands)

    Hofstra, Jorrit J; Vlaar, Alexander P; Cornet, Alexander D; Dixon, Barry; Roelofs, Joris J; Choi, Goda; van der Poll, Tom; Levi, Marcel; Schultz, Marcus J

    BACKGROUND: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. METHODS: Male Sprague-Dawley rats were intravenously

  11. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to detect COPD and to evaluate its severity. Twenty-five patients and twelve normal adults were included in this study. The proposed method found volumetric changes of the lungs from inspiration to expiration. To this end, trachea CT images at full inspiration and expiration were compared and changes in the areas and volumes of the lungs between inspiration and expiration were used to define quantitative measures (features). Using these features,the subjects were classified into two groups of normal and COPD patients using a Bayesian classifier. In addition, t-tests were applied to evaluate discrimination powers of the features for this classification. For the cases studied, the proposed method estimated air trapping in the lungs from CT images without human intervention. Based on the results, a mathematical model was developed to relate variations of lung volumes to the severity of the disease. As a computer aided diagnosis (CAD) system, the proposed method may assist radiologists in the detection of COPD. It quantifies air trapping in the lungs and thus may assist them with the scoring of the disease by quantifying the severity of the disease

  12. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    Science.gov (United States)

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  13. The lung microbiome in moderate and severe chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Alexa A Pragman

    Full Text Available Chronic obstructive pulmonary disease (COPD is an inflammatory disorder characterized by incompletely reversible airflow obstruction. Bacterial infection of the lower respiratory tract contributes to approximately 50% of COPD exacerbations. Even during periods of stable lung function, the lung harbors a community of bacteria, termed the microbiome. The role of the lung microbiome in the pathogenesis of COPD remains unknown. The COPD lung microbiome, like the healthy lung microbiome, appears to reflect microaspiration of oral microflora. Here we describe the COPD lung microbiome of 22 patients with Moderate or Severe COPD compared to 10 healthy control patients. The composition of the lung microbiomes was determined using 454 pyrosequencing of 16S rDNA found in bronchoalveolar lavage fluid. Sequences were analyzed using mothur, Ribosomal Database Project, Fast UniFrac, and Metastats. Our results showed a significant increase in microbial diversity with the development of COPD. The main phyla in all samples were Actinobacteria, Firmicutes, and Proteobacteria. Principal coordinate analyses demonstrated separation of control and COPD samples, but samples did not cluster based on disease severity. However, samples did cluster based on the use of inhaled corticosteroids and inhaled bronchodilators. Metastats analyses demonstrated an increased abundance of several oral bacteria in COPD samples.

  14. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hiroki Tashiro

    Full Text Available Interleukin-33 (IL-33 activates group 2 innate lymphoid cells (ILC2, resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation.BALB/c mice were sensitized and challenged with a house dust mite (HDM preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes.The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung.IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.

  15. Comparison of inflammation and oxidative stress levels by the severity of obesity in prepubertal children

    Directory of Open Access Journals (Sweden)

    Ni Luh Putu Surya Candra Eka Pertiwi

    2018-01-01

    Full Text Available Background Children with severe obesity are more likely to develop diabetes and cardiovascular diseases at a younger age. Inflammation and oxidative stress associated with childhood obesity may be important in the development of insulin resistance and atherosclerosis. Objective To compare levels of high-sensitivity C-reactive protein (hsCRP and malondialdehyde (MDA by the severity of obesity in prepubertal children aged 6 to 10 years. Methods We conducted a cross-sectional study at the Pediatric Nutrition and Metabolic Syndrome Clinic, Sanglah Hospital, Bali, from August to December 2015. Subjects were categorized into three body mass index (BMI groups, according to the 2000 Centers for Disease Control and Prevention growth chart: overweight (85th-94.9th percentile, obese (95th-98.9th percentile, or severely obese (≥ 99th percentile. Plasma MDA and serum hsCRP were analyzed in blood specimens obtained at enrollment. Data were analyzed by Kruskal-Wallis test, followed by Mann-Whitney U test for post-hoc comparison between groups. Results Subjects were 20 overweight children, 29 obese children, and 28 severely obese children. Levels of MDA were significantly higher in the severely obese [median 0.25 (IQR 0.1 μmol/L] than in obese subjects [median 0.19 (IQR 0.1 μmol/L; P=0.001], and than in overweight subjects [median 0.16 (IQR 0.1 μmol/L; P<0.0001]. Also, the severely obese children had significantly higher hsCRP levels compared to obese [median 3.2 (IQR 2.0 mg/L vs. 1.3 (1.6 mg/L, respectively; P<0.0001] and compared to overweight children [median 0.7 (IQR 0.6 mg/L; P<0.0001].     Conclusion Prepubertal children at the ≥ 99th percentile for BMI (severely obese are more likely to have significantly higher hsCRP and MDA compared to those in the obese and overweight groups.

  16. Defibrotide Interferes With Several Steps of the Coagulation-Inflammation Cycle and Exhibits Therapeutic Potential to Treat Severe Malaria

    Czech Academy of Sciences Publication Activity Database

    Francischetti, I.M.B.; Oliveira, C. J.; Ostera, G. R.; Yager, S. B.; Debierre-Grockiego, F.; Carregaro, V.; Jaramillo-Gutierrez, G.; Hume, J. C. C.; Jiang, L.; Moretz, S. E.; Lin, Ch. K.; Ribeiro, J.M.C.; Long, C. A.; Vickers, B. K.; Schwarz, R. T.; Seydel, K. B.; Iacobelli, M.; Ackerman, H. C.; Srinivasan, P.; Gomes, R. B.; Wang, X.; Monteiro, R.Q.; Kotsyfakis, Michalis; Sa-Nunes, A.; Waisberg, M.

    2012-01-01

    Roč. 32, č. 3 (2012), s. 786-798 ISSN 1079-5642 Institutional research plan: CEZ:AV0Z60220518 Keywords : anticoagulants * blood coagulation * endothelium * microcirculation * vascular biology * malaria * defibrotide * inflammation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.338, year: 2012

  17. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Science.gov (United States)

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (pswimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and pswimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.

  18. [Severe inflammation of the muzzle caused by a nose ring in a breeding bull].

    Science.gov (United States)

    Braun, U; Gautschi, A; Reichle, S; Gerspach, C

    2010-09-01

    This report describes the findings in a bull with severe inflammation of the muzzle and nose attributable to a nose ring. The most striking finding was that the bull continually licked the right side of the upper lip. The muzzle and right upper lip were swollen, hard, reddened and partially depigmented. Mucopurulent nasal discharge and salivation were also noted, and palpation of the right upper lip was extremely painful. Based on the findings, purulent infection of the right side of the muzzle, right naris and external nasal passage was diagnosed. After removing the nose ring the affected areas were washed daily for four days with a camomile-containing solution after which a chlorhexidine and dexpanthenol salve was applied. The bull also received ceftiofur and ketoprofen. The general condition and appetite of the bull normalised within a few days, and the inflammatory lesions resolved with the exception of the areas of depigmentation. After ten days of treatment, the bull was considered healthy and discharged from the clinic.

  19. CYTOLOGICAL AND MORPHOMETRIC ESTIMATE OF THE INFLAMMATION AMONG THE CHILDREN, SUFFERING FROM MODERATELY SEVERE BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    T.R. Dulina

    2007-01-01

    Full Text Available The search for the new noninvasive and information methods to estimate the intensity of the inflammatory processes during the bronchial asthma is an important task for the modern medicine, pediatrics, in particular. We have examined 20 children, suffering from moderately severe bronchial asthma in remission. patients underwent the induction of the sputum by means of nail hypertonic solution, bronchoscopic examination along with the sampling of the lavage fluid and bronchial biopsy, cytometry of the induced sputum and bronchoalveolar lavage fluid, morphometric examination of the biopsy samples of bronchi walls, determination of the nitric oxide contents in the expired air. We revealed high self descriptiveness of the cytological characteristics of the induced sputum. High percentage of neutrophiles and eosinophiles in the induced sputum disclosed during remission of the bronchial asthma, as well as thickness increase of the basilemma, ratio distortion of the ciliated and cyathiform cells in the favor of the latter, especially along with the high nitric oxide contents in the expired air indicate the continuous persistence in the allergic respiratory inflammation.Key words: induced sputum, bronchial asthma, children.

  20. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study.

    Science.gov (United States)

    Gokakin, Ali Kagan; Deveci, Koksal; Kurt, Atilla; Karakus, Boran Cihat; Duger, Cevdet; Tuzcu, Mehmet; Topcu, Omer

    2013-09-01

    Severe burn induces biochemical mediators such as reactive oxygen species that leads to lipid peroxidation which may have a key role in formation of acute lung injury (ALI). Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil preserves alveolar growth, angiogenesis, reduces inflammation and airway reactivity. The purpose of the present study was to evaluate the effects of different dosages of sildenafil in ALI due to severe scald burn in rats. Twenty-four rats were subjected to 30% total body surface area severe scald injury and were randomly divided into three equal groups as follow: control, 10 and 20mg/kg sildenafil groups. Levels of malondialdehyde (MDA), activities of glutathione peroxidase (Gpx), catalase (Cat), total oxidative stress (TOS), and total antioxidative capacity (TAC) were measured in both tissues and serums. Oxidative stress index (OSI) was calculated. A semi-quantitative scoring system was used for the evaluation of histopatological findings. Sildenafil increased Gpx, Cat, TAC and decreased MDA, TOS and OSI. Sildenafil decreased inflammation scores in lungs. Our results reveal that sildenafil is protective against scald burn related ALI by decreasing oxidative stress and inflammation and the dosage of 10mg/kg could be apparently better than 20mg/kg. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  1. Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Marco Alifano

    Full Text Available BACKGROUND: Hypothesizing that nutritional status, systemic inflammation and tumoral immune microenvironment play a role as determinants of lung cancer evolution, the purpose of this study was to assess their respective impact on long-term survival in resected non-small cell lung cancers (NSCLC. METHODS AND FINDINGS: Clinical, pathological and laboratory data of 303 patients surgically treated for NSCLC were retrospectively analyzed. C-reactive protein (CRP and prealbumin levels were recorded, and tumoral infiltration by CD8+ lymphocytes and mature dendritic cells was assessed. We observed that factors related to nutritional status, systemic inflammation and tumoral immune microenvironment were correlated; significant correlations were also found between these factors and other relevant clinical-pathological parameters. With respect to outcome, at univariate analysis we found statistically significant associations between survival and the following variables: Karnofsky index, American Society of Anesthesiologists (ASA class, CRP levels, prealbumin concentrations, extent of resection, pathologic stage, pT and pN parameters, presence of vascular emboli, and tumoral infiltration by either CD8+ lymphocytes or mature dendritic cells and, among adenocarcinoma type, tumor grade (all p285 mg/L prealbumin levels and high (>96/mm2 CD8+ cell count had a 5-year survival rate of 80% [60.9-91.1] as compared to 18% [7.9-35.6] in patients with an opposite pattern of values. When stages I-II were considered alone, the prognostic significance of these factors was even more pronounced. CONCLUSIONS: Our data show that nutrition, systemic inflammation and tumoral immune contexture are prognostic determinants that, taken together, may predict outcome.

  2. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID)

    DEFF Research Database (Denmark)

    Chapman, Kenneth R; Burdon, Jonathan G W; Piitulainen, Eeva

    2015-01-01

    BACKGROUND: The efficacy of α1 proteinase inhibitor (A1PI) augmentation treatment for α1 antitrypsin deficiency has not been substantiated by a randomised, placebo-controlled trial. CT-measured lung density is a more sensitive measure of disease progression in α1 antitrypsin deficiency emphysema...... of emphysema, a finding that could not be substantiated by lung density measurement at FRC alone or by the two measurements combined. These findings should prompt consideration of augmentation treatment to preserve lung parenchyma in individuals with emphysema secondary to severe α1 antitrypsin deficiency...

  3. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set shows high throughput gene expression assessment using RNAseq to examine how ozone-induced transcriptional changes in the lung are influenced by...

  4. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  5. Pulmonary edema and lung injury after severe laryngospasm

    International Nuclear Information System (INIS)

    Saddiqi, R.; Khalique, K.

    2006-01-01

    A young male with no pre-operative medical illness underwent corrective surgery for a deviated nasal septum under general anesthesia. At the end of surgery, patient was extubated but went into severe laryngospasm that did not improve with gentle Intermittent Positive Pressure Ventilation (IPPV) and small dose of Suxamethonium. As the situation worsened and patient developed severe bradycardia and de-saturation, re-intubation was done that revealed pink froth in the endotracheal tube. His portable chest X-ray was suggestive of non-cardiogenic pulmonary edema. With an overnight supportive treatment, using mechanical ventilation with Positive End- Expiratory Pressure (PEEP), morphine infusion and frusemide, patient improved and was subsequently weaned off from ventilator. (author)

  6. Combined effects of sivelestat and resveratrol on severe acute pancreatitis-associated lung injury in rats.

    Science.gov (United States)

    Wang, Houhong; Wang, Shuai; Tang, Amao; Gong, Huihui; Ma, Panpan; Chen, Li

    2014-08-01

    Despite extensive research and clinical efforts made in the management of acute pancre-atitis during the past few decades, to date no effective cure is available and the mortality from severe acute pancre-atitis remains high. Given that lung is the primary cause of early death in acute pancreatitis patients, novel therapeutic approaches aiming to prevent lung injury have become a subject of intensive investigation. In a previous study, we demonstrated that sivelestat, a specific inhibitor of neutrophil elastase, is effective in protecting against lung failure in rats with taurocholate-induced acute pancreatitis. As part of the analyses extended from that study, the present study aimed to evaluate the role of sivelestat and/or resveratrol in the protection against acute pancreatitis-associated lung injury. The extended analyses demonstrated the following: (1) sodium taurocholate induced apparent lung injury and dysfunction manifested by histological anomalies, including vacuolization and apoptosis of the cells in the lung, as well as biochemical aberrations in the blood (an increase in amylase concentration and a decrease in partial arterial oxygen pressure) and increases in activities of reactive oxygen species, interleukin 6, myeloperoxidase, neutrophil elastase, lung edema, bronchotracho alveolar lavage protein concentration, and bronchotracho alveolar lavage cell infiltration in the lung; and (2) in lung tissues, either sivelestat or resveratrol treatment effectively attenuated the taurocholate-induced abnormalities in all parameters analyzed except for serum amylase concentration. In addition, combined treatment with both sivelestat and resveratrol demonstrated additive protective effects on pancreatitis-associated lung injury compared with single treatment.

  7. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers.

    Science.gov (United States)

    Zhu, Xiaojun; Gu, Yishuo; Ma, Wenjun; Gao, Panjun; Liu, Mengxuan; Xiao, Pei; Wang, Hongfei; Chen, Juan; Li, Tao

    2017-12-27

    Refractory ceramic fibers (RCFs) can cause adverse health effects on workers' respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP) increased with the RCFs exposure level ( p relations were found between the concentrations of CP and FVC (B = -0.423, p = 0.025), or FEV₁ (B = -0.494, p = 0.014). The concentration of TGF-β1 (B = 0.103, p = 0.001) and CP (B = 8.027, p = 0.007) were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries.

  8. Sodium butyrate protects against severe burn-induced remote acute lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xun Liang

    Full Text Available High-mobility group box 1 protein (HMGB1, a ubiquitous nuclear protein, drives proinflammatory responses when released extracellularly. It plays a key role as a distal mediator in the development of acute lung injury (ALI. Sodium butyrate, an inhibitor of histone deacetylase, has been demonstrated to inhibit HMGB1 expression. This study investigates the effect of sodium butyrate on burn-induced lung injury. Sprague-Dawley rats were divided into three groups: 1 sham group, sham burn treatment; 2 burn group, third-degree burns over 30% total body surface area (TBSA with lactated Ringer's solution for resuscitation; 3 burn plus sodium butyrate group, third-degree burns over 30% TBSA with lactated Ringer's solution containing sodium butyrate for resuscitation. The burned animals were sacrificed at 12, 24, and 48 h after burn injury. Lung injury was assessed in terms of histologic changes and wet weight to dry weight (W/D ratio. Tumor necrosis factor (TNF-α and interleukin (IL-8 protein concentrations in bronchoalveolar lavage fluid (BALF and serum were measured by enzyme-linked immunosorbent assay, and HMGB1 expression in the lung was determined by Western blot analysis. Pulmonary myeloperoxidase (MPO activity and malondialdehyde (MDA concentration were measured to reflect neutrophil infiltration and oxidative stress in the lung, respectively. As a result, sodium butyrate significantly inhibited the HMGB1 expressions in the lungs, reduced the lung W/D ratio, and improved the pulmonary histologic changes induced by burn trauma. Furthermore, sodium butyrate administration decreased the TNF-α and IL-8 concentrations in BALF and serum, suppressed MPO activity, and reduced the MDA content in the lungs after severe burn. These results suggest that sodium butyrate attenuates inflammatory responses, neutrophil infiltration, and oxidative stress in the lungs, and protects against remote ALI induced by severe burn, which is associated with inhibiting HMGB1

  9. SOCS3 Expression Correlates with Severity of Inflammation, Expression of Proinflammatory Cytokines, and Activation of STAT3 and p38 MAPK in LPS-Induced Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    João Antônio Chaves de Souza

    2013-01-01

    Full Text Available SOCS3 is an inducible endogenous negative regulator of JAK/STAT pathway, which is relevant in inflammatory conditions. We used a model of LPS-induced periodontal disease in rats to correlate SOCS3 expression with the inflammatory status. In vitro we used a murine macrophage cell line to assess the physical interaction between SOCS3 and STAT3 by coimmunoprecipitation. 30 ug of LPS from Escherichia coli were injected in the gingival tissues on the palatal aspect of first molars of the animals 3x/week for up to 4 weeks. Control animals were injected with the vehicle (PBS. The rats were sacrificed at 7, 15, and 30 days. Inflammation and gene expression were assessed by stereometric analysis, immunohistochemistry, RT-qPCR, and western blot. LPS injections increased inflammation, paralleled by an upregulation of SOCS3, of the proinflammatory cytokines IL-1β, IL-6, and TNF-α and increased phosphorylation of STAT3 and p38 MAPK. SOCS3 expression accompanied the severity of inflammation and the expression of proinflammatory cytokines, as well as the activation status of STAT3 and p38 MAPK. LPS stimulation in a macrophage cell line in vitro induced transient STAT3 activation, which was inversely correlated with a dynamic physical interaction with SOCS3, suggesting that this may be a mechanism for SOCS3 regulatory function.

  10. Management of patients with severe lung injury : first, do no harm

    NARCIS (Netherlands)

    van der Werf, TS

    Severe acute lung injury may result from many infectious and other insults. Although the initial insult may cause overwhelming tissue damage with subsequent gas exchange impairment and risk of death. several strategies of management may also add substantial toxicity. This review focuses on damage

  11. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    Czech Academy of Sciences Publication Activity Database

    Kremserová, Silvie; Perečko, Tomáš; Souček, Karel; Klinke, A.; Baldus, S.; Eiserich, J.P.; Kubala, Lukáš

    2016-01-01

    Roč. 2016, Č. 2016 (2016), č. článku 5219056. ISSN 1942-0900 R&D Projects: GA ČR GCP305/12/J038 Institutional support: RVO:68081707 Keywords : nitrotyrosine formation * airway inflammation * mouse neutrophils * apoptosis Subject RIV: BO - Biophysics Impact factor: 4.593, year: 2016

  12. The cardiopulmonary continuum systemic inflammation as 'common soil' of heart and lung disease

    NARCIS (Netherlands)

    Ukena, Christian; Mahfoud, Felix; Kindermann, Michael; Kindermann, Ingrid; Bals, Robert; Voors, Adriaan A.; van Veldhuisen, Dirk J.; Boehm, Michael

    2010-01-01

    Coronary artery disease (CAD), chronic heart failure (CHF) or chronic obstructive pulmonary disease (COPD) occur commonly in the presence of each other and are associated with similar systemic inflammatory reactions. Inflammation plays a central role in the pathogenesis of these diseases. C-reactive

  13. Clinical evaluation of lung rest/stress perfusion scintigraphy in patients with severe emphysema

    International Nuclear Information System (INIS)

    Hadjikostova, Hr.

    1998-01-01

    Volume lung reduction surgery (LVRS) improves lung function and physical tolerance for selected patients with severe pulmonary emphysema by making conditions for developing of the vital parenchyma so far compressed by the emphysema blisters. The aim of this study was to establish the comparative functional information obtained from REST/STRESS lung perfusion tomoscintigraphies for identification of non functional lung tissue. Eleven patients (8 males and 3 females at age 41-60) were examined by two lung perfusions SPECT scintigraphies after intravenous application of 222 MBq 99m Tc-MAA: 1. after 30 min. lying rest and 2. 48 hours later after 6 min. walk test. Comparing the two scintigraphies the following changes in perfusion performance have been established at STRESS examination: increased at six patients (significant at three and slight also at three) and decreased at two. There was no difference between REST and STRESS examinations at 3 patients. Comparative REST/STRESS lung perfusion scintigraphy is important method for screening severe pulmonary patients for LVRS. (author)

  14. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Science.gov (United States)

    Prince, Lynne R; Maxwell, Nicola C; Gill, Sharonjit K; Dockrell, David H; Sabroe, Ian; McGreal, Eamon P; Kotecha, Sailesh; Whyte, Moira K

    2014-01-01

    The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD) is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS) or CLD. Bronchoalveolar lavage (BAL) fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. Preterm birth was associated with an increase in the proportion of non-classical CD14(+)/CD16(+) monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02). Infants with RDS were born with significantly more CD36(+) macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02). At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+) mononuclear phagocytes in the airway (p = 0.03), but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05) or CD36 (p = 0.05) positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  15. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation.To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS or CLD.Bronchoalveolar lavage (BAL fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry.Preterm birth was associated with an increase in the proportion of non-classical CD14(+/CD16(+ monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02. Infants with RDS were born with significantly more CD36(+ macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02. At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+ mononuclear phagocytes in the airway (p = 0.03, but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05 or CD36 (p = 0.05 positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung.These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  16. Defibrotide interferes with several steps of the coagulation-inflammation cycle and exhibits therapeutic potential to treat severe malaria.

    Science.gov (United States)

    Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael

    2012-03-01

    The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.

  17. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model

    NARCIS (Netherlands)

    Vlaar, Alexander P. J.; Hofstra, Jorrit J.; Kulik, Wim; van Lenthe, Henk; Nieuwland, Rienk; Schultz, Marcus J.; Levi, Marcel M.; Roelofs, Joris J. T. H.; Tool, Anton T. J.; de Korte, Dirk; Juffermans, Nicole P.

    2010-01-01

    Transfusion-related acute lung injury is suggested to be a "2-hit" event resulting from priming and activation of pulmonary neutrophils. Activation may result from infusion of lysophosphatidylcholines (LysoPCs), which accumulate during storage of blood products. In the present study, we developed a

  18. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  19. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    International Nuclear Information System (INIS)

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  20. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Severe acute pancreatitis (SAP starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS can lead to multiple organ dysfunction syndrome (MODS during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.

  1. Lung inhalation scintigraphy with radioactive aerosols in several pulmonary diseases. Cintigrafia de ventialacao pulmonar por aerosol em diversas patologias pulmonares

    Energy Technology Data Exchange (ETDEWEB)

    Martins, L R; Marioni Filho, H [Instituto Dante Pazzanese de Cardiologia, Sao Paulo, SP (Brazil); Romaldini, H; Uehara, C; Alonso, G [Escola Paulista de Medicina, Sao Paulo, SP (Brazil)

    1983-01-01

    The pulmonary ventilation scintigraphy with 99m Tc diethylene-triamine-pentaacetate (99mTc-DTPA) delivered through a new nebulizer system when analyzed together with the classic lung perfusion scintigraphy with 99mTc-labeled albumin macroaggregates (99mTcMAA) is a very important diagnostic tool in several pulmonary diseases. Several aspects of the lung ventilation-perfusion scintigraphy are studied in 15 people with no lung disease, smokers and nonsmokers. The findings with the lung ventilation-perfusion scintigraphy are also discussed in 34 patients with several pulmonary diseases: lung cancer, chronic obstructive lung disease, policystic pulmonary disease, and pulmonary embolims. The authors concluded that the procedure is a valuable diagnostic tool in several pulmonary diseases, especially because good lung images are obtained, no side effects were detected, the technique is ease and low cost, and it brings new informations, not available with other diagnostic methods. (author).

  2. Occurrence and severity of lung lesions in slaughter pigs vaccinated against Mycoplasma hyopneumoniae with different strategies.

    Science.gov (United States)

    Hillen, Sonja; von Berg, Stephan; Köhler, Kernt; Reinacher, Manfred; Willems, Hermann; Reiner, Gerald

    2014-03-01

    Different vaccination strategies against Mycoplasma hyopneumoniae have been adopted worldwide. Reports from the field indicate varying levels of protection among currently available vaccines. The goal of the present study was to compare the efficacies of three widespread commercial vaccination strategies against M. hyopneumoniae under field conditions. 20 farms were included. 14 farms used different single dose vaccines (vaccine 1 [V1], 8 herds; vaccine 2 [V2], 6 herds); another 6 farms (V3) used a two dose vaccination strategy. Gross lesions of 854 lungs and histopathology from 140 lungs were quantified, and a quantitative PCR was applied to detect M. hyopneumoniae and porcine circovirus 2 (PCV2) DNA in lung tissue (n=140). In addition, porcine reproductive and respiratory disease virus (PRRSV), swine influenza virus (SIV), Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida were tested by qualitative PCR. 53% of lungs were positive for M. hyopneumoniae. 55.9% of lungs showed macroscopic enzootic pneumonia (EP)-like lesions. Lung lesion scores (Phyopneumoniae-loads (Phyopneumoniae indicating that the applied diagnostic tools are valuable in confirming the prevalence and severity of M. hyopneumoniae infections. Comparing different vaccination strategies against M. hyopneumoniae indicates varying levels of protection. M. hyopneumoniae is still a major problem despite the widely applied vaccination. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model.

    Science.gov (United States)

    Zemmouri, Hanene; Sekiou, Omar; Ammar, Sonda; El Feki, Abdelfattah; Bouaziz, Mohamed; Messarah, Mahfoud; Boumendjel, Amel

    2017-12-01

    To find bioactive medicinal herbs exerting anti-asthmatic activity, we investigated the effect of an aqueous extract of Urtica dioica L. (Urticaceae) leaves (UD), the closest extract to the Algerian traditional use. In this study, we investigated the in vivo anti-asthmatic and antioxidant activities of nettle extract. Adult male Wistar rats were divided into four groups: Group I: negative control; group II: Ovalbumin sensitized/challenged rats (positive control); group III: received UD extract (1.5 g/kg/day) orally along the experimental protocol; group IV: received UD extract (1.5 g/kg/day) orally along the experimental protocol and sensitized/challenged with ovalbumin. After 25 days, blood and tissue samples were collected for haematological and histopathological analysis, respectively. The oxidative stress parameters were evaluated in the lungs, liver and erythrocytes. Then, correlations between markers of airway inflammation and markers of oxidative stress were explored. UD extract significantly (p nettle extract was also investigated for the total phenolic content (30.79 ± 0.96 mg gallic acid/g dry extract) and shows DPPH radical scavenging activity with 152.34 ± 0.37 μg/mL IC 50 value. The results confirmed that UD administration might be responsible for the protective effects of this extract against airway inflammation.

  4. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway

    Directory of Open Access Journals (Sweden)

    David Blanco

    2007-10-01

    Full Text Available The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers, genetic alterations. We analyzed markers of DNA damage response (DDR, proliferative stress, telomeric stress: δ-H2AX, p16, p53, TERT. Lung cancer-related epigenetic, genetic alterations, including promoter hypermethylation status of p16(CDKN2A, APC, CDH13, Rassf1, Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase, p53 induction. p16 was also induced in early tumorigenic progression, was inactivated in bronchiolar dysplasias, tumors. Remarkably, lack of mutations of Ras, epidermal growth factor receptor, a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A, CDH13, APC, but not in Rassf1, Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.

  5. No mediating effects of glycemic control and inflammation on the association between vitamin D and lung function in the general population.

    Science.gov (United States)

    Kaul, Anne; Gläser, Sven; Hannemann, Anke; Stubbe, Beate; Felix, Stefan B; Nauck, Matthias; Ewert, Ralf; Friedrich, Nele

    2017-04-01

    Vitamin D deficiency is discussed to be associated with lung health. While former studies focused on subjects suffering from pulmonary diseases, we aimed to investigate the association of 25-hydroxy vitamin D [25(OH)D] with lung function in the general population and examined whether mediating effects of inflammation, glycemic control or renal function exist. 1404 participants from the Study of Health in Pomerania with pulmonary function testing assessed by expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), total lung capacity and Krogh index were used. Adjusted analysis of variance, linear regression models and mediation analyses were performed. Significant positive associations between 25(OH)D levels and FEV 1 , FVC and Krogh index were found. Mediator analyses revealed no mediating effect of inflammation (fibrinogen), glycemic control (HbA1c) or renal function (eGFR) on associations with FEV 1 or FVC. With respect to Krogh-Index, the association to 25(OH)D was slightly mediated by fibrinogen with a proportion mediated of 9.7%. Significant positive associations of 25(OH)D with lung function were revealed in a general population. The proposed mediating effects of inflammation, glycemic control and renal function on these relations were not confirmed. Further studies examining the causality of the association between 25(OH)D and lung function are necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  7. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  8. Chronic obstructive pulmonary disease with lung cancer: Prevalence, severity, and common pathogenesis

    Directory of Open Access Journals (Sweden)

    Griffin JP

    2016-01-01

    Full Text Available Objectives: To develop a clinical prediction model of contribution of chronic obstructive pulmonary disease (COPD to the pathogenesis of lung cancer, by reporting the estimated prevalence and severity by GOLD criteria in a single-institution cohort of patients with newly diagnosed lung cancer. Primary objective was investigating the effects of impaired lung function with various histological cell types on crude survival, while considering the initial staging of disease extent. Materials & methods: A total of 441 patients, in this historical cohort from electronic medical records, completed spirometry prior to invasive diagnostic procedures and initial treatment of their lung cancer. All statistical analyses, including ANOVA and survival analysis, were performed using SAS version 9.1 software. Results: Estimated prevalence of COPD was 79.1% (95% confidence interval: 71.3%-82.9%. Lung function as measured by spirometry was a significant predictor of survival time in months (p<0.0001 both with and without adjusting for tumor-cell-type, age, and stage of disease. Median survival was similar (p=0.32 and longer among those patients with normal pulmonary function, those with restrictive disease patterns, and those with COPD–GOLD-1 defects. Median survival was shortest among patients with COPD–GOLD-4 impairment (p=0.001. Those patients with COPD–GOLD-2 and COPD-GOLD-3 impairment levels had intermediate survival times (p=0.003. Conclusions: This investigation suggests that strategies for early detection and slowing the progression of COPD before the development of lung cancer might increase patient survival. As demonstrated in this study, the presence and severity of COPD in lung cancer patients is an independent predictor of survival time, different from the established staging of initial extent of disease.

  9. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  10. Bioinformatics Methods for Learning Radiation-Induced Lung Inflammation from Heterogeneous Retrospective and Prospective Data

    Science.gov (United States)

    Spencer, Sarah J.; Almiron Bonnin, Damian; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2009-01-01

    Radiotherapy outcomes are determined by complex interactions between physical and biological factors, reflecting both treatment conditions and underlying genetics. Recent advances in radiotherapy and biotechnology provide new opportunities and challenges for predicting radiation-induced toxicities, particularly radiation pneumonitis (RP), in lung cancer patients. In this work, we utilize datamining methods based on machine learning to build a predictive model of lung injury by retrospective analysis of treatment planning archives. In addition, biomarkers for this model are extracted from a prospective clinical trial that collects blood serum samples at multiple time points. We utilize a 3-way proteomics methodology to screen for differentially expressed proteins that are related to RP. Our preliminary results demonstrate that kernel methods can capture nonlinear dose-volume interactions, but fail to address missing biological factors. Our proteomics strategy yielded promising protein candidates, but their role in RP as well as their interactions with dose-volume metrics remain to be determined. PMID:19704920

  11. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2017-12-01

    Full Text Available Refractory ceramic fibers (RCFs can cause adverse health effects on workers’ respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP increased with the RCFs exposure level (p < 0.05, and significantly increased in workers with high exposure level (1.21 ± 0.49 ng/mL, 115.25 ± 32.44 U/L when compared with the control group (0.99 ± 0.29 ng/mL, 97.90 ± 35.01 U/L (p < 0.05. The levels of FVC and FEV1 were significantly decreased in RCFs exposure group (p < 0.05. Negative relations were found between the concentrations of CP and FVC (B = −0.423, p = 0.025, or FEV1 (B = −0.494, p = 0.014. The concentration of TGF-β1 (B = 0.103, p = 0.001 and CP (B = 8.027, p = 0.007 were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries.

  12. Lung volume reduction coil treatment for patients with severe emphysema : a European multicentre trial

    NARCIS (Netherlands)

    Deslee, Gaetan; Klooster, Karin; Hetzel, Martin; Stanzel, Franz; Kessler, Romain; Marquette, Charles-Hugo; Witt, Christian; Blaas, Stefan; Gesierich, Wolfgang; Herth, Felix J. F.; Hetzel, Juergen; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background The lung volume reduction (LVR) coil is a minimally invasive bronchoscopic nitinol device designed to reduce hyperinflation and improve elastic recoil in severe emphysema. We investigated the feasibility, safety and efficacy of LVR coil treatment in a prospective multicentre cohort trial

  13. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    NARCIS (Netherlands)

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    BACKGROUND: Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. METHODS: In this retrospective analysis children from

  14. Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn.

    Science.gov (United States)

    Csontos, C; Rezman, B; Foldi, V; Bogar, L; Drenkovics, L; Röth, E; Weber, G; Lantos, J

    2012-05-01

    Oxidative stress and inflammation generate edema in burns. The aim of our study was to assess effect of N-acetylcysteine (NAC) on oxidative stress, inflammation, fluid requirement, multiple organ dysfunction (MOD) score and vasoactive drug requirement. In this study 15 patients were on standard therapy, whereas for other 15 patients NAC was supplemented. Blood samples were taken on admission and on the next five consecutive mornings. Levels of malondialdehyde, protein sulfhydril (PSH) groups, reduced gluthation (GSH), activity of myeloperoxidase, catalase and superoxide dismutase enzymes and induced free radical generating capacity were measured as well as concentrations of TNF-α, IL-6, IL-8, and IL-10. MOD score, use of vasopressor agents and fluid utilisation were recorded daily. NAC treatment increased GSH level on days 4-5 (ptreatment is associated with a diminished oxidative stress reflected in preserved antioxidant levels, lower inflammation mirrored in lower interleukin levels and less vasopressor requirement. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  15. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  16. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang

    2016-01-01

    It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  17. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Directory of Open Access Journals (Sweden)

    Leonardo C M Ávila

    Full Text Available Studies have reported that exposure to diesel exhaust particles (DEPs induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12, Swimming (30 min/day (n = 8, DEP (3 mg/mL-10 μL/mouse (n = 9 and DEP+Swimming (n = 8. The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF, measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH and the antioxidant enzymes catalase and glutathione peroxidase (GPx in the lung. Swimming sessions decreased the number of total cells (p<0.001, neutrophils and lymphocytes (p<0.001; p<0.05 in the BALF, as well as lung levels of IL-1β (p = 0.002, TNF-α (p = 0.003, IL-6 (p = 0.0001 and IFN-ϫ (p = 0.0001. However, the levels of IL-10 (p = 0.01 and IL-1ra (p = 0.0002 increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001. Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002. We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  18. Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro

    Science.gov (United States)

    Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J.

    2013-01-01

    Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760

  19. Lung inflammation induces IL-1β expression in hypoglossal neurons in rat brainstem

    Science.gov (United States)

    Jafri, Anjum; Belkadi, Abdelmadjid; Zaidi, Syed I. A.; Getsy, Paulina; Wilson, Christopher G.; Martin, Richard J.

    2013-01-01

    Perinatal inflammation is associated with respiratory morbidity. Immune modulation of brainstem respiratory control centers may provide a link for this pathobiology. We exposed 11-day old rats to intratracheal lipopolysaccharide (LPS, 0.5 µg/g) to test the hypothesis that intrapulmonary inflammation increases expression of the proinflammatory cytokine IL-1β within respiratory-related brainstem regions. Intratracheal LPS resulted in a 32% increase in IL-1β protein expression in the medulla oblongata. In situ hybridization showed increased intensity of IL-1β mRNA but no change in neuronal numbers. Co-localization experiments showed that hypoglossal neurons express IL-1β mRNA and immunostaining showed a 43% increase in IL-1β protein-expressing cells after LPS exposure. LPS treatment also significantly increased microglial cell numbers though they did not express IL-1β mRNA. LPS-induced brainstem expression of neuronal IL-1β mRNA and protein may have implications for our understanding of the vulnerability of neonatal respiratory control in response to a peripheral pro-inflammatory stimulus. PMID:23648475

  20. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.

    Science.gov (United States)

    Bosmann, Markus; Grailer, Jamison J; Ruemmler, Robert; Russkamp, Norman F; Zetoune, Firas S; Sarma, J Vidya; Standiford, Theodore J; Ward, Peter A

    2013-12-01

    We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.

  1. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  2. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment.

    Science.gov (United States)

    Miller, J D; Sun, M; Gilyan, A; Roy, J; Rand, T G

    2010-01-05

    Few metabolites from fungi found indoors have been tested for inflammatory mediators endpoints in primary cultures of alveolar macrophages or in vivo. In this study, mice were intratracheally instilled with a single dose comprising 4x10(-5)moletoxin/kg lung wt dose of either atranone C, brevianamide, cladosporin, mycophenolic acid, neoechinulin A & B, sterigmatocystin or TMC-120A. These toxins are from fungi common on damp building materials. The dose used was comparable to the estimated doses of possible human exposure. Hematoxylin and eosin (H&E) histology and Alcian Blue/Periodic Acid Schiff (AB/PAS) histochemistry were used to evaluate lungs for time course (4h and 12h post-exposure (PE)) inflammatory and toxic changes. Reverse-transcription (RT)-PCR based arrays were also employed to evaluate time course inflammation-associated gene transcription in lung tissues of the different toxins. Immunohistochemistry (IHC) was used to probe MIP-2 and Tnf-alpha protein expression in treatment lungs to determine whether responses correspond with gene transcription data. Both histology and histochemistry revealed that toxin exposed lungs at 12h PE showed evidence of inflammation. H&E revealed that bronchioli were lined with irregularly thickened and sometimes sloughing epithelium and bronchiolar spaces supported infiltration of leukocytes, cellular and mucus-like debris while alveolar spaces supported swollen macrophages and modest amorphous debris accumulations. All toxin-instilled lungs exhibited copious mucus production and alveolar macrophages with red stained cytoplasm on bronchiolar surfaces, especially at 12h PE. Array analysis of 83 inflammation-associated genes extracted from lung tissue demonstrated a number of patterns, compared to controls. 82 genes assayed at 4h PE and 75 genes at 12h PE were significantly altered (por =1.5-fold or cladosporin, atranone C and TMC-120. The results further confirm the inflammatory nature of metabolites/toxins from such fungi can

  3. Lipid Profile Status in Mustard Lung Patients and its Relation to Severity of Airflow Obstruction

    Directory of Open Access Journals (Sweden)

    Davood Attaran

    2014-02-01

    Full Text Available Introduction: Chronic obstructive pulmonary disease (COPD secondary to sulfur mustard gas poisoning, known as mustard lung, is a major late pulmonary complications in chemical warfare patients. Serious comorbidities like dyslipidemia are frequently encountered in COPD. The aim of this study was to measure the serum lipid profile and evaluate the relation of lipid parameters with the severity of airway obstruction in mustard lung patients. Materials and Methods: Thirty-six non-smoker mustard lung patients with no history of cardiovascular disease, diabetes mellitus, and dyslipidemia were entered into this cross-sectional study. Control group consisted of 36 healthy non-smoker men were considered in this study. Serum lipid profile was performed in the patients and the controls. Spirometry was done in mustard lung patients. Results: The mean age of the patients was 47±6.80 SD years. The mean duration of COPD was 18.50±7.75 SD years. There were statistically significant differences in mean serum triglycerides and total cholesterol levels between patients and controls (p=0.04 and p=0.03, respectively.The mean levels of lipid parameters were not statistically significant different among the 4 stages of COPD severity (p>0.05. Conclusion: The current study revealed that the serum levels of triglycerides and cholesterol are elevated in mustard lung patients compared with the healthy controls. Since lipid profile abnormalities are considered as a major risk factor for cardiovascular disease, especial attention to this matter is recommended in mustard lung patients

  4. Prognostic Significance of Modified Advanced Lung Cancer Inflammation Index (ALI) in Patients with Small Cell Lung Cancer_ Comparison with Original ALI.

    Science.gov (United States)

    Kim, Eun Young; Kim, Nambeom; Kim, Young Saing; Seo, Ja-Young; Park, Inkeun; Ahn, Hee Kyung; Jeong, Yu Mi; Kim, Jeong Ho

    2016-01-01

    Advanced lung cancer inflammation index (ALI, body mass index [BMI] x serum albumin/neutrophil-lymphocyte ratio [NLR]) has been shown to predict overall survival (OS) in small cell lung cancer (SCLC). CT enables skeletal muscle to be quantified, whereas BMI cannot accurately reflect body composition. The purpose was to evaluate prognostic value of modified ALI (mALI) using CT-determined L3 muscle index (L3MI, muscle area at L3/height2) beyond original ALI. L3MIs were calculated using the CT images of 186 consecutive patients with SCLC taken at diagnosis, and mALI was defined as L3MI x serum albumin/NLR. Using chi-squared test determined maximum cut-offs for low ALI and low mALI, the prognostic values of low ALI and low mALI were tested using Kaplan-Meier method and Cox proportional hazards analysis. Finally, deviance statistics was used to test whether the goodness of fit of the prognostic model is improved by adding mALI as an extra variable. Patients with low ALI (cut-off, 31.1, n = 94) had shorter OS than patients with high ALI (median, 6.8 months vs. 15.8 months; p ALI and low mALI (z = 0.000, p = 1.000) and between high ALI and high mALI (z = 0.330, p = 0.740). Multivariable analysis showed that low ALI was an independent prognostic factor for shorter OS (HR, 1.67, p = 0.004), along with advanced age (HR, 1.49, p = 0.045), extensive disease (HR, 2.27, p ALI using BMI. ALI is a simple and useful prognostic indicator in SCLC.

  5. Tricuspid valve dysplasia with severe tricuspid regurgitation: fetal pulmonary artery size predicts lung viability in the presence of small lung volumes.

    Science.gov (United States)

    Nathan, A T; Marino, B S; Dominguez, T; Tabbutt, S; Nicolson, S; Donaghue, D D; Spray, T L; Rychik, J

    2010-01-01

    Congenital tricuspid valve disease (Ebstein's anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation. 2010 S. Karger AG, Basel.

  6. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    Science.gov (United States)

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild

  7. March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Osama A. Kishta

    2018-01-01

    Full Text Available Membrane-associated RING-CH-1 (March1 is a member of the March family of E3 ubiquitin ligases. March1 downregulates cell surface expression of MHC II and CD86 by targeting them to lysosomal degradation. Given the key roles of MHC class II and CD86 in T cell activation and to get further insights into the development of allergic inflammation, we asked whether March1 deficiency exacerbates or attenuates features of allergic asthma in mice. Herein, we used an acute model of allergy to compare the asthmatic phenotype of March1-deficient and -sufficient mice immunized with ovalbumin (OVA and later challenged by intranasal instillation of OVA in the lungs. We found that eosinophilic inflammation in airways and lung tissue was similar between WT and March1−/− allergic mice, whereas neutrophilic inflammation was significant only in March1−/− mice. Airway hyperresponsiveness as well as levels of IFN-γ, IL-13, IL-6, and IL-10 was lower in the lungs of asthmatic March1−/− mice compared to WT, whereas lung levels of TNF-α, IL-4, and IL-5 were not significantly different. Interestingly, in the serum, levels of total and ova-specific IgE were reduced in March1-deficient mice as compared to WT mice. Taken together, our results demonstrate a role of March1 E3 ubiquitin ligase in modulating allergic responses.

  8. Low concentrations of zinc in gastric mucosa are associated with increased severity of Helicobacter pylori-induced inflammation.

    Science.gov (United States)

    Sempértegui, Fernando; Díaz, Myriam; Mejía, Ricardo; Rodríguez-Mora, Oswaldo G; Rentería, Edgar; Guarderas, Carlos; Estrella, Bertha; Recalde, Ramiro; Hamer, Davidson H; Reeves, Philip G

    2007-02-01

    Chronic Helicobacter pylori infection is the most common cause of gastric cancer. H. pylori induces oxidative stress while zinc deficiency results in increased sensitivity to it. In Ecuador, the prevalence of gastric cancer and zinc deficiency are high. We hypothesized that zinc deficiency in Ecuadorian people would cause increased H. pylori-induced inflammation in the gastric mucosa associated with lower tissue zinc concentrations. Three hundred and fifty-two patients with dyspepsia underwent endoscopy to obtain gastric mucosa biopsies. Diagnosis of H. pylori infection and its severity, histopathology, mucosal zinc concentration, and inflammation intensity were determined. H. pylori-infected patients with non-atrophic chronic gastritis had lower concentrations of zinc in gastric mucosa than uninfected patients with the same type of gastritis (251.3 +/- 225.3 vs. 426.2 +/- 279.9 ng/mg of protein; p = .016). Considering all patients, the more severe the H. pylori infection, the higher the percentage of subjects with infiltration by polymorphonuclear (PMN) cells (p = .0001). Patients with high PMN infiltration had lower mucosal zinc concentrations than patients with low PMN infiltration (35.2 +/- 20.7 vs. 242.9 +/- 191.8 ng/mg of protein; p = .021). The degree of inflammation in H. pylori-induced gastritis appears to be modulated by gastric tissue zinc concentrations.

  9. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    Science.gov (United States)

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  10. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways.

    Science.gov (United States)

    Jiang, Jun-Xia; Zhang, Shui-Juan; Shen, Hui-Juan; Guan, Yan; Liu, Qi; Zhao, Wei; Jia, Yong-Liang; Shen, Jian; Yan, Xiao-Feng; Xie, Qiang-Min

    2017-07-01

    Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Severity of pulmonary emphysema and lung cancer: analysis using quantitative lobar emphysema scoring.

    Science.gov (United States)

    Bae, Kyungsoo; Jeon, Kyung Nyeo; Lee, Seung Jun; Kim, Ho Cheol; Ha, Ji Young; Park, Sung Eun; Baek, Hye Jin; Choi, Bo Hwa; Cho, Soo Buem; Moon, Jin Il

    2016-11-01

    The aim of this study was to determine the relationship between lobar severity of emphysema and lung cancer using automated lobe segmentation and emphysema quantification methods.This study included 78 patients (74 males and 4 females; mean age of 72 years) with the following conditions: pathologically proven lung cancer, available chest computed tomographic (CT) scans for lobe segmentation, and quantitative scoring of emphysema. The relationship between emphysema and lung cancer was analyzed using quantitative emphysema scoring of each pulmonary lobe.The most common location of cancer was the left upper lobe (LUL) (n = 28), followed by the right upper lobe (RUL) (n = 27), left lower lobe (LLL) (n = 13), right lower lobe (RLL) (n = 9), and right middle lobe (RML) (n = 1). Emphysema ratio was the highest in LUL, followed by that in RUL, LLL, RML, and RLL. Multivariate logistic regression analysis revealed that upper lobes (odds ratio: 1.77; 95% confidence interval: 1.01-3.11, P = 0.048) and lobes with emphysema ratio ranked the 1st or the 2nd (odds ratio: 2.48; 95% confidence interval: 1.48-4.15, P emphysema patients, lung cancer has a tendency to develop in lobes with more severe emphysema.

  12. Puerarin Attenuates Ovalbumin-Induced Lung Inflammation and Hemostatic Unbalance in Rat Asthma Model

    Directory of Open Access Journals (Sweden)

    Feng Dong

    2014-01-01

    Full Text Available Aim. We aimed to investigate and evaluate the preventive activity of puerarin on the ovalbumin-induced asthma rat model. Materials and Methods. Male Wistar rats were sensitized intraperitoneally on days 0, 7, and 14 and challenged to ovalbumin intratracheally on day 21. Groups of sensitized rats were treated randomly either with placebo, puerarin, dexamethasone, or puerarin combined with dexamethasone, from days 15 to 20. Inflammatory markers, including cell counts in bronchoalveolar lavage fluid (BALF, inflammatory cytokines, histopathology, and coagulation parameters, such as coagulation tests and the activity of coagulation factors, were analyzed. Results. Puerarin significantly inhibited the recruitment of inflammatory cells in BALF and lung tissue. At the same time, the release of IL-4, IL-10, and IFN-γ in serum and the expression of mRNAs in lung tissue homogenate were changed by puerarin. Administration of puerarin also effectively rectified the coagulation disorder in asthmatic rats, such as prothrombin time (PT (P<0.01, thrombin time (TT (P<0.05, fibrinogen (FIB (P<0.01,the activity of factor II (FII (P<0.01, the activity of factor V (FV (P<0.05, the activity of factor VII (FVII (P<0.05, the activity of factor X (FX (P<0.05, the activity of factor VIII (FVIII (P<0.01, the activity of factor IX (FIX (P<0.05, and the activity of factor XII (FXII (P<0.05. Conclusions. Our results provide a clue that puerarin was useful for the preventive of allergic airway disease in rodents.

  13. [Prediction of the efficiency of endoscopic lung volume reduction by valves in severe emphysema].

    Science.gov (United States)

    Bocquillon, V; Briault, A; Reymond, E; Arbib, F; Jankowski, A; Ferretti, G; Pison, C

    2016-11-01

    In severe emphysema, endoscopic lung volume reduction with valves is an alternative to surgery with less morbidity and mortality. In 2015, selection of patients who will respond to this technique is based on emphysema heterogeneity, a complete fissure visible on the CT-scan and absence of collateral ventilation between lobes. Our case report highlights that individualized prediction is possible. A 58-year-old woman had severe, disabling pulmonary emphysema. A high resolution thoracic computed tomography scan showed that the emphysema was heterogeneous, predominantly in the upper lobes, integrity of the left greater fissure and no collateral ventilation with the left lower lobe. A valve was inserted in the left upper lobe bronchus. At one year, clinical and functional benefits were significant with complete atelectasis of the treated lobe. The success of endoscopic lung volume reduction with a valve can be predicted, an example of personalized medicine. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    Science.gov (United States)

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    2017-09-01

    Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.

  15. Effect of Fluticasone and Salmeterol on Tracheal Responsiveness to Ovalbumin and Lung Inflammation, Administrated during and after Sensitization

    Directory of Open Access Journals (Sweden)

    Zahra Gholamnezhad

    2014-01-01

    Full Text Available The effect of duration of administration of fluticasone propionate and salmeterol on tracheal responsiveness to ovalbumin and total and differential white blood cell in sensitized guinea pig was examined. Six groups of guinea pigs (n=7 were sensitized to ovalbumin. Three groups of them were subjected to inhaled fluticasone propionate and salmeterol, one group during sensitization (A, one group after that (for 18 days, B, and the other one during sensitization but with 18 days delay before measurements (C. Three other groups were treated with placebo in the same manner. The tracheal responsiveness to ovalbumin and total and differential white blood cells of three placebo groups were significantly higher than those of control group (P<0.001 for all cases. Tracheal responsiveness to ovalbumin and total and differential white blood cell in treated groups with fluticasone propionate and salmeterol were significantly decreased compared to those of placebo groups (nonsignificant to P<0.001. The improvement in all variables in treatment groups A and C were more pronounced than group B. The results showed that fluticasone propionate and salmeterol had a prevention effect on tracheal hyperresponsiveness to ovalbumin and lung inflammation which was more pronounced when administered during than after sensitization.

  16. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  17. Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Jun Song

    2018-03-01

    Full Text Available Using the CRISPR/Cas9 gene-editing technology, we recently produced a number of rabbits with mutations in immune function genes, including FOXN1, PRKDC, RAG1, RAG2, and IL2RG. Seven founder knockout rabbits (F0 and three male IL2RG null (−/y F1 animals demonstrated severe combined immunodeficiency (SCID, characterized by absence or pronounced hypoplasia of the thymus and splenic white pulp, and absence of immature and mature T and B-lymphocytes in peripheral blood. Complete blood count analysis showed severe leukopenia and lymphocytopenia accompanied by severe neutrophilia. Without prophylactic antibiotics, the SCID rabbits universally succumbed to lung infections following weaning. Pathology examination revealed severe heterophilic bronchopneumonia caused by Bordetella bronchiseptica in several animals, but a consistent feature of lung lesions in all animals was a severe interstitial pneumonia caused by Pneumocystis oryctolagi, as confirmed by histological examination and PCR analysis of Pneumocystis genes. The results of this study suggest that these SCID rabbits could serve as a useful model for human SCID to investigate the disease pathogenesis and the development of gene and drug therapies.

  18. Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency

    Science.gov (United States)

    Song, Jun; Wang, Guoshun; Hoenerhoff, Mark J.; Ruan, Jinxue; Yang, Dongshan; Zhang, Jifeng; Yang, Jibing; Lester, Patrick A.; Sigler, Robert; Bradley, Michael; Eckley, Samantha; Cornelius, Kelsey; Chen, Kong; Kolls, Jay K.; Peng, Li; Ma, Liang; Chen, Yuqing Eugene; Sun, Fei; Xu, Jie

    2018-01-01

    Using the CRISPR/Cas9 gene-editing technology, we recently produced a number of rabbits with mutations in immune function genes, including FOXN1, PRKDC, RAG1, RAG2, and IL2RG. Seven founder knockout rabbits (F0) and three male IL2RG null (−/y) F1 animals demonstrated severe combined immunodeficiency (SCID), characterized by absence or pronounced hypoplasia of the thymus and splenic white pulp, and absence of immature and mature T and B-lymphocytes in peripheral blood. Complete blood count analysis showed severe leukopenia and lymphocytopenia accompanied by severe neutrophilia. Without prophylactic antibiotics, the SCID rabbits universally succumbed to lung infections following weaning. Pathology examination revealed severe heterophilic bronchopneumonia caused by Bordetella bronchiseptica in several animals, but a consistent feature of lung lesions in all animals was a severe interstitial pneumonia caused by Pneumocystis oryctolagi, as confirmed by histological examination and PCR analysis of Pneumocystis genes. The results of this study suggest that these SCID rabbits could serve as a useful model for human SCID to investigate the disease pathogenesis and the development of gene and drug therapies. PMID:29593714

  19. Acute cardiovascular toxicity of sterilizers, PHMG, and PGH: severe inflammation in human cells and heart failure in zebrafish.

    Science.gov (United States)

    Kim, Jae-Yong; Kim, Hak Hyeon; Cho, Kyung-Hyun

    2013-06-01

    In 2011, dozens of children and pregnant women in Korea died by exposure to sterilizer for household humidifier, such as Oxy(®) and Cefu(®). Until now, however, it remains unknown how the sterilizer affect the human health to cause the acute deaths. To find its toxicity for organ, we investigated the putative toxicity of the sterilizer in the cardiovascular system. The sterilizers, polyhexamethylene guanidine phosphate (PHMG, Cefu(®)), and oligo-[2-(2-ethoxy)-ethoxyethyl)-guanidinium-chloride (PGH, Oxy(®)) were treated to human lipoproteins, macrophages, and dermal fibroblast cells. The PGH and PHMG at normal dosages caused severe atherogenic process in human macrophages, cytotoxic effect, and aging in human dermal cell. Zebrafish embryos, which were exposed to the sterilizer, showed early death with acute inflammation and attenuated developmental speed. All zebrafish exposed to the working concentration of PHMG (final 0.3 %) and PGH (final 10 mM) died within 70 min and displayed acute increases in serum triacylglycerol level and fatty liver induction. The dead zebrafish showed severe accumulation of fibrous collagen in the bulbous artery of the heart with elevation of reactive oxygen species. In conclusion, the sterilizers showed acute toxic effect in blood circulation system, causing by severe inflammation, atherogenesis, and aging, with embryo toxicity.

  20. Clinical laboratory markers of inflammation as determinants of chronic graft-versus-host disease activity and NIH global severity.

    Science.gov (United States)

    Grkovic, L; Baird, K; Steinberg, S M; Williams, K M; Pulanic, D; Cowen, E W; Mitchell, S A; Hakim, F T; Martires, K J; Avila, D N; Taylor, T N; Salit, R B; Rowley, S D; Zhang, D; Fowler, D H; Bishop, M R; Gress, R E; Pavletic, S Z

    2012-04-01

    Chronic graft-versus-host disease (cGVHD) remains a major cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Currently there are no accepted measures of cGVHD activity to aid in clinical management and disease staging. We analyzed clinical markers of inflammation in the sera of patients with established cGVHD and correlated those with definitions of disease activity. In all, 189 adults with cGVHD (33% moderate and 66% severe according to National Institutes of Health (NIH) global scoring) were consecutively enrolled onto a cross-sectional prospective cGVHD natural history study. At the time of evaluation, 80% were receiving systemic immunosuppression and failed a median of four prior systemic therapies (PST) for their cGVHD. Lower albumin (P<0.0001), higher C-reactive protein (P = 0.043), higher platelets (P = 0.030) and higher number of PST (P<0.0001) were associated with active disease defined as clinician's intention to intensify or alter systemic therapy due to the lack of response. Higher platelet count (P = 0.021) and higher number of PST (P<0.0001) were associated with more severe diseased defined by NIH global score. This study identified common laboratory indicators of inflammation that can serve as markers of cGVHD activity and severity.

  1. Prognostic Significance of Modified Advanced Lung Cancer Inflammation Index (ALI in Patients with Small Cell Lung Cancer_ Comparison with Original ALI.

    Directory of Open Access Journals (Sweden)

    Eun Young Kim

    Full Text Available Advanced lung cancer inflammation index (ALI, body mass index [BMI] x serum albumin/neutrophil-lymphocyte ratio [NLR] has been shown to predict overall survival (OS in small cell lung cancer (SCLC. CT enables skeletal muscle to be quantified, whereas BMI cannot accurately reflect body composition. The purpose was to evaluate prognostic value of modified ALI (mALI using CT-determined L3 muscle index (L3MI, muscle area at L3/height2 beyond original ALI.L3MIs were calculated using the CT images of 186 consecutive patients with SCLC taken at diagnosis, and mALI was defined as L3MI x serum albumin/NLR. Using chi-squared test determined maximum cut-offs for low ALI and low mALI, the prognostic values of low ALI and low mALI were tested using Kaplan-Meier method and Cox proportional hazards analysis. Finally, deviance statistics was used to test whether the goodness of fit of the prognostic model is improved by adding mALI as an extra variable.Patients with low ALI (cut-off, 31.1, n = 94 had shorter OS than patients with high ALI (median, 6.8 months vs. 15.8 months; p < 0.001, and patients with low mALI (cut-off 67.7, n = 94 had shorter OS than patients with high mALI (median, 6.8 months vs. 16.5 months; p < 0.001. There was no significant difference in estimates of median survival time between low ALI and low mALI (z = 0.000, p = 1.000 and between high ALI and high mALI (z = 0.330, p = 0.740. Multivariable analysis showed that low ALI was an independent prognostic factor for shorter OS (HR, 1.67, p = 0.004, along with advanced age (HR, 1.49, p = 0.045, extensive disease (HR, 2.27, p < 0.001, supportive care only (HR, 7.86, p < 0.001, and elevated LDH (HR, 1.45, p = 0.037. Furthermore, goodness of fit of this prognostic model was not significantly increased by adding mALI as an extra variable (LR difference = 2.220, p = 0.136.The present study confirms mALI using CT-determined L3MI has no additional prognostic value beyond original ALI using BMI. ALI

  2. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study12

    Science.gov (United States)

    van Vliet, Sara J; Di Giovanni, Valeria; Zhang, Ling; Richardson, Susan; van Rheenen, Patrick F

    2016-01-01

    Background: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. Objective: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. Design: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6–59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. Results: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443–535 mg/kg feces) compared with 698 mg/kg feces (1438–244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112–22 ng/mL) compared with 2036 ng/mL (5800–149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831–131 ng/mL) compared with 3174 ng/mL (5819–357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. Conclusions: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of

  3. Synthetic Nanoparticles That Promote Tumor Necrosis Factor Receptor 2 Expressing Regulatory T Cells in the Lung and Resistance to Allergic Airways Inflammation

    Directory of Open Access Journals (Sweden)

    Rohimah Mohamud

    2017-12-01

    Full Text Available Synthetic glycine coated 50 nm polystyrene nanoparticles (NP (PS50G, unlike ambient NP, do not promote pulmonary inflammation, but instead, render lungs resistant to the development of allergic airway inflammation. In this study, we show that PS50G modulate the frequency and phenotype of regulatory T cells (Treg in the lung, specifically increasing the proportion of tumor necrosis factor 2 (TNFR2 expressing Treg. Mice pre-exposed to PS50G, which were sensitized and then challenged with an allergen a month later, preferentially expanded TNFR2+Foxp3+ Treg, which further expressed enhanced levels of latency associated peptide and cytotoxic T-lymphocyte associated molecule-4. Moreover, PS50G-induced CD103+ dendritic cell activation in the lung was associated with the proliferative expansion of TNFR2+Foxp3+ Treg. These findings provide the first evidence that engineered NP can promote the selective expansion of maximally suppressing TNFR2+Foxp3+ Treg and further suggest a novel mechanism by which NP may promote healthy lung homeostasis.

  4. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    Science.gov (United States)

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives

    Directory of Open Access Journals (Sweden)

    Konstantinos Samitas

    2015-12-01

    Full Text Available Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.

  6. The Increased Expression of CCL20 and CCR6 in Rectal Mucosa Correlated to Severe Inflammation in Pediatric Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Keiichi Uchida

    2015-01-01

    Full Text Available Background/Aims. The aim of this study is to clarify the differences of CCL20 and CCR6 expression, chemokine correlated to intestinal homeostasis, between pediatric and adult ulcerative colitis (UC patients. Methods. Onehundred forty-one patients who underwent proctocolectomy were divided to two groups including childhood-onset UC (CUC, <16 years old, n=24 and adult-onset UC (AUC, ≧16 years old, n=117. A total of 141 formalin-fixed, paraffin-embedded tissue samples of rectum were obtained from these patients. Histological inflammation of rectum in resected specimen was evaluated by using Geboes histological assessment. In immunohistochemistry study, the CCL20 expression was evaluated by intensity and the stained area, and the CCR6 expression was evaluated by lymphocytes infiltration pattern. Results. CCL20 score and CCR6 positive lymphocytes infiltration pattern were statistically significantly correlated with histological inflammation severity of UC in all patients (P<0.05. CCL20 and CCR6 expression in CUC were statistically significantly higher than that in AUC in all or pathologically severe cases (P<0.05. Conclusions. CCL20 and CCR6 may play a significant role in local damage and pathological changes in UC especially pediatric patients. In the future, our understanding of the differences in CCL-CCR6 interaction between adults and children may lead to the pathogenesis of IBD.

  7. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    Science.gov (United States)

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Effects of lung protective ventilation strategy combined with lung recruitment maneuver on patients with severe burn complicated with acute respiratory distress syndrome].

    Science.gov (United States)

    Li, Xiaojian; Zhong, Xiaomin; Deng, Zhongyuan; Zhang Xuhui; Zhang, Zhi; Zhang, Tao; Tang, Wenbin; Chen, Bib; Liu, Changling; Cao, Wenjuan

    2014-08-01

    To investigate the effects of lung protective ventilation strategy combined with lung recruitment maneuver on ARDS complicating patients with severe burn. Clinical data of 15 severely burned patients with ARDS admitted to our burn ICU from September 2011 to September 2013 and conforming to the study criteria were analyzed. Right after the diagnosis of acute lung injury/ARDS, patients received mechanical ventilation with lung protective ventilation strategy. When the oxygenation index (OI) was below or equal to 200 mmHg (1 mmHg = 0. 133 kPa), lung recruitment maneuver was performed combining incremental positive end-expiratory pressure. When OI was above 200 mmHg, lung recruitment maneuver was stopped and ventilation with lung protective ventilation strategy was continued. When OI was above 300 mmHg, mechanical ventilation was stopped. Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, variables of blood gas analysis (pH, PaO2, and PaCO2) were obtained by blood gas analyzer, and the OI values were calculated; hemodynamic parameters including heart rate, mean arterial pressure (MAP), central venous pressure (CVP) of all patients and the cardiac output (CO), extravascular lung water index (EVLWI) of 4 patients who received pulse contour cardiac output (PiCCO) monitoring were monitored. Treatment measures and outcome of patients were recorded. Data were processed with analysis of variance of repeated measurement of a single group and LSD test. (1) Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the levels of PaO2 and OI of patients were respectively (77 ± 8), (113 ± 5), (142 ± 6) mmHg, and (128 ± 12), (188 ± 8), (237 ± 10) mmHg. As a whole, levels of PaO2 and OI changed significantly at different time points (with F values respectively 860. 96 and 842. 09, P values below

  9. Heritability and genetic correlation between GERD symptoms severity, metabolic syndrome, and inflammation markers in families living in Mexico City

    Science.gov (United States)

    Reding-Bernal, Arturo; Sánchez-Pedraza, Valentin; Moreno-Macías, Hortensia; Sobrino-Cossio, Sergio; Tejero-Barrera, María Elizabeth; Burguete-García, Ana Isabel; León-Hernández, Mireya; Serratos-Canales, María Fabiola; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2017-01-01

    Objective The aim of this study was to estimate the heritability (h2) and genetic correlation (ρG) between GERD symptoms severity, metabolic syndrome components, and inflammation markers in Mexican families. Methods Cross-sectional study which included 32 extended families resident in Mexico City. GERD symptoms severity was assessed by the ReQuest in Practice questionnaire. Heritability and genetic correlation were determined using the Sequential Oligogenic Linkage Analysis Routines software. Results 585 subjects were included, the mean age was 42 (±16.7) years, 57% were women. The heritability of the severity of some GERD symptoms was h2 = 0.27, 0.27, 0.37, and 0.34 (p-value metabolic syndrome components ranged from 0.40 for fasting plasma glucose to 0.61 for body mass index and diabetes mellitus. The heritability for fibrinogen and C-reactive protein was 0.64 and 0.38, respectively. Statistically significant genetic correlations were found between acidity complaints and fasting plasma glucose (ρG = 0.40); sleep disturbances and fasting plasma glucose (ρG = 0.36); acidity complaints and diabetes mellitus (ρG = 0.49) and between total ReQuest score and fasting plasma glucose (ρG = 0.43). The rest of metabolic syndrome components did not correlate with GERD symptoms. Conclusion Genetic factors substantially explain the phenotypic variance of the severity of some GERD symptoms, metabolic syndrome components and inflammation markers. Observed genetic correlations suggest that these phenotypes share common genes. These findings suggest conducting further investigation, as the determination of a linkage analysis in order to identify regions of susceptibility for developing of GERD and metabolic syndrome. PMID:28582452

  10. Von Willebrand factor indicates bacterial translocation, inflammation, and procoagulant imbalance and predicts complications independently of portal hypertension severity.

    Science.gov (United States)

    Mandorfer, M; Schwabl, P; Paternostro, R; Pomej, K; Bauer, D; Thaler, J; Ay, C; Quehenberger, P; Fritzer-Szekeres, M; Peck-Radosavljevic, M; Trauner, M; Reiberger, T; Ferlitsch, A

    2018-04-01

    Elevated plasma von Willebrand factor antigen (vWF) has been shown to indicate the presence of clinically significant portal hypertension, and thus, predicts the development of clinical events in patients with cirrhosis. To investigate the impact of bacterial translocation and inflammation on vWF, as well as the association between vWF and procoagulant imbalance. Moreover, we assessed whether vWF predicts complications of cirrhosis, independent of the severity of portal hypertension. Our study population comprised 225 patients with hepatic venous pressure gradient (HVPG) ≥ 10 mm Hg without active bacterial infections or hepatocellular carcinoma. vWF correlated with markers of bacterial translocation (lipopolysaccharide-binding protein [LBP; ρ = 0.201; P = 0.021]), inflammation (interleukin 6 [IL-6; ρ = 0.426; P protein [CRP; ρ = 0.249; P protein C ratio; ρ = 0.507; P model for transplant-free mortality. Finally, the independent prognostic value of vWF/CRP groups for mortality was confirmed by competing risk analysis. Our results demonstrate that vWF is not only a marker of portal hypertension but also independently linked to bacterial translocation, inflammation and procoagulant imbalance, which might explain its HVPG-independent association with most clinical events. Prognostic groups based on vWF/CRP efficiently discriminate between patients with a poor 5-year survival and patients with a favourable prognosis. © 2018 John Wiley & Sons Ltd.

  11. H₂S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats.

    Science.gov (United States)

    Qi, Qi Ying Chun; Chen, Wen; Li, Xiao Ling; Wang, Yu Wei; Xie, Xiao Hua

    2014-06-01

    To investigate the effect of H₂S on lower limb ischemia-reperfusion (LIR) induced lung injury and explore the underlying mechanism. Wistar rats were randomly divided into control group, IR group, IR+ Sodium Hydrosulphide (NaHS) group and IR+ DL-propargylglycine (PPG) group. IR group as lung injury model induced by LIR were given 4 h reperfusion following 4 h ischemia of bilateral hindlimbs with rubber bands. NaHS (0.78 mg/kg) as exogenous H₂S donor and PPG (60 mg/kg) which can suppress endogenous H₂S production were administrated before LIR, respectively. The lungs were removed for histologic analysis, the determination of wet-to-dry weight ratios and the measurement of mRNA and protein levels of aquaporin-1 (AQP₁), aquaporin-5 (AQP₅) as indexes of water transport abnormality, and mRNA and protein levels of Toll-like receptor 4 (TLR₄), myeloid differentiation primary-response gene 88 (MyD88) and p-NF-κB as indexes of inflammation. LIR induced lung injury was accompanied with upregulation of TLR₄-Myd88-NF-κB pathway and downregulation of AQP1/AQP₅. NaHS pre-treatment reduced lung injury with increasing AQP₁/AQP₅ expression and inhibition of TLR₄-Myd88-NF-κB pathway, but PPG adjusted AQP₁/AQP₅ and TLR4 pathway to the opposite side and exacerbated lung injury. Endogenous H₂S, TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ were involved in LIR induced lung injury. Increased H₂S would alleviate lung injury and the effect is at least partially depend on the adjustment of TLR₄-Myd88-NF-κB pathway and AQP₁/AQP₅ expression to reduce inflammatory reaction and lessen pulmonary edema. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  13. Pulmonary Artery Size in Interstitial Lung Disease and Pulmonary Hypertension: Association with Interstitial Lung Disease Severity and Diagnostic Utility

    Directory of Open Access Journals (Sweden)

    Matthew Chin

    2018-06-01

    Full Text Available PurposeIt is postulated that ILD causes PA dilatation independent of the presence of pulmonary hypertension (PH, so the use of PA size to screen for PH is not recommended. The aims of this study were to investigate the association of PA size with the presence and severity of ILD and to assess the diagnostic accuracy of PA size for detecting PH.MethodsIncident patients referred to a tertiary PH centre underwent baseline thoracic CT, MRI and right heart catheterisation (RHC. Pulmonary artery diameter was measured on CT pulmonary angiography and pulmonary arterial areas on MRI. A thoracic radiologist scored the severity of ILD on CT from 0 to 4, 0 = absent, 1 = 1–25%, 2 = 26–50%, 3 = 51–75%, and 4 = 76–100% extent of involvement. Receiver operating characteristic analysis and linear regression were employed to assess diagnostic accuracy and independent associations of PA size.Results110 had suspected PH due to ILD (age 65 years (SD 13, M:F 37:73 and 379 had suspected PH without ILD (age 64 years (SD 13, M:F 161:218. CT derived main PA diameter was accurate for detection of PH in patients both with and without ILD - AUC 0.873, p =< 0.001, and AUC 0.835, p =< 0.001, respectively, as was MRI diastolic PA area, AUC 0.897, p =< 0.001, and AUC 0.857, p =< 0.001, respectively Significant correlations were identified between mean pulmonary arterial pressure (mPAP and PA diameter in ILD (r = 0.608, p < 0.001, and non-ILD cohort (r = 0.426, p < 0.001. PA size was independently associated with mPAP (p < 0.001 and BSA (p = 0.001, but not with forced vital capacity % predicted (p = 0.597, Transfer factor of the lungs for carbon monoxide (TLCO % predicted (p = 0.321 or the presence of ILD on CT (p = 0.905. The severity of ILD was not associated with pulmonary artery dilatation (r = 0.071, p = 0.459.ConclusionsPulmonary arterial pressure elevation leads to pulmonary arterial dilation, which is not independently influenced by the presence or severity of

  14. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation.

    Science.gov (United States)

    Monk, Jennifer M; Lepp, Dion; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Pauls, K Peter; Tsao, Rong; Wood, Geoffrey A; Robinson, Lindsay E; Power, Krista A

    2016-02-01

    Common beans are rich in phenolic compounds and nondigestible fermentable components, which may help alleviate intestinal diseases. We assessed the gut health priming effect of a 20% cranberry bean flour diet from two bean varieties with differing profiles of phenolic compounds [darkening (DC) and nondarkening (NDC) cranberry beans vs. basal diet control (BD)] on critical aspects of gut health in unchallenged mice, and during dextran sodium sulfate (DSS)-induced colitis (2% DSS wt/vol, 7 days). In unchallenged mice, NDC and DC increased (i) cecal short-chain fatty acids, (ii) colon crypt height, (iii) crypt goblet cell number and mucus content and (iv) Muc1, Klf4, Relmβ and Reg3γ gene expression vs. BD, indicative of enhanced microbial activity and gut barrier function. Fecal 16S rRNA sequencing determined that beans reduced abundance of the Lactobacillaceae (Ruminococcus gnavus), Clostridiaceae (Clostridium perfringens), Peptococcaceae, Peptostreptococcaceae, Rikenellaceae and Pophyromonadaceae families, and increased abundance of S24-7 and Prevotellaceae. During colitis, beans reduced (i) disease severity and colonic histological damage, (ii) increased gene expression of barrier function promoting genes (Muc1-3, Relmβ, and Reg3γ) and (iii) reduced colonic and circulating inflammatory cytokines (IL-1β, IL-6, IFNγ and TNFα). Therefore, prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity. Moreover, both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed. These data demonstrate a proof-of-concept regarding the gut-priming potential of beans in colitis, which could be extended to mitigate the severity of other gut barrier-associated pathologies. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  15. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury.

    Science.gov (United States)

    Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J

    2008-01-01

    Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.

  16. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  17. The expression and activation of the AIM2 inflammasome correlates with inflammation and disease severity in patients with acute pancreatitis.

    Science.gov (United States)

    Algaba-Chueca, Francisco; de-Madaria, Enrique; Lozano-Ruiz, Beatriz; Martínez-Cardona, Claudia; Quesada-Vázquez, Noé; Bachiller, Victoria; Tarín, Fabián; Such, José; Francés, Rubén; Zapater, Pedro; González-Navajas, José M

    Acute pancreatitis is an inflammatory disorder of the pancreas that is responsible for significant morbidity and mortality. The inflammasome pathway has acquired significant relevance in the pathogenesis of many inflammatory disorders, but its role in patients with acute pancreatitis still awaits clarification. We performed a prospective study in which 27 patients with acute pancreatitis and 16 healthy controls were included. We isolated peripheral blood mononuclear cells (PBMCs) and we assessed the expression and activation of different inflammasomes as well as their association with the clinical course of the disease. Our results show that PBMCs from patients with acute pancreatitis have elevated expression of several components of the inflammasome complex, including the inflammasome-forming receptor absent in melanoma 2 (AIM2), early during the onset of the disease. Activation of the AIM2 or NLRP3 inflammasomes in PBMCs from patients with acute pancreatitis results in exacerbated IL-1β and IL-18 production compared with PBMCs from healthy controls. Furthermore, both AIM2 mRNA expression and AIM2-mediated production of IL-1β by PBMCs correlated with increased systemic inflammation in these patients. Last, AIM2 expression was further increased in those patients that developed transient or persistent organ failure (moderate or severe acute pancreatitis). Our data demonstrates that AIM2 inflammasome expression and activation is increased early during the course of acute pancreatitis, and suggests that AIM2 activation may affect systemic inflammation and organ failure in these patients. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  18. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  19. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, CBRN Defence and Security, Umeå (Sweden)

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl{sub 2}) with the aim to understand the pathogenesis of the long-term sequelae of Cl{sub 2}-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5 h up to 90 days after a single inhalation of Cl{sub 2}. A single dose of dexamethasone (10 mg/kg) was administered 1 h following Cl{sub 2}-exposure. A 15-min inhalation of 200 ppm Cl{sub 2} was non-lethal in Sprague-Dawley rats. At 24 h post exposure, Cl{sub 2}-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24 h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24 h but did not influence the AHR. Inhalation of Cl{sub 2} in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl{sub 2}-induced respiratory dysfunction. - Highlights: • Inhalation of Cl{sub 2} leads to acute lung inflammation and airway hyperreactivity. • Cl{sub 2} activates an inflammasome pathway of TGF-β induction. • Cl{sub 2} leads to a fibrotic respiratory disease. • Treatment

  20. Stress, Inflammation and Pain: A Potential Role for Monocytes in Fibromyalgia-related Symptom Severity.

    Science.gov (United States)

    Taylor, Ann Gill; Fischer-White, Tamara G; Anderson, Joel G; Adelstein, Katharine E; Murugesan, Maheswari; Lewis, Janet E; Scott, Michael M; Gaykema, Ronald P A; Goehler, Lisa E

    2016-12-01

    The possibility that immunological changes might contribute to symptom severity in fibromyalgia (FM) prompted this proof-of-concept study to determine whether differences in monocyte subpopulations might be present in persons with FM compared with healthy controls. Relationships were assessed by comparing specific symptoms in those with FM (n = 20) and patterns of monocyte subpopulations with healthy age-matched and gender-matched controls (n = 20). Within the same time frame, all participants provided a blood sample and completed measures related to pain, fatigue, sleep disturbances, perceived stress, positive and negative affect and depressed mood (and the Fibromyalgia Impact Questionnaire for those with FM). Monocyte subpopulations were assessed using flow cytometry. No differences were observed in total percentages of circulating monocytes between the groups; however, pain was inversely correlated with percentages of circulating classical (r = -0.568, p = 0.011) and intermediate (r = -0.511, p = 0.025) monocytes in the FM group. Stress and pain were highly correlated (r = 0.608, p = 0.004) in the FM group. The emerging pattern of changes in the percentages of circulating monocyte subpopulations concomitant with higher ratings of perceived pain and the correlation between stress and pain found in the FM group warrant further investigation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Traditional Chinese medicine, Qing Ying Tang, ameliorates the severity of acute lung injury induced by severe acute pancreatitis in rats via the upregulation of aquaporin-1.

    Science.gov (United States)

    Gao, Zhenming; Xu, Junfeng; Sun, Deguang; Zhang, Rixin; Liang, Rui; Wang, Liming; Fan, Rong

    2014-12-01

    Aquaporin-1 (AQP-1) is expressed in lung endothelial cells and regulates water transport; thus, AQP-1 plays an important role in a number of edema-associated lung diseases. Qing Yin Tang (QYT), a traditional Chinese medicine, has been shown to effectively reduce the mortality rate of acute lung injury (ALI) induced by severe acute pancreatitis (SAP). The current study aimed to investigate the detailed mechanisms underlying the effects of QYT on ALI induced by SAP, particularly the effects on the expression levels of AQP-1 in the lung tissue. ALI was established in Wister rats who were subsequently divided into four groups: SHAM, ALI, dexamethasone (DEX) and QYT groups (n=8 per group). In the QYT group, 20 ml/kg QYT was administered by gavage immediately following the induction of SAP. Blood and lung tissues were collected 8 h following the induction of pancreatitis. The lung wet/dry ratio, as well as the levels of blood gases, serum amylase and tumor necrosis factor-α (TNF-α), were measured at 4, 8 and 12 h following SAP-associated ALI induction surgery. The expression levels of AQP-1 in the lung tissue were detected by quantitative polymerase chain reaction, immunohistochemistry and western blot analysis. No statistically significant differences were observed with regard to the levels of serum amylase, wet/dry ratio, partial pressure of oxygen, serum TNF-α and pathological changes in the pulmonary tissue between the QYT and DEX groups; however, a statistically significant difference was observed when compared with the ALI group. The expression levels of AQP-1 significantly increased (P<0.05) and lung edema was alleviated in the QYT and DEX groups, when compared with ALI group. Therefore, the expression level of AQP-1 is associated with pulmonary edema. QYT protects the lungs from injury induced by SAP via the upregulation of AQP-1, which suppresses TNF-α expression.

  2. Influence of Pneumococcal Conjugate Vaccine on Acute Otitis Media with Severe Middle Ear Inflammation: A Retrospective Multicenter Study.

    Science.gov (United States)

    Sugino, Hirotoshi; Tsumura, Shigeru; Kunimoto, Masaru; Noda, Masuhiro; Chikuie, Daisuke; Noda, Chieko; Yamashita, Mariko; Watanabe, Hiroshi; Ishii, Hidemasa; Tashiro, Toru; Iwata, Kazuhiro; Kono, Takashi; Tsumura, Kaoru; Sumiya, Takahiro; Takeno, Sachio; Hirakawa, Katsuhiro

    2015-01-01

    The Japanese guidelines for acute otitis media in children recommend classifying acute otitis media by age, manifestations and local findings, and also recommend myringotomy for moderate-grade cases with severe local findings, severe-grade cases, and treatment-resistant cases. The heptavalent pneumococcal conjugate vaccine was released in Japan in February 2010. In Hiroshima City, public funding allowing free inoculation with this vaccine was initiated from January 2011, and the number of vaccinated individuals has since increased dramatically. This study investigated changes in the number of myringotomies performed to treat acute otitis media during the 5-year period from January 2008 to December 2012 at two hospitals and five clinics in the Asa Area of Hiroshima City, Japan. A total of 3,165 myringotomies for acute otitis media were performed. The rate of procedures per child-year performed in otitis media in 1-year-old infants decreased significantly in the 2 years after the introduction of public funding for heptavalent pneumococcal conjugate vaccine compared to all years before introduction (potitis media in reducing the financial burden of myringotomy. In addition, this vaccine may help prevent acute otitis media with severe middle ear inflammation in 1-year-old infants.

  3. Position of lung scintigraphy in emergency diagnosis and therapeutic indications in cases of severe pulmonary embolism

    International Nuclear Information System (INIS)

    Torquat, Sabine de.

    1975-01-01

    The position of lung scintigraphy in diagnostic strategy is discussed. This technique appears to afford the key examination in severe pulmonary embolism because of its qualities, which are: - speed of execution, - absolute harmlessness, - diagnostic safety. Taking these points in order: - speed of execution is ensured by the very rapid uptake of I 131-labelled albumin macroaggregates (usable immediately) and the existence of the gamma camera; - harmlessness of the examination by the use of non-allergenic radioactive tracers and doses not significantly restricting the vascular bed still perfused; whichever of the two possible techniques is employed (scanner and gamma camera) the examination can always be practised without getting the patient out of bed, which avoids the risk of clot migration due to movement; - certainty of the result by the fact that in the event of a surgical indication the circulation cut-off image is spectacular and obvious in fact a lung amputation image must be equal to or greater than 50% of the pulmonary field before an operation is decided upon all other images remaining within the scope of a hypocoagulant treatment. A study was carried out in a cardio-vascular surgery department on 28 patients hospitalised with a possible view to embolectomy. Lung scintigraphy allows a quick exploration of the minor circulation. In the special clinical situation of the patients, for whom the advisability of an embolectomy is discussed, the scintigraphic examination provides the key: if normal it eliminates the diagnosis absolutely; if not it reveals without extra risk the spectacular obliterations of the vascular bed on which any therapeutic decision, medical or surgical is based [fr

  4. Loss of Endothelial Barrier in Marfan Mice (mgR/mgR Results in Severe Inflammation after Adenoviral Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Philipp Christian Seppelt

    Full Text Available Marfan syndrome is an autosomal dominant inherited disorder of connective tissue. The vascular complications of Marfan syndrome have the biggest impact on life expectancy. The aorta of Marfan patients reveals degradation of elastin layers caused by increased proteolytic activity of matrix metalloproteinases (MMPs. In this study we performed adenoviral gene transfer of human tissue inhibitor of matrix metalloproteinases-1 (hTIMP-1 in aortic grafts of fibrillin-1 deficient Marfan mice (mgR/mgR in order to reduce elastolysis.We performed heterotopic infrarenal transplantation of the thoracic aorta in female mice (n = 7 per group. Before implantation, mgR/mgR and wild-type aortas (WT, C57BL/6 were transduced ex vivo with an adenoviral vector coding for human TIMP-1 (Ad.hTIMP-1 or β-galactosidase (Ad.β-Gal. As control mgR/mgR and wild-type aortas received no gene therapy. Thirty days after surgery, overexpression of the transgene was assessed by immunohistochemistry (IHC and collagen in situ zymography. Histologic staining was performed to investigate inflammation, the neointimal index (NI, and elastin breaks. Endothelial barrier function of native not virus-exposed aortas was evaluated by perfusion of fluorescent albumin and examinations of virus-exposed tissue were performed by transmission electron microscopy (TEM.IHC and ISZ revealed sufficient expression of the transgene. Severe cellular inflammation and intima hyperplasia were seen only in adenovirus treated mgR/mgR aortas (Ad.β-Gal, Ad.hTIMP-1 NI: 0.23; 0.43, but not in native and Ad.hTIMP-1 treated WT (NI: 0.01; 0.00. Compared to native mgR/mgR and Ad.hTIMP-1 treated WT aorta, the NI is highly significant greater in Ad.hTIMP-1 transduced mgR/mgR aorta (p = 0.001; p = 0.001. As expected, untreated Marfan grafts showed significant more elastolysis compared to WT (p = 0.001. However, elastolysis in Marfan aortas was not reduced by adenoviral overexpression of hTIMP-1 (compared to untreated

  5. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    Directory of Open Access Journals (Sweden)

    Ken Murakami

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5. Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1 or transforming growth factor β1 (TGF-β1 levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  6. Bronchodilator response of advanced lung function parameters depending on COPD severity

    Directory of Open Access Journals (Sweden)

    Jarenbäck L

    2016-11-01

    Full Text Available Linnea Jarenbäck,1 Göran Eriksson,1 Stefan Peterson,2 Jaro Ankerst,1 Leif Bjermer,1 Ellen Tufvesson1 1Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, 2Regional Cancer Center South, Skåne University Hospital, Lund, Sweden Background: COPD is defined as partly irreversible airflow obstruction. The response pattern of bronchodilators has not been followed in advanced lung function parameters. Purpose: The aim of this study was to investigate bronchodilator response pattern in advanced lung function parameters in a continuous fashion along forced expiratory volume in 1 second (FEV1 percent predicted (%p in COPD patients and controls. Patients and methods: Eighty-one smokers/ex-smokers (41 controls and 40 COPD performed spirometry, body plethysmography, impulse oscillometry and single-breath helium dilution carbon monoxide diffusion at baseline, after salbutamol inhalation and then after an additional inhalation of ipratropium. Results: Most pulmonary function parameters showed a linear increase in response to decreased FEV1%p. The subjects were divided into groups of FEV1%p <65 and >65, and the findings from continuous analysis were verified. The exceptions to this linear response were inspiratory capacity (IC, forced vital capacity (FVC, FEV1/FVC and expiratory resistance (Rex, which showed a segmented response relationship to FEV1%p. IC and FVC, with break points (BP of 57 and 58 FEV1%p respectively, showed no response above, but an incresed slope below the BP. In addition, in patients with FEV1%p <65 and >65, response of FEV1%p did not correlate to response of volume parameters. Conclusion: Response of several advanced lung function parameters differs depending on patients’ baseline FEV1%p, and specifically response of volume parameters is most pronounced in COPD patients with FEV1%p <65. Volume and resistance responses do not follow the flow response measured with FEV1 and may thus be used as a

  7. Outcomes of Patients With Severe Chronic Lung Disease Who Are Undergoing Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Suri, Rakesh M; Gulack, Brian C; Brennan, J Matthew; Thourani, Vinod H; Dai, Dadi; Zajarias, Alan; Greason, Kevin L; Vassileva, Christina M; Mathew, Verghese; Nkomo, Vuyisile T; Mack, Michael J; Rihal, Charanjit S; Svensson, Lars G; Nishimura, Rick A; O'Gara, Patrick T; Holmes, David R

    2015-12-01

    In this study, we sought to determine the clinical outcomes after transcatheter aortic valve replacement (TAVR) among patients with chronic lung disease (CLD) and to evaluate the safety of transaortic versus transapical alternate access approaches in patients with varying severities of CLD. Clinical records for patients undergoing TAVR from 2011 to 2014 in The Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry were linked to Medicare hospital claims (n = 11,656). Clinical outcomes were evaluated across strata of CLD severity, and the risk-adjusted association between access route and post-TAVR mortality was determined among patients with severe CLD. In this cohort (median age, 84 years; 51.7% female), moderate to severe CLD was present in 27.7% (14.3%, moderate; 13.4%, severe). Compared with patients with no or mild CLD, patients with severe CLD had a higher rate of post-TAVR mortality to 1-year (32.3% versus 21.0%; adjusted hazard ratio [HR], 1.48; 95% confidence interval [CI], 1.31 to 1.66), as did those with moderate CLD (25.5%; adjusted HR, 1.16; 95% CI, 1.03 to 1.30). The adjusted rate of mortality was similar for transapical versus transaortic approaches to 1 year (adjusted HR, 1.17; 95% CI, 0.83 to 1.65). Moderate or severe CLD is associated with an increased risk of death to 1-year after TAVR, and among patients with severe CLD, the risk of death appears to be similar with either transapical or transaortic alternate-access approaches. Further study is necessary to understand strategies to mitigate risk associated with CLD and the long-term implications of these findings. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure

    Directory of Open Access Journals (Sweden)

    Tita Cristina

    2009-07-01

    Full Text Available Abstract Introduction Inotropes are associated with adverse outcomes in heart failure (HF, raising concern they may accelerate myocardial injury. Whether biomarkers of myocardial necrosis, inflammation and apoptosis change in response to acute milrinone administration is not well established. Methods Ten patients with severe HF and reduced cardiac output who were to receive milrinone were studied. Blood samples were taken just before initiation of milrinone and after 24 hours of infusion. Dosing was at the discretion of the patient's attending physician (range 0.25–0.5 mcg/kg/min. Plasma measurements of troponin, myoglobin, N-terminal-pro-BNP, interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand were performed at both time points. Results Troponin was elevated at baseline in all patients (mean 0.1259 ± 0.17 ng/ml, but there was no significant change after 24 hours of milrinone (mean 0.1345 ± 0.16 ng/ml, p = 0.44. There were significant improvements in interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand (all p Conclusion In conclusion, among patients with severe HF and low cardiac output, ongoing myocardial injury is common, and initiation of milrinone did not result in exacerbation of myocardial injury but instead was associated with salutary effects on other biomarkers.

  9. The Biomarker GlycA Is Associated with Chronic Inflammation and Predicts Long-Term Risk of Severe Infection.

    Science.gov (United States)

    Ritchie, Scott C; Würtz, Peter; Nath, Artika P; Abraham, Gad; Havulinna, Aki S; Fearnley, Liam G; Sarin, Antti-Pekka; Kangas, Antti J; Soininen, Pasi; Aalto, Kristiina; Seppälä, Ilkka; Raitoharju, Emma; Salmi, Marko; Maksimow, Mikael; Männistö, Satu; Kähönen, Mika; Juonala, Markus; Ripatti, Samuli; Lehtimäki, Terho; Jalkanen, Sirpa; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; Inouye, Michael

    2015-10-28

    The biomarker glycoprotein acetylation (GlycA) has been shown to predict risk of cardiovascular disease and all-cause mortality. Here, we characterize biological processes associated with GlycA by leveraging population-based omics data and health records from >10,000 individuals. Our analyses show that GlycA levels are chronic within individuals for up to a decade. In apparently healthy individuals, elevated GlycA corresponded to elevation of myriad inflammatory cytokines, as well as a gene coexpression network indicative of increased neutrophil activity, suggesting that individuals with high GlycA may be in a state of chronic inflammatory response. Accordingly, analysis of infection-related hospitalization and death records showed that increased GlycA increased long-term risk of severe non-localized and respiratory infections, particularly septicaemia and pneumonia. In total, our work demonstrates that GlycA is a biomarker for chronic inflammation, neutrophil activity, and risk of future severe infection. It also illustrates the utility of leveraging multi-layered omics data and health records to elucidate the molecular and cellular processes associated with biomarkers. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A stepwise composite echocardiographic score predicts severe pulmonary hypertension in patients with interstitial lung disease.

    Science.gov (United States)

    Bax, Simon; Bredy, Charlene; Kempny, Aleksander; Dimopoulos, Konstantinos; Devaraj, Anand; Walsh, Simon; Jacob, Joseph; Nair, Arjun; Kokosi, Maria; Keir, Gregory; Kouranos, Vasileios; George, Peter M; McCabe, Colm; Wilde, Michael; Wells, Athol; Li, Wei; Wort, Stephen John; Price, Laura C

    2018-04-01

    European Respiratory Society (ERS) guidelines recommend the assessment of patients with interstitial lung disease (ILD) and severe pulmonary hypertension (PH), as defined by a mean pulmonary artery pressure (mPAP) ≥35 mmHg at right heart catheterisation (RHC). We developed and validated a stepwise echocardiographic score to detect severe PH using the tricuspid regurgitant velocity and right atrial pressure (right ventricular systolic pressure (RVSP)) and additional echocardiographic signs. Consecutive ILD patients with suspected PH underwent RHC between 2005 and 2015. Receiver operating curve analysis tested the ability of components of the score to predict mPAP ≥35 mmHg, and a score devised using a stepwise approach. The score was tested in a contemporaneous validation cohort. The score used "additional PH signs" where RVSP was unavailable, using a bootstrapping technique. Within the derivation cohort (n=210), a score ≥7 predicted severe PH with 89% sensitivity, 71% specificity, positive predictive value 68% and negative predictive value 90%, with similar performance in the validation cohort (n=61) (area under the curve (AUC) 84.8% versus 83.1%, p=0.8). Although RVSP could be estimated in 92% of studies, reducing this to 60% maintained a fair accuracy (AUC 74.4%). This simple stepwise echocardiographic PH score can predict severe PH in patients with ILD.

  11. Cytokine profiles at birth and the risk of developing severe respiratory distress and chronic lung disease

    Directory of Open Access Journals (Sweden)

    Majeda S Hammoud

    2017-01-01

    Full Text Available Background: Neonates with the diagnosis of respiratory distress syndrome (RDS were studied to investigate possible associations between cytokine levels at birth and developing severe RDS or chronic lung disease (CLD. Materials and Methods: This was a cross-sectional study on serum and bronchoalveolar lavage (BAL samples collected within hours of birth from infants with moderate and severe RDS. Twenty infants with moderate RDS and 20 infants with severe RDS were studied. RDS was diagnosed on the basis of radiographic findings, respiratory distress, and an increasing oxygen requirement. RDS severity was graded based on the radiological findings and Downe's Score. CLD was diagnosed when infants were still on supplemented O2by at least 28 days of age. Levels of the cytokines interleukin (IL-1β, IL-6, IL-8, IL-10, and tumor necrosis factor alpha were measured using enzyme-linked immunosorbent assay. “Statistical analysis was performed using the SPSS for Windows, (SPSS Inc., Chicago, IL, USA.” Results: Levels of the proinflammatory cytokines IL-8 and IL-1β were significantly higher in BAL of infants with severe RDS than those with moderate RDS (P = 0.007 and P= 0.02, respectively. IL-8 levels were also significantly higher in BAL and serum of infants who later progressed to CLD than in those who did not (P = 0.03 for both. The IL-8/IL-10 cytokine ratio was significantly higher in the BAL of severe RDS infants than in moderate RDS (P = 0.01 and in the serum of infants who progressed to CLD than in those who did not (P = 0.03. Conclusion: Levels of IL-8 and the IL-8/IL-10 ratio measured soon after birth were associated with severity of RDS as well as progression to CLD. Early measurement of cytokines levels and ratios may contribute to the prognosis and management of RDS and CLD.

  12. Systemic immune-inflammation index predicting chemoradiation resistance and poor outcome in patients with stage III non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yu-Suo Tong

    2017-10-01

    Full Text Available Abstract Background There is increasing evidence that the existence of systemic inflammation response is correlated with poor prognosis in several solid tumors. The aim of this retrospective study was to investigate the association between systemic immune-inflammation index (SII and therapy response and overall survival in patients with stage III non-small cell lung cancer (NSCLC. The prognostic values of neutrophil to lymphocyte ratio (NLR, platelet to lymphocyte ratio (PLR, and prognostic nutritional index (PNI were also evaluated. Methods In total, 332 patients with new diagnosis of stage III NSCLC were included in this retrospective analysis. SII was defined as platelet counts × neutrophil counts/lymphocyte counts. Receiver operating characteristic (ROC curve was used to evaluate the optimal cut-off value for SII, NLR, PLR and PNI. Univariate and multivariate survival analysis were performed to identify the factors correlated with overall survival. Results Applying cut-offs of ≥ 660 (SII, ≥ 3.57 (NLR, ≥ 147 (PLR, ≤ 52.95 (PNI, SII ≥ 660 was significantly correlated with worse ECOG PS (< 0.001, higher T stage (< 0.001, advanced clinical stage (p = 0.019, and lower response rate (p = 0.018. In univariate analysis, SII ≥ 660, NLR ≥ 3.57, PLR ≥ 147, and PNI ≤ 52.95 were significantly associated with worse overall survival (p all < 0.001. Patients with SII ≥ 660 had a median overall survival of 10 months, and patients with SII < 660 showed a median overall survival of 30 months. In multivariate analysis only ECOG PS (HR, 1.744; 95% CI 1.158–2.626; p = 0.008, T stage (HR, 1.332; 95% CI 1.032–1.718; p = 0.028, N stage (HR, 1.848; 95% CI 1.113–3.068; p = 0.018, SII (HR, 2.105; 95% CI 1.481–2.741; p < 0.001 and NLR ≥ 3.57 (HR, 1.934; 95% CI 1.448–2.585; p < 0.001 were independently correlated with overall survival. Conclusions This study demonstrates that the SII is an

  13. Low-flow venovenous CO₂ removal in association with lung protective ventilation strategy in patients who develop severe progressive respiratory acidosis after lung transplantation.

    Science.gov (United States)

    Ruberto, F; Bergantino, B; Testa, M C; D'Arena, C; Zullino, V; Congi, P; Paglialunga, S G; Diso, D; Venuta, F; Pugliese, F

    2013-09-01

    Primary graft dysfunction (PGD) might occur after lung transplantation. In some severe cases, conventional therapies like ventilatory support, administration of inhaled nitric oxide (iNO), and intravenous prostacyclins are not sufficient to provide an adequate gas exchange. The aim of our study was to evaluate the use of a lung protective ventilation strategy associated with a low-flow venovenous CO2 removal treatment to reduce ventilator-associated injury in patients that develop severe PGD after lung transplantation. From January 2009 to January 2011, 3 patients developed PGD within 24 hours after lung transplantation. In addition to conventional medical treatment, including hemodynamic support, iNO and prostaglandin E1 (PGE1), we initiated a ventilatory protective strategy associated with low-flow venovenous CO2 removal treatment (LFVVECCO2R). Hemodynamic and respiratory parameters were assessed at baseline as well as after 3, 12, 24, and 48 hours. No adverse events were registered. Despite decreased baseline elevated pulmonary positive pressures, application of a protective ventilation strategy with LFVVECCO2R reduced PaCO2 and pulmonary infiltrates as well as increased pH values and PaO2/FiO2 ratios. Every patient showed simultaneous improvement of clinical and hemodynamic conditions. They were weaned from mechanical ventilation and extubated after 24 hours after the use of the low-flow venovenous CO2 removal device. The use of LFVVECCO2R together with a protective lung ventilation strategy during the perioperative period of lung transplantation may be a valid clinical strategy for patients with PGD and severe respiratory acidosis occured despite adequate mechanical ventilation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure

    Science.gov (United States)

    Lanfear, David E; Hasan, Reema; Gupta, Ramesh C; Williams, Celeste; Czerska, Barbara; Tita, Cristina; Bazari, Rasha; Sabbah, Hani N

    2009-01-01

    Introduction Inotropes are associated with adverse outcomes in heart failure (HF), raising concern they may accelerate myocardial injury. Whether biomarkers of myocardial necrosis, inflammation and apoptosis change in response to acute milrinone administration is not well established. Methods Ten patients with severe HF and reduced cardiac output who were to receive milrinone were studied. Blood samples were taken just before initiation of milrinone and after 24 hours of infusion. Dosing was at the discretion of the patient's attending physician (range 0.25–0.5 mcg/kg/min). Plasma measurements of troponin, myoglobin, N-terminal-pro-BNP, interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand were performed at both time points. Results Troponin was elevated at baseline in all patients (mean 0.1259 ± 0.17 ng/ml), but there was no significant change after 24 hours of milrinone (mean 0.1345 ± 0.16 ng/ml, p = 0.44). There were significant improvements in interleukin-6, tumor necrosis factor-α, soluble Fas, and soluble Fas-ligand (all p milrinone did not result in exacerbation of myocardial injury but instead was associated with salutary effects on other biomarkers. PMID:19640280

  15. COPD phenotypes on computed tomography and its correlation with selected lung function variables in severe patients

    Directory of Open Access Journals (Sweden)

    da Silva SMD

    2016-03-01

    Full Text Available Silvia Maria Doria da Silva, Ilma Aparecida Paschoal, Eduardo Mello De Capitani, Marcos Mello Moreira, Luciana Campanatti Palhares, Mônica Corso PereiraPneumology Service, Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP, Campinas, São Paulo, BrazilBackground: Computed tomography (CT phenotypic characterization helps in understanding the clinical diversity of chronic obstructive pulmonary disease (COPD patients, but its clinical relevance and its relationship with functional features are not clarified. Volumetric capnography (VC uses the principle of gas washout and analyzes the pattern of CO2 elimination as a function of expired volume. The main variables analyzed were end-tidal concentration of carbon dioxide (ETCO2, Slope of phase 2 (Slp2, and Slope of phase 3 (Slp3 of capnogram, the curve which represents the total amount of CO2 eliminated by the lungs during each breath.Objective: To investigate, in a group of patients with severe COPD, if the phenotypic analysis by CT could identify different subsets of patients, and if there was an association of CT findings and functional variables.Subjects and methods: Sixty-five patients with COPD Gold III–IV were admitted for clinical evaluation, high-resolution CT, and functional evaluation (spirometry, 6-minute walk test [6MWT], and VC. The presence and profusion of tomography findings were evaluated, and later, the patients were identified as having emphysema (EMP or airway disease (AWD phenotype. EMP and AWD groups were compared; tomography findings scores were evaluated versus spirometric, 6MWT, and VC variables.Results: Bronchiectasis was found in 33.8% and peribronchial thickening in 69.2% of the 65 patients. Structural findings of airways had no significant correlation with spirometric variables. Air trapping and EMP were strongly correlated with VC variables, but in opposite directions. There was some overlap between the EMP and AWD

  16. Cumulative Lung Dose for Several Motion Management Strategies as a Function of Pretreatment Patient Parameters

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Campbell, Jonathon; Zhang Tiezhi; Yan Di

    2009-01-01

    Purpose: To evaluate patient parameters that may predict for relative differences in cumulative four-dimensional (4D) lung dose among several motion management strategies. Methods and Materials: Deformable image registration and dose accumulation were used to generate 4D treatment plans for 18 patients with 4D computed tomography scans. Three plans were generated to simulate breath hold at normal inspiration, target tracking with the beam aperture, and mid-ventilation aperture (control of the target at the mean daily position and application of an iteratively computed margin to compensate for respiration). The relative reduction in mean lung dose (MLD) between breath hold and mid-ventilation aperture (ΔMLD BH ) and between target tracking and mid-ventilation aperture (ΔMLD TT ) was calculated. Associations between these two variables and parameters of the lesion (excursion, size, location, and deformation) and dose distribution (local dose gradient near the target) were also calculated. Results: The largest absolute and percentage differences in MLD were 1.0 Gy and 21.5% between breath hold and mid-ventilation aperture. ΔMLD BH was significantly associated (p TT was significantly associated with excursion, deformation, and local dose gradient. A linear model was constructed to represent ΔMLD vs. excursion. For each 5 mm of excursion, target tracking reduced the MLD by 4% compared with the results of a mid-ventilation aperture plan. For breath hold, the reduction was 5% per 5 mm of excursion. Conclusions: The relative difference in MLD among different motion management strategies varied with patient and tumor characteristics for a given dosimetric target coverage. Tumor excursion is useful to aid in stratifying patients according to appropriate motion management strategies.

  17. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness

    Directory of Open Access Journals (Sweden)

    Yannick Molgat-Seon

    2017-03-01

    Full Text Available The aim of the present study was to determine whether lung volume recruitment (LVR acutely increases respiratory system compliance (Crs in individuals with severe respiratory muscle weakness (RMW. Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12 and healthy controls (n=12 underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume. At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p0.05. LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05. During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05. LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique.

  18. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    Science.gov (United States)

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    Science.gov (United States)

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  20. Pigeon fancier’s lung – An under-diagnosed cause of severely debilitating and chronic breathlessness

    Directory of Open Access Journals (Sweden)

    Vishal Chopra

    2017-07-01

    Full Text Available Pigeon fanciers lung or Bird fanciers lung (BFL is one of the common and preventable causes of hypersensitivity pneumonitis. It is an under diagnosed cause of severe incapacitating breathlessness and can be acute, sub-acute or chronic. We report a case of 53 year old female who presented with severe chronic breathlessness due to regular exposure to pigeons for last 35 years. Clinicians should take a detailed history of exposure in patients with unexplained breathlessness as the avoidance of exposure to the antigens can reverse the disease preventing the morbidity and mortality of the patient.

  1. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    International Nuclear Information System (INIS)

    Dullin, Christian; Larsson, Emanuel; Tromba, Giuliana; Markus, Andrea M.; Alves, Frauke

    2015-01-01

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma

  2. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  3. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice

    International Nuclear Information System (INIS)

    Wang, Ting; Hou, Wanru; Fu, Zhou

    2017-01-01

    Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showed that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI. - Highlights: • OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. • Omalizumab (Xolair™) have anti-inflammatory effects. • OMZ-SPT can inhibit inflammatory responses and lung injury in LPS-induced ALI mice. • Protective effect of OMZ-SPT on ALI is due to inhibition of NF-κB signaling. • OMZ-SPT could be a novel therapeutic choice for ALI.

  4. Qi-Dong-Huo-Xue-Yin Inhibits Inflammation in Acute Lung Injury in Mice via Toll-Like Receptor 4/Caveolin-1 Signaling

    Directory of Open Access Journals (Sweden)

    Li-Ying Xu

    2018-01-01

    Full Text Available Acute lung injury (ALI is a critical illness with no current effective treatment. Caveolin-1 indirectly activates inflammation-associated signaling pathways by inhibiting endothelial nitric oxide synthase (eNOS. This induces an imbalance between pro- and anti-inflammatory cytokine levels, which are involved in the pathogenesis of ALI. The compound Chinese prescription Qi-Dong-Huo-Xue-Yin (QDHXY is efficacious for ALI treatment via an anti-inflammatory effect; however, the exact underlying mechanism is unknown. Therefore, we explored the protective effect of QDHXY against lipopolysaccharide- (LPS- induced ALI in mice. Histopathological changes in mouse lung tissues were studied. Furthermore, alterations in the serum levels of pro- and anti-inflammatory cytokines were investigated. The levels of tumor necrosis factor- (TNF-α, interleukin- (IL- 6, IL-1β, and interferon-γ-induced protein 10 in bronchoalveolar lavage fluid were measured. Additionally, the expression levels of myeloid differentiation factor 88 (MyD88, caveolin-1, and eNOS were assessed. QDHXY significantly reduced lung infiltration with inflammatory cells and the production of serum pro- and anti-inflammatory cytokines and inhibited the expression of TNF-α, IL-1β, caveolin-1, and MyD88 but not eNOS. These indicate that QDHXY significantly improved the balance between pro- and anti-inflammatory cytokine levels, possibly by inhibiting the caveolin-1 signaling pathway. Therefore, QDHXY may be a potential treatment for ALI.

  5. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    Science.gov (United States)

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  6. Microbiological airway colonization in COPD patients with severe emphysema undergoing endoscopic lung volume reduction

    Directory of Open Access Journals (Sweden)

    Trudzinski FC

    2017-12-01

    Full Text Available Franziska C Trudzinski,1 Frederik Seiler,1 Heinrike Wilkens,1 Carlos Metz,1 Annegret Kamp,1 Robert Bals,1 Barbara Gärtner,2 Philipp M Lepper,1 Sören L Becker2–4 1Department of Internal Medicine V – Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University, 2Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany; 3Swiss Tropical and Public Health Institute, 4University of Basel, Basel, Switzerland Background: Endoscopic lung volume reduction (eLVR is a therapeutic option for selected patients with COPD and severe emphysema. Infectious exacerbations are serious events in these vulnerable patients; hence, prophylactic antibiotics are often prescribed postinterventionally. However, data on the microbiological airway colonization at the time of eLVR are scarce, and there are no evidence-based recommendations regarding a rational antibiotic regimen.Objective: The aim of this study was to perform a clinical and microbiological analysis of COPD patients with advanced emphysema undergoing eLVR with endobronchial valves at a single German University hospital, 2012–2017.Patients and methods: Bronchial aspirates were obtained prior to eLVR and sent for microbiological analysis. Antimicrobial susceptibility testing of bacterial isolates was performed, and pathogen colonization was retrospectively compared with clinical parameters.Results: At least one potential pathogen was found in 47% (30/64 of patients. Overall, Gram-negative bacteria constituted the most frequently detected pathogens. The single most prevalent species were Haemophilus influenzae (9%, Streptococcus pneumoniae (6%, and Staphylococcus aureus (6%. No multidrug resistance was observed, and Pseudomonas aeruginosa occurred in <5% of samples. Patients without microbiological airway colonization showed more severe airflow limitation, hyperinflation, and chronic hypercapnia compared

  7. Cellular, pharmacological, and biophysical evaluation of explanted lungs from a patient with sickle cell disease and severe pulmonary arterial hypertension.

    Science.gov (United States)

    Rogers, Natasha M; Yao, Mingyi; Sembrat, John; George, M Patricia; Knupp, Heather; Ross, Mark; Sharifi-Sanjani, Maryam; Milosevic, Jadranka; St Croix, Claudette; Rajkumar, Revathi; Frid, Maria G; Hunter, Kendall S; Mazzaro, Luciano; Novelli, Enrico M; Stenmark, Kurt R; Gladwin, Mark T; Ahmad, Ferhaan; Champion, Hunter C; Isenberg, Jeffrey S

    2013-12-01

    Pulmonary hypertension is recognized as a leading cause of morbidity and mortality in patients with sickle cell disease (SCD). We now report benchtop phenotyping from the explanted lungs of the first successful lung transplant in SCD. Pulmonary artery smooth muscle cells (PASMCs) cultured from the explanted lungs were analyzed for proliferate capacity, superoxide (O2 (•-)) production, and changes in key pulmonary arterial hypertension (PAH)-associated molecules and compared with non-PAH PASMCs. Upregulation of several pathologic processes persisted in culture in SCD lung PASMCs in spite of cell passage. SCD lung PASMCs showed growth factor- and serum-independent proliferation, upregulation of matrix genes, and increased O2 (•-) production compared with control cells. Histologic analysis of SCD-associated PAH arteries demonstrated increased and ectopically located extracellular matrix deposition and degradation of elastin fibers. Biomechanical analysis of these vessels confirmed increased arterial stiffening and loss of elasticity. Functional analysis of distal fifth-order pulmonary arteries from these lungs demonstrated increased vasoconstriction to an α1-adrenergic receptor agonist and concurrent loss of both endothelial-dependent and endothelial-independent vasodilation compared with normal pulmonary arteries. This is the first study to evaluate the molecular, cellular, functional, and mechanical changes in end-stage SCD-associated PAH.

  8. Detection of systemic inflammation in severely impaired chronic pain patients, and effects of a CBT-ACT-based multi-modal pain rehabilitation program.

    Science.gov (United States)

    Hysing, E-B; Smith, L; Thulin, M; Karlsten, R; Gordh, T

    2017-12-29

    Aims A few previous studies indicate an ongoing of low-grade systemic inflammation in chronic pain patients (CPP) [1, 2]. In the present study we investigated the plasma inflammatory profile in severely impaired chronic pain patients. In addition we studied if there were any alterations in inflammation patterns at one-year follow up, after the patients had taken part in a CBT-ACT based 4 weeks in-hospital pain rehabilitation program (PRP). Methods Blood samples were collected from 52 well characterized chronic pain patients. Plasma from matched healthy blood donors were used as controls. At one year after the treatment program, 28 of the patients were available for follow up. Instead of only analyzing single inflammation-related substances, we used a new multiplex panel enabling the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines (Proseek Inflammation, Olink, Uppsala, Sweden). Multivariate statistics were used for analysis. Results Clear signs of increased inflammatory activity were detected in the pain patients. Accepting a false discovery rate (FDR) of 5%, there were significant differences in 43 of the 92 inflammatory biomarkers. The expression of 8 biomarkers were 4 times higher in patients compared to controls. Three biomarkers, CXCL5, SIRT2, AXIN1 were more than 8 times higher. The conventional marker for inflammation, CRP, did not differ. Of the 28 patients available for follow up one year after the intervention, all showed lower levels of the inflammatory biomarker initially raised. Conclusions The results indicate that CPP suffer from a low grade of chronic systemic inflammation, not detectable by CRP analysis. This may have implications for the general pain hypersensitivity, and other symptoms, often described in this group of patients. We conclude that inflammatory plasma proteins may be measureable molecular markers to distinguishes CPP from pain free controls, and that a CBT-ACT pain rehab program seem to

  9. Topical Loperamide-Encapsulated Liposomal Gel Increases the Severity of Inflammation and Accelerates Disease Progression in the Adjuvant-Induced Model of Experimental Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Susan Hua

    2017-08-01

    Full Text Available This study evaluates the prophylactic effect of the peripherally-selective mu-opioid receptor agonist, loperamide, administered topically in a liposomal gel formulation on pain, inflammation, and disease progression in the adjuvant-induced model of experimental rheumatoid arthritis in female Lewis rats. In a randomized, blinded and controlled animal trial, AIA rats were divided into six groups consisting of eleven rats per group based on the following treatments: loperamide liposomal gel, free loperamide gel, empty liposomal gel, diclofenac gel (Voltaren®, no treatment, and naive control. Topical formulations were applied daily for a maximum of 17 days—starting from day 0 at the same time as immunization. The time course of the effect of the treatments on antinocieption and inflammation was assessed using a paw pressure analgesiometer and plethysmometer, respectively. Arthritis progression was scored daily using an established scoring protocol. At the end of the study, hind paws were processed for histological analysis. Administration of loperamide liposomal gel daily across the duration of the study produced significant peripheral antinociception as expected; however, increased the severity of inflammation and accelerated arthritis progression. This was indicated by an increase in paw volume, behavioral and observational scoring, and histological analysis compared to the control groups. In particular, histology results showed an increase in pannus formation and synovial inflammation, as well as an upregulation of markers of inflammation and angiogenesis. These findings may have implications for the use of loperamide and other opioids in arthritis and potentially other chronic inflammatory diseases.

  10. The Sputum Colour Chart as a predictor of lung inflammation, proteolysis and damage in non-cystic fibrosis bronchiectasis: a case-control analysis.

    Science.gov (United States)

    Goeminne, Pieter C; Vandooren, Jennifer; Moelants, Eva A; Decraene, Ann; Rabaey, Evelyn; Pauwels, Ans; Seys, Sven; Opdenakker, Ghislain; Proost, Paul; Dupont, Lieven J

    2014-02-01

    Non-cystic fibrosis bronchiectasis (NCFB) is characterized by a vicious cycle of airway infection, inflammation and structural damage with inappropriate mucus clearance. Our aim was to relate the value of proteolytic enzymes, proteolytic enzyme activity and inflammatory markers to disease severity and symptoms in patients with NCFB. Sputum induction in NCFB patients and healthy controls was performed. Sputum was analysed for total and differential cell count, markers of inflammation (CXCL8 (also known as interleukin-8) and tumour necrosis factor-α (TNF-α)) and proteolytic enzymes (neutrophil elastase (NE), gelatin zymography and total gelatinolytic activity (TGA)). Each patient was evaluated by spirometry, Leicester Cough Questionnaire (LCQ) and Sputum Colour Chart (SCC). Patient files were analysed to determine Pseudomonas aeruginosa colonization status. The computed tomography (CT) closest to the date sputum induction was scored by a radiologist. NCFB patients showed significantly higher neutrophils, CXCL8, TNF-α, NE and TGA than healthy controls. TGA subanalysis showed that the majority of the activity was NE (82 ± 6.4%). Residual activity was mainly zinc ion-dependent matrix metalloproteinase (MMP) activity (18 ± 6.4%). Subanalysis showed that patients with chronic Pseudomonas aeruginosa colonization had more activated MMP-9. Correlations were seen between proteolytic enzymes and inflammation and disease severity (spirometry and CT score), but not with the LCQ. SCC was associated with increased markers of inflammation, proteolytic enzymes and worse CT score. We show that sputum purulence assessment in daily clinical practice using the SCC is a quick and easy tool that reflects severity of inflammation, destruction and proteolytic enzymatic activity/presence. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  11. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    International Nuclear Information System (INIS)

    Sunil, Vasanthi R.; Francis, Mary; Vayas, Kinal N.; Cervelli, Jessica A.; Choi, Hyejeong; Laskin, Jeffrey D.; Laskin, Debra L.

    2015-01-01

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3 -/- mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3 + , iNOS + ) and anti-inflammatory (MR-1 + ) macrophages in the lungs. While accumulation of iNOS + macrophages was attenuated in Gal-3 -/- mice, increased numbers of enlarged MR-1 + macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b + and consisted mainly (> 97%) of mature (F4/80 + CD11c + ) proinflammatory (Ly6GLy6C hi ) and anti-inflammatory (Ly6GLy6C lo ) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C hi macrophages, with no effect on Ly6C lo macrophages. CD11b + Ly6G + Ly6C + granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3 -/- mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3 -/- mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the absence of gal-3, inflammatory cells with a myeloid derived suppressor cell phenotype

  12. C-glycosylflavones from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation.

    Science.gov (United States)

    De Melo, Giany O; Muzitano, Michelle F; Legora-Machado, Alexandre; Almeida, Thais A; De Oliveira, Daniela B; Kaiser, Carlos R; Koatz, Vera Lucia G; Costa, Sônia S

    2005-04-01

    The infusion of aerial parts (EI) of Eleusine indica Gaertn (Poaceae) is used in Brazil against airway inflammatory processes like influenza and pneumonia. Pre-treatment with 400 mg/kg of crude extract inhibited 98% of lung neutrophil recruitment in mice exposed to aerosols of lipopolysaccharide (LPS) from Gram-negative bacteria, in a dose-dependent manner. At 400 microg/kg, schaftoside (6-C-beta-glucopyranosyl-8-C-alpha-arabinopyranosylapigenin) and vitexin (8-C-beta-glucopyranosylapigenin), isolated from EI, inhibited 62% and 80% of lung neutrophil influx, respectively. These results may justify the popular use of E. indica against airway inflammatory processes.

  13. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Francis, Mary, E-mail: maryfranrutgers@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Vayas, Kinal N., E-mail: kinalv5@gmail.com [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Cervelli, Jessica A., E-mail: j.cervelli@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ (United States)

    2015-04-15

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3{sup -/-} mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3{sup +}, iNOS{sup +}) and anti-inflammatory (MR-1{sup +}) macrophages in the lungs. While accumulation of iNOS{sup +} macrophages was attenuated in Gal-3{sup -/-} mice, increased numbers of enlarged MR-1{sup +} macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b{sup +} and consisted mainly (> 97%) of mature (F4/80{sup +}CD11c{sup +}) proinflammatory (Ly6GLy6C{sup hi}) and anti-inflammatory (Ly6GLy6C{sup lo}) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C{sup hi} macrophages, with no effect on Ly6C{sup lo} macrophages. CD11b{sup +}Ly6G{sup +}Ly6C{sup +} granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3{sup -/-} mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3{sup -/-} mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the

  14. Risk factors for severity of pneumothorax after CT-guided percutaneous lung biopsy using the single-needle method.

    Science.gov (United States)

    Kakizawa, Hideaki; Toyota, Naoyuki; Hieda, Masashi; Hirai, Nobuhiko; Tachikake, Toshihiro; Matsuura, Noriaki; Oda, Miyo; Ito, Katsuhide

    2010-09-01

    The purpose of this study is to evaluate the risk factors for the severity of pneumothorax after computed tomography (CT)-guided percutaneous lung biopsy using the single-needle method. We reviewed 91 biopsy procedures for 90 intrapulmonary lesions in 89 patients. Patient factors were age, sex, history of ipsilateral lung surgery and grade of emphysema. Lesion factors were size, location and pleural contact. Procedure factors were position, needle type, needle size, number of pleural punctures, pleural angle, length of needle passes in the aerated lung and number of harvesting samples. The severity of pneumothorax after biopsy was classified into 4 groups: "none", "mild", "moderate" and "severe". The risk factors for the severity of pneumothorax were determined by multivariate analyzing of the factors derived from univariate analysis. Pneumothorax occurred in 39 (43%) of the 91 procedures. Mild, moderate, and severe pneumothorax occurred in 24 (26%), 8 (9%) and 7 (8%) of all procedures, respectively. Multivariate analysis showed that location, pleural contact, number of pleural punctures and number of harvesting samples were significantly associated with the severity of pneumothorax (p < 0.05). In conclusion, lower locations and non-pleural contact lesions, increased number of pleural punctures and increased number of harvesting samples presented a higher severity of pneumothorax.

  15. Risk factors for severity of pneumothorax after CT-guided percutaneous lung biopsy using the single-needle method

    International Nuclear Information System (INIS)

    Kakizawa, Hideaki; Hieda, Masashi; Oda, Miyo; Toyota, Naoyuki; Hirai, Nobuhiko; Tachikake, Toshihiro; Matsuura, Noriaki; Ito, Katsuhide

    2010-01-01

    The purpose of this study is to evaluate the risk factors for the severity of pneumothorax after computed tomography (CT)-guided percutaneous lung biopsy using the single-needle method. We reviewed 91 biopsy procedures for 90 intrapulmonary lesions in 89 patients. Patient factors were age, sex, history of ipsilateral lung surgery and grade of emphysema. Lesion factors were size, location and pleural contact. Procedure factors were position, needle type, needle size, number of pleural punctures, pleural angle, length of needle passes in the aerated lung and number of harvesting samples. The severity of pneumothorax after biopsy was classified into 4 groups: 'none', 'mild', 'moderate' and 'severe'. The risk factors for the severity of pneumothorax were determined by multivariate analyzing of the factors derived from univariate analysis. Pneumothorax occurred in 39 (43%) of the 91 procedures. Mild, moderate, and severe pneumothorax occurred in 24 (26%), 8 (9%) and 7 (8%) of all procedures, respectively. Multivariate analysis showed that location, pleural contact, number of pleural punctures and number of harvesting samples were significantly associated with the severity of pneumothorax (p<0.05). In conclusion, lower locations and non-pleural contact lesions, increased number of pleural punctures and increased number of harvesting samples presented a higher severity of pneumothorax. (author)

  16. Gas Exchange and Mechanical Properties of the Lung in Miners with Severe Concomitant Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2007-01-01

    Full Text Available Objective: to study the specific features of pulmonary gas exchange and mechanical properties in various manifestations of respiratory failure in miners with severe concomitant injury, who have a service length of 10 years or more, in order to optimize respiratory support.Subjects and methods. Pulmonary gas exchange and mechanical properties were studied over time in the presence of respiratory failure (acute lung injury/acute respiratory distress syndrome in 34 miners and 36 victims (a control group with severe concomitant injury who had no underground service length. Both groups were matched in age, severity and nature of traumatic lesions and surgical interventions. Pulmonary gas exchange and mechanical properties were evaluated by the following indices: oxygen fraction in an inspired gas mixture; hemoglobin saturation and partial arterial blood oxygen and carbon dioxide tension with the alveolar-arterial gradient being calculated by the oxygen level; oxygenation index; intrapulmonary shunting; statistical compliance and airways resistance.Results. The studies demonstrated that the miners, as compared with the controls, had more pronounced gas exchange changes within 5—7 post-traumatic days; later on (days 7—9 the above differences were undetectable. Impaired pulmonary mechanical properties in the miners persisted throughout the study while in the control group, their recovery started just on day 3. The course of respiratory failure in the miners was attributable to the baseline external respiratory function. Their respiratory support was performed during 14.5±1.4 days versus 9.5±1.9 days in the controls. In the miners, the mean bed-days at an intensive care unit were 18.5±2.2 whereas in the controls those were 12.3±2.1.Conclusion. More significant impairments of pulmonary gas exchange and mechanical properties are seen in the miners due to the background changes in external respiratory function in the development of respiratory

  17. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood

    2015-01-01

    B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H.influenzae induced severe Toll...... response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae...

  18. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs.

    Science.gov (United States)

    Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise

    2010-06-01

    Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.

  19. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Science.gov (United States)

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  20. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis.

    Science.gov (United States)

    Karagiannidis, Christian; Strassmann, Stephan; Brodie, Daniel; Ritter, Philine; Larsson, Anders; Borchardt, Ralf; Windisch, Wolfram

    2017-12-01

    Veno-venous extracorporeal CO 2 removal (vv-ECCO 2 R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates through the device range from 200 ml/min to more than 1500 ml/min, and the membrane surface areas range from 0.35 to 1.3 m 2 . The present study in an animal model with similar CO 2 production as an adult patient was aimed at determining the optimal membrane lung surface area and technical requirements for successful vv-ECCO 2 R. Four different membrane lungs, with varying lung surface areas of 0.4, 0.8, 1.0, and 1.3m 2 were used to perform vv-ECCO 2 R in seven anesthetized, mechanically ventilated, pigs with experimentally induced severe respiratory acidosis (pH 7.0-7.1) using a 20Fr double-lumen catheter with a sweep gas flow rate of 8 L/min. During each experiment, the blood flow was increased stepwise from 250 to 1000 ml/min. Amelioration of severe respiratory acidosis was only feasible when blood flow rates from 750 to 1000 ml/min were used with a membrane lung surface area of at least 0.8 m 2 . Maximal CO 2 elimination was 150.8 ml/min, with pH increasing from 7.01 to 7.30 (blood flow 1000 ml/min; membrane lung 1.3 m 2 ). The membrane lung with a surface of 0.4 m 2 allowed a maximum CO 2 elimination rate of 71.7 mL/min, which did not result in the normalization of pH, even with a blood flow rate of 1000 ml/min. Also of note, an increase of the surface area above 1.0 m 2 did not result in substantially higher CO 2 elimination rates. The pressure drop across the oxygenator was considerably lower (respiratory acidosis, irrespective of the surface area of the membrane lung being used. The converse was also true, low surface membrane lungs (0.4 m 2 ) were not capable of completely correcting severe respiratory acidosis across the range of blood flows used in this study.

  2. Trauma patient adverse outcomes are independently associated with rib cage fracture burden and severity of lung, head, and abdominal injuries.

    Science.gov (United States)

    Dunham, C Michael; Hileman, Barbara M; Ransom, Kenneth J; Malik, Rema J

    2015-01-01

    We hypothesized that lung injury and rib cage fracture quantification would be associated with adverse outcomes. Consecutive admissions to a trauma center with Injury Severity Score ≥ 9, age 18-75, and blunt trauma. CT scans were reviewed to score rib and sternal fractures and lung infiltrates. Sternum and each anterior, lateral, and posterior rib fracture was scored 1 = non-displaced and 2 = displaced. Rib cage fracture score (RCFS) = total rib fracture score + sternal fracture score + thoracic spine Abbreviated Injury Score (AIS). Four lung regions (right upper/middle, right lower, left upper, and left lower lobes) were each scored for % of infiltrate: 0% = 0; ≤ 20% = 1, ≤ 50% = 2, > 50% = 3; total of 4 scores = lung infiltrate score (LIS). Of 599 patients, 193 (32%) had 854 rib fractures. Rib fracture patients had more abdominal injuries (p fractures (p = 0.0028) and death or need for mechanical ventilation ≥ 3 days (Death/Vdays ≥ 3) (p rib fracture patients, Glasgow Coma Score 3-12 or head AIS ≥ 2 occurred in 43%. A lung infiltrate or hemo/pneumothorax occurred in 55%. Thoracic spine injury occurred in 23%. RCFS was 6.3 ± 4.4 and Death/Vdays ≥ 3 occurred in 31%. Death/Vdays ≥ 3 rates correlated with RCFS values: 19% for 1-3; 24% for 4-6; 42% for 7-12 and 65% for ≥ 13 (p rib fracture score (p = 0.08) or number of fractured ribs (p = 0.80). Rib fracture patients have increased risk for truncal injuries and adverse outcomes. Adverse outcomes are independently associated with rib cage fracture burden. Severity of head, abdominal, and lung injuries also influence rib fracture outcomes.

  3. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  4. Prevalence, severity, and risk indicators of gingival inflammation in a multi-center study on South American adults: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Paola Carvajal

    Full Text Available ABSTRACT Objectives: The aim of this study is to investigate the prevalence and severity of gingival inflammation and associated risk indicators in South American adults. Material and Methods: Multi-stage samples totaling 1,650 adults from Porto Alegre (Brazil, Tucumán (Argentina, and Santiago (Chile were assessed. The sampling procedure consisted of a 4-stage process. Examinations were performed in mobile dental units by calibrated examiners. A multivariable logistic regression model was utilized for associating variables as indicators of gingival inflammation (GI (Gingival Index ≥0.5. Statistical significance was set at 0.05. Results: A total of 96.5% of the adults have GI. Regarding the severity of GI, 22.5% of participants examined have mild GI, 74.0% have moderate GI, and 3.6% have severe GI. The multivariate analyses identify the main risk indicators for GI as adults with higher mean of Calculus Index (OR=18.59; with a Visible Plaque Index ≥30% (OR=14.56; living in Santiago (OR=7.17; having ≤12 years of schooling (OR=2.18, and females (OR=1.93. Conclusions: This study shows a high prevalence and severity of gingival inflammation, being the first one performed in adult populations in three cities of South America.

  5. Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor

    Directory of Open Access Journals (Sweden)

    Gabriel da Cunha Moraes

    2018-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day. After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm2 for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1β, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF. We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.

  6. Analysis of the plasma proteome in COPD: Novel low abundance proteins reflect the severity of lung remodeling.

    Science.gov (United States)

    Merali, Salim; Barrero, Carlos A; Bowler, Russell P; Chen, Diane Er; Criner, Gerard; Braverman, Alan; Litwin, Samuel; Yeung, Anthony; Kelsen, Steven G

    2014-04-01

    The search for COPD biomarkers has largely employed a targeted approach that focuses on plasma proteins involved in the systemic inflammatory response and in lung injury and repair. This proof of concept study was designed to test the idea that an open, unbiased, in-depth proteomics approach could identify novel, low abundance plasma proteins i.e., ng/mL concentration, which could serve as potential biomarkers. Differentially expressed proteins were identified in a discovery group with severe COPD (FEV1 <45% predicted; n = 10). Subjects with normal lung function matched for age, sex, ethnicity and smoking history served as controls (n = 10). Pooled plasma from each group was exhaustively immunodepleted of abundant proteins, d separated by 1-D gel electrophoresis and extensively fractionated prior to LC-tandem mass spectroscopy (GeLC-MS). Thirty one differentially expressed proteins were identified in the discovery group including markers of lung defense against oxidant stress, alveolar macrophage activation, and lung tissue injury and repair. Four of the 31 proteins (i.e., GRP78, soluble CD163, IL1AP and MSPT9) were measured in a separate verification group of 80 subjects with varying COPD severity by immunoassay. All 4 were significantly altered in COPD and 2 (GRP78 and soluble CD163) correlated with both FEV1 and the extent of emphysema. In-depth, plasma proteomic analysis identified a group of novel, differentially expressed, low abundance proteins that reflect known pathogenic mechanisms and the severity of lung remodeling in COPD. These proteins may also prove useful as COPD biomarkers.

  7. A Novel Orally Available Asthma Drug Candidate That Reduces Smooth Muscle Constriction and Inflammation by Targeting GABAA Receptors in the Lung.

    Science.gov (United States)

    Forkuo, Gloria S; Nieman, Amanda N; Kodali, Revathi; Zahn, Nicolas M; Li, Guanguan; Rashid Roni, M S; Stephen, Michael Rajesh; Harris, Ted W; Jahan, Rajwana; Guthrie, Margaret L; Yu, Olivia B; Fisher, Janet L; Yocum, Gene T; Emala, Charles W; Steeber, Douglas A; Stafford, Douglas C; Cook, James M; Arnold, Leggy A

    2018-05-07

    We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric α 5 β 3 γ 2 selective GABA A receptor (GABA A R) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration. Reduced numbers of eosinophils and macrophages were observed in mouse bronchoalveolar lavage fluid without changing mucous metaplasia. Importantly, lung cytokine expression of IL-17A, IL-4, and TNF-α were reduced for MIDD0301-treated mice without changing antiinflammatory cytokine IL-10 levels. Automated patch clamp confirmed amplification of GABA induced current mediated by α 1-3,5 β 3 γ 2 GABA A Rs in the presence of MIDD0301. Pharmacodynamically, transmembrane currents of ex vivo CD4 + T cells from asthmatic mice were potentiated by MIDD0301 in the presence of GABA. The number of CD4 + T cells observed in the lung of MIDD0301-treated mice were reduced by an oral treatment of 20 mg/kg b.i.d. for 5 days. A half-life of almost 14 h was demonstrated by pharmacokinetic studies (PK) with no adverse CNS effects when treated mice were subjected to sensorimotor studies using the rotarod. PK studies also confirmed very low brain distribution. In conclusion, MIDD0301 represents a safe and improved oral asthma drug candidate that relaxes airway smooth muscle and attenuates inflammation in the lung leading to a reduction of AHR at a dosage lower than earlier reported GABA A R ligands.

  8. Amount of Pneumocystis carinii and degree of acute lung inflammation in HIV-associated P carinii pneumonia

    DEFF Research Database (Denmark)

    Vestbo, Jørgen; Nielsen, T L; Junge, Jette

    1993-01-01

    ) was examined. In the TBB the amount of PC correlated strongly with overall inflammation in the interstitium (Kendall correlation coefficient [Kcc] = 0.59; p type 2 pneumocyte proliferation, and edema formation. The amount of PC in the TBB also correlated with interstitial accumulation of neutrophils...... (Kcc = 0.54; p = 0.0001), lymphocytes, and macrophages. In BALF the amount of PC correlated with edema formation and type 2 pneumocyte proliferation in the TBB but not with the percentage of neutrophils, lymphocytes, or macrophages in BALF. The amount of PC in the BALF and the percentage of neutrophils...

  9. CMV infection associated with severe lung involvement and persistent pulmonary hypertension of the newborn (PPHN) in two preterm twin neonates.

    Science.gov (United States)

    Manzoni, Paolo; Vivalda, Mauro; Mostert, Michael; Priolo, Claudio; Galletto, Paolo; Gallo, Elena; Stronati, Mauro; Gili, Renata; Opramolla, Anna; Calabrese, Sara; Tavella, Elena; Luparia, Martina; Farina, Daniele

    2014-09-01

    The diagnosis of congenital CMV is usually guided by a number of specific symptoms and findings. Unusual presentations may occur and diagnosis is challenging due to uncommon or rare features. Here we report the case of two preterm, extremely low birthweight, 28-week gestational age old twin neonates with CMV infection associated with severe lung involvement and persistent pulmonary hypertension of the newborn (PPHN). They were born to a HIV-positive mother, hence they underwent treatment with zidovudine since birth. Both infants featured severe refractory hypoxemia, requiring high-frequency ventilation, inhaled nitric oxide and inotropic support, with full recovery after 2 months. Treatment with ganciclovir was not feasible due the concomitant treatment with zidovudine and the risk of severe, fatal toxicity. Therefore administration of intravenous hyperimmune anti-CMV immunoglobulin therapy was initiated. Severe lung involvement at birth and subsequent pulmonary hypertension are rarely described in preterm infants as early manifestations of CMV congenital disease. In the two twin siblings here described, the extreme prematurity and the treatment with zidovudine likely worsened immunosuppression and ultimately required a complex management of the CMV-associated lung involvement. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function

    Directory of Open Access Journals (Sweden)

    Bafadhel M

    2015-06-01

    Full Text Available Mona Bafadhel,1 Koirobi Haldar,2 Bethan Barker,2,3 Hemu Patel,4 Vijay Mistry,2,3 Michael R Barer,2–4 Ian D Pavord,1 Christopher E Brightling2,3 1Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; 2Department of Infection, Immunity and Inflammation, University of Leicester, 3Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, University of Leicester, 4Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK Background: Potentially pathogenic microorganisms can be detected by quantitative real-time polymerase chain reaction (qPCR in sputum from patients with COPD, although how this technique relates to culture and clinical measures of disease is unclear. We used cross-sectional and longitudinal data to test the hypotheses that qPCR is a more sensitive measure of bacterial presence and is associated with neutrophilic airway inflammation and adverse clinical outcomes.Methods: Sputum was collected from 174 stable COPD subjects longitudinally over 12 months. Microbial sampling using culture and qPCR was performed. Spirometry and sputum measures of airway inflammation were assessed.Findings: Sputum was qPCR-positive (>106 copies/mL in 77/152 samples (Haemophilus influenzae [n=52], Moraxella catarrhalis [n=24], Streptococcus pneumoniae [n=19], and Staphylococcus aureus [n=7]. Sputum was culture-positive in 50/174 samples, with 49 out of 50 culture-positive samples having pathogen-specific qPCR bacterial loads >106 copies/mL. Samples that had qPCR copy numbers >106/mL, whether culture-positive or not, had increased sputum neutrophil counts. H. influenzae qPCR copy numbers correlated with sputum neutrophil counts (r=0.37, P<0.001, were repeatable within subjects, and were >106/mL three or more times in 19 patients, eight of whom were repeatedly sputum culture-positive. Persistence, whether

  11. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased

  12. Histological subtype of lung cancer affects acceptance of illness, severity of pain, and quality of life

    Directory of Open Access Journals (Sweden)

    Polański J

    2018-04-01

    Full Text Available Jacek Polański,1 Mariusz Chabowski,2,3 Beata Jankowska-Polańska,4 Dariusz Janczak,2,3 Joanna Rosińczuk5,6 1Lower Silesian Oncology Center, Home Hospice, Wroclaw, Poland; 2Division of Surgical Procedures, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland; 3Department of Surgery, 4th Military Teaching Hospital, Wroclaw, Poland; 4Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland; 5Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland; 6Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland Introduction: Histologic classification of lung cancer plays an important role in clinical practice. Two main histological subtype of lung cancer: small-cell lung cancer (SCLC and nonsmall-cell lung cancer (NSCLC differ in terms of invasiveness, response to treatment, and risk factors, among others.Aims: To evaluate differences in acceptance of illness, level of perceived pain, and quality of life (QoL between patients with SCLC and NSCLC.Materials and methods: Two hundred and fifty-seven lung cancer patients, who were treated in 2015, completed Acceptance of Illness Scale, Visual Analog Scale for pain, and European Organization for Research and Treatment of Cancer 30-item Core Quality of Life Questionnaire and European Organization for Research and Treatment of Cancer 13-item Lung Cancer specific Quality of Life Questionnaire. Clinical and sociodemographic data were collected. For statistical analysis, the Student t-test and the Mann–Whitney U test were used. For comparisons among three or more groups, analysis of variance was employed.Results: Patients with SCLC had significantly worse health as measured with the presence of metastases, parameters of lung function, comorbidities, and number of previous hospitalizations. The Acceptance of Illness

  13. Evaluation of amniotic mesenchymal cell derivatives on cytokine production in equine alveolar macrophages: an in vitro approach to lung inflammation.

    Science.gov (United States)

    Zucca, Enrica; Corsini, Emanuela; Galbiati, Valentina; Lange-Consiglio, Anna; Ferrucci, Francesco

    2016-09-20

    Data obtained in both animal models and clinical trials suggest that cell-based therapies represent a potential therapeutic strategy for lung repair and remodeling. Recently, new therapeutic approaches based on the use of stem cell derivatives (e.g., conditioned medium (CM) and microvesicles (MVs)) to regenerate tissues and improve their functions were proposed. The aim of this study was to investigate the immunomodulatory effects of equine amniotic mesenchymal cell derivatives on lipopolysaccharide (LPS)-induced cytokine production in equine alveolar macrophages, which may be beneficial in lung inflammatory disorders such as recurrent airway obstruction (RAO) in horses. RAO shares many features with human asthma, including an increased number of cells expressing mRNA for interleukin (IL)-4 and IL-5 and a decreased expression of IFN-γ in bronchoalveolar lavage fluid (BALF) of affected horses. The release of TNF-α, IL-6, and TGF-β1 at different time points (1, 24, 48, and 72 h) was measured in equine alveolar macrophages stimulated or not with LPS (10 and 100 ng/mL) in the presence or absence of 10 % CM or 50 × 10(6) MVs/mL. Cytokines were measured using commercially available ELISA kits. For multiple comparisons, analysis of variance was used with Tukey post-hoc test. Differences were considered significant at p ≤ 0.05. Significant modulatory effects of CM on LPS-induced TNF-α release at 24 h, and of both CM and MVs on TNF-α release at 48 h were observed. A trend toward a modulatory effect of both CM and MVs on the release of TGF-β and possibly IL-6 was visible over time. Results support the potential use of CM and MVs in lung regenerative medicine, especially in situations in which TGF-β may be detrimental, such as respiratory allergy. Further studies should evaluate the potential clinical applications of CM and MVs in equine lung diseases, such as RAO and other inflammatory disorders.

  14. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    Directory of Open Access Journals (Sweden)

    Ajitha Thanabalasuriar

    2016-09-01

    Full Text Available iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against bacterial infections, including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the specific iNKT cell ligand α-galactosylceramide or S. pneumoniae infection. In untreated mice, the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae induced CD1d-dependent rapid recruitment of neutrophils out of the vasculature. The neutrophils guided iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell recruitment by blocking CCL17 increased susceptibility to S. pneumoniae infection, suggesting a critical role for the influx of iNKT cells in host defense.

  15. An integrated model of environmental factors in adult asthma lung function and disease severity: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Katz Patricia P

    2010-05-01

    Full Text Available Abstract Background Diverse environmental exposures, studied separately, have been linked to health outcomes in adult asthma, but integrated multi-factorial effects have not been modeled. We sought to evaluate the contribution of combined social and physical environmental exposures to adult asthma lung function and disease severity. Methods Data on 176 subjects with asthma and/or rhinitis were collected via telephone interviews for sociodemographic factors and asthma severity (scored on a 0-28 point range. Dust, indoor air quality, antigen-specific IgE antibodies, and lung function (percent predicted FEV1 were assessed through home visits. Neighborhood socioeconomic status, proximity to traffic, land use, and ambient air quality data were linked to the individual-level data via residential geocoding. Multiple linear regression separately tested the explanatory power of five groups of environmental factors for the outcomes, percent predicted FEV1 and asthma severity. Final models retained all variables statistically associated (p Results Mean FEV1 was 85.0 ± 18.6%; mean asthma severity score was 6.9 ± 5.6. Of 29 variables screened, 13 were retained in the final model of FEV1 (R2 = 0.30; p 2 = 0.16; p 1 as an independent variable to the severity model further increased its explanatory power (R2 = 0.25. Conclusions Multivariate models covering a range of individual and environmental factors explained nearly a third of FEV1 variability and, taking into account lung function, one quarter of variability in asthma severity. These data support an integrated approach to modeling adult asthma outcomes, including both the physical and the social environment.

  16. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  17. Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Rα and STAT6 dependent manner

    Directory of Open Access Journals (Sweden)

    Keegan Achsah D

    2011-10-01

    Full Text Available Abstract Background CD4+ T helper type 2 (TH2 cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM. However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo. Results In this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6. Conclusions These results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is

  18. Prostatic Inflammation is Determinant for Prostate Overgrowth and Luts Severity in Men with Metabolic Syndrome: Highlights from Two Recently Published Multicentre Studies

    Directory of Open Access Journals (Sweden)

    Mauro Gacci

    2013-12-01

    Full Text Available Introduction: Several evidences have pointed out the possible association between Metabolic Syndrome (MetS and low urinary tract symptoms (LUTS/benign prostate hyperplasia (BPH. Recent epidemiological and histopatological evidences suggested chronic inflammation is a crucial event in BPH pathogenesis. Aim of this study is to demonstrate the correlation among pre-operatory LUTS/BPH severity, MetS features and inflammatory infiltrates in prostatectomy specimens of patients with BPH, highlighting the results of two recently published multicentre studies analyzing all the data from a preclinical and clinical point of view. Materials and methods: We conducted two retrospective study in 271 and 244 consecutive men treated with simple prostatectomy for LUTS/BPH in two tertiary referral centres. Prostate diameters and volume were measured by transrectal ultrasound, LUTS were scored by IPSS, and obstruction diagnosed by uroflowmetry. MetS was defined according to DF & AHA/NHLBI criteria. The inflammatory infiltrate was investigated according to the scoring system of chronic prostatitis (CP-CPPS and scored as inflammation score (IS ranging 3 to 9 and glandular disruption (GD. In addition, we investigated the in vitro inflammatory effects of metabolic insults on human prostatic myofibroblast cells isolated from BPH patients (hBPH. Results: Of 271 men, 86 (31.7% were affected by MetS. Prostatic volume and the anterior-posterior (AP diameter were positively associated to the number of MetS components. Among MetS determinants, only dyslipidaemia (increased serum triglycerides and reduced serum HDL levels was significantly associated with an increased risk of having a prostatic volume >60cm3. IS in prostatectomy specimens showed a step- wise association with number of MetS factors (p=0.001. Dyslipidaemia was the only factor significantly associated with IS. Positive significant correlations among MetS, IS, GD and IPSS Scores were observed. In myofibroblastic h

  19. Prognostic Value of the Pretreatment Advanced Lung Cancer Inflammation Index (ALI) in Diffuse Large B Cell Lymphoma Patients Treated with R-CHOP Chemotherapy.

    Science.gov (United States)

    Park, Young Hoon; Yi, Hyeon Gyu; Lee, Moon Hee; Kim, Chul Soo; Lim, Joo Han

    2017-01-01

    The Advanced Lung Cancer Inflammation Index (ALI, body mass index × albumin/neutrophil-to-lymphocyte ratio) has been demonstrated to be a prognostic factor of survival in some solid cancers. We retrospectively investigated the usefulness of the ALI to predict chemotherapy response and survival in 212 patients with diffuse large B cell lymphoma (DLBCL) treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone) chemotherapy. Patients were allocated to a low ALI group (n = 82, 38.7%) or a high ALI group (n = 130, 61.3%) according to an optimal pretreatment ALI cut-off value of 15.5 as determined by receiver operating curve analysis. The low ALI group displayed more adverse clinical characteristics, lower rates of complete remission (54.9 vs. 75.4%, p = 0.008), and poorer 5-year progression-free (PFS, 58.1 vs. 77.3%, p = 0.006) and overall (OS, 64.2 vs. 80.2%, p = 0.008) survival. Multivariate analysis showed that low ALI was found to independently predict shorter PFS and OS. Interestingly, a low ALI reverted to a high ALI during treatment in 58 patients (27.4%), and the 5-year OS of these patients was better than that of patients whose ALI remained low (n = 24, 72.5 vs. 24%, p ALI might be an easily available marker for predicting clinical outcomes in DLBCL patients treated with R-CHOP chemotherapy. © 2017 S. Karger AG, Basel.

  20. Prevalence, severity, and relationships of lung lesions, liver abnormalities, and rumen health scores measured at slaughter in beef cattle.

    Science.gov (United States)

    Rezac, D J; Thomson, D U; Bartle, S J; Osterstock, J B; Prouty, F L; Reinhardt, C D

    2014-06-01

    An array of management tools exists within the beef industry to improve animal welfare and productivity; however, the ability to assess the outcomes of these tools is needed. Deficiencies in management commonly manifest as bovine respiratory disease complex or nutritional disorders such as acidosis; therefore, lung, liver, and rumen gross pathology lesions present at slaughter were measured as part of the Harvest Audit Program (HAP) and associations with performance determined. Individual gross pathology data from 19,229 cattle at commercial packing plants in Kansas and Texas were collected. Corresponding individual preharvest and carcass data were obtained on a subset of 13,226 cattle. Associations between lesions and performance were modeled using multivariable mixed effect models. Regression coefficients were used for estimation of lesion associative effects on continuous outcomes and odds ratios for dichotomous outcomes. Across the entire population, 67.3% of the cattle had no pulmonary lesions; 22.5 and 9.8% of cattle displayed mild and severe lesions, respectively. Severe pulmonary lesions were associated with a decreased ADG of 0.07 kg and a HCW 7.1 kg less than cohorts with no pulmonary lesions (P < 0.01). Overall, 68.6% of cattle observed had normal livers. Of cattle severely affected by liver abscesses (A+; 4.6%), 14.9% also displayed severe pulmonary lesions and 28.3% displayed mild pulmonary lesions. Rumenitis lesions were observed in 24.1% of the overall study population. Of cattle with mildly abscessed livers (A-), moderately abscessed livers (A), and severely abscessed livers, 20.6, 21.6, and 9.24% displayed mild or severe rumenitis lesions at slaughter. Severe rumenitis lesions were associated with a significant decrease in ADG and HCW (0.025 and 2.20 kg, respectively; P < 0.001). Although the majority of the cattle in this population would be considered low risk, after adjustments for cattle with multiple lesions, 22.9% of cattle in the overall

  1. Visual grading of emphysema severity in candidates for lung volume reduction surgery

    International Nuclear Information System (INIS)

    Cederlund, K.; Bergstrand, L.; Hoegberg, S.; Rasmussen, E.; Svane, B.; Aspelin, P.

    2002-01-01

    Purpose: To investigate which of three types of CT imaging yielded the best results in estimating the degree of emphysema in patients undergoing evaluation for lung volume reduction surgery (LVRS), whether there was any difference in this regard between the cranial and caudal part of the lung, and whether the degree of emphysema had an impact on the estimation. Material and Methods: Four radiologists visually classified different degrees of emphysema on three different types of CT images into four groups. The degree of emphysema was calculated by a computer. The three types of images were as follows: HRCT images (2-mm slice thickness); spiral CT images (10-mm slice thickness); and density-masked images (spiral CT images printed with pixels below 960 HU, depicted in white). Results: The conventionally presented images from HRCT and spiral CT yielded the same results (60% respective 62% correct classifications) in assessing the degree of emphysema irrespective of localisation. Significantly improved results were obtained when the spiral CT images were presented as density-masked images (74%). Conclusion: There was no difference between HRCT and spiral CT in assessing the degree of emphysema in candidates for LVRS. Improvement can be achieved by the use of density-masked images

  2. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects

    DEFF Research Database (Denmark)

    Bruun, Jens M; Helge, Jørn W; Richelsen, Bjørn

    2006-01-01

    Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle...... (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P

  3. Endobronchial valves in severe emphysematous patients: CT evaluation of lung fissures completeness, treatment radiological response and quantitative emphysema analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koenigkam-Santos, Marcel, E-mail: marcelk46@yahoo.com.br, E-mail: marcelk46@usp.b [Universidade de Sao Paulo (HCFMRP/USP), Ribeirao Preto, SP (Brazil). Hospital das Clinicas da Faculdade de Medicina; Paula, Wagner Diniz de [University of Brasilia (UnB), DF (Brazil). Brasilia University Hospital; Gompelmann, Daniela [University of Heidelberg (Germany). Department of Pneumology and Respiratory Medicine of the Chest Clinic (Thoraxklinik); Kauczor, Hans-Ulrich [University of Heidelberg (Germany). Department of Diagnostic and Interventional Radiology; Heussel, Claus Peter; Puderbach, Michael [University of Heidelberg (Germany). Department of Diagnostic and Interventional Radiology with Nuclear Medicine of the Chest Clinic (Thoraxklinik)

    2013-01-15

    Objective: To evaluate lung fissures completeness, post-treatment radiological response and quantitative CT analysis (QCTA) in a population of severe emphysematous patients submitted to endobronchial valves (EBV) implantation. Materials and Methods: Multi-detectors CT exams of 29 patients were studied, using thin-section low dose protocol without contrast. Two radiologists retrospectively reviewed all images in consensus; fissures completeness was estimated in 5% increments and post-EBV radiological response (target lobe atelectasis/volume loss) was evaluated. QCTA was performed in pre and post-treatment scans using a fully automated software. Results: CT response was present in 16/29 patients. In the negative CT response group, all 13 patients presented incomplete fissures, and mean oblique fissures completeness was 72.8%, against 88.3% in the other group. QCTA most significant results showed a reduced post-treatment total lung volume (LV) (mean 542 ml), reduced EBV-submitted LV (700 ml) and reduced emphysema volume (331.4 ml) in the positive response group, which also showed improved functional tests. Conclusion: EBV benefit is most likely in patients who have complete interlobar fissures and develop lobar atelectasis. In patients with no radiological response we observed a higher prevalence of incomplete fissures and a greater degree of incompleteness. The fully automated QCTA detected the post-treatment alterations, especially in the treated lung analysis. (author)

  4. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV-infected SD rats through AMPK activation

    Directory of Open Access Journals (Sweden)

    Zhan WL

    2017-10-01

    Full Text Available Weili Zhan, Yanhong Kang, Ning Chen, Chongshan Mao, Yi Kang, Jia Shang Department of Infectious Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China Abstract: The hepatitis B virus (HBV has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th17 cells and the expression of interleukin (IL-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2 were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13 were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B. Keywords: halofuginone, hepatitis B virus

  5. Redox-sensitive regulation of macrophage-inducible nitric oxide synthase expression in vitro does not correlate with the failure of apocynin to prevent lung inflammation induced by endotoxin

    Czech Academy of Sciences Publication Activity Database

    Viačková, Daniela; Pekarová, Michaela; Crhák, Tomáš; Búcsaiová, M.; Matiašovic, J.; Lojek, Antonín; Kubala, Lukáš

    2011-01-01

    Roč. 216, č. 4 (2011), s. 457-465 ISSN 0171-2985 R&D Projects: GA ČR(CZ) GA524/06/1197; GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : lung inflammation * reactive oxygen species * phagocytes Subject RIV: BO - Biophysics Impact factor: 3.205, year: 2011

  6. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R

    2015-01-01

    There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Effect of Gastroesophageal Reflux Disease on Disease Severity and Characteristics of Lung Functional Changes in Patients with Asthma

    Directory of Open Access Journals (Sweden)

    Sharifi Akbar

    2014-12-01

    Full Text Available Introduction: Almost one third of patients with asthma have symptomatic evidence for coexisting gastroesophageal reflux disease (GERD, which is thought to be aggravating factor in asthma at least in some cases. We investigated the impact of coexisting GERD on asthma severity and parameters of lung function.Methods: Ninety two asthma patients diagnosed according to ATS criteria were studied. After full history and physical examination, asthma severity was measured in each patient using asthma control test (ACT. GERD symptoms was verified in each patient. Impulse oscillometry(IOS and lung volume studies (using body-plethysmography and IOS were performed. Thedifference between total airway resistance (TAWR indicated by resistance at 5 Hz and centralairway resistance (CAWR as indicated by resistance at 20 Hz in oscillometry was calculated and considered as representative of resistance at peripheral airways (PAWR. The relationship between the presences of GERD symptoms, ACT score and parameters of lung function were analyzed.Results: PAWR and TAWR were both significantly higher in asthmatic patients with GERD symptoms than patients without GERD symptoms (256.64±161.21 versus 191.68±98.64; P=0.02,and 102.73±122.39 versus 56.76±71.43; P=0.01, respectively. However, no significant difference was noted in mean values of ACT, FEV1 (forced expiratory volume in 1 sec, FVC (forced vitalcapacity, PEF (peak expiratory flow, and CAWR in these two groups.Conclusion: These findings suggest that the severity of asthma as measured by ACT score is notdifferent in patients with and without GERD symptoms. However, total and peripheral airway resistance measured by IOS is significantly higher in asthmatic patients with GERD symptoms.

  8. Lung

    International Nuclear Information System (INIS)

    DeNardo, G.L.; Blankenship, W.J.; Burdine, J.A. Jr.; DeNardo, S.J.

    1975-01-01

    At present no simple statement can be made relative to the role of radionuclidic lung studies in the pediatric population. It is safe to assume that they will be used with increasing frequency for research and clinical applications because of their sensitivity and ready applicability to the pediatric patient. Methods comparable to those used in adults can be used in children older than 4 years. In younger children, however, a single injection of 133 Xe in solution provides an index of both regional perfusion and ventilation which is easier to accomplish. This method is particularly valuable in infants and neonates because it is rapid, requires no patient cooperation, results in a very low radiation dose, and can be repeated in serial studies. Radionuclidic studies of ventilation and perfusion can be performed in almost all children if the pediatrician and the nuclear medicine specialist have motivation and ingenuity. S []ontaneous pulmonary vascular occlusive disease which occurs in infants and pulmonary emboli in children are easily detected using radionuclides. The pathophysiologic defects of pulmonary agenesis, bronchopulmonary sequestration, and foreign body aspiration may be demonstrated by these techniques. These techniques also appear to be useful in following patients with bronchial asthma, cystic fibrosis, congenital emphysema, and postinfection pulmonary abnormalities. (auth)

  9. Sequential Therapy with Nivolumab Followed by Ipilimumab Induces Complete Response in Metastatic Melanoma of the Lung but with Severe Hepatotoxicities

    Directory of Open Access Journals (Sweden)

    Sadanori Furudate

    2016-10-01

    Full Text Available Since nivolumab significantly prolongs survival in patients with metastatic melanoma, the number of patients administered nivolumab is increasing, but only 30–40% of patients who received nivolumab monotherapy experienced objective tumor regression. Therefore, enhancing its anti-tumor immune response is of great interest to dermato-oncologists. In this report, we present a case of multiple metastatic melanomas in the lung successfully treated with nivolumab (2 mg/kg every 3 weeks for 12 weeks followed by ipilimumab (3 mg/kg every 3 weeks for 9 weeks, but with severe liver dysfunction.

  10. Veterinary practice and occupational health. An epidemiological study of several professional groups of Dutch veterinarians. I. General physical examination and prevalence of allergy, lung function disorders, and bronchial hyperreactivity.

    Science.gov (United States)

    Elbers, A R; Blaauw, P J; de Vries, M; van Gulick, P J; Smithuis, O L; Gerrits, R P; Tielen, M J

    1996-12-01

    The prevalence of allergy, lung function disorders, and bronchial hyperreactivity was studied in 102 Dutch veterinarians, subdivided into five professional groups (predominantly working with either swine, cattle, poultry, companion animals, or as a non-practitioner). The mean age of the participants was 43 years; 6 participants were females. Twenty-two per cent of the participants were overweight, and relatively more non-practitioners than practitioners were overweight. Approximately 23% of the vets reported complaints of prolonged fatigue. The data suggest a relationship between complaints of prolonged fatigue and a more than average number of daily working hours. Only a small proportion of vets were sensitized against several allergens. There were no significant differences in prevalence of distinct lung function disorders or bronchial hyperreactivity between professional groups. It is hypothesized that the respiratory complaints (chronic coughing, chronic phlegm production, stuffed nose, sneezing) reported by the vets predominantly working in swine and/or poultry practice could be caused by irritation and/or inflammation of the first part of the trachea-bronchial tree that has no measurable and permanent consequences for changes in lung function or increased bronchial hyperreactivity. The results of a skin test against allergens and determination of allergen-specific IgE in blood indicated that the respiratory complaints were probably not related to allergy against the panel of allergens tested.

  11. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-09-01

    correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC, FEV1/Pre (justified r=-0.308, P<0.001; justified r=-0.295, P=0.001, respectively and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=-0.289, P=0.001; justified r=-0.273, P=0.002, respectively, but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001, the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively. Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion: Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD. Keywords: plasminogen activator inhibitor-1 (PAI-1, chronic obstructive pulmonary disease (COPD, systemic inflammation, small airway obstruction (SAO

  12. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15.

    Science.gov (United States)

    Freeman, Christine M; Han, MeiLan K; Martinez, Fernando J; Murray, Susan; Liu, Lyrica X; Chensue, Stephen W; Polak, Timothy J; Sonstein, Joanne; Todt, Jill C; Ames, Theresa M; Arenberg, Douglas A; Meldrum, Catherine A; Getty, Christi; McCloskey, Lisa; Curtis, Jeffrey L

    2010-06-01

    Lung CD8(+) T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8(+) T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8(+) T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8(+) T cells with IL-18 plus IL-12 markedly increased production of IFN-gamma and TNF-alpha, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8(+) T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor gamma or alpha) increased with spirometric severity, stimulation of lung CD8(+) T cells via CD3epsilon-induced secretion of IFN-gamma, TNF-alpha, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lung-resident CD8(+) T cells contributes to COPD pathogenesis.

  13. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    Science.gov (United States)

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  14. Bipolar Spectrum Disorders in Male Youth: The Interplay between Symptom Severity, Inflammation, Steroid Secretion, and Body Composition

    Directory of Open Access Journals (Sweden)

    Andreas Walther

    2017-10-01

    Full Text Available The morbidity and societal burden of youth bipolar spectrum disorders (BSD are high. These disorders are multisystemic in that adult populations there are clear interactions with inflammatory processes and steroidal physiological systems. There are much less data concerning these areas of study in youth populations with BSD. This is surprising given the association of youth-onset BSD with puberty and its associated physiological changes. In this mini-review, we overview the theoretical role of inflammatory processes and steroidal physiological systems in youth BSD, describe the greater literature in adult populations, detail the literature in youth populations when available, and overview current proposed molecular mechanistic pathways and interaction effects based on the available data. We also attend to the interplay of this complex system with body composition and weight gain, an especially important consideration in relation to the role of second generation antipsychotics as the first line treatment for youth with BSD in major clinical guidelines. A developmental model of early onset BSD for boys is hypothesized with pubertal hormonal changes increasing risk for first (hypo-manic/depressive episode. The dramatic androgen rise during puberty might be relevant for first onset of BSD in boys. A shift from general hypercortisolism driven by glucocorticoid resistance to hypocortisolism with further disease progression is assumed, while increased levels of inflammation are functionally associated with endocrine dysregulation. The interacting role of overweight body habitus and obesity in youth with BSD further indicates leptin resistance to be a central moderator of the dynamic neurobiology of BSD in youth. The intent of this mini-review is to advance our knowledge of youth BSD as multisystemic disorders with important contributions from endocrinology and immunology based on a developmental perspective. This knowledge can influence current

  15. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model.

    Science.gov (United States)

    Caidi, Hayat; Miao, Congrong; Thornburg, Natalie J; Tripp, Ralph A; Anderson, Larry J; Haynes, Lia M

    2018-06-01

    RSV continues to be a high priority for vaccine and antiviral drug development. Unfortunately, no safe and effective RSV vaccine is available and treatment options are limited. Over the past decade, several studies have focused on the role of RSV G protein on viral entry, viral neutralization, and RSV-mediated pathology. Anti-G murine monoclonal antibody (mAb) 131-2G treatment has been previously shown to reduce weight loss, bronchoalveolar lavage (BAL) cell number, airway reactivity, and Th2-type cytokine production in RSV-infected mice more rapidly than a commercial humanized monoclonal antibody (mAb) against RSV F protein (Palivizumab). In this study, we have tested two human anti-RSV G mAbs, 2B11 and 3D3, by both prophylactic and therapeutic treatment for RSV in the BALB/c mouse model. Both anti-G mAbs reduced viral load, leukocyte infiltration and IFN-γ and IL-4 expression in cell-free BAL supernatants emphasizing the potential of anti-G mAbs as anti-inflammatory and antiviral strategies. Published by Elsevier B.V.

  16. Meaning of living with severe chronic obstructive lung disease: a qualitative study.

    Science.gov (United States)

    Marx, Gabriella; Nasse, Maximilian; Stanze, Henrikje; Boakye, Sonja Owusu; Nauck, Friedemann; Schneider, Nils

    2016-12-08

    To explore what it means for patients to live with chronic obstructive pulmonary disease (COPD) as an incurable and constantly progressing disease. Qualitative longitudinal study using narrative and semistructured interviews. This paper presents findings of the initial interviews. Analysis using grounded theory. Lung care clinics and community care in Lower Saxony, Germany. 17 patients with advanced-stage COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) III/IV). Analysis shows that these patients have difficulties accepting their life situation and feel at the mercy of the disease, which could be identified as a core-experienced phenomenon. Over a long period of time, patients have only a vague feeling of being ill, caused by uncertain knowledge, slow progress and doubtful attribution of clinical symptoms of the disease (causal conditions). As an action strategy, patients try to maintain daily routines for as long as possible after diagnosis. Both effective standard and rescue medication, which helps to reduce breathlessness and other symptoms, and the feeling of being faced with one's own responsibility (intervening conditions) support this strategy, whereby patients' own responsibility is too painful to acknowledge. As a consequence, patients try to deny the threat to life for a long period of time. Frequently, they need to experience facing their own limits, often in the form of an acute crisis, to realise their health situation. The experience of the illness is contextualised by a continuous increase in limited mobility and social isolation. In order to help patients to improve disease awareness, to accept their life situation and to improve their reduced quality of life, patients may benefit from the early integration of palliative care (PC), considering its multiprofessional patient-centred and team-centred approach. Psychological support and volunteer work, which are relevant aspects of PC, should be appropriate to address psychosocial

  17. Severe Bilateral Breast Mucinous Carcinoma with Bilateral Lungs and Cutaneous Metastasis: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Rong Pu

    2018-01-01

    Full Text Available The case of a female who had severe, rare, terminal breast mucinous carcinoma (BMC and failed to receive surgery and chemotherapy was reported. The patient was diagnosed with pure BMC (ER++, PR++, CerbB-2−, and Ki-67 10% accompanied with bilateral lungs, bilateral chest walls with skin ulcer (D = 14 cm, lymph nodes of bilateral armpits, and right supraclavicular metastases. ECOG (Eastern Cooperative Oncology Group and NRS (Numeric Rating Scale pain scores were 4 and 6, respectively. Because the patient refused traditional chemotherapy and radiotherapy on religious grounds, an herbal medicine containing Panax ginseng, Agrimonia pilosa, and white flower Patrinia herb was administered; extensive nursing for tumor debridement was also provided. Quality of Life (QOL improved and pain reduced. Tumor-bearing survival time was prolonged. The present case dictates that herbal extract medicines and supportive treatment can be helpful for uncommon severe BMC as an appropriate alternative treatment.

  18. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Carlsen, Jørn; Andersen, Kasper Hasseriis; Boesgaard, Søren

    2013-01-01

    BACKGROUND: Pulmonary vascular findings are largely unreported in end-stage chronic obstructive pulmonary disease (COPD). METHODS: Pulmonary vascular lesions in explanted lungs from 70 patients with COPD/emphysema or α-1-antitrypsin deficiency were analyzed retrospectively. Patients were stratified...... of pulmonary vascular lesions in COPD correlate with the severity of PH. Morphologic lesions similar to those characteristic of IPAH can be observed as PH in COPD progresses to levels characteristic of IPAH....... by the presence and severity of pulmonary hypertension (PH) assessed by right-heart catheterization in 3 hemodynamically distinct groups: (1) non-PH (mean pulmonary arterial pressure [mPAP]50 mm Hg; median HE Grade 4 (range 3-6), with generalized arterial dilatation and plexiform lesions. CONCLUSIONS: The extent...

  19. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia.

    Science.gov (United States)

    Asmussen, Sven; Ito, Hiroshi; Traber, Daniel L; Lee, Jae W; Cox, Robert A; Hawkins, Hal K; McAuley, Daniel F; McKenna, David H; Traber, Lillian D; Zhuo, Hanjing; Wilson, Jennifer; Herndon, David N; Prough, Donald S; Liu, Kathleen D; Matthay, Michael A; Enkhbaatar, Perenlei

    2014-09-01

    Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS. Adult sheep (30-40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×10(11) CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×10(6) hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×10(6) hMSCs/kg, n=4. By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9-5.8] vs control: 6.7 g wet/g dry [IQR 6.4-7.5] (p=0.01)). The hMSCs had no adverse effects. Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS. NCT01775774 for Phase 1. NCT02097641 for Phase 2. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. A conceptual approach to improving care in pandemics and beyond: severe lung injury centers.

    Science.gov (United States)

    Adalja, Amesh A; Watson, Matthew; Waldhorn, Richard E; Toner, Eric S

    2013-06-01

    The events of the 2009 influenza pandemic sparked discussion regarding the need to optimize delivery of care to those most severely ill. We propose in this conceptual study that a tiered regionalization care system be instituted for patients with severe acute respiratory distress syndrome. Such system would be a component of national pandemic plans and could also be used in day-to-day operations. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Severity of Acute Kidney Injury in the Post-Lung Transplant Patient Is Associated With Higher Healthcare Resources and Cost.

    Science.gov (United States)

    Nguyen, Albert P; Gabriel, Rodney A; Golts, Eugene; Kistler, Erik B; Schmidt, Ulrich

    2017-08-01

    Perioperative risk factors and the clinical impact of acute kidney injury (AKI) and failure after lung transplantation are not well described. The incidences of AKI and acute renal failure (ARF), potential perioperative contributors to their development, and postdischarge healthcare needs were evaluated. Retrospective. University hospital. Patients undergoing lung transplantation between January 1, 2011 and December 31, 2015. The incidences of AKI and ARF, as defined using the Risk, Injury, Failure, Loss, End-Stage Renal Disease criteria, were measured. Perioperative events were analyzed to identify risk factors for renal compromise. A comparison of ventilator days, intensive care unit (ICU) and hospital lengths of stay (LOS), 1-year readmissions, and emergency department visits was performed among AKI, ARF, and uninjured patients. Ninety-seven patients underwent lung transplantation; 22 patients developed AKI and 35 patients developed ARF. Patients with ARF had significantly longer ICU LOS (12 days v 4 days, p < 0.001); ventilator days (4.5 days v 1 day, p < 0.001); and hospital LOS (22.5 days v 14 days, p < 0.001) compared with uninjured patients. Patients with AKI also had significantly longer ICU and hospital LOS. Patients with ARF had significantly more emergency department visits and hospital readmissions (2 v 1 readmissions, p = 0.002) compared with uninjured patients. A univariable analysis suggested that prolonged surgical time, intraoperative vasopressor use, and cardiopulmonary bypass use were associated with the highest increased risk for AKI. Intraoperative vasopressor use and cardiopulmonary bypass mean arterial pressure <60 mmHg were identified as independent risk factors by multivariable analysis for AKI. The severity of AKI was associated with an increase in the use of healthcare resources after surgery and discharge. Certain risk factors appeared modifiable and may reduce the incidence of AKI and ARF. Copyright © 2017. Published by Elsevier Inc.

  2. Association Between Severe Vitamin D Deficiency, Lung Function and Asthma Control.

    Science.gov (United States)

    Beyhan-Sagmen, Seda; Baykan, Ozgur; Balcan, Baran; Ceyhan, Berrin

    2017-04-01

    To examine the relationship between severe vitamin D deficiency, asthma control, and pulmonary function in Turkish adults with asthma. One hundred six asthmatic patients underwent pulmonary function tests skin prick test, peripheral blood eosinophil counts, IgE, body mass index and vitamin D levels were determined. Patients were divided into 2 subgroups according to vitamin D levels (vitamin D level<10ng/ml and vitamin D level≥10 ng/ml). Asthma control tests were performed. The mean age of subgroup i (vitamin D level<10) was 37±10 and the mean age of subgroup ii (vitamin D level≥10ng/ml) was 34±8. Sixty-six percent of patients had severe vitamin D deficiency (vitamin D level<10 ng/ml). There was a significant trend towards lower absolute FEV 1 (L) values in patients with lower vitamin D levels (P=.001). Asthma control test scores were significantly low in the severe deficiency group than the other group (P=.02). There were a greater number of patients with uncontrolled asthma (asthma control test scores<20) in the severe vitamin D deficiency group (P=.040). Patients with severe vitamin D deficiency had a higher usage of inhaled corticosteroids than the group without severe vitamin D deficiency (P=.015). There was a significant trend towards lower absolute FEV 1 (L) (P=.005, r=.272) values in patients with lower vitamin D levels. Vitamin D levels were inversely related with body mass index (P=.046). The incidence of severe vitamin D deficiency was high in adult Turkish asthmatics. In addition, lower vitamin D levels were associated with poor asthma control and decreased pulmonary function. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Anti-Cyclic Citrullinated Peptide Antibodies and Severity of Interstitial Lung Disease in Women with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Alberto Daniel Rocha-Muñoz

    2015-01-01

    Full Text Available Objective. To evaluate whether serum titers of second-generation anticyclic citrullinated peptide antibodies (anti-CCP2 are associated with the severity and extent of interstitial lung disease in rheumatoid arthritis (RA-ILD. Methods. In across-sectional study, 39 RA-ILD patients confirmed by high-resolution computed tomography (HRCT were compared with 42 RA without lung involvement (RA only. Characteristics related to RA-ILD were assessed in all of the patients and serum anti-CCP2 titers quantified. Results. Higher anti-CCP2 titers were found in RA-ILD compared with RA only (medians 77.9 versus 30.2 U/mL, P<0.001. In the logistic regression analysis after adjustment for age, disease duration (DD, smoke exposure, disease activity, functioning, erythrocyte sedimentation rate, and methotrexate (MTX treatment duration, the characteristics associated with RA-ILD were higher anti-CCP2 titers (P=0.003 and + RF (P=0.002. In multivariate linear regression, the variables associated with severity of ground-glass score were anti-CCP2 titers (P=0.02 and with fibrosis score DD (P=0.01, anti-CCP2 titers (P<0.001, and MTX treatment duration (P<0.001. Conclusions. Anti-CCP2 antibodies are markers of severity and extent of RA-ILD in HRCT. Further longitudinal studies are required to identify if higher anti-CCP2 titers are associated with worst prognosis in RA-ILD.

  4. Lack of MyD88 protects the immunodeficient host against fatal lung inflammation triggered by the opportunistic bacteria Burkholderia cenocepacia.

    Science.gov (United States)

    Ventura, Grasiella M de C; Balloy, Viviane; Ramphal, Reuben; Khun, Huot; Huerre, Michel; Ryffel, Bernhard; Plotkowski, Maria-Cristina M; Chignard, Michel; Si-Tahar, Mustapha

    2009-07-01

    Burkholderia cenocepacia is an opportunistic pathogen of major concern for cystic fibrosis patients as well as immunocompromised cancer patients and transplant recipients. The mechanisms by which B. cenocepacia triggers a rapid health deterioration of the susceptible host have yet to be characterized. TLR and their key signaling intermediate MyD88 play a central role in the detection of microbial molecular patterns and in the initiation of an effective immune response. We performed a study to better understand the role of TLR-MyD88 signaling in B. cenocepacia-induced pathogenesis in the immunocompromised host, using an experimental murine model. The time-course of several dynamic parameters, including animal survival, bacterial load, and secretion of critical inflammatory mediators, was compared in infected and immunosuppressed wild-type and MyD88(-/-) mice. Notably, when compared with wild-type mice, infected MyD88(-/-) animals displayed significantly reduced levels of inflammatory mediators (including KC, TNF-alpha, IL-6, MIP-2, and G-CSF) in blood and lung airspaces. Moreover, despite a higher transient bacterial load in the lungs, immunosuppressed mice deficient in MyD88 had an unexpected survival advantage. Finally, we showed that this B. cenocepacia-induced life-threatening infection of wild-type mice involved the proinflammatory cytokine TNF-alpha and could be prevented by corticosteroids. Altogether, our findings demonstrate that a MyD88-dependent pathway can critically contribute to a detrimental host inflammatory response that leads to fatal pneumonia.

  5. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Engle, Randall; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardón, Ricardo; Romero, Lina; Monroy-Acosta, Maria E; Bryant, Christopher; González-González, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-12-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. The effect of omalizumab on small airway inflammation as measured by exhaled nitric oxide in moderate-to-severe asthmatic patients.

    Science.gov (United States)

    Pasha, M Asghar; Jourd'heuil, David; Jourd'heuil, Francis; Mahon, Lori; Romero, Francisco; Feustel, Paul J; Evans, Mary; Smith, Thomas; Mitchell, Jesse; Gendapodi, Pradeep; Demeyere-Coursey, Kelly C; Townley, Robert G

    2014-01-01

    Measurement of fractional nitric oxide concentration in exhaled breath (FENO) is a simple, noninvasive method to evaluate eosinophilic airway inflammation. Nitric oxide (NO) arising from peripheral small airways/alveoli (alveolar NO concentration [CalvNO]) can be estimated using multiple flow rates and a two-compartment model of the airways and alveoli. Omalizumab, a monoclonal anti-IgE antibody, is approved for the treatment of allergic asthma and also has been shown to decrease FENO levels. This study investigates the effects of omalizumab, when added to an inhaled corticosteroid (ICS) ± long-acting beta-adrenergic agonist (LABA) treatment, on peripheral small airway/alveolar inflammation reflected by FENO measurements at higher flow rates. We hypothesized that compared with placebo, omalizumab would decrease CalvNO levels in asthmatic patients on ICS ± LABA. Forty-two patients with moderate-to-severe asthma were randomly assigned 2:1 to either omalizumab (n = 29) or placebo treatment (n = 13) for 16 weeks. Selection criteria included moderate-to-severe asthmatic patients on an ICS ± LABA, positive skin test to one or more perennial allergen, screening FENO of >13 ppb, and a baseline IgE of 30-700 IU/mL. FENO measured at multiple flow rates was used to calculate CalvNO over the course of 16 weeks. FENO levels decrease with increasing flow rates (p < 0.05 repeated measures ANOVA) but no differences between the placebo and treatment groups in overall CalvNO levels or in the changes of CalvNO with time were found. Omalizumab did not lower the CalvNO, which could have been caused by the initial low CalvNO in this asthmatic population. The model used may not be completely sufficient and/or sensitive enough to detect small changes in CalvNO.

  7. Severe respiratory failure as a presenting feature of an interstitial lung disease associated with anti-synthetase syndrome (ASS).

    Science.gov (United States)

    Piroddi, Ines Maria Grazia; Ferraioli, Gianluca; Barlascini, Cornelius; Castagneto, Corrado; Nicolini, Antonello

    2016-07-01

    Anti-synthetase syndrome (ASS) is defined as a heterogeneous connective tissue disorder characterized by the association of an interstitial lung disease (ILD) with or without inflammatory myositis with the presence of anti-aminoacyl-tRNA-synthetase antibodies. ILD is one of the major extra-muscular manifestations of polymyositis and dermatomyositis. We report a case of a patient with dyspnea, cough, and intermittent fever as well as ILD associated ASS in the absence of muscular involvement. This patient was admitted to the emergency department with severe respiratory failure requiring non-invasive ventilation. Our patient's case demonstrates that the diagnosis of ASS may not be obvious. However, its diagnosis leads to appropriate and potentially life-saving treatment. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  8. Plasma uric acid levels correlate with inflammation and disease severity in Malian children with Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Tatiana M Lopera-Mesa

    Full Text Available Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of 'parasite-derived' UA stimulate immune cells to produce inflammatory cytokines in vitro.We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β in 470 Malian children presenting with uncomplicated malaria (UM, non-cerebral severe malaria (NCSM or cerebral malaria (CM. UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09-1.35, n = 23, p = 0.0007 and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97-1.41, n = 9, p = 0.0890 compared to those with UM (median 4.60 mg/dl, n = 438. In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001, IL-10 (r = 0.242, p<0.00001, sTNFRII (r = 0.221, p<0.00001, MCP-1 (r = 0.220, p<0.00001, IL-8 (r = 0.147, p = 0.002, TNFα (r = 0.132, p = 0.006 and IP-10 (r = 0.120, p = 0.012]. In 39 children, UA levels were 1.49-fold (95% CI 1.34-1.65; p<0.0001 higher during their malaria episode [geometric mean titer (GMT 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl.Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA

  9. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan

    International Nuclear Information System (INIS)

    Tomiyama, Noriyuki; Yasuhara, Yoshifumi; Nakajima, Yasuo; Adachi, Shuji; Arai, Yasuaki; Kusumoto, Masahiko; Eguchi, Kenji; Kuriyama, Keiko; Sakai, Fumikazu; Noguchi, Masayuki; Murata, Kiyoshi; Murayama, Sadayuki; Mochizuki, Teruhito; Mori, Kiyoshi; Yamada, Kozo

    2006-01-01

    Purpose: The aim of our study was to update the rate of severe complications following CT-guided needle biopsy in Japan via a mailed survey. Materials and methods: Postal questionnaires regarding CT-guided needle biopsy were sent out to multiple hospitals in Japan. The questions regarded: the total number and duration of CT-guided lung biopsies performed at each hospital, and the complication rates and numbers of pneumothorax, hemothorax, air embolism, tumor seeding, tension pneumothorax and other rare complications. Each severe complication was followed with additional questions. Results: Data from 9783 biopsies was collected from 124 centers. Pneumothorax was the most common complication, and occurred in 2412 (35%) of 6881 cases. A total of 39 (35%) hospitals reported 74 (0.75%) cases with severe complications. There were six cases (0.061%) with air embolism, six cases (0.061%) with tumor seeding at the site of the biopsy route, 10 cases (0.10%) with tension pneumothorax, six cases (0.061%) with severe pulmonary hemorrhage or hemoptysis, nine cases (0.092%) with hemothorax, and 27 cases (0.26%) with others, including heart arrest, shock, and respiratory arrest. From a total of 62 patients with severe complications, 54 patients (0.55%) recovered without sequela, however one patient (0.01%) recovered with hemiplegia due to cerebral infarction, and the remaining seven patients (0.07%) died. Conclusions: This is the first national study documenting severe complications with respect to CT-guided needle biopsy in Japan. The complication rate in Japan is comparable to internationally published figures. We believe this data will improve both clinicians as well as patients understanding of the risk versus benefit of CT-guided needle biopsy, resulting better decisions

  10. The immediate effect of soft tissue manual therapy intervention on lung function in severe chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Cruz-Montecinos C

    2017-02-01

    Full Text Available Carlos Cruz-Montecinos,1–3 Diego Godoy-Olave,4 Felipe A Contreras-Briceño,5 Paulina Gutiérrez,4 Rodrigo Torres-Castro,2 Leandro Miret-Venegas,3 Roger M Engel6 1Laboratory of Biomechanics and Kinesiology, San José Hospital, Santiago, Chile; 2Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile; 3Unit of Kinesiology and Physical Therapy, San José Hospital, Santiago, Chile; 4Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile; 5Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; 6Department of Chiropractic, Macquarie University, Sydney, Australia Background and objective: In chronic obstructive pulmonary disease (COPD, accessory respiratory muscles are recruited as a compensatory adaptation to changes in respiratory mechanics. This results in shortening and overactivation of these and other muscles. Manual therapy is increasingly being investigated as a way to alleviate these changes. The aim of this study was to measure the immediate effect on lung function of a soft tissue manual therapy protocol (STMTP designed to address changes in the accessory respiratory muscles and their associated structures in patients with severe COPD.Methods: Twelve medically stable patients (n=12 with an existing diagnosis of severe COPD (ten: GOLD Stage III and two: GOLD Stage IV were included. Residual volume, inspiratory capacity and oxygen saturation (SpO2 were recorded immediately before and after administration of the STMTP. A Student’s t-test was used to determine the effect of the manual therapy intervention (P<0.05.Results: The mean age of the patients was 62.4 years (range 46–77. Nine were male. Residual volume decreased from 4.5 to 3.9 L (P=0.002, inspiratory capacity increased from 2.0 to 2.1 L (P=0.039 and SpO2 increased from 93% to 96% (P=0.001.Conclusion: A single application of an STMTP appears to have the potential to produce

  11. ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    International Nuclear Information System (INIS)

    Xiong, Huihua; Liao, Zhongxing; Liu, Zhensheng; Xu, Ting; Wang, Qiming; Liu, Hongliang; Komaki, Ritsuko; Gomez, Daniel; Wang, Li-E; Wei, Qingyi

    2013-01-01

    Purpose: The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). Methods and Materials: We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. Results: Of 362 patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. Conclusions: ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings

  12. Prolonged Exposures to Intermittent Hypoxia Promote Visceral White Adipose Tissue Inflammation in a Murine Model of Severe Sleep Apnea: Effect of Normoxic Recovery.

    Science.gov (United States)

    Gileles-Hillel, Alex; Almendros, Isaac; Khalyfa, Abdelnaby; Nigdelioglu, Recep; Qiao, Zhuanhong; Hamanaka, Robert B; Mutlu, Gökhan M; Akbarpour, Mahzad; Gozal, David

    2017-03-01

    Increased visceral white adipose tissue (vWAT) mass results in infiltration of inflammatory macrophages that drive inflammation and insulin resistance. Patients with obstructive sleep apnea (OSA) suffer from increased prevalence of obesity, insulin resistance, and metabolic syndrome. Murine models of intermittent hypoxia (IH) mimicking moderate-severe OSA manifest insulin resistance following short-term IH. We examined in mice the effect of long-term IH on the inflammatory cellular changes within vWAT and the potential effect of normoxic recovery (IH-R). Male C57BL/6J mice were subjected to IH for 20 weeks, and a subset was allowed to recover in room air (RA) for 6 or 12 weeks (IH-R). Stromal vascular fraction was isolated from epididymal vWAT and mesenteric vWAT depots, and single-cell suspensions were prepared for flow cytometry analyses, reactive oxygen species (ROS), and metabolic assays. IH reduced body weight and vWAT mass and IH-R resulted in catch-up weight and vWAT mass. IH-exposed vWAT exhibited increased macrophage counts (ATMs) that were only partially improved in IH-R. IH also caused a proinflammatory shift in ATMs (increased Ly6c(hi)(+) and CD36(+) ATMs). These changes were accompanied by increased vWAT insulin resistance with only partial improvements in IH-R. In addition, ATMs exhibited increased ROS production, altered metabolism, and changes in electron transport chain, which were only partially improved in IH-R. Prolonged exposures to IH during the sleep period induce pronounced vWAT inflammation and insulin resistance despite concomitant vWAT mass reductions. These changes are only partially reversible after 3 months of normoxic recovery. Thus, long-lasting OSA may preclude complete reversibility of metabolic changes. © Sleep Research Society (SRS) 2016. All rights reserved. For permissions, please email: journals.permissions@oup.com

  13. Unusual long survival despite severe lung disease of a child with biallelic loss of function mutations in ABCA-3

    Directory of Open Access Journals (Sweden)

    P. El Boustany

    Full Text Available Homozygous or compound heterozygous for frameshift or nonsense mutations in the ATP–binding cassette transporter A3 (ABCA3 is associated with neonatal respiratory failure and death within the first year of life without lung transplantation. We report the case of a newborn baby girl who developed severe respiratory distress soon after birth. She was diagnosed with compound heterozygous frameshift mutation of the ABCA3 gene. Despite extensive treatment (intravenous corticosteroids pulse therapy, oral corticosteroids, azithromycin, and hydroxychloroquine, she developed chronic respiratory failure. As the parents refused cardio-pulmonary transplantation and couldn't resolve to an accompaniment of end of life, a tracheostomy was performed resulting in continuous mechanical ventilation. A neurodevelopmental delay and an overall muscular dystrophy were noted. At the age of 5 years, after 2 episodes of pneumothorax, the patient died from severe respiratory failure. To our knowledge, this was the first case of a child with compound heterozygous frameshift mutation who posed such an ethical dilemma with a patient surviving till the age of five years. Keywords: ABCA3 deficiency, Compound heterozygous frameshift mutation, Neonatal respiratory failure, Tracheostomy, Mechanical ventilation, Ethical dilemma

  14. Ureaplasma Species Multiple Banded Antigen (MBA) Variation Is Associated with the Severity of Inflammation In vivo and In vitro in Human Placentae.

    Science.gov (United States)

    Sweeney, Emma L; Kallapur, Suhas G; Meawad, Simone; Gisslen, Tate; Stephenson, Sally-Anne; Jobe, Alan H; Knox, Christine L

    2017-01-01

    Background: The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a proposed virulence factor of Ureaplasma spp. We previously demonstrated that the number of Ureaplasma parvum MBA size variants in amniotic fluid was inversely proportional to the severity of chorioamnionitis in experimentally infected pregnant sheep. However, the effect of ureaplasma MBA size variation on inflammation in human pregnancies has not been reported. Methods: Ureaplasmas isolated from the chorioamnion of pregnant women from a previous study ( n = 42) were speciated/serotyped and MBA size variation was demonstrated by PCR and western blot. Results were correlated with the severity of chorioamnionitis and cord blood cytokines. In vitro , THP-1-derived macrophages were exposed to recombinant-MBA proteins of differing sizes and NF-κB activation and cytokine responses were determined. Results: MBA size variation was identified in 21/32 (65.6%) clinical isolates (in 10 clinical isolates MBA size variation was unable to be determined). Any size variation (increase/decrease) of the MBA (regardless of Ureaplasma species or serovar) was associated with mild or absent chorioamnionitis ( P = 0.023) and lower concentrations of cord blood cytokines IL-8 ( P = 0.04) and G-CSF ( P = 0.008). In vitro , recombinant-MBA variants elicited different cytokine responses and altered expression of NF-κB p65. Conclusion: This study demonstrates that size variation of the ureaplasma MBA protein modulates the host immune response in vivo and in vitro .

  15. Differential Role of the Fas/Fas Ligand Apoptotic Pathway in Inflammation and Lung Fibrosis Associated with Reovirus 1/L-Induced Bronchiolitis Obliterans Organizing Pneumonia and Acute Respiratory Distress Syndrome1

    Science.gov (United States)

    Lopez, Andrea D.; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K.; London, Lucille

    2010-01-01

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 × 106 (BOOP), or 1 × 107 (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Faslpr-cg/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS. PMID:20007588

  16. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome.

    Science.gov (United States)

    Lopez, Andrea D; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K; London, Lucille

    2009-12-15

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 x 10(6) (BOOP), or 1 x 10(7) (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Fas(lpr-cg)/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS.

  17. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury

    NARCIS (Netherlands)

    Wolthuis, Esther K.; Choi, Goda; Dessing, Mark C.; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B.; Hollmann, Markus; Schultz, Marcus J.

    2008-01-01

    Background: Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without

  18. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles

    NARCIS (Netherlands)

    van Noort, J.M.; Bsibsi, M.; Nacken, P.J.; Gerritsen, W.H.; Amor, S.; Holtman, I.R.; Boddeke, E.; van Ark, I.; Leusink-Muis, T.; Folkerts, G.; Hennink, W.E.; Amidi, M.

    2013-01-01

    As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via

  19. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles

    NARCIS (Netherlands)

    van Noort, Johannes M.; Bsibsi, Malika; Nacken, Peter J.; Gerritsen, Wouter H.; Amor, Sandra; Holtman, Inge R.; Boddeke, Erik; van Ark, Ingrid; Leusink-Muis, Thea; Folkerts, Gert; Hennink, Wim E.; Amidi, Maryam

    As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via

  20. Early diagnosis of asthma in young children by using non-invasive biomarkers of airway inflammation and early lung function measurements: study protocol of a case-control study

    Science.gov (United States)

    van de Kant, Kim DG; Klaassen, Ester MM; Jöbsis, Quirijn; Nijhuis, Annedien J; van Schayck, Onno CP; Dompeling, Edward

    2009-01-01

    Background Asthma is the most common chronic disease in childhood, characterized by chronic airway inflammation. There are problems with the diagnosis of asthma in young children since the majority of the children with recurrent asthma-like symptoms is symptom free at 6 years, and does not have asthma. With the conventional diagnostic tools it is not possible to differentiate between preschool children with transient symptoms and children with asthma. The analysis of biomarkers of airway inflammation in exhaled breath is a non-invasive and promising technique to diagnose asthma and monitor inflammation in young children. Moreover, relatively new lung function tests (airway resistance using the interrupter technique) have become available for young children. The primary objective of the ADEM study (Asthma DEtection and Monitoring study), is to develop a non-invasive instrument for an early asthma diagnosis in young children, using exhaled inflammatory markers and early lung function measurements. In addition, aetiological factors, including gene polymorphisms and gene expression profiles, in relation to the development of asthma are studied. Methods/design A prospective case-control study is started in 200 children with recurrent respiratory symptoms and 50 control subjects without respiratory symptoms. At 6 years, a definite diagnosis of asthma is made (primary outcome measure) on basis of lung function assessments and current respiratory symptoms ('golden standard'). From inclusion until the definite asthma diagnosis, repeated measurements of lung function tests and inflammatory markers in exhaled breath (condensate), blood and faeces are performed. The study is registered and ethically approved. Discussion This article describes the study protocol of the ADEM study. The new diagnostic techniques applied in this study could make an early diagnosis of asthma possible. An early and reliable asthma diagnosis at 2–3 years will have consequences for the management of

  1. Differentiation of several interstitial lung disease patterns in HRCT images using support vector machine: role of databases on performance

    Science.gov (United States)

    Kale, Mandar; Mukhopadhyay, Sudipta; Dash, Jatindra K.; Garg, Mandeep; Khandelwal, Niranjan

    2016-03-01

    Interstitial lung disease (ILD) is complicated group of pulmonary disorders. High Resolution Computed Tomography (HRCT) considered to be best imaging technique for analysis of different pulmonary disorders. HRCT findings can be categorised in several patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Nodular, Normal etc. based on their texture like appearance. Clinician often find it difficult to diagnosis these pattern because of their complex nature. In such scenario computer-aided diagnosis system could help clinician to identify patterns. Several approaches had been proposed for classification of ILD patterns. This includes computation of textural feature and training /testing of classifier such as artificial neural network (ANN), support vector machine (SVM) etc. In this paper, wavelet features are calculated from two different ILD database, publically available MedGIFT ILD database and private ILD database, followed by performance evaluation of ANN and SVM classifiers in terms of average accuracy. It is found that average classification accuracy by SVM is greater than ANN where trained and tested on same database. Investigation continued further to test variation in accuracy of classifier when training and testing is performed with alternate database and training and testing of classifier with database formed by merging samples from same class from two individual databases. The average classification accuracy drops when two independent databases used for training and testing respectively. There is significant improvement in average accuracy when classifiers are trained and tested with merged database. It infers dependency of classification accuracy on training data. It is observed that SVM outperforms ANN when same database is used for training and testing.

  2. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    LENUS (Irish Health Repository)

    Packard, Chris J

    2011-01-17

    Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid) study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666) recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis) and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father\\'s occupation, childhood home status (owner-occupier; overcrowding) and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P < 0.0001) but not number of siblings and leg length. Lung function (forced expiratory volume in 1 second) and cognition (Choice Reaction Time, the Stroop test, Auditory Verbal Learning Test) were likewise related to early life conditions (P < 0.001). In multivariate models inclusion of inflammatory variables reduced the impact and independence of early life conditions on lung function and measures of cognitive ability. Including variables of adult socioeconomic status attenuated the early life associations with disease biomarkers. Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father\\'s occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the \\'health divide\\' requires that these life course determinants are taken into account.

  3. The concentration of iron in real-world geogenic PM₁₀ is associated with increased inflammation and deficits in lung function in mice.

    Directory of Open Access Journals (Sweden)

    Graeme R Zosky

    Full Text Available BACKGROUND: There are many communities around the world that are exposed to high levels of particulate matter <10 µm (PM₁₀ of geogenic (earth derived origin. Mineral dusts in the occupational setting are associated with poor lung health, however very little is known about the impact of heterogeneous community derived particles. We have preliminary evidence to suggest that the concentration of iron (Fe may be associated with the lung inflammatory response to geogenic PM₁₀. We aimed to determine which physico-chemical characteristics of community sampled geogenic PM₁₀ are associated with adverse lung responses. METHODS: We collected geogenic PM₁₀ from four towns in the arid regions of Western Australia. Adult female BALB/c mice were exposed to 100 µg of particles and assessed for inflammatory and lung function responses 6 hours, 24 hours and 7 days post-exposure. We assessed the physico-chemical characteristics of the particles and correlated these with lung outcomes in the mice using principal components analysis and multivariate linear regression. RESULTS: Geogenic particles induced an acute inflammatory response that peaked 6 hours post-exposure and a deficit in lung mechanics 7 days post-exposure. This deficit in lung mechanics was positively associated with the concentration of Fe and particle size variability and inversely associated with the concentration of Si. CONCLUSIONS: The lung response to geogenic PM₁₀ is complex and highly dependent on the physico-chemical characteristics of the particles. In particular, the concentration of Fe in the particles may be a key indicator of the potential population health consequences for inhaling geogenic PM₁₀.

  4. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice

    Directory of Open Access Journals (Sweden)

    Gagnon Stéphane

    2010-11-01

    Full Text Available Abstract Background Among patients with cystic fibrosis (CF, females have worse pulmonary function and survival than males, primarily due to chronic lung inflammation and infection with Pseudomonas aeruginosa (P. aeruginosa. A role for gender hormones in the causation of the CF "gender gap" has been proposed. The female gender hormone 17β-estradiol (E2 plays a complex immunomodulatory role in humans and in animal models of disease, suppressing inflammation in some situations while enhancing it in others. Helper T-cells were long thought to belong exclusively to either T helper type 1 (Th1 or type 2 (Th2 lineages. However, a distinct lineage named Th17 is now recognized that is induced by interleukin (IL-23 to produce IL-17 and other pro-inflammatory Th17 effector molecules. Recent evidence suggests a central role for the IL-23/IL-17 pathway in the pathogenesis of CF lung inflammation. We used a mouse model to test the hypothesis that E2 aggravates the CF lung inflammation that occurs in response to airway infection with P. aeruginosa by a Th17-mediated mechanism. Results Exogenous E2 caused adult male CF mice with pneumonia due to a mucoid CF clinical isolate, the P. aeruginosa strain PA508 (PA508, to develop more severe manifestations of inflammation in both lung tissue and in bronchial alveolar lavage (BAL fluid, with increased total white blood cell counts and differential and absolute cell counts of polymorphonuclear leukocytes (neutrophils. Inflammatory infiltrates and mucin production were increased on histology. Increased lung tissue mRNA levels for IL-23 and IL-17 were accompanied by elevated protein levels of Th17-associated pro-inflammatory mediators in BAL fluid. The burden of PA508 bacteria was increased in lung tissue homogenate and in BAL fluid, and there was a virtual elimination in lung tissue of mRNA for lactoferrin, an antimicrobial peptide active against P. aeruginosa in vitro. Conclusions Our data show that E2 increases the

  6. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Science.gov (United States)

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  7. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    Science.gov (United States)

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  8. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... is almost always due to smoking. TREATING LUNG CANCER Lung cancer treatment depends on several factors, including the ... org TARGETING CANCER CARE Radiation Therapy for Lung Cancer Lung cancer is the second most common cancer in ...

  9. Studi Histopatologi Limpa Anjing Penderita Distemper Dikaitkan Dengan Sebaran Sel-Sel Radang Pada Otak Dan Paru (HISTOPHATOLOGICAL STUDY OF SPLEEN ON DOGS INFECTED WITH DISTEMPER ASSOCIATED TO INFLAMATION IN THE BRAIN AND LUNGS

    Directory of Open Access Journals (Sweden)

    Muhamad Furkam Fadilah

    2015-08-01

    Full Text Available This study aim was to determine the distribution of inflammatory cells in canine distemper in terms of the level of inflammation in the spleen, brain and lungs. The sample used 20 infected dogs wihich from the spleens, brains, and lungs of the dogs were collected. These organs were processed for histophatological observation using harris hematoxilyn-eosyn stain. The inflammation of the organs examined by using binocular microscope with 200X magnification. the results showed that inflammation was observed in the spleens: 9 samples (45% showed the presence of lymphoidcells that experienced a mild inflammation 7 (35% moderate inflammation, and 4 (20% severe inflammation in brain, 3 samples (15% did not show observe inflammation, 12 (60% mild, 5(25% moderate inflammation, and not observed any severe inflammation in brain, pulmonary: 6(30% mild inflammation, 11 (55% moderate inflammation, and 3 (15% severe inflammation. It can be concluded that the inflammation was observed microscopically in the spleen, brain and lungin the dog that infected with canine distemper virus

  10. Inflammatory mechanisms in the lung

    Directory of Open Access Journals (Sweden)

    B Moldoveanu

    2008-12-01

    Full Text Available B Moldoveanu1, P Otmishi1, P Jani1, J Walker1,2, X Sarmiento3, J Guardiola1, M Saad1, Jerry Yu11Department of Medicine, University of Louisville, Louisville, KY, USA, 40292; 2Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA, 40205; 3Intensive Care Medicine Service, University Hospital Germans Trias i Pujol, Badalona, Spain 08916Abstract: Inflammation is the body’s response to insults, which include infection, trauma, and hypersensitivity. The inflammatory response is complex and involves a variety of mechanisms to defend against pathogens and repair tissue. In the lung, inflammation is usually caused by pathogens or by exposure to toxins, pollutants, irritants, and allergens. During inflammation, numerous types of inflammatory cells are activated. Each releases cytokines and mediators to modify activities of other inflammatory cells. Orchestration of these cells and molecules leads to progression of inflammation. Clinically, acute inflammation is seen in pneumonia and acute respiratory distress syndrome (ARDS, whereas chronic inflammation is represented by asthma and chronic obstructive pulmonary disease (COPD. Because the lung is a vital organ for gas exchange, excessive inflammation can be life threatening. Because the lung is constantly exposed to harmful pathogens, an immediate and intense defense action (mainly inflammation is required to eliminate the invaders as early as possible. A delicate balance between inflammation and anti-inflammation is essential for lung homeostasis. A full understanding of the underlying mechanisms is vital in the treatment of patients with lung inflammation. This review focuses on cellular and molecular aspects of lung inflammation during acute and chronic inflammatory states.Keywords: inflammation, lung, inflammatory mediators, cytokines

  11. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

    Science.gov (United States)

    Wright, Fred A.; Strug, Lisa J.; Doshi, Vishal K.; Commander, Clayton W.; Blackman, Scott M.; Sun, Lei; Berthiaume, Yves; Cutler, David; Cojocaru, Andreea; Collaco, J. Michael; Corey, Mary; Dorfman, Ruslan; Goddard, Katrina; Green, Deanna; Kent, Jack W.; Lange, Ethan M.; Lee, Seunggeun; Li, Weili; Luo, Jingchun; Mayhew, Gregory M.; Naughton, Kathleen M.; Pace, Rhonda G.; Paré, Peter; Rommens, Johanna M.; Sandford, Andrew; Stonebraker, Jaclyn R.; Sun, Wei; Taylor, Chelsea; Vanscoy, Lori L.; Zou, Fei; Blangero, John; Zielenski, Julian; O’Neal, Wanda K.; Drumm, Mitchell L.; Durie, Peter R.; Knowles, Michael R.; Cutting, Garry R.

    2012-01-01

    A combined genome-wide association and linkage study was used to identify loci causing variation in CF lung disease severity. A significant association (P=3. 34 × 10-8) near EHF and APIP (chr11p13) was identified in F508del homozygotes (n=1,978). The association replicated in F508del homozygotes (P=0.006) from a separate family-based study (n=557), with P=1.49 × 10-9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family-based study identified a significant QTL on chromosome 20q13.2 (LOD=5.03). Our findings provide insight into the causes of variation in lung disease severity in CF and suggest new therapeutic targets for this life-limiting disorder. PMID:21602797

  12. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  13. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury

    Science.gov (United States)

    Park, Dae Won; Jiang, Shaoning; Liu, Yanping; Siegal, Gene P.; Inoki, Ken; Abraham, Edward

    2014-01-01

    Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3′-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI. PMID:25239914

  14. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Tan, L; Wang, H; Li, C; Pan, Y

    2014-12-01

    Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are leading causes of mortality in hospital intensive care units. We sought to determine whether dental plaque biofilms might harbor pathogenic bacteria that can eventually cause lung infections in patients with severe AE-COPD. Paired samples of subgingival plaque biofilm and tracheal aspirate were collected from 53 patients with severe AE-COPD. Total bacterial DNA was extracted from each sample individually for polymerase chain reaction amplification and/or generation of bacterial 16S rDNA sequences and cDNA libraries. We used a metagenomic approach, based on bacterial 16S rDNA sequences, to compare the distribution of species present in dental plaque and lung. Analysis of 1060 sequences (20 clones per patient) revealed a wide range of aerobic, anaerobic, pathogenic, opportunistic, novel and uncultivable bacterial species. Species indistinguishable between the paired subgingival plaque and tracheal aspirate samples (97-100% similarity in 16S rDNA sequence) were dental plaque pathogens (Aggregatibacter actinomycetemcomitans, Capnocytophaga sputigena, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) and lung pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Streptococcus pneumoniae). Real-time polymerase chain reaction of 16S rDNA indicated lower levels of Pseudomonas aeruginosa and Porphyromonas gingivalis colonizing the dental plaques compared with the paired tracheal aspirate samples. These results support the hypothesis that dental bacteria may contribute to the pathology of severe AE-COPD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    Directory of Open Access Journals (Sweden)

    Sattar Naveed

    2011-01-01

    Full Text Available Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666 recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father's occupation, childhood home status (owner-occupier; overcrowding and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P P Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father's occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the 'health divide' requires that these life course determinants are taken into account.

  16. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.

  17. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure

    DEFF Research Database (Denmark)

    Mookerjee, Rajeshwar P; Pavesi, Marco; Thomsen, Karen Louise

    2016-01-01

    BACKGROUND & AIMS: Non-selective beta blockers (NSBBs) have been shown to have deleterious outcomes in patients with refractory ascites, alcoholic hepatitis and spontaneous bacterial peritonitis leading many physicians to stop the drug in these cases. Acute-on-chronic liver failure (ACLF......) is characterized by systemic inflammation and high mortality. As NSBBs may have beneficial effects on gut motility and permeability and, systemic inflammation, the aims of this prospective, observational study were to determine whether ongoing use of NSBBs reduced 28-day mortality in ACLF patients. METHODS...... at enrollment significantly associated with treatment and mortality were taken into account as potential confounders to adjust for treatment effect. A logistic regression model was fitted. RESULTS: 164 (47%) ACLF patients received NSBBs whereas 185 patients did not. Although the CLIF-C ACLF scores were similar...

  18. Advanced sclerosis of the chest wall skin secondary to chronic graft-versus-host disease: a case with severe restrictive lung defect.

    Science.gov (United States)

    Ödek, Çağlar; Kendirli, Tanil; İleri, Talia; Yaman, Ayhan; Fatih Çakmakli, Hasan; Ince, Elif; İnce, Erdal; Ertem, Mehmet

    2014-10-01

    Pulmonary chronic graft-versus-host disease (cGvHD) is one of the most common causes of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (aHSCT). Herein, we describe a patient with severe restrictive lung defect secondary to cGvHD. A 21-year-old male patient was admitted to our pediatric intensive care unit (PICU) with pneumonia and respiratory distress. He had a history of aHSCT for chronic myelogeneous leukemia at the age of 17 years. Six months after undergoing aHSCT, he had developed cGvHD involving skin, mouth, eye, lung, liver, and gastrointestinal tract. At the time of PICU admission he had respiratory distress and required ventilation support. Thorax high-resolution computed tomography was consistent with bronchiolitis obliterans. Although bronchiolitis obliterans is an obstructive lung defect, a restrictive pattern became prominent in the clinical course because of the sclerotic chest wall skin. The activity of cGvHD kept increasing despite the therapy and we lost the patient because of severe respiratory distress and massive hemoptysis secondary to bronchiectasis. In conclusion, pulmonary cGvHD can present with restrictive changes related with the advanced sclerosis of the chest wall skin. Performing a fasciotomy or a scar revision for the rigid chest wall in selected patients may improve the patients ventilation.

  19. Studying allergic inflammation and spirometry over menstrual cycles in well-controlled asthmatic women: Changes in progesterone and estradiol affect neither FENO levels nor lung function.

    Science.gov (United States)

    Nittner-Marszalska, Marita; Dor-Wojnarowska, Anna; Wolańczyk-Mędrala, Anna; Rosner-Tenerowicz, Anna; Zimmer, Mariusz; Dobek, Julia; Gomułka, Krzysztof; Parużyńska, Anna; Panaszek, Bernard

    2018-05-01

    It has been reported that female sex hormones influence on allergic inflammation and ventilation parameters in asthma but conclusions drawn by different researchers are divergent. The aim of our study was to assess the impact of progesterone (Pg) and estradiol (E) on the dynamics of allergic inflammation and spirometry test results in regularly menstruating women with stable allergic asthma. 13 women (28 days menstrual cycle), aged 18-45, taking no hormonal contraceptives, with mild and moderate asthma, without reported exacerbations at the near-ovulation and/or menstruation time, were monitored during two consecutive menstrual cycles. They had 4 visits per cycle (the first day of menstruation was assumed to be day 1 of the cycle; visits were carried out on days: 3-4, 10-11, 13-14 and 23-24). At each visit asthma symptoms, asthma control test (ACT) results, asthma treatment, fractioned nitric oxide (FENO) levels, spirometry test results, Pg and E, levels were analyzed. As a result of the study, no essential variability in FENO values and ventilation parameters' values in the course of menstruation cycle were observed. Negative correlation between FENO values and Pg concentrations was demonstrated (r = 0.27), but no correlation between FENO values and E levels was shown. No relationship between the ACT values and ventilation parameters and the levels of the sex hormones under investigation was detected. We conclude that changing levels of estradiol and progesterone (regardless of the negative correlation of progesterone and FENO values) affect neither the dynamics of allergic inflammation nor pulmonary function in women with stable allergic mild/moderate asthma. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Physiologic effects of alveolar recruitment and inspiratory pauses during moderately-high-frequency ventilation delivered by a conventional ventilator in a severe lung injury model.

    Directory of Open Access Journals (Sweden)

    Ricardo Luiz Cordioli

    Full Text Available To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT during moderately-high-frequency positive pressure ventilation (MHFPPV delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS.Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed. Then, animals were ventilated on a conventional mechanical ventilator with a respiratory rate (RR = 60 breaths/minute and PEEP titrated according to ARDS Network table. The first two steps consisted of a randomized order of inspiratory pauses of 10 and 30% of inspiratory time. In final step, we removed the inspiratory pause and titrated PEEP, after lung recruitment, with the aid of electrical impedance tomography. At each step, PaCO2 was allowed to stabilize between 57-63 mmHg for 30 minutes.The step with RR of 60 after lung recruitment had the highest PEEP when compared with all other steps (17 [16,19] vs 14 [10, 17]cmH2O, but had lower driving pressures (13 [13,11] vs 16 [14, 17]cmH2O, higher P/F ratios (212 [191,243] vs 141 [105, 184] mmHg, lower shunt (23 [20, 23] vs 32 [27, 49]%, lower dead space ventilation (10 [0, 15] vs 30 [20, 37]%, and a more homogeneous alveolar ventilation distribution. There were no detrimental effects in terms of lung mechanics, hemodynamics, or gas exchange. Neither the addition of inspiratory pauses or the alveolar recruitment maneuver followed by decremental PEEP titration resulted in further reductions in VT.During MHFPPV set with RR of 60 bpm delivered by a conventional ventilator in severe ARDS swine model, neither the inspiratory pauses or PEEP titration after recruitment maneuver allowed reduction of VT significantly, however the last strategy decreased driving pressures and improved both shunt and dead space.

  1. Curative Treatment of Stage I Non-Small-Cell Lung Cancer in Patients With Severe COPD: Stereotactic Radiotherapy Outcomes and Systematic Review

    International Nuclear Information System (INIS)

    Palma, David; Lagerwaard, Frank; Rodrigues, George; Haasbeek, Cornelis; Senan, Suresh

    2012-01-01

    Objectives: Patients with severe chronic obstructive pulmonary disease (COPD) have a high risk of lung cancer and of postsurgical complications. We studied outcomes after stereotactic body radiotherapy (SBRT) in patients with severe COPD, as defined by Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria, and performed a systematic review of the literature on outcomes after SBRT or surgery in these patients. Methods: A single-institution cohort of 176 patients with COPD GOLD III-IV and Stage I non–small-cell lung cancer (NSCLC) treated with SBRT was evaluated. A systematic review identified studies reporting outcomes after SBRT or surgery for Stage I NSCLC in patients with GOLD III-IV or a predicted postoperative forced expiratory volume in 1 second (FEV1) of ≤40%. Results: In the single-institution cohort, median follow-up was 21 months and median overall survival (OS) was 32 months. Actuarial 3-year local control was 89%, and 1- and 3-year OS were 79% and 47%, respectively. COPD severity correlated with OS (p = 0.01). The systematic review identified four other studies (two surgical, two SBRT, n = 196 patients). SBRT studies were published more recently and included older patients than surgical studies. Mean 30-day mortality was 0% post-SBRT and 10% after surgery. Local or locoregional control was high (≥89%) after both treatments. Post-SBRT, actuarial OS was 79–95% at 1 year and 43–70% at 3 years. Postsurgical actuarial OS was 45–86% at 1 year and 31–66% at 3 years. Conclusions: SBRT and surgery differ in risk of 30-day mortality in patients with severe COPD. Despite the negative selection of SBRT patients, survival at 1 and 3 years is comparable between the two treatments.

  2. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.; Yang, Wensha; Benedict, Stanley H.; Sheng Ke; Schefter, Tracey E.; Kavanagh, Brian D.; Larner, James M.

    2010-01-01

    Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving ≥20, ≥30, ≥40, ≥50, and ≥60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R 2 = 0.9552). A volume threshold of 30 cm 3 was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm 3 receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to 3 , if possible, to reduce the risk of toxicity without compromising tumor coverage.

  3. Curative Treatment of Stage I Non-Small-Cell Lung Cancer in Patients With Severe COPD: Stereotactic Radiotherapy Outcomes and Systematic Review

    Energy Technology Data Exchange (ETDEWEB)

    Palma, David, E-mail: david.palma@uwo.ca [VU University Medical Center, Amsterdam (Netherlands); Division of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Lagerwaard, Frank [VU University Medical Center, Amsterdam (Netherlands); Rodrigues, George [Division of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada); Haasbeek, Cornelis; Senan, Suresh [VU University Medical Center, Amsterdam (Netherlands)

    2012-03-01

    Objectives: Patients with severe chronic obstructive pulmonary disease (COPD) have a high risk of lung cancer and of postsurgical complications. We studied outcomes after stereotactic body radiotherapy (SBRT) in patients with severe COPD, as defined by Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria, and performed a systematic review of the literature on outcomes after SBRT or surgery in these patients. Methods: A single-institution cohort of 176 patients with COPD GOLD III-IV and Stage I non-small-cell lung cancer (NSCLC) treated with SBRT was evaluated. A systematic review identified studies reporting outcomes after SBRT or surgery for Stage I NSCLC in patients with GOLD III-IV or a predicted postoperative forced expiratory volume in 1 second (FEV1) of {<=}40%. Results: In the single-institution cohort, median follow-up was 21 months and median overall survival (OS) was 32 months. Actuarial 3-year local control was 89%, and 1- and 3-year OS were 79% and 47%, respectively. COPD severity correlated with OS (p = 0.01). The systematic review identified four other studies (two surgical, two SBRT, n = 196 patients). SBRT studies were published more recently and included older patients than surgical studies. Mean 30-day mortality was 0% post-SBRT and 10% after surgery. Local or locoregional control was high ({>=}89%) after both treatments. Post-SBRT, actuarial OS was 79-95% at 1 year and 43-70% at 3 years. Postsurgical actuarial OS was 45-86% at 1 year and 31-66% at 3 years. Conclusions: SBRT and surgery differ in risk of 30-day mortality in patients with severe COPD. Despite the negative selection of SBRT patients, survival at 1 and 3 years is comparable between the two treatments.

  4. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao@mail.cmu.edu.cn [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan; Yoshida, Yasuhiro [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555 (Japan); Bekki, Kanae [Department of Environmental Health, National Institute of Public Health, Saitama 351-0197 (Japan); Arashidani, Keiichi [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555 (Japan); Yoshida, Seiichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Nishikawa, Masataka [Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki 305-8506 (Japan); Takano, Hirohisa [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530 (Japan); Shibamoto, Takayuki [Department of Environmental Toxicology, University of California, Davis, CA 95616, USA. (United States); Sun, Guifan [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China)

    2016-04-01

    Asian sand dust (ASD) is known to exacerbate asthma, although its mechanism is not yet well understood. In this study, when the effects on inflammatory response by LPS present in ASD was investigated by measuring the gene expression of cytokines and chemokines in RAW264.7 cells treated with ASD and/or polymyxin B (PMB), the ASD effects were attenuated by PMB, but not completely. When an in vitro study was performed using bone marrow-derived macrophages (BMDMs) from WT, TLR2{sup −/−}, TLR4{sup −/−}, and MyD88{sup −/−} BALB/c mice and BMDMs from WT, TLR2{sup −/−}, TLR4{sup −/−}, TLR2/4{sup −/−}, TLR7/9{sup −/−}, and MyD88{sup −/−} C57BL/6J mice, cytokine (IL-6, IL-12) production in BMDMs was higher in ASD-stimulated TLR2{sup −/−} cells than in TLR4{sup −/−} cells, whereas it was lower or undetectable in TLR2/4{sup −/−} and MyD88{sup −/−} cells. These results suggest that ASD causes cytokine production predominantly in a TLR4/MyD88-dependent pathway. When WT and TLRs 2{sup −/−}, 4{sup −/−}, and MyD88{sup −/−} BALB/c mice were intratracheally challenged with OVA and/or ASD, ASD caused exacerbation of lung eosinophilia along with Th2 cytokine and eosinophil-relevant chemokine production. Serum OVA-specific IgE and IgG1 similar to WT was observed in TLRs 2{sup −/−}, 4{sup −/−} mice, but not in MyD88{sup −/−} mice. The Th2 responses in TLR2{sup −/−} mice were attenuated remarkably by PMB. These results indicate that ASD exacerbates lung eosinophilia in a MyD88-dependent pathway. TLRs 2 and 4 signaling may be important in the increase in lung eosinophilia. Also, the TLR4 ligand LPS and TLR2 ligand like β-glucan may be strong candidates for exacerbation of lung eosinophilia. - Highlights: • ASD enhanced Th2 response in TLR2{sup −/−}, TLR4{sup −/−} and WT mice, but not in MyD88{sup −/−}. • Th2 responses in TLR2{sup −/−} mice were attenuated by LPS inhibitor polymyxin B. • TLR2

  5. Desert dust induces TLR signaling to trigger Th2-dominant lung allergic inflammation via a MyD88-dependent signaling pathway

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Bekki, Kanae; Arashidani, Keiichi; Yoshida, Seiichi; Nishikawa, Masataka; Takano, Hirohisa; Shibamoto, Takayuki; Sun, Guifan

    2016-01-01

    Asian sand dust (ASD) is known to exacerbate asthma, although its mechanism is not yet well understood. In this study, when the effects on inflammatory response by LPS present in ASD was investigated by measuring the gene expression of cytokines and chemokines in RAW264.7 cells treated with ASD and/or polymyxin B (PMB), the ASD effects were attenuated by PMB, but not completely. When an in vitro study was performed using bone marrow-derived macrophages (BMDMs) from WT, TLR2 −/− , TLR4 −/− , and MyD88 −/− BALB/c mice and BMDMs from WT, TLR2 −/− , TLR4 −/− , TLR2/4 −/− , TLR7/9 −/− , and MyD88 −/− C57BL/6J mice, cytokine (IL-6, IL-12) production in BMDMs was higher in ASD-stimulated TLR2 −/− cells than in TLR4 −/− cells, whereas it was lower or undetectable in TLR2/4 −/− and MyD88 −/− cells. These results suggest that ASD causes cytokine production predominantly in a TLR4/MyD88-dependent pathway. When WT and TLRs 2 −/− , 4 −/− , and MyD88 −/− BALB/c mice were intratracheally challenged with OVA and/or ASD, ASD caused exacerbation of lung eosinophilia along with Th2 cytokine and eosinophil-relevant chemokine production. Serum OVA-specific IgE and IgG1 similar to WT was observed in TLRs 2 −/− , 4 −/− mice, but not in MyD88 −/− mice. The Th2 responses in TLR2 −/− mice were attenuated remarkably by PMB. These results indicate that ASD exacerbates lung eosinophilia in a MyD88-dependent pathway. TLRs 2 and 4 signaling may be important in the increase in lung eosinophilia. Also, the TLR4 ligand LPS and TLR2 ligand like β-glucan may be strong candidates for exacerbation of lung eosinophilia. - Highlights: • ASD enhanced Th2 response in TLR2 −/− , TLR4 −/− and WT mice, but not in MyD88 −/− . • Th2 responses in TLR2 −/− mice were attenuated by LPS inhibitor polymyxin B. • TLR2 and TLR4 signaling is important in allergic lung disease aggravation by ASD. • MyD88 is the key

  6. Lung needle biopsy

    Science.gov (United States)

    ... if you have certain lung diseases such as emphysema. Usually, a collapsed lung after a biopsy does not need treatment. But ... any type Bullae (enlarged alveoli that occur with emphysema) Cor pulmonale (condition ... of the lung High blood pressure in the lung arteries Severe ...

  7. Secondhand tobacco smoke, arterial stiffness, and altered circadian blood pressure patterns are associated with lung inflammation and oxidative stress in rats.

    Science.gov (United States)

    Gentner, Nicole J; Weber, Lynn P

    2012-02-01

    Chronic smoking and secondhand tobacco smoke exposure are major risk factors for cardiovascular disease that are known to adversely alter the structural and mechanical properties of arteries. The objective of this study was to determine the effects of subchronic secondhand tobacco smoke exposure on circadian blood pressure patterns, arterial stiffness, and possible sources of oxidative stress in conscious, unsedated radiotelemetry-implanted rats. Pulse wave change in pressure over ti