WorldWideScience

Sample records for severe heat stress

  1. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  2. Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior

    Science.gov (United States)

    Gayán, Elisa; Govers, Sander K.; Michiels, Chris W.; Aertsen, Abram

    2016-01-01

    Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP) shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation. PMID:27917163

  3. Severely heat injured survivors of E. coli O157:H7 ATCC 43888 display variable and heterogeneous stress resistance behavior

    Directory of Open Access Journals (Sweden)

    Elisa Gayán

    2016-11-01

    Full Text Available Although minimal food processing strategies aim to eliminate foodborne pathogens and spoilage microorganisms through a combination of mild preservation techniques, little is actually known on the resistance behavior of the small fraction of microorganisms surviving an inimical treatment. In this study, the conduct of severely heat stressed survivors of E. coli O157:H7 ATCC 43888, as an indicator for the low infectious dose foodborne enterohaemorrhagic strains, was examined throughout their resuscitation and outgrowth. Despite the fact that these survivors were initially sublethally injured, they were only marginally more sensitive to a subsequent heat treatment and actually much more resistant to a subsequent high hydrostatic pressure (HHP shock in comparison with unstressed control cells. Throughout further resuscitation, however, their initial HHP resistance rapidly faded out, while their heat resistance increased and surpassed the initial heat resistance of unstressed control cells. Results also indicated that the population eventually emerging from the severely heat stressed survivors heterogeneously consisted of both growing and non-growing persister-like cells. Together, these observations provide deeper insights into the particular behavior and heterogeneity of stressed foodborne pathogens in the context of food preservation.

  4. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  5. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  6. Features of heat stress control

    International Nuclear Information System (INIS)

    Bernard, T.E.

    1989-01-01

    Heat stress is caused by hot environments and physical demands of work. It is further complicated by protective clothing requirements commonly found in the nuclear power industry. The resulting physiological strain is reflected in increased sweating, heart rate and body temperature. Uncontrolled exposures to heat stress will lead to decreased personnel performance and increased risk of accidents and heat disorders. The article describes major heat disorders, a method of heat stress evaluation, and some basic interventions to reduce the stress and strain of working in the heat

  7. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  8. Protect Yourself from Heat Stress

    Centers for Disease Control (CDC) Podcasts

    2016-07-19

    Heat stress can be a major concern for indoor and outdoor workers, especially during the hot summer months. Learn how to identify the symptoms and protect yourself from heat stress.  Created: 7/19/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 7/19/2016.

  9. Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children.

    Science.gov (United States)

    Fitrolaki, Michaela-Diana; Dimitriou, Helen; Venihaki, Maria; Katrinaki, Marianna; Ilia, Stavroula; Briassoulis, George

    2016-08-01

    Mammalian heat-shock-protein (HSP) 90α rapidly responses to environmental insults. We examined the hypothesis that not only serum HSP72 but also HSP90α is increased in the systemic inflammatory response syndrome (SIRS), severe-sepsis (SS), and/or sepsis (S) compared to healthy children (H); we assessed HSP90α relation to (a) multiple organ system failure (MOSF) and (b) inflammatory-metabolic response and severity of illness.A total of 65 children with S, SS, or SIRS and 25 H were included. ELISA was used to evaluate extracellular HSP90α and HSP72, chemiluminescence interleukins (ILs), flow-cytometry neutrophil-CD64 (nCD64)-expression.HSP90α, along with HSP72, were dramatically increased among MOSF patients. Patients in septic groups and SIRS had elevated HSP90α compared to H (P stress, fever, outcome endpoints, and predicted mortality and inversely related to the low-LDL/low-HDL stress metabolic pattern.

  10. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat Sourav, Pradip, Sufi, Shatabdi and Bijoy were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23C in case of normal seeding and it was near about 28C to 30C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in Sourav, 58.41% in Pradip, 73.01% in Sufi, 55.46% in Shatabdi and 53.42% in Bijoy.

  11. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat �Sourav�, �Pradip�, �Sufi�, �Shatabdi� and �Bijoy� were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23�C in case of normal seeding and it was near about 28�C to 30�C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in �Sourav�, 58.41% in �Pradip�, 73.01% in �Sufi�, 55.46% in �Shatabdi� and 53.42% in �Bijoy�.

  12. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.

    Science.gov (United States)

    Rurek, Michal

    2010-08-18

    Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls--from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously in maize, wheat and rye

  13. Heat stress proteins in hypertension

    International Nuclear Information System (INIS)

    Malo, D.; Tremblay, J.; Pang, S.C.; Schlager, G.; Hamet, P.

    1986-01-01

    It has been described that spontaneously hypertensive rats (SHR) are more sensitive to an acute environmental heat stress and that cultured cardiomyocytes from neonatal SHR are demonstrated to be more thermosensitive. In addition, chronically heat exposed spontaneously hypertensive mice leads to a decrease of blood pressure in these animals. Heat shock is known to induce the synthesis of a new set of proteins (HSP) in every cell tested. This ubiquitous response seems to be involved in the induction of a thermotolerant state. The synthesis of 70K HSP was observed in lymphocytes isolated from the spleen of chronically heated mice. They used lymphocytes, previously isolated on a ficoll gradient, to evaluate the HSP induction in normotensive (WKY) and hypertensive (SHR) rats. The heat shock was induced by exposing the lymphocytes at 46 0 C during 5 min in a hot water bath. The cells were then labeled with ( 75 Se)-methionine, washed, homogenized and separated on 5-30% SDS-polyacrylamide gel. Preliminary results suggest an abnormal pattern of induction of 70K and 90K HSP in hypertension. Heat sensitivity, thermotolerance and expression of HSP may, thus, be related to hypertension

  14. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke

    OpenAIRE

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case...

  15. Sensing the Heat Stress by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Cates Jordan

    2011-08-01

    consecutive shocks (i.e., no recovery time in between shocks depends on the order of the input shocks, that is the shocks do not commute; (ii the responses may be classified as mild or severe, depending on the temperature level and the duration of the heat shock and (iii the response is highly sensitive to small variations in temperature. Conclusions We propose a mathematical model that maps temperature into the transient activity using experimental data that describes the time course of the response to input thermal stress. The model is built on thermotolerance without recovery time, sharp sensitivity to small variations in temperature and the existence of mild and severe classes of stress responses. The theoretical predictions are tested against experimental data using a series of double-shock inputs. The theoretical structure is represented by a sequence of three cascade processes that transform the input stress into the transient activity. The structure of the cascade is nonlinear-linear-nonlinear (NLN. The first nonlinear system (N from the NLN structure represents the amplification of small changes in the environmental temperature; the linear system (L represents the thermotolerance without recovery time, whereas the last system (N represents the transition of the cell's response from a mild to a severe shock.

  16. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  17. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  18. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  19. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  20. Quantifying Livestock Heat Stress Impacts in the Sahel

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  1. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  2. Sensing the Heat Stress by Mammalian Cells

    OpenAIRE

    Cates Jordan; Graham Garrett C; Omattage Natalie; Pavesich Elizabeth; Setliff Ian; Shaw Jack; Smith Caitlin; Lipan Ovidiu

    2011-01-01

    Abstract Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock ...

  3. Environmental heat stress enhances crystallization in urine

    Science.gov (United States)

    Setyawan, H.; Pratiwi, Q. C.; Sjarifah, I.; Atmojo, T. B.; Khotijah

    2018-03-01

    Over the past several decades, agriculture and plantations have been used as the main livelihood of most of the Karanganyar residents. However, these two sources of living are now replaced by industrial areas that employ thousands of people in that district. The development of this industry triggers multiple environmental impacts, including ecosystem and temperature changes. In consequence, there is an increase in air temperature that can cause a variety of diseases, especially in the workplace. According to the International Labour Organization (ILO) data in 2013, one worker dies every 15 second due to a work accident and 160 workers are suffering from the occupational disease. In Indonesia, the incidence of crystallization in urine is actually still unknown, but it is estimated that there are 170,000 cases annually. A high temperature or called heat stress is one among many factors causing this disease to appear. The workers in the textile industry, especially in the Finishing Department Kusumahadi Co. Ltd that exposed heat stress from the finishing machines and inadequate ventilation. This hot working climate causes the human body to adapt in the form of body cooling mechanism or called sweating This adaptation can cause an increase in sweat production and decrease the production of urine. If it is not followed by consuming the recommended amount of water intake, it can result in the precipitation of body salts that, in a long time, will cause crystallization in urine. The research used the analytic observational designs for a cross-sectional study. There were 34 samples collected from 57 finishing workers. The data were analyzed using Spearman correlation test. The results showed that heat stress (p=0,015) and water intake (p=0,034) has a significant correlation with crystallization in urine.

  4. Drivers and barriers to heat stress resilience.

    Science.gov (United States)

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Heat Stress in Older Adults

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  6. Heat stress management in hot mines

    CSIR Research Space (South Africa)

    Schutte, P

    2009-09-01

    Full Text Available consequences of excessive levels of occupational heat stress were recognized by the South African gold mining industry when the first death from heat stroke occurred in 1924 (1). Steps to combat the heat stress hazard were taken almost immediately... currently used in the South African mining industry. In South African mines, work environments having a wet-bulb temperature in excess of 27.4 °C are considered to be ‘hot’ and necessitate the introduction of practices to safeguard miners...

  7. Investigation heat stress in small enterprise in Qom city

    Directory of Open Access Journals (Sweden)

    R. hajizadeh

    2014-02-01

    .Conclusion: Heat stress in almost all of the studied workplaces are higher than the recommended limits, and the outdoor workshops had the highest thermal stress, although heat stress did not show a significant correlation with the studied strains.

  8. Medical screening and evaluation for heat stress

    International Nuclear Information System (INIS)

    Kenney, L.W.

    1985-01-01

    Wide interindividual variation exists with respect to heat tolerance, making it difficult to predict individual responses. However, several general physical and physiological characteristics are associated with excessive strain and early exhaustion during work in the heat. Included among these correlates of heat intolerance are a medical history of heat illness, acclimation state, age, body composition and size, aerobic fitness level, hypertension, and drug and alcohol use. The approach of choice for medical evaluation for heat exposure is a two-stage evaluation. First, the examining physician should be encouraged to screen out those workers whose characteristics increase their risk of heat intolerance. Secondly, a short exercise test is proposed which accurately predicts relative heat tolerance across a working population. This test is recommended as an adjunct screening test at the examining physician's disgression

  9. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  10. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  11. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Directory of Open Access Journals (Sweden)

    Rameez Rameezdeen

    2017-01-01

    Full Text Available The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS policies.

  12. Reductions in labour capacity from heat stress under climate warming

    Science.gov (United States)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  13. Heat Stress Effects on Growing-Finishing Swine

    Science.gov (United States)

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  14. Heat stress protection in abnormally hot environments.

    CSIR Research Space (South Africa)

    Schutte, PC

    1994-11-01

    Full Text Available The present report presents the findings of SIMRAC project GAP 045 entitled ‘Heat stress protection in abnormally hot environments’. It is intended as a reference to develop guidelines which, in turn would assist mine management in establishing safe...

  15. Potassium nutrition of heat-stressed lactating

    African Journals Online (AJOL)

    dairy cattle performance annually over a 5 month period. When Black Globe Temperature (BGT), an integrated measure of dry bulb air temperature, wind velocity and solar radiation, rises above 29"C, feed intake and produc- tion are reduced. Many responses to heat stress, such as increased respiration and sweating rates, ...

  16. Heat stress assessment in artistic glass units.

    Science.gov (United States)

    d'AMBROSIO Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe; Bartalini, Massimo; Strambi, Fabio; Malchaire, Jacques

    2018-04-07

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident.

  17. Alterations in reproductive hormones during heat stress in dairy cattle

    African Journals Online (AJOL)

    Alterations in reproductive hormones during heat stress in dairy cattle. ... Heat stress reduces the degree of dominance of the selected follicle and this can be seen as reduced steroidogenic capacity of its theca and ... from 32 Countries:.

  18. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  19. Tank waste remediation system heat stress control program report, 1995

    International Nuclear Information System (INIS)

    Carls, D.R.

    1995-01-01

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it's inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  20. Heat Stress and feeding strategies in meat-type chickens

    NARCIS (Netherlands)

    Syafwan, W.; Kwakkel, R.P.; Verstegen, M.W.A.

    2011-01-01

    Heat stress can induce hyperthermia in poultry. A reduction in heat load can be achieved by increasing the possibilities for dissipation, decreasing the level of heat production or by changing the thermal production pattern within a day. Strategies to reduce the negative effects of heat stress can

  1. Intermittent hyperthyreosis. A heat stress syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sulman, F G; Tal, E; Pfeifer, Y; Superstine, E [Hebrew Univ., Jerusalem (Israel). Dept. of Applied Pharmacology

    1975-09-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or 'forme fruste' hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: tachycardia - every case with more than 80 pulse beats being suspect (not specific); urinary histamine - every case excreting more than 90 ..mu..g/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; urinary thyroxine - every case excreting more than 20 ..mu..g/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and betablockers. Propyl thiouracil is rarely required.

  2. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  3. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  4. Influence of radiation heat transfer during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.

    2016-09-01

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  5. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  6. Measurement of heat transfers in cryogenic tank with several configurations

    International Nuclear Information System (INIS)

    Khemis, O.; Bessaieh, R.; Ait Ali, M.; Francois, M.X.

    2004-01-01

    The work presented here concerns the measurement of heat transfer in a cryogenic tank with several configurations. The experimental test incorporates the conductive heat in the neck, the convection heat transfers between the inner wall of the neck and the ascending vapor resulting from boiling, and the radiation heat transfers between the external envelope and the tank through a vacuum of 10 -8 mm Hg. An experimental prototype was produced in collaboration with the nuclear center of Orsay in France according to a didactic design, which takes into account the Wexler effect and the importance of the radiation compared to the conduction-convection heat transfer. The addition of a screen radiative ventilated with variable position on the neck (which can effectively replace several tens of floating screens), in order to find the optimal position, which minimizes the radiation flux, is presented in this paper

  7. Heat stress and strain in exercise and sport.

    Science.gov (United States)

    Brotherhood, John R

    2008-01-01

    Heat stress arising from the thermal environment is of concern to sports medicine and to sports administration because of the perceived risk of heat casualties, in particular heat stroke. Many sports organizations recommend environmental indices such as the WBGT for assessing risk and setting environmental limits for training and competition. But the limits are not justified by evidence. This article describes the nature of heat stress in sport and how it may be assessed objectively. Heat stress and the principal human responses to exercise heat stress are reviewed briefly. Metabolic heat production and the thermal environment provoke separate and largely independent physiological strains. Metabolic heat production drives body core temperature, and the thermal environment drives skin temperature; the combined stresses are integrated to drive sweat rate. Control of core temperature depends on adequate sweat production and the capacity of the environment to evaporate the sweat. The nature of exercise heat stress is demonstrated by rational analysis of the physical heat exchanges between the body and the environment. The principles of this analysis are applied to critical review of current practice in the assessment of heat stress in sport. The article concludes with discussion of research to establish methods for objective sport-specific assessment of heat stress.

  8. Modeling heat stress under different environmental conditions.

    Science.gov (United States)

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  9. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  10. Effects of heat stress and starvation on clonal odontoblast-like cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  12. Post-heading heat stress and yield impact in winter wheat of China.

    Science.gov (United States)

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  13. Occupational Heat Stress Profiles in Selected Workplaces in India

    OpenAIRE

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2016-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and...

  14. Effects of heat stress on baroreflex function in humans

    Science.gov (United States)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  15. The role of stress in IBS symptom severity

    Directory of Open Access Journals (Sweden)

    Sanda Pletikosic

    2016-04-01

    Full Text Available Irritable bowel syndrome is regarded as a biopsychosocial disorder, the result of a complex combination of predisposing, precipitating and perpetuating factors. Personality traits, affective status and stress are some of the relevant factors contributing to lower quality of life and symptom exacerbation in IBS patients. In order to examine the role of stress in IBS symptom exacerbation, the aims of this study were to explore the relationship of daily stressful events and symptom severity in a prospective manner and to explore the roles of neuroticism, anxiety, depression and stress in the vicious circle of symptom perpetuation. A total of 49 patients with IBS reported their symptom severity and daily stressful events intensity each day for 14 consecutive days. They also completed the Big five personality inventory, the Beck Depression Inventory and the State-trait anxiety inventory. Cross-correlation analyses were performed on the time series data for daily stress and symptom severity for each participant separately. Four different patterns of relationships were found in different subgroups of participants: positive cross-correlations of symptom severity and stress intensity on the same day; higher symptom severity on days following stressful days; lower symptom severity on days following stressful days; and lower stress intensity on days following severe symptoms. Using average scores for daily stress and symptom severity, as well as scores for neuroticism, anxiety and depression, we performed a path analysis to test a model of symptom exacerbation. It showed that, on the group level, average stress intensity predicts average symptom severity. Neuroticism and anxiety were not significant predictors of symptom severity, while depression showed a marginally significant relationship with symptom severity, mediated by stress intensity. In conclusion, depression and daily stress seem to be important contributors to the vicious circle of IBS symptom

  16. Heat stress during the Black Saturday event in Melbourne, Australia

    Science.gov (United States)

    Jacobs, Stephanie J.; Vihma, Timo; Pezza, Alexandre B.

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h-1 and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h-1 to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  17. The Effects of Heat Stress on Job Satisfaction, Job Performance and Occupational Stress in Casting Workers

    OpenAIRE

    Dehghan; Mobinyzadeh; Habibi

    2016-01-01

    Background Job satisfaction, job performance, job stress and heat stress affect the productivity of workers. Objectives This research aimed to study the relationship between heat stress indices with job satisfaction, job performance and job stress in casting workers. Patients and Methods This descriptive-analytical cross sectional survey was performed during summer 2013 on one hund...

  18. Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila

    DEFF Research Database (Denmark)

    Malmendal, Anders; Overgaard, Johannes; Bundy, Jacob G.

    2006-01-01

    Frequent exposure of terrestrial insects to temperature variation has led to the evolution of protective biochemical and physiological mechanisms, such as the heat shock response, which markedly increases the tolerance to heat stress. Insight into such mechanisms has, so far, mainly relied...... on selective studies of specific compounds or characteristics or studies at the genomic or proteomic levels. In the present study, we have used untargeted NMR metabolomic profiling to examine the biological response to heat stress in Drosophila melanogaster. The metabolite profile was analyzed during recovery...... after exposure to different thermal stress treatments and compared with untreated controls. Both moderate and severe heat stress gave clear effects on the metabolite profiles. The profiles clearly demonstrated that hardening by moderate heat stress led to a faster reestablishment of metabolite...

  19. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  20. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica

    Science.gov (United States)

    Danielle E. Marias; Frederick C. Meinzer; Christopher Still

    2017-01-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica...

  1. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-29

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.

  2. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  3. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  4. Occupational Heat Stress and Kidney Health: From Farms to Factories.

    Science.gov (United States)

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; Clark, William F; Sontrop, Jessica M; McIntyre, Christopher W; Moist, Louise

    2017-11-01

    Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  5. Re-evaluating occupational heat stress in a changing climate.

    Science.gov (United States)

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Heat stress management program improving worker health and operational effectiveness: a case study.

    Science.gov (United States)

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. Copyright 2013, SLACK Incorporated.

  7. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    Science.gov (United States)

    2015-01-01

    stroke [3, 11, 12], leading to severe encephalopathy , rhabdomyolysis, acute renal failure, acute respiratory distress syndrome, myocardial injury...heart, kidney, and liver failure are increased by 40% in Service members with a history of heat stroke [5, 6]. Indeed, there is an urgent need for...other organs at high risk for injury, such as liver and kidney [24, 25]. 2.1 Utility of the computational model Molecular indicators of heat

  8. Heat and drought stresses in crops and approaches for their mitigation

    Science.gov (United States)

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-02-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavourable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  9. Heat and Drought Stresses in Crops and Approaches for Their Mitigation

    Directory of Open Access Journals (Sweden)

    Mouna Lamaoui

    2018-02-01

    Full Text Available Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  10. Occupational Heat Stress Profiles in Selected Workplaces in India.

    Science.gov (United States)

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2015-12-29

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  11. Occupational Heat Stress Profiles in Selected Workplaces in India

    Science.gov (United States)

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  12. Severe occupational hand eczema, job stress and cumulative sickness absence.

    Science.gov (United States)

    Böhm, D; Stock Gissendanner, S; Finkeldey, F; John, S M; Werfel, T; Diepgen, T L; Breuer, K

    2014-10-01

    Stress is known to activate or exacerbate dermatoses, but the relationships between chronic stress, job-related stress and sickness absence among occupational hand eczema (OHE) patients are inadequately understood. To see whether chronic stress or burnout symptoms were associated with cumulative sickness absence in patients with OHE and to determine which factors predicted sickness absence in a model including measures of job-related and chronic stress. We investigated correlations of these factors in employed adult inpatients with a history of sickness absence due to OHE in a retrospective cross-sectional explorative study, which assessed chronic stress (Trier Inventory for the Assessment of Chronic Stress), burnout (Shirom Melamed Burnout Measure), clinical symptom severity (Osnabrück Hand Eczema Severity Index), perceived symptom severity, demographic characteristics and cumulative days of sickness absence. The study group consisted of 122 patients. OHE symptoms were not more severe among patients experiencing greater stress and burnout. Women reported higher levels of chronic stress on some measures. Cumulative days of sickness absence correlated with individual dimensions of job-related stress and, in multiple regression analysis, with an overall measure of chronic stress. Chronic stress is an additional factor predicting cumulative sickness absence among severely affected OHE patients. Other relevant factors for this study sample included the 'cognitive weariness' subscale of the Shirom Melamed Burnout Measure and the physical component summary score of the SF-36, a measure of health-related life quality. Prevention and rehabilitation should take job stress into consideration in multidisciplinary treatment strategies for severely affected OHE patients. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  14. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  15. Ultrasonic evaluation of heat treatment for stress relief in steel

    International Nuclear Information System (INIS)

    Bittencourt, Marcelo de S.Q.; Lamy, Carlos A.; Goncalves Filho, Orlando J.A.; Payao Filho, Joao da C.

    2000-01-01

    Residual stresses in materials arise due to the manufacturing processes. As a consequence, in the nuclear area some components must suffer a stress relief treatment according to strict criteria. Although these treatments are carefully carried on, concern with nuclear safety is constantly growing. This work proposes a nondestructive ultrasonic method to guarantee the efficiency of the heat treatment. It was used a short peened steel plate with tensile and compressive stresses which was submitted to a stress relief treatment. The results show that the proposed ultrasonic method could be used to confirm the efficiency of the stress relief heat treatment. (author)

  16. Impact of heat stress during seed development on soybean seed metabolome

    Science.gov (United States)

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  17. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Carla E Barraza

    Full Text Available Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs and processing bodies (PBs. Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.

  18. Heat stress intervention research in construction: gaps and recommendations.

    Science.gov (United States)

    Yang, Yang; Chan, Albert Ping-Chuen

    2017-06-08

    Developing heat stress interventions for construction workers has received mounting concerns in recent years. However, limited efforts have been exerted to elaborate the rationale, methodology, and practicality of heat stress intervention in the construction industry. This study aims to review previous heat stress intervention research in construction, to identify the major research gaps in methodological issues, and to offer detailed recommendations for future studies. A total of 35 peer-reviewed journal papers have been identified to develop administrative, environmental or personal engineering interventions to safeguard construction workers. It was found that methodological limitations, such as arbitrary sampling methods and unreliable instruments, could be the major obstacle in undertaking heat stress intervention research. To bridge the identified research gaps, this study then refined a research framework for conducting heat stress intervention studies in the construction industry. The proposed research strategy provides researchers and practitioners with fresh insights into expanding multidisciplinary research areas and solving practical problems in the management of heat stress. The proposed research framework may foster the development of heat stress intervention research in construction, which further aids researchers, practitioners, and policymakers in formulating proper intervention strategies.

  19. Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers

    OpenAIRE

    Yi, Wen; Chan, Albert P. C.

    2017-01-01

    Global warming is bringing more frequent and severe heat waves, and the result will be serious for vulnerable populations such as construction workers. Excessive heat stress has profound effects on physiological responses, which cause occupational injuries, fatalities and low productivity. Construction workers are particularly affected by heat stress, because of the body heat production caused by physically demanding tasks, and hot and humid working conditions. Field studies were conducted be...

  20. Effect of heating method on stress-rupture life

    Science.gov (United States)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  1. The Association of Sever Stressful Life Events and Multiple Sclerosis

    OpenAIRE

    Rozita Naeeni; Zlbar Soltanzadeh; Homan Salimipour; Zahra Vahhabi; Samira Yadegari

    2015-01-01

    Background: Stressful life events have suggested as one of etiologic cause of the disease from the middle of last century, but controversies still is going on. Materials and Methods: This study is a case- control study conducted on 100 MS patients in neurology clinic of Shariati Hospital during one year. History of stressful life events one year before beginning of the disease was questioned. These events, according to Holmes and Rahe Stress Scale, were severe and affected the disease progres...

  2. Development of stress correction formulae for heat formed steel plates

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2018-03-01

    Full Text Available The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull. Keywords: Heat input, Heat transfer analysis, Line heating, Shell plate, Stress correction, Thermo-elasto-plastic analysis

  3. Thermoplasticity of coupled bodies in the case of stress-dependent heat transfer

    Science.gov (United States)

    Kilikovskaya, O. A.

    1987-01-01

    The problem of the thermal stresses in coupled deformable bodies is formulated for the case where the heat-transfer coefficient at the common boundary depends on the stress-strain state of the bodies (e.g., is a function of the normal pressure at the common boundary). Several one-dimensional problems are solved in this formulation. Among these problems is the determination of the thermal stresses in an n-layer plate and in a two-layer cylinder.

  4. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  5. Effects of heat stress on gene expression in eggplant (Solanum ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... molecular shock protein, disease resistance protein, stress-related protein, enzymes related to ... The heat tolerant eggplant inbred line 05-4, bred by Vegetable ..... plasma membrane Ca2+-ATPase activity was increased.

  6. Proteomics analysis of alfalfa response to heat stress.

    Directory of Open Access Journals (Sweden)

    Weimin Li

    Full Text Available The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin seedlings were exposed to 25 °C (control and 40 °C (heat stress in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE, and differentially expressed protein spots were identified by mass spectrometry (MS. Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.

  7. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    ANSYS (1997) computer code has been used to analyse the thermal ... The numerical method is used succesfully to solve the governing equations ... thermal stress is an important criterion for consideration in the design of new compact heat.

  8. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    Science.gov (United States)

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  9. Exploring Heat Stress Relief Measures among the Australian Labour Force

    Directory of Open Access Journals (Sweden)

    Kerstin K. Zander

    2018-02-01

    Full Text Available Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%, 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected

  10. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  12. Heat transfer in rod bundles with severe clad deformations

    International Nuclear Information System (INIS)

    Ihle, P.

    1984-04-01

    The content of the paper is focused on heat transfer conditions during the reflood phase of a LOCA in slightly to severely deformed PWR fuel rod bundle geometries. The status of analytical and, especially, of experimental work is described as far as it is possible within this frame. Emphasis is placed on the presentation of the results of ''Flooding Experiments with Blocked Arrays'' (FEBA), a program performed at the Kernforschungszentrum Karlsruhe in the frame of the Project Nuclear Safety (PNS). (orig./WL) [de

  13. Measures against heat stress in the city of Gelsenkirchen, Germany

    Directory of Open Access Journals (Sweden)

    Dütemeyer, Dirk

    2014-04-01

    Full Text Available In the near-surface atmosphere, heat waves during the summer cause situations that may lead to human-biometeorological impairment. Because of their high population density, overheated cities are particularly strongly affected by heat stress. In the future, due to the effects of climate change, heat stress will increase in terms of its intensity and spatial expansion in the areas of concern. Taking the example of the city of Gelsenkirchen, Germany, this article presents a method for the identification of areas requiring adaptation or protection. A scenario of the future increase of heat stress events is presented, based on data of the German climate change model STAR II. For the identification of areas requiring adaptation and protection, spatial analyses of the urban heat island, land use and demographic aspects were performed using GIS tools. The application and assessment of adaptation measures is investigated for an urban quarter using the microscale numerical model ENVI-met. Finally adaptation measures in urban planning against heat stress are discussed. The relevant urban planning adaptation measures, which are also important in view of climate change, not only involve heat stress reduction in the residential areas already affected, but also involve the protection and optimisation of existing favourable and compensation areas.

  14. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  15. Heat exchanger nozzle stresses due to pipe vibration

    International Nuclear Information System (INIS)

    Wolgemuth, G.A.

    1983-01-01

    A large diameter pipe in a heavy water production plant was excited into a low frequency vibration due to void collapse of the pipe contents at a sharp vertical drop in the pipe run. Fears that this vibration would fatigue the inlet nozzle to the heat exchanger prompted the introduction of a flow of cold water into the pipe to prevent the two-phase flow from developing but at the cost of reduced heat exchanger efficiency. An investigation was carried out to determine the stress levels in the nozzle with the quenching flow off and suggest means of reducing them if excessive. A finite element dynamic simulation of the pipe run was performed to determine the likely mode shapes. This information was used to optimize the placement of velocity probes on the pipe. Field measurements of vibration were taken for several operating conditions. This data was analyzed and the results used to refine the support stiffness used in the finite element simulation. The finite element model was then used to predict the nozzle forces and moments. In turn this data was used to determine the local stresses in the nozzle. The ASME Section III code was used to determine the allowable fully reversing stresses for the unit in question. It was found that the endurance limit of 83 MPa was exceeded in the analysis only when using the most conservative estimates for each uncertainty. It was recommended that if the safety factor was not deemed high enough, the nozzle should be built up with a reinforcing pad no thicker than 12 mm

  16. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  17. Feedlot cattle susceptibility to heat stress: an animal specific model

    Science.gov (United States)

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  18. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Léonie Suter

    Full Text Available Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha. Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana.

  19. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  20. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  1. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Environmental heat stress, hyperammonemia and nucleotide metabolism during intermittent exercise

    DEFF Research Database (Denmark)

    Mohr, Magni; Rasmussen, Peter; Drust, Barry

    2006-01-01

    ) followed by five 15 s all-out sprints. Control trials were conducted in a 20°C environment while heat stress trials were performed at an ambient temperature of 40°C. Muscle biopsies and venous blood samples were obtained at rest, after 40 min of exercise and following the maximal sprints. Following......Abstract  This study investigated the influence of environmental heat stress on ammonia (NH3) accumulation in relation to nucleotide metabolism and fatigue during intermittent exercise. Eight males performed 40 min of intermittent exercise (15 s at 306±22 W alternating with 15 s of unloaded cycling...... exercise with heat stress, the core and muscle temperatures peaked at 39.5±0.2 and 40.2±0.2°C to be ~ 1°C higher (Pheat stress trial (P

  3. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined

    DEFF Research Database (Denmark)

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto

    2017-01-01

    and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars......BACKGROUND: Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence...... of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. RESULTS: Shoot fresh and dry weight, leaf area...

  4. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    Science.gov (United States)

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  5. Parenting Stress Related to Behavioral Problems and Disease Severity in Children with Problematic Severe Asthma.

    Science.gov (United States)

    Verkleij, Marieke; van de Griendt, Erik-Jonas; Colland, Vivian; van Loey, Nancy; Beelen, Anita; Geenen, Rinie

    2015-09-01

    Our study examined parenting stress and its association with behavioral problems and disease severity in children with problematic severe asthma. Research participants were 93 children (mean age 13.4 ± 2.7 years) and their parents (86 mothers, 59 fathers). As compared to reference groups analyzed in previous research, scores on the Parenting Stress Index in mothers and fathers of the children with problematic severe asthma were low. Higher parenting stress was associated with higher levels of internalizing and externalizing behavioral problems in children (Child Behavior Checklist). Higher parenting stress in mothers was also associated with higher airway inflammation (FeNO). Thus, although parenting stress was suggested to be low in this group, higher parenting stress, especially in the mother, is associated with more airway inflammation and greater child behavioral problems. This indicates the importance of focusing care in this group on all possible sources of problems, i.e., disease exacerbations and behavioral problems in the child as well as parenting stress.

  6. Parenting Stress Related to Behavioral Problems and Disease Severity in Children with Problematic Severe Asthma

    NARCIS (Netherlands)

    Verkleij, Marieke; van de Griendt, Erik-Jonas; Colland, Vivian; van Loey, Nancy; Beelen, Anita; Geenen, Rinie

    2015-01-01

    Our study examined parenting stress and its association with behavioral problems and disease severity in children with problematic severe asthma. Research participants were 93 children (mean age 13.4 +/- A 2.7 years) and their parents (86 mothers, 59 fathers). As compared to reference groups

  7. Parenting Stress Related to Behavioral Problems and Disease Severity in Children with Problematic Severe Asthma

    NARCIS (Netherlands)

    Verkleij, Marieke; van de Griendt, E-J.; Colland, V.; Van Loey, N.E.E.; Beelen, A.; Geenen, R.

    2015-01-01

    Our study examined parenting stress and its association with behavioral problems and disease severity in children with problematic severe asthma. Research participants were 93 children (mean age 13.4 ± 2.7 years) and their parents (86 mothers, 59 fathers). As compared to reference groups analyzed in

  8. The Association of Sever Stressful Life Events and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rozita Naeeni

    2015-04-01

    Full Text Available Background: Stressful life events have suggested as one of etiologic cause of the disease from the middle of last century, but controversies still is going on. Materials and Methods: This study is a case- control study conducted on 100 MS patients in neurology clinic of Shariati Hospital during one year. History of stressful life events one year before beginning of the disease was questioned. These events, according to Holmes and Rahe Stress Scale, were severe and affected the disease progression. The analysis of data was performed using SPSS 15. Results: The mean age of patients was 30.9 ± 7.1. Most of them (n=87 had relapsing- remitting MS. 51% of patients and 26% of controls had stressful life events (P<0.001. Odd's Ratio with confidence interval of 95% was 2.71. The most frequent stressful events were family problems and death of first degree relatives. Conclusion: This study showed that stressful life events were significantly more prevalent in MS, but we cannot conclude that stress lonely is a cause of MS. Although, major stress along with multiple other risk factors may be related to MS.

  9. Modeling Exposure to Heat Stress with a Simple Urban Model

    Directory of Open Access Journals (Sweden)

    Peter Hoffmann

    2018-01-01

    Full Text Available As a first step in modeling health-related urban well-being (UrbWellth, a mathematical model is constructed that dynamically simulates heat stress exposure of commuters in an idealized city. This is done by coupling the Simple Urban Radiation Model (SURM, which computes the mean radiant temperature ( T m r t , with a newly developed multi-class multi-mode traffic model. Simulation results with parameters chosen for the city of Hamburg for a hot summer day show that commuters are potentially most exposed to heat stress in the early afternoon when T m r t has its maximum. Varying the morphology with respect to street width and building height shows that a more compact city configuration reduces T m r t and therefore the exposure to heat stress. The impact resulting from changes in the city structure on traffic is simulated to determine the time spent outside during the commute. While the time in traffic jams increases for compact cities, the total commuting time decreases due to shorter distances between home and work place. Concerning adaptation measures, it is shown that increases in the albedo of the urban surfaces lead to an increase in daytime heat stress. Dramatic increases in heat stress exposure are found when both, wall and street albedo, are increased.

  10. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    Science.gov (United States)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  11. Nuclear heating - a review of projects in several countries

    International Nuclear Information System (INIS)

    Vymetal, L.

    1980-01-01

    A review is presented of projects and studies of nuclear heat generation and district heating in the USSR, France, Sweden, Finland, USA, FRG, and CSSR. Attention is primarily paid to the nuclear sources, i.e., nuclear power and heating plants and special reactors for nuclear heating plants. The questions of heat transmission and costs are also dealt with. The review is based on the literature published between 1976 and 1979. An important source were materials from the conference on the use of low-potential heat from nuclear reactors held in Otaniemi (Finland) in 1977. (author)

  12. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  13. The effects of acclimatization on blood clotting parameters in exertional heat stress.

    Science.gov (United States)

    Vesić, Zoran; Vukasinović-Vesić, Milica; Dincić, Dragan; Surbatović, Maja; Radaković, Sonja S

    2013-07-01

    Exertional heat stress is a common problem in military services. Considering the coagulation abnormalities are of major importance in development of severe heat stroke, we wanted to examine changes in hemostatic parameters in soldiers during exertional heat stress test as well as the effects of a 10-day passive or active acclimatization in a climatic chamber. A total of 40 male soldiers with high aerobic capacity performed exertional heat stress test (EHST) either in cool [20 degrees C, 16 degrees C wet bulb globe temperature (WBGT)], or hot (40 degrees C, 29 degrees C, (WBGT) environment, unacclimatized (U) or after 10 days of passive (P) or active (A) acclimatization. Physiological strain was measured by tympanic temperatures (Tty) and heart rates (HR). Platelet count (PC), antithrombin III (AT), and prothrombin time (PT) were assessed in blood samples collected before and immediately after the EHST. EHST in hot conditions induced physiological heat stress (increase in Tty and HR), with a significant increase in prothrombin time in the groups U and A. Platelet counts were significantly higher after the EHST compared to the basic levels in all the investigated groups, regardless environmental conditions and acclimatization state. Antithrombin levels were not affected by EHST whatsoever. In the trained soldiers, physiological heat stress caused mild changes in some serum parameters of blood clotting such as prothrombin time, while others such as antithrombin levels were not affected. Platelet counts were increased after EHST in all groups. A 10-day passive or active acclimatization in climatic chamber showed no effect on parameters investigated.

  14. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Li, Yongjuan; Huang, Jinqiang; Liu, Zhe; Zhou, Yanjing; Xia, Binpeng; Wang, Yongjie; Kang, Yujun; Wang, Jianfu

    2017-07-01

    The rainbow trout is an economically important fish in the world. The limited stress tolerance of this species to high summer-like temperatures usually leads to mass mortality and great economic loss. However, there is limited information on the mechanisms underlying moderate heat responses in the liver of the rainbow trout. Here, we performed transcriptome profiling of rainbow trout liver under moderate heat stress by using the Hiseq™ 4000 sequencing platform. More than 277 million clean reads were obtained from 6 libraries and aligned against the rainbow trout genome. A total of 128 unique transcripts were differentially expressed in the liver under heat-stress and control conditions, many heat shock protein genes for thermoregulation and some novel genes involved in heat stress were identified. Nine of the differently expressed genes were further validated by qRT-PCR. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that several pathways, including those for protein metabolism, energy metabolism, and immune system, were influenced by heat stress. Moreover, an important protein-processing pathway in the endoplasmic reticulum (ER) was identified, and the key role of ER-associated degradation and function of calpain as an upstream regulator of apoptosis were confirmed under heat stress. The results of this study provide a comprehensive overview of heat stress-induced transcriptional patterns in rainbow trout liver and would be particularly useful for further studies on the molecular mechanisms underlying responses to heat stress in this species. Copyright © 2017. Published by Elsevier B.V.

  15. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  16. Analysis of creep effective stress in austenitic heat resistant steel

    International Nuclear Information System (INIS)

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni(STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at 650 degree C, 675 degree C and 700 degree C. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests

  17. Stress analysis of HTR-10 steam generator heat exchanging tubes

    International Nuclear Information System (INIS)

    Dong Jianling; Zhang Xiaohang; Yin Dejian; Fu Jiyang

    2001-01-01

    Steam Generator (SG) heat exchanging tubes of 10 MW High Temperature Gas Cooled Reactor (HTR-10) are protective screens between the primary loop of helium with radioactivity and the secondary loop of feeding water and steam without radioactivity. Water and steam will enter into the primary loop when rupture of the heat exchanging tubes occurs, which lead to increase of the primary loop pressure and discharge of radioactive materials. Therefore it is important to guarantee the integrity of the tubes. The tube structure is spiral tube with small bending radius, which make it impossible to test with volumetric in-service detection. For such kind of spiral tube, using LBB concept to guarantee the integrity of the tubes is an important option. The author conducts stress analysis and calculation of HTR-10 SG heat exchanging tubes using the FEM code of piping stress analysis, PIPESTRESS. The maximum stress and the dangerous positions are obtained

  18. Combining several thermal indices to generate a unique heat comfort assessment methodology

    Directory of Open Access Journals (Sweden)

    Wissam EL Hachem

    2015-11-01

    Full Text Available Purpose: The proposed methodology hopes to provide a systematic multi-disciplinary approach to assess the thermal environment while minimizing unneeded efforts. Design/methodology/approach: Different factors affect the perception of the human thermal experience: metabolic rate (biology, surrounding temperatures (heat balance and environmental factors and cognitive treatment (physiology.This paper proposes a combination of different multidisciplinary variables to generate a unique heat comfort assessment methodology. The variables at stake are physiological, biological, and environmental. Our own heat analysis is thoroughly presented and all relevant equations are described. Findings: Most companies are oblivious about potential dangers of heat stress accidents and thus about methods to monitor and prevent them. This methodology enables the company or the concerned individual to conduct a preliminary assessment with minimal wasted resources and time in unnecessary steps whilst providing a guideline for a detailed study with minimal error rates if needed. More so, thermal comfort is an integral part of sound ergonomics practices, which in turn are decisive for the success of any lean six sigma initiative. Research limitations/implications: This methodology requires several full implementations to finalize its design. Originality/value: Most used heat comfort models are inherently uncertain and tiresome to apply. An extensive literature review confirms the need for a uniform assessment methodology that combines the different thermal comfort models such as the Fanger comfort model (PMV, PPD and WGBT since high error rates coupled with tiresome calculations often hinder the thermal assessment process.

  19. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    OpenAIRE

    Fournel, S?bastien; Ouellet, V?ronique; Charbonneau, ?dith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to ...

  20. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  1. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    Science.gov (United States)

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  2. Study of heat exchange in cooling systems of heat-stressed structures

    Science.gov (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2017-01-01

    Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.

  3. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells

    DEFF Research Database (Denmark)

    Rattan, Suresh I S; Eskildsen-Helmond, Yvonne E G; Beedholm, Rasmus

    2004-01-01

    of cellular responsiveness to mild and severe heat stress. Furthermore, we are also undertaking comparative studies using non-aging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells for establishing differences...

  4. Patterns of Gene Expression Associated with Recovery and Injury in Heat-stressed Rats

    Science.gov (United States)

    2014-12-03

    renal failure, acute respiratory distress syndrome, myocardial in- jury, hepatocellular injury, intestinal ischemia, pancreatic injury, and hemorrhagic...pathways are involved in the observed cardiomyopathy. Results and discussion To induce the pathophysiological effects of heat stress, we placed conscious...Table S2). The incidence and severity of lesions, such as car- diomyopathy and chronic progressive nephropathy, were generally minimal and consistent

  5. Perceived Stress, Sources and Severity of Stress among medical undergraduates in a Pakistani Medical School

    Directory of Open Access Journals (Sweden)

    Malik Samina

    2010-01-01

    Full Text Available Abstract Background Recently there is a growing concern about stress during undergraduate medical training. However, studies about the same are lacking from Pakistani medical schools. The objectives of our study were to assess perceived stress, sources of stress and their severity and to assess the determinants of stressed cases. Methods A cross-sectional, questionnaire-based survey was carried out among undergraduate medical students of CMH Lahore Medical College, Pakistan during January to March 2009. Perceived stress was assessed using the perceived stress scale. A 33-item questionnaire was used to assess sources of stress and their severity. Results The overall response rate was 80.5% (161 out of 200 students. The overall mean perceived stress was 30.84 (SD = 7.01 and was significantly higher among female students. By logistic regression analysis, stressed cases were associated with occurrence of psychosocial (OR 5.01, 95% CI 2.44-10.29 and academic related stressors (OR 3.17 95% CI 1.52-6.68. The most common sources of stress were related to academic and psychosocial concerns. 'High parental expectations', 'frequency of examinations', 'vastness of academic curriculum', 'sleeping difficulties', 'worrying about the future', 'loneliness', 'becoming a doctor', 'performance in periodic examinations' were the most frequently and severely occurring sources of stress. There was a negative but insignificant correlation between perceived stress and academic performance (r = -0.099, p > 0.05. Conclusion A higher level of perceived stress was reported by the students. The main stressors were related to academic and psychosocial domains. Further studies are required to test the association between stressed cases and gender, academic stressors and psychosocial stressors.

  6. Relationship of severity of depression, anxiety and stress with severity of fibromyalgia.

    Science.gov (United States)

    Alok, R; Das, S K; Agarwal, G G; Salwahan, L; Srivastava, R

    2011-01-01

    Negative affects like depression, anxiety and stress are frequently observed in patients with fibromyalgia (FMS). Understanding the association between FMS and negative affects is likely to help in deciding the choice of treatment. The aim of this study was to determine the correlation between the severity of FMS with the severity of depression, anxiety and stress. Sixty patients with fibromyalgia and 60 healthy controls were included in the study. Fibromyalgia Impact Questionnaire Revised (FIQR), and Depression, Anxiety and Stress Scale (DASS21) were administered to both the groups. The mean age of study population was 40.4±9.9 and 36±8.7 for FMS and control groups respectively. Most of the patients were females (93.3%). In subjects without FMS, depression was seen in 5% and was significantly associated with all three components of FIQR (pdepression, anxiety and stress were found significantly associated with the severity of all three components of FIQR, namely pain, function and symptoms (pdepression, anxiety and stress and in FMS magnitude of negative affects is significantly correlated with FIQR. However, depression alone in absence of FMS can also give rise to all three components of FIQR.

  7. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  8. Heat stress control in the TMI-2 [Three Mile Island Unit 2] defueling and decontamination activities

    International Nuclear Information System (INIS)

    Schork, J.S.; Parfitt, B.A.

    1988-01-01

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintain the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully

  9. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Assessing Heat Stress and Health among Construction Workers in a Changing Climate: A Review

    Directory of Open Access Journals (Sweden)

    Payel Acharya

    2018-02-01

    Full Text Available Construction workers are at an elevated risk of heat stress, due to the strenuous nature of the work, high temperature work condition, and a changing climate. An increasing number of workers are at risk, as the industry’s growth has been fueled by high demand and vast numbers of immigrant workers entering into the U.S., the Middle East and Asia to meet the demand. The risk of heat-related illnesses is increased by the fact that little to no regulations are present and/or enforced to protect these workers. This review recognizes the issues by summarizing epidemiological studies both in the U.S. and internationally. These studies have assessed the severity with which construction workers are affected by heat stress, risk factors and co-morbidities associated with heat-related illnesses in the construction industry, vulnerable populations, and efforts in implementing preventive measures.

  11. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  12. Geographical influence of heat stress on milk production of Holstein ...

    African Journals Online (AJOL)

    To model the influence of heat stress on milk production of Holstein dairy herds on pasture in South Africa, the maximum entropy (Maxent) modelling technique was used in a novel approach to model and map optimal milk-producing areas. Geographical locations of farms with top milk-producing Holstein herds on pasture ...

  13. Physiological response of heat stressed broiler chickens to ...

    African Journals Online (AJOL)

    Effect of supplementing the drinking water of broilers reared under natural heat stress with ammonium chloride (NH4Cl), sodium bicarbonate (NaHCO3), calcium chloride (CaCl2) and ascorbic acid (AA) on physiological response was investigated. A 200, one-day Arbor acre chicks were randomly allotted to five treatments in ...

  14. Genetic solutions to infertility caused by heat stress

    Science.gov (United States)

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  15. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    Science.gov (United States)

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  16. Inheritance and Heritability of Heat Tolerance in Several Sorghum ...

    African Journals Online (AJOL)

    Four sorghum parental lines, RTx430, BTx3197, RTx7000, and B35 and their F1 and reciprocals, and F2 progenies were evaluated during their reproductive phases to access the genetic basis of heat tolerance. Heat tolerance was measured under field and greenhouse conditions at College Station, Texas during 1990.

  17. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  18. Heat stress and occupational health and safety – spatial and temporal differentiation

    Directory of Open Access Journals (Sweden)

    Błażejczyk Krzysztof

    2014-03-01

    Full Text Available Evidence of climatic health hazards on the general population has been discussed in many studies but limited focus is placed on developing a relationship between climate and its effects on occupational health. Long working hours with high physical activity can cause health problems for workers ranging from mild heat cramps to severe heat stroke leading to death. The paper presents the possible risk of heat hazard to outdoor workers, using the example of Warsaw. The heat stress hazard, defined by WBGT values above 26 and 28°C and UTCI above 32 and 38°C, is assessed from two perspectives: its spatial distribution on a local scale and its temporal changes during the 21st century due to climate change. City centre and industrial districts were identified as the places with the greatest heat stress hazard. The number of heat stress days in a year (as predicted for the 21st century is increasing, meaning that heat-related illnesses are more likely to have a direct impact on workers’ health.

  19. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  20. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010?2012

    OpenAIRE

    Bishop-Williams, Katherine E.; Berke, Olaf; Pearl, David L.; Hand, Karen; Kelton, David F.

    2015-01-01

    Background Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 ?C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat st...

  1. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle.

    Science.gov (United States)

    Tamura, Yuki; Matsunaga, Yutaka; Kitaoka, Yu; Hatta, Hideo

    2017-03-01

    Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii) whether heat stress treatment, a suggested strategy for sarcopenia, improves age-induced mitochondrial and ER stress. Aged (21-month-old) mice showed more severe mitochondrial stress and UPRmt than young (12-week-old) mice, based on increased oxidative stress, mitochondrial proteases, and mitochondrial E3 ubiquitin ligase. The aged mice also showed ER stress and UPRER, based on decreased ER enzymes and increased ER stress-related cell death. These changes were much more evident in soleus muscle than in gastrocnemius and plantaris muscles. After daily heat stress treatment (40 °C chamber for 30 minutes per day) for 4 weeks, mice showed remarkable improvements in age-related changes in soleus muscle. Heat stress had only minor effects in gastrocnemius and plantaris muscles. Based on these findings, age-associated mitochondrial stress, ER stress, and UPRmt/ER vary qualitatively with skeletal muscle type. Our results suggest a molecular basis for the beneficial effects of heat stress on muscle atrophy with age in soleus muscle. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Science.gov (United States)

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  3. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  4. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    Science.gov (United States)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  5. Thermal stress evaluation of the Viking RTG heat shield

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-03-01

    Thermal stress analyses of the Viking RTG heat shield are presented. The primary purpose of the analyses was to determine the effects of the end cap and the finite length of the heat shield on the peak tensile stress in the barrel wall. The SAAS III computer code was used to calculate the thermal stresses; axisymmetric and plane section analyses were performed for a variety of temperature distributions. The study consisted of three parts. In the first phase, the influence of the end cap on the barrel wall stresses was examined by parametrically varying the modulus of elasticity of the contact zone between the end cap and the barrel. The second phase was concerned with stresses occurring as a result of an orbital decay reentry trajectory, and the effects of the magnitude and shape of the axial temperature gradient. The final part of the study was concerned with the circumferentially nonuniform temperature distribution which develops during a side-on stable reentry. The last part includes a comparison of stresses generated for a hexagonal cross section with those generated for a circular cross section

  6. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  7. Drivers of self-reported heat stress in the Australian labour force.

    Science.gov (United States)

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  9. Heat Stress in a Climate Setting: A Framework for Reanalyses

    Science.gov (United States)

    Huynh, Jonathan

    The proliferation of reanalysis models for the atmosphere in recent decades has allowed researchers to study Earth's past climate in great detail. While much work has gone into understanding key climate indicators such as surface temperature and precipitation trends, there have been few studies dealing with heat stress. As climate change grows increasingly exigent, it is becoming vitally important to understand the thermal impacts on biological systems. This study analyzed data from five reanalysis models (20CRv2, NARR, NNRA 1, NCEP DOE 2, and ERA-I) and found agreement in average surface temperature increases of 0.2-0.6°C per decade across the U.S. west coast and east coast since 1979. These trends were consistent with previous studies. Less agreement was found for the central U.S. The Temperature Humidity Index and the Heat Index were found to generally follow the temperature trends. An analysis of the role of moisture indicated that the effect of specific humidity on heat stress is dependent on climatology. Trends of heat stress over arid regions such as the desert southwest were found to be much more influenced by temperature trends than by moisture trends. In contrast, moisture seemed to play a stronger role in the more humid southeast. There appeared to be a more equal effect of temperature and moisture on heat stress in the northeast and Great Lake states. Perhaps equally as important, the study provides a framework to reduce computational time but allows for more rigorous statistical methods that are not available in the typical suite of software and programming languages to analyze climate data. Functionality was developed to infer daily extrema from six-hourly reanalysis data. A shapefile was used to aggregate the data according to prescribed geographic boundaries and reduce the load of data for statistical analysis. Time series decomposition was performed on the aggregated daily data to determine linear trends which were then mapped out to visualize

  10. Heat stress monitoring system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System's heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker's reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  11. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  12. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  13. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  14. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  16. Stress relaxation in tempered glass caused by heat soak testing

    DEFF Research Database (Denmark)

    Schneider, Jens; Hilcken, Jonas; Aronen, Antti

    2016-01-01

    Heat soak testing of tempered glass is a thermal process required after the tempering process itself to bring glasses of commercial soda-lime-silica-glass to failure that are contaminated with nickel sulphide inclusions, diameter 50 mm to 500 mm typically. Thus, the tests avoid a so-called "spont...... of commercial soda-lime-silica glass, it causes stress relaxation in tempered glass and the fracture pattern of the glass changes accordingly, especially thin glasses are affected. Based on the Tool-Narayanaswamy-Model, this paper comprises the theoretical background of the stress...

  17. Climatic stress increases forest fire severity across the western United States

    Science.gov (United States)

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorriane

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  18. Prioritized expression of BTN2 of Saccharomyces cerevisiae under pronounced translation repression induced by severe ethanol stress

    Directory of Open Access Journals (Sweden)

    Yukina Yamauchi

    2016-08-01

    Full Text Available Severe ethanol stress (>9% ethanol, v/v as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be intensively translated under glucose deprivation, suggesting that some mRNAs are preferentially translated even under severe ethanol stress. In the present study, we tried to identify the mRNA that can be preferentially translated under severe ethanol stress. BTN2 encodes a v-SNARE binding protein, and its null mutant shows hypersensitivity to ethanol. We found that BTN2 mRNA was efficiently translated under severe ethanol stress but not under mild ethanol stress. Moreover, the increased Btn2 protein levels caused by severe ethanol stress were smoothly decreased with the elimination of ethanol stress. These findings suggested that severe ethanol stress extensively induced BTN2 expression. Further, the BTN2 promoter induced protein synthesis of non-native genes such as CUR1, GIC2, and YUR1 in the presence of high ethanol concentrations, indicating that this promoter overcame severe ethanol stress-induced translation repression. Thus, our findings provide an important clue about yeast response to severe ethanol stress and suggest that the BTN2 promoter can be used to improve the efficiency of ethanol production and stress tolerance of yeast cells by modifying gene expression in the presence of high ethanol concentration.

  19. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  20. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  1. The influence of heat stress on metabolic status of cows

    Directory of Open Access Journals (Sweden)

    Horvat Jožef

    2014-01-01

    Full Text Available It is considered that high air temperature and humidity during the summer are the main factors which adversely affect both the health and production-reproductive performance of high yielding dairy cows. The resulting heath stress leads to a series of changes in endocrine regulation of homeostasis. The changes in hormonal status reflect in some way to the indicators of metabolic status of the cows. The objective of this work was to investigate the influence of heat stress on metabolic status of cows. The experiment was carried out on 20 cows of Holstein-Friesian breed during the summer, in the period from 18th to 45th day of lactation. During the performance of the experiment, the value of heat index (THI was determined hourly and then the value of average morning (from 10 pm the previous day to 9 am the current day, afternoon (from 10 am to 9 pm the current day and all-day THI was calculated. Blood sampling was carried out on the 1st, 2nd, 8th, 11th, 14th, 18th, 25th, 29th and 37th day of the experiment, in the morning and the afternoon. On the basis of hourly THI values, whole experimental period was divided into three periods: period A during which the cows were exposed to a extreme high heat stress (THI≥78 at least 7 hours in 24 hours; period B during which the cows were exposed to a moderate heat stress (72≥THI≤78 at least 7 hours in 24 hours; period C during which the cows were not exposed to a heat stress (THI≤72 in 24 hours. The average daily THI in period A (73,25±0,89 was significantly higher (p<0,01, individually in regard to period B (71,45±0,96 and period C (65,41±2,09. THI was significantly higher in the period B than in the period C (p<0,01. Significantly lower blood glucose value (p<0,05 during the afternoon period in the cows exposed to the extreme heat stress (3,02±0,31 mmol/L in regard to the morning period (3,14±0,41 mmol/L points to the fact that in such conditions, metabolism redirects to use of glucose as an

  2. Heat stress presenting with encephalopathy and MRI findings of diffuse cerebral injury and hemorrhage.

    Science.gov (United States)

    Guerrero, Waldo R; Varghese, Shaun; Savitz, Sean; Wu, Tzu Ching

    2013-06-17

    Heat stress results in multiorgan failure and CNS injury. There a few case reports in the literature on the neurological consequences of heat stress. We describe a patient with heat stress presenting with encephalopathy and bilateral cerebral, cerebellar, and thalamic lesions and intraventricular hemorrhage on MRI. Heat stress should be in the differential diagnosis of patients presenting with encephalopathy and elevated serum inflammatory markers especially if the history suggests a preceding episode of hyperthermia.

  3. A Virtual Rat for Simulating Environmental and Exertional Heat Stress

    Science.gov (United States)

    2014-10-02

    unsuitable for accurately determin- ing the spatiotemporal temperature distribution in the animal due to heat stress and for performing mechanistic analysis ...possible in the original experiments. Finally, we performed additional simu- lations using the virtual rat to facilitate comparative analysis of the...capability of the virtual rat to account for the circadian rhythmicity in core temperatures during an in- crease in the external temperature from 22

  4. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  5. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  6. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Science.gov (United States)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  7. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    A. C. Gerecht

    2018-02-01

    Full Text Available Calcifying haptophytes (coccolithophores sequester carbon in the form of organic and inorganic cellular components (coccoliths. We examined the effect of phosphorus (P limitation and heat stress on particulate organic and inorganic carbon (calcite production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous induce different physiologies. This affects the ratio of particulate inorganic (PIC to organic carbon (POC and complicates general predictions on the effect of P limitation on the PIC  ∕  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  8. The effects of heat stress in Italian Holstein dairy cattle.

    Science.gov (United States)

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were

  9. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd...... Wollenweber4 1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India. 2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark 3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark 4......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...

  10. Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study

    Science.gov (United States)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2015-12-01

    Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk

  11. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  12. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Science.gov (United States)

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p muscle contraction. Vibration induced FOXK2 (p muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  13. Carcass and meat quality traits of rabbits under heat stress.

    Science.gov (United States)

    Zeferino, C P; Komiyama, C M; Fernandes, S; Sartori, J R; Teixeira, P S S; Moura, A S A M T

    2013-03-01

    Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and

  14. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  15. Heat capacities of several Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip; Chen, Song

    2013-12-20

    Highlights: • Heat contents from 600 K to 1500 K of selected Co{sub 2}YZ were measured by drop calorimeters. • Heat capacities were obtained by taking derivatives of heats contents which were fitted with second order polynomial with respect to temperature. • Melting points determined by DSC were consistent with literature data. • Heats of fusion determined by DSC were comparable with those obtained by extrapolation of heat contents. - Abstract: Heat contents of several Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Mn, Ti; Z = Al, Ga, Si, Ge, Sn) were measured from 500 K to 1500 K using a Setaram MTHC 96 drop calorimeter. Second order polynomials were adopted to fit the data and heat capacities were obtained by taking the derivatives with respect to temperature. Melting points were determined by differential scanning calorimetry (DSC) and measured heats of fusion were compared with those obtained from extrapolation of heat contents.

  16. Short term post-partum heat stress in dairy cows

    Science.gov (United States)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  17. The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae.

    Science.gov (United States)

    Sikkink, Kristin L; Ituarte, Catherine M; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C

    2014-12-01

    Parents encountering stress environments can influence the phenotype of their offspring in a form of transgenerational phenotypic plasticity that has the potential to be adaptive if offspring are thereby better able to deal with future stressors. Here, we test for the existence of anticipatory parental effects in the heat stress response in the highly polymorphic nematode Caenorhabditis remanei. Rather providing an anticipatory response, parents subject to a prior heat stress actually produce offspring that are less able to survive a severe heat shock. Selection on heat shock resistance within the larvae via experimental evolution leads to a loss of sensitivity (robustness) to environmental variation during both the parental and larval periods. Whole genome transcriptional analysis of both ancestor and selected lines shows that there is weak correspondence between genetic pathways induced via temperature shifts during parental and larval periods. Parental effects can evolve very rapidly via selection acting directly on offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    Science.gov (United States)

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  19. Neuroprotection against oxidative stress by serum from heat acclimated rats.

    Science.gov (United States)

    Beit-Yannai, E; Trembovler, V; Horowitz, M; Lazarovici, P; Kohen, R; Shohami, E

    1998-09-25

    Exposure of PC12 cells, to 1% serum derived from normothermic (CON) rats resulted in 79% cell death. Sister cultures treated with 1% serum derived from heat acclimated (ACC) rats, were neuroprotected and expressed a significant reduction in cell death. In PC12 cells exposed to a free radical generator causing an oxidative stress, 90% cell death was measured in CON serum treated cultures, while ACC serum treated cultures were neuroprotected. Xanthine oxidase activity and uric acid (UA) levels were lower in ACC serum compared to CON. Addition of UA to both sera abolished the difference in cell viability, and toxicity of ACC serum reached that of CON. These findings suggest a causal relationship between the lower levels of UA in ACC and the neuroprotective effect observed. The present study proposes heat acclimation as an experimental and/or clinical tool for the achievement of neuroprotection.

  20. THERMOREGULATION IN CHILDREN: EXERCISE, HEAT STRESS & FLUID BALANCE

    Directory of Open Access Journals (Sweden)

    Shawnda A. Morrison

    2014-12-01

    Full Text Available This review focuses on the specific physiological strategies of thermoregulation in children, a brief literary update relating exercise to heat stress in girls and boys as well as a discussion on fluid balance strategies for children who are performing exercise in the heat. Both sport performance and thermoregulation can be affected by the body’s water and electrolyte content. The recommendations for pre-pubertal fluid intake have been generalized from adult literature, including a limited concession for the physiological differences between adults and children. Considering these body fluid shifts, carbohydrate-electrolyte drinks are thought to be an essential tool in combating dehydration as a result of active hyperthermia (i.e. exercise, thus we examine current hydration practices in exercising children. Finally, this review summarizes research which examines the relationship between cognition and hypohydration on young athletes’ performance.

  1. Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)

    Science.gov (United States)

    Shreevastava, A.; Rao, P. S.; McGrath, G. S.

    2017-12-01

    In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and

  2. Errors in macromolecular synthesis after stress. A study of the possible protective role of the small heat shock proteinsBiochemistry

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  3. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  4. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  5. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    Science.gov (United States)

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  6. Factors of subjective heat stress of urban citizens in contexts of everyday life

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  7. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  8. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    Science.gov (United States)

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T; Cotter, James David

    2016-01-01

    Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se . While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.

  9. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  10. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    Science.gov (United States)

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  11. Heat stress and sudden infant death syndrome--stress gene expression after exposure to moderate heat stress

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2013-01-01

    The aim of the present study was to investigate stress gene expression in cultured primary fibroblasts established from Achilles tendons collected during autopsies from sudden infant death syndrome (SIDS) cases, and age-matched controls (infants dying in a traumatic event). Expression of 4 stress...... responsive genes, HSPA1B, HSPD1, HMOX1, and SOD2, was studied by quantitative reverse transcriptase PCR analysis of RNA purified from cells cultured under standard or various thermal stress conditions. The expression of all 4 genes was highly influenced by thermal stress in both SIDS and control cells. High...... interpersonal variance found in the SIDS group indicated that they represented a more heterogeneous group than controls. The SIDS group responded to thermal stress with a higher expression of the HSPA1B and HSPD1 genes compared to the control group, whereas no significant difference was observed...

  12. Longitudinal Associations between Posttraumatic Stress Disorder and Metabolic Syndrome Severity

    Science.gov (United States)

    Wolf, Erika J.; Bovin, Michelle J.; Green, Jonathan D.; Mitchell, Karen S.; Stoop, Tawni B.; Barretto, Kenneth M.; Jackson, Colleen E.; Lee, Lewina O.; Fang, Shona C.; Trachtenberg, Felicia; Rosen, Raymond C.; Keane, Terence M.; Marx, Brian P.

    2016-01-01

    Background Posttraumatic stress disorder (PTSD) is associated with elevated risk for metabolic syndrome (MetS). However, the direction of this association is not yet established, as most prior studies employed cross-sectional designs. The primary goal of this study was to evaluate bidirectional associations between PTSD and MetS using a longitudinal design. Methods 1,355 male and female veterans of the conflicts in Iraq and Afghanistan underwent PTSD diagnostic assessments and their biometric profiles pertaining to MetS were extracted from the electronic medical record at two time points (spanning ~2.5 years, n = 971 at time 2). Results The prevalence of MetS among veterans with PTSD was just under 40% at both time points and was significantly greater than that for veterans without PTSD; the prevalence of MetS among those with PTSD was also elevated relative to age-matched population estimates. Cross-lagged panel models revealed that PTSD severity predicted subsequent increases in MetS severity (β = .08, p = .002), after controlling for initial MetS severity, but MetS did not predict later PTSD symptoms. Logistic regression results suggested that for every 10 PTSD symptoms endorsed at time 1, the odds of a subsequent MetS diagnosis increased by 56%. Conclusions Results highlight the substantial cardiometabolic concerns of young veterans with PTSD and raise the possibility that PTSD may predispose individuals to accelerated aging, in part, manifested clinically as MetS. This demonstrates the need to identify those with PTSD at greatest risk for MetS and to develop interventions that improve both conditions. PMID:27087657

  13. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals.

    Science.gov (United States)

    Rosic, Nedeljka N; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-05-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.

  14. The role of early adversity and recent life stress in depression severity in an outpatient sample.

    Science.gov (United States)

    Vogt, Dominic; Waeldin, Sandra; Hellhammer, Dirk; Meinlschmidt, Gunther

    2016-12-01

    Pre-, peri-, and postnatal stress have frequently been reported to be associated with negative health outcomes during adult life. However, it is unclear, if these factors independently predict mental health in adulthood. We estimated potential associations between reports of pre-, peri-, and postnatal stress and depression severity in outpatients (N = 473) diagnosed with depression, anxiety or somatoform disorders by their family physician. We retrospectively assessed pre-, peri-, and postnatal stress and measured depression severity as well as recent life stress using questionnaires. First, we estimated if depression severity was predicted by pre-, peri- and/or postnatal stress using multiple regression models. Second, we compared pre- and postnatal stress levels between patient subgroups of different degrees of depression severity, performing multilevel linear modeling. Third, we analyzed if an association between postnatal stress and current depression severity was mediated by recent life stress. We found no associations of pre-, or perinatal stress with depression severity (all p > 0.05). Higher postnatal stress was associated with higher depression severity (p stress as compared to patients with none to minimal, or mild depression (all p life stress of the association between postnatal stress and depression severity (p stress predicted depression severity in adult life. This association was mediated by recent life stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Propofol alleviate oxidative stress and mitochondrial damage in endothelial cells after heat stress

    Directory of Open Access Journals (Sweden)

    Li LI

    2017-08-01

    Full Text Available Objective To explore the protective effect of propofol on endothelial cells during heat stress and its protective effect to mitochondra. Methods Heat stress model of human umbilical vein endothelial cell was established when cells were incubated at 43℃ for 2h, then further incubted at 37℃, 5%CO2 for 6h. The experimental group was subdivided into six groups, including 37℃ group, 37℃ plus intralipid group (negative control group, 37℃ plus propofol group, 43℃ plus propofol group, 43℃ plus intralipid group, H2O2 plus propofol group (positive control group; Pretreated with 50μmol/L propofol, 0.2ml intralipid or 25μmol/L H2O2 before heat stress at 43℃, while the cells in the control group were incubated at 37℃. Cell viability was tested by CCK-8. ROS, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were determined by flow cytometry. The level of ATP was detected by fluorescein-luciferase. The changes of caspase-9 and caspase-3 were analyzed by Caspase Activity Assay Kit. Results HUVESs cell viability and damage of mitochondra were significantly decreased after heat stress. Compared with 43℃ heat stress group, pretreatment with propofol induced the recovery of cell viability and the ROS levels were significantly decreased in HUVEC cells (P<0.05. Meanwhile, the number of cells representing the decrease of mitochondrial membrane potential (the proportion of JC-1 monomer was significantly decreased (P<0.05 by propofol. The average fluorescence intensity of calcein which representing the MPTP changes and intracellular ATP content was significantly increased (P<0.05. In addition, the activation of mitochondrial apoptotic pathway mediated by caspase-9/3 was also inhibited. Conclusions Propofol have anti-oxidative, anti-apoptosis and mitochondria protective effect against endothelial cell injury during heat stress. DOI: 10.11855/j.issn.0577-7402.2017.06.04

  16. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.

    2018-04-12

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.

  17. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  18. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  19. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans.

    Science.gov (United States)

    Keller, David M; Low, David A; Wingo, Jonathan E; Brothers, R Matthew; Hastings, Jeff; Davis, Scott L; Crandall, Craig G

    2009-03-01

    Whole-body heat stress reduces orthostatic tolerance via a yet to be identified mechanism(s). The reduction in central blood volume that accompanies heat stress may contribute to this phenomenon. The purpose of this study was to test the hypothesis that acute volume expansion prior to the application of an orthostatic challenge attenuates heat stress-induced reductions in orthostatic tolerance. In seven normotensive subjects (age, 40 +/- 10 years: mean +/- S.D.), orthostatic tolerance was assessed using graded lower-body negative pressure (LBNP) until the onset of symptoms associated with ensuing syncope. Orthostatic tolerance (expressed in cumulative stress index units, CSI) was determined on each of 3 days, with each day having a unique experimental condition: normothermia, whole-body heating, and whole-body heating + acute volume expansion. For the whole-body heating + acute volume expansion experimental day, dextran 40 was rapidly infused prior to LBNP sufficient to return central venous pressure to pre-heat stress values. Whole-body heat stress alone reduced orthostatic tolerance by approximately 80% compared to normothermia (938 +/- 152 versus 182 +/- 57 CSI; mean +/- S.E.M., P body heating completely ameliorated the heat stress-induced reduction in orthostatic tolerance (1110 +/- 69 CSI, P stress results in many cardiovascular and neural responses that directionally challenge blood pressure regulation, reduced central blood volume appears to be an underlying mechanism responsible for impaired orthostatic tolerance in the heat-stressed human.

  20. Review Article: Heat stress and the role of protective clothing in ...

    African Journals Online (AJOL)

    Background: The body heat exchange, environmental stress and protective clothing becomes stressful in military service too. The use of microporous material and ventilation of garment significantly improve heat exchange, hence reducing physiological strain and improving tolerance to the heat. Moisture absorption ...

  1. Calculation of thermal stress condition in long metal cylinder under heating by continuous laser radiation

    International Nuclear Information System (INIS)

    Uglov, A.A.; Uglov, S.A.; Kulik, A.N.

    1997-01-01

    The method of determination of temperature field and unduced thermal stresses in long metallic cylinder under its heating by cw-laser normally distributed heat flux is offered. The graphically presented results of calculation show the stress maximum is placed behind of center of laser heat sport along its movement line on the cylinder surface

  2. Dietary Supplementation of Seaweed (Ulva lactuca to alleviate the Impact of Heat Stress in Growing Lambs

    Directory of Open Access Journals (Sweden)

    Kkalid A. Abdoun, Aly B. Okab, Ahmed M. El-Waziry, Emad M. Samara and Ahmed A. Al-Haidary

    2014-01-01

    Full Text Available Several environmental and nutritional management approaches have been used to mitigate heat stress and improve performance of farm animals in semi-arid and arid regions. The present study was designed with the intention to alleviate the negative effects of heat stress and to promote the performance of growing lambs reared under hot environmental conditions. The study was conducted on 18 male Naimey lambs with average body weight of 22.78±0.49 kg, and 4-5 months old. The animals were randomly divided into 3 equal groups (A, B and C, and fed diets containing different concentrations of seaweed (Ulva lactuca for 90 days. Group A served as control and was offered diet containing 0.0% seaweed. Groups B and C served as treated groups and were offered diets containing 3.0 and 5.0% seaweed, respectively. Dietary inclusion of seaweed to the diet of growing lambs exposed to heat stress (max Ta 43.9oC, max RH 81.1%, max THI 84.6 neither influenced (P>0.05 the thermo-physiological parameters (rectal and skin temperatures, nor affected (P>0.05 the performance parameters (feed intake, body weight gain, feed conversion efficiency. Furthermore, dietary seaweed supplementation did not alter (P>0.05 blood constituents or blood antioxidant capacity. However, dietary seaweed supplementation significantly (P<0.05 reduced respiratory rate, and increased serum potassium concentration. Based on the data of the present study, seaweed (Ulva lactuca supplementation to the diets of growing lambs reared under heat stress conditions did not show any indication of promoting their production performance or heat tolerance.

  3. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows.

    Science.gov (United States)

    Rees, A; Fischer-Tenhagen, C; Heuwieser, W

    2016-06-01

    The negative impact of heat stress on health and productivity of dairy cows is well known. Heat stress can be quantified with the temperature-humidity index (THI) and is defined as a THI ≥ 72. Additionally, animal welfare is affected in cows living under heat stress conditions. Finding a way to quantify heat stress in dairy cows has been of increasing interest over the past decades. Therefore, the objective of this study was to evaluate concentrations of faecal glucocorticoid metabolites [i.e. 11,17-dioxoandrostanes (11,17-DOA)] as an indirect stress parameter in dairy cows without heat stress (DOA 0), with heat stress on a single day (acute heat stress, DOA 1) or with more than a single day of heat stress (chronic heat stress, DOA 2). Cows were housed in five farms under moderate European climates. Two statistical approaches (approach 1 and approach 2) were assessed. Using approach 1, concentrations of faecal 11,17-DOA were compared among DOA 0, DOA 1 and DOA 2 samples regardless of their origin (i.e. cow, unpaired comparison with a one-way anova). Using approach 2, a cow was considered as its own control; that is 11,17-DOA was treated as a cow-specific factor and only paired samples were included in the analysis for this approach (paired comparison with t-tests). In approach 1 (p = 0.006) and approach 2 (p = 0.038), 11,17-DOA values of cows under acute heat stress were higher compared to those of cows without heat stress. Our results also indicate that acute heat stress has to be considered as a confounder in studies measuring faecal glucocorticoid metabolites in cows to evaluate other stressful situations. © 2016 Blackwell Verlag GmbH.

  4. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  5. Heat stress affects male reproduction in a parasitoid wasp.

    Science.gov (United States)

    Nguyen, Thanh Manh; Bressac, Christophe; Chevrier, Claude

    2013-03-01

    In insects, reproductive success and survival are affected by temperature. Reproduction is more sensitive than other physiological traits. While the effects of heat stress on females are well known, the effects on males are less clear. Hymenopteran parasitoids are valuable for studying the consequences of heat stress on male reproduction. In these species, through arrhenotoquous parthenogenesis, the sex ratio of the offspring is directly dependent on the sperm stock acquired by females during copulation. In the lab, heat temperature treatments (32-44°C) were applied for 3 days in the pupal stage of Anisopteromalus calandrae males, and development was completed at 30°C. Three different effects were observed depending on the temperature: mortality above 42°C, sterility of emerging males at 40°C, and sub-fertility at 38°C. This sub-fertility is characterized by a dramatic decrease in male sperm supplies, of up to 7% compared to control males. In the course of ageing, the sperm stock of sub-fertile males increases but never reaches the level of control males. Survival was significantly higher in control (30°C) males than those treated at 38°C. Male mating ability was similar whatever the treatment (control and 38°C), but females mated with 38°C-treated males stored 100 times less sperm on average than those mated with control males. The offspring sex ratio of females mated with 38°C-treated males was strongly male biased. The physiological mechanisms are as yet unknown. The relationship between temperature, sperm stock and sex ratio should be taken into account in the management of parasitoids for integrated pest management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  7. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  8. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  9. Worsening of Heat Stress Due To Global Warming in South Korea Based on Multi-RCM Ensemble Projections

    Science.gov (United States)

    Im, Eun-Soon; Choi, Yeon-Woo; Ahn, Joong-Bae

    2017-11-01

    This study assesses the future changes in summer (June-July-August; JJA) heat stress over South Korea under global warming. To better resolve the region-specific changes in terms of geographical patterns and severity of heat stress in the Korean peninsula, four regional climate models (RCMs) are used for dynamical downscaling of Hadley Centre Global Environmental Model version 2—Atmosphere and Ocean global projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Dynamically downscaled simulations (horizontal resolution of 12.5 km and output interval of 3 h) facilitate in-depth analysis of diurnal variation and extremes over South Korea, as well as focusing on the particular location, Daegu, that is characterized by high vulnerability to rising temperature. Both maximum temperature and heat stress indices such as wet bulb globe temperature and apparent temperature, which include the effect of humidity, are examined in order to comprehensively interpret the behaviors of heat stress in response to anthropogenic climate change. Ensemble projections reveal robust patterns of temperature and resultant humidity increases that are roughly constrained by the approximate 7%/K increase in the moisture holding capacity. The changes in temperature and humidity are directly transmitted to the heat stress indices, showing a significant increase. The heat stress is exacerbated in a differentiated way, with more intensification in diurnal variation at nighttime and in regional variation at low-elevation basins. Both RCP4.5 and RCP8.5 scenarios project the statistical likelihood of a notable increase of extreme heat stress indices, much stronger and more extended heat waves, and the emergence of a long period of consecutive tropical nights.

  10. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk.

    Science.gov (United States)

    Koch, Franziska; Lamp, Ole; Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  11. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk

    Science.gov (United States)

    Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  12. Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations

    Science.gov (United States)

    Goldie, James; Alexander, Lisa; Lewis, Sophie C.; Sherwood, Steven C.; Bambrick, Hilary

    2018-03-01

    Various human heat stress indices have been developed to relate atmospheric measures of extreme heat to human health impacts, but the usefulness of different indices across various health impacts and in different populations is poorly understood. This paper determines which heat stress indices best fit hospital admissions for sets of cardiovascular, respiratory, and renal diseases across five Australian cities. We hypothesized that the best indices would be largely dependent on location. We fit parent models to these counts in the summers (November-March) between 2001 and 2013 using negative binomial regression. We then added 15 heat stress indices to these models, ranking their goodness of fit using the Akaike information criterion. Admissions for each health outcome were nearly always higher in hot or humid conditions. Contrary to our hypothesis that location would determine the best-fitting heat stress index, we found that the best indices were related largely by health outcome of interest, rather than location as hypothesized. In particular, heatwave and temperature indices had the best fit to cardiovascular admissions, humidity indices had the best fit to respiratory admissions, and combined heat-humidity indices had the best fit to renal admissions. With a few exceptions, the results were similar across all five cities. The best-fitting heat stress indices appear to be useful across several Australian cities with differing climates, but they may have varying usefulness depending on the outcome of interest. These findings suggest that future research on heat and health impacts, and in particular hospital demand modeling, could better reflect reality if it avoided "all-cause" health outcomes and used heat stress indices appropriate to specific diseases and disease groups.

  13. Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations.

    Science.gov (United States)

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven C; Bambrick, Hilary

    2018-03-01

    Various human heat stress indices have been developed to relate atmospheric measures of extreme heat to human health impacts, but the usefulness of different indices across various health impacts and in different populations is poorly understood. This paper determines which heat stress indices best fit hospital admissions for sets of cardiovascular, respiratory, and renal diseases across five Australian cities. We hypothesized that the best indices would be largely dependent on location. We fit parent models to these counts in the summers (November-March) between 2001 and 2013 using negative binomial regression. We then added 15 heat stress indices to these models, ranking their goodness of fit using the Akaike information criterion. Admissions for each health outcome were nearly always higher in hot or humid conditions. Contrary to our hypothesis that location would determine the best-fitting heat stress index, we found that the best indices were related largely by health outcome of interest, rather than location as hypothesized. In particular, heatwave and temperature indices had the best fit to cardiovascular admissions, humidity indices had the best fit to respiratory admissions, and combined heat-humidity indices had the best fit to renal admissions. With a few exceptions, the results were similar across all five cities. The best-fitting heat stress indices appear to be useful across several Australian cities with differing climates, but they may have varying usefulness depending on the outcome of interest. These findings suggest that future research on heat and health impacts, and in particular hospital demand modeling, could better reflect reality if it avoided "all-cause" health outcomes and used heat stress indices appropriate to specific diseases and disease groups.

  14. Exergy analysis for stationary flow systems with several heat exchange temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M J; Heikkinen, M A [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Energy Engineering

    1995-07-01

    A thermodynamic theory of exergy analysis for a stationary flow system having several heat inputs and outputs at different temperature levels is presented. As a new result a relevant reference temperature of the surroundings is derived for each case. Also a general formula which combines exergy analysis with a modified Carnot efficiency is derived. The results are illustrated by numerical examples for mechanical multi-circuit heat pump cycles, for a Brayton process and for an absorption heat pump. (Author)

  15. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    Science.gov (United States)

    Su, Haitong; Kodiha, Mohamed; Lee, Sunghoon; Stochaj, Ursula

    2013-01-01

    The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with

  16. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    Directory of Open Access Journals (Sweden)

    Haitong Su

    Full Text Available The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a severe stress and (b drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS and human antigen R protein (HuR are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that

  17. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.

    Science.gov (United States)

    Liu, Guo-Tian; Wang, Jun-Fang; Cramer, Grant; Dai, Zhan-Wu; Duan, Wei; Xu, Hong-Guo; Wu, Ben-Hong; Fan, Pei-Ge; Wang, Li-Jun; Li, Shao-Hua

    2012-09-28

    Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs

  18. Transcriptomic analysis of grape (Vitis vinifera L. leaves during and after recovery from heat stress

    Directory of Open Access Journals (Sweden)

    Liu Guo-Tian

    2012-09-01

    Full Text Available Abstract Background Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L. leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts, followed by quantitative Real-Time PCR validation for some transcript profiles. Results We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes, protein fate (i.e., HSPs, primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. Conclusion The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery

  19. Restraint stress intensifies interstitial K+ accumulation during severe hypoxia

    Directory of Open Access Journals (Sweden)

    Christian eSchnell

    2012-03-01

    Full Text Available Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for three weeks (6 h/day. In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current (DC potential shift was shortened after stress. Moreover, K+ fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for GFAP (glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance and K+-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K+ accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K+ buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.

  20. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  1. Effect of gibberrelic acid on α-amylase activity in heat stressed mung ...

    African Journals Online (AJOL)

    reading 7

    2012-06-28

    Jun 28, 2012 ... Gibberellic acid (GA3) is a plant growth hormone, responsible for growth, stress tolerance and ... inhibition of germination has been overcome (Jacobsen et al., 2002). ..... Effect of fluridone on free sugar level in heat stressed ...

  2. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  3. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    Science.gov (United States)

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the

  4. Residual stress distribution analysis of heat treated APS TBC using image based modelling.

    Science.gov (United States)

    Li, Chun; Zhang, Xun; Chen, Ying; Carr, James; Jacques, Simon; Behnsen, Julia; di Michiel, Marco; Xiao, Ping; Cernik, Robert

    2017-08-01

    We carried out a residual stress distribution analysis in a APS TBC throughout the depth of the coatings. The samples were heat treated at 1150 °C for 190 h and the data analysis used image based modelling based on the real 3D images measured by Computed Tomography (CT). The stress distribution in several 2D slices from the 3D model is included in this paper as well as the stress distribution along several paths shown on the slices. Our analysis can explain the occurrence of the "jump" features near the interface between the top coat and the bond coat. These features in the residual stress distribution trend were measured (as a function of depth) by high-energy synchrotron XRD (as shown in our related research article entitled 'Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by high energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling') (Li et al., 2017) [1].

  5. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    OpenAIRE

    Fadime Kilinç; Ayse Akbas; Ahu Yorulmaz; Sertaç Sener; Salim Neselioglu; Özcan Erel; Ahmet Metin

    2017-01-01

    Objective:Alopecia areata (AA) is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI) was calcu...

  6. Age, splanchnic vasoconstriction, and heat stress during tilting

    Science.gov (United States)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  7. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (Pshock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (Pstress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  8. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  9. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  10. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    Science.gov (United States)

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  11. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  12. Nutrition in Relation to Diseases and Heat stress in Poultry

    Directory of Open Access Journals (Sweden)

    S Das

    Full Text Available Different diseases conditions and stress factors are responsible for high morbidity and mortality of present day poultry. Nutritional strategy and proper feed formulation with specific dietary regimen can combat this up to a certain extent. The incidence of various infectious diseases, nervous disorders and metabolic disorders can be minimized through proper feed regimen. There is a stiff competition and restrictions in the global market of poultry products which can be addressed with proper management of emerging and important diseases with economic productions and quality poultry products free of elements detrimental to human health. Researchers have made efforts to prevent such damage to poultry and poultry product through dietary manipulations. Heat stress can lead to a reduction in the defense mechanisms of birds or to a relative state of immunosuppression. The health status of the poultry is facing new challenges today which can be suitably addressed by the right scientific and advanced nutritional manoeuvres and make the poultry farming more profitable and presentable in the global market. [Vet. World 2011; 4(9.000: 429-432

  13. Prediction of residual stresses in the heat affected zone

    International Nuclear Information System (INIS)

    Taleb, L.; Petit, S.; Jullien, J.F.

    2004-01-01

    In this paper the behavior of a disc made up of carbon manganese steel and subjected to an axisymmetric heating in its middle zone is considered. The applied thermal cycle generates localized metallurgical solid-solid phase transformations. Contrary to the study performed some years ago, the present work is concerned with relatively thick discs that lead to variable behavior according to axial direction. Experimentally, temperature and axial displacement of the face below have continuously been measured during tests. At the end of tests, the nature and the proportions of the final phases as well as residual stresses on both faces of the discs has also been assessed. These experimental results have been compared to numerical simulations using the finite element code ASTER, developed by EDF (Electricity of France), ASTER enables us to take into account the main mechanical consequences of phase transformations. From the obtained results it can be pointed out the significant importance to take into account the transformation induced plasticity (TRIP) phenomenon for better estimation of residual stresses. (authors)

  14. Nuclear transport of heat shock proteins in stressed cells

    International Nuclear Information System (INIS)

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  15. Nuclear transport of heat shock proteins in stressed cells

    Energy Technology Data Exchange (ETDEWEB)

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  16. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars

    DEFF Research Database (Denmark)

    Wang, Xiao; Dinler, Burcu Seckin; Vignjevic, Marija

    2015-01-01

    compared to sensitive cultivars under heat stress. The tolerant cv. '810' and the sensitive cv. '1039' were selected for further proteome analysis of leaves. Proteins related to photosynthesis, glycolysis, stress defence, heat shock and ATP production were differently expressed in leaves of the tolerant...... and sensitive cultivar under heat stress in relation to the corresponding control. The abundance of proteins related to signal transduction, heat shock, photosynthesis, and antioxidants increased, while the abundance of proteins related to nitrogen metabolism decreased in the tolerant cv. '810' under heat......Experiments to explore physiological and biochemical differences of the effects of heat stress in ten wheat (Triticum aestivum L) cultivars have been performed. Based on the response of photosynthesis rates, cell membrane lipid peroxide concentrations and grain yield to heat, six cultivars were...

  17. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pheat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  18. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model.

    Science.gov (United States)

    Yoshii, Takanobu; Oishi, Naoya; Ikoma, Kazuya; Nishimura, Isao; Sakai, Yuki; Matsuda, Kenichi; Yamada, Shunji; Tanaka, Masaki; Kawata, Mitsuhiro; Narumoto, Jin; Fukui, Kenji

    2017-10-06

    Psychological stress induces many diseases including post-traumatic stress disorder (PTSD); however, the causal relationship between stress and brain atrophy has not been clarified. Applying single-prolonged stress (SPS) to explore the global effect of severe stress, we performed brain magnetic resonance imaging (MRI) acquisition and Voxel-based morphometry (VBM). Significant atrophy was detected in the bilateral thalamus and right visual cortex. Fluorescent immunohistochemistry for Iba-1 as the marker of activated microglia indicates regional microglial activation as stress-reaction in these atrophic areas. These data certify the impact of severe psychological stress on the atrophy of the visual cortex and the thalamus. Unexpectedly, these results are similar to chronic neuropathic pain rather than PTSD clinical research. We believe that some sensitisation mechanism from severe stress-induced atrophy in the visual cortex and thalamus, and the functional defect of the visual system may be a potential therapeutic target for stress-related diseases.

  19. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  20. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    International Nuclear Information System (INIS)

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-01-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO 2 ) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO 2 Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO 2 Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO 2 flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  1. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  2. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    Science.gov (United States)

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  3. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pdairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  4. Social Support, Perceived Stress, and Markers of Heart Failure Severity

    Science.gov (United States)

    2012-08-01

    contends that social relationships influence health through the prevention or lessening of responses to stress. Cohen and Wills (1985) describe that...Sheffield, D., Jaumdally, R., & Lip, G. Y. H. (2010). Anger rumination , social support, and cardiac symptoms in patients undergoing angiography

  5. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  6. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring.

    Science.gov (United States)

    Lucy, Matthew C; Safranski, Timothy J

    2017-09-01

    Seasonal infertility is a significant problem in the swine industry, and may be influenced by photoperiod and heat stress. Heat stress during gestation in particular affects pregnancy, resulting in long-term developmental damage to the offspring. This review summarizes what is known about how heat stress on the pregnant sow affects lactation and her offspring. Sows responded to heat stress during gestation with increased rectal temperature, respiration rate, and skin temperature, and tended to reduce their activity-which may have changed their body composition, increasing the adipose-to-muscle ratio. Heat stress during gestation caused temporary insulin resistance during lactation, but this metabolic state did not seem to affect health, lactation, or rebreeding performance of the sow. Heat-stressed sows also presented with a shorter gestation period and reduced litter birth weight, although weaning weights are not affected when these sows are moved to thermoneutral conditions for lactation. The offspring of gestational heat-stressed sows, however, possessed unique phenotypes, including elevated body temperature, greater fat deposition, and impaired gonad development. Thus, gestational heat stress may significantly impact a herd through its effects on sows and their offspring. Further work is necessary to determine the magnitude of the effects across fa cilities and breeds. © 2017 Wiley Periodicals, Inc.

  7. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  8. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    Directory of Open Access Journals (Sweden)

    Hsiang-Ting Huang

    Full Text Available Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  9. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  10. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.

    Science.gov (United States)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  12. Predicting the Transition From Acute Stress Disorder to Posttraumatic Stress Disorder in Children With Severe Injuries.

    Science.gov (United States)

    Brown, Ruth C; Nugent, Nicole R; Hawn, Sage E; Koenen, Karestan C; Miller, Alisa; Amstadter, Ananda B; Saxe, Glenn

    The purpose of this study was to examine predictors of risk for and the transition between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) in a longitudinal sample of youth with severe injuries admitted to the hospital. These data would assist with treatment and discharge planning. Youth were assessed for ASD during the initial hospital stay and were followed-up over an 18-month period for PTSD (n = 151). Youth were classified into four groups, including Resilient (ASD-, PTSD-), ASD Only (ASD+, PTSD-), PTSD Only (ASD-, PTSD+), and Chronic (ASD+, PTSD+). Demographic, psychiatric, social context, and injury-related factors were examined as predictors of diagnostic transition. The results of multivariate analysis of variance and pairwise comparisons found that peritraumatic dissociation, gender, and socioeconomic status were significant predictors after controlling for multiple testing. Results suggest that both within-child and contextual factors contribute to the longitudinal response to trauma in children. Clinicians should consider early screening and discharge planning, particularly for children most at risk. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  13. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Fadime Kilinç

    2017-09-01

    Full Text Available Objective:Alopecia areata (AA is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI was calculated by measuring total antioxidant capacity (TAC and total oxidant capacity (TOC in patient and control group serum samples. Results:The TAC values of the patient group were found to be higher than the control group (p=0.036. A nonsignificant difference was found between the two groups statistically bordered by TOC (p=0.058. There was no significant difference between the two groups in terms of OSI (p=0.270.

  14. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    Science.gov (United States)

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  15. The efficacy of kaolin clay in reducing the duration and severity of `heat' diarrhea in foals

    OpenAIRE

    PIESZKA, MAGDALENA; LUSZCZYNSKI, JAROSLAW; HEDRZAK, MAGDALENA; GONCHAROVA, KATERINA; PIERZYNOWSKI, STEFAN G.

    2016-01-01

    'Heat' diarrhea in foals is an onerous but not life-threatening ailment, which indicates that it may be of osmotic origin. This was confirmed by a successful attempt, presented in this paper, to alleviate the severity and duration of foal heat diarrhea with the use of a typical absorbent, kaolin clay, as a feed additive, usually applied in feed production as an anticaking agent. Based on the present results, it can be concluded that treatment of foals maintained on different stud fa...

  16. Stress-induced heating in commercial conductors and its possible influence on magnet performance

    International Nuclear Information System (INIS)

    Easton, D.S.; Kroeger, D.M.; Moazed, A.

    1976-01-01

    Calorimetric measurements show that significant amounts of heat are generated when a multifilamentary composite conductor is stressed in tension to levels expected to occur in large, high-field magnet systems. When the stress on the conductor is repetitively cycled between zero and some maximum value, the amount of heat produced per cycle is constant after the first few cycles. Comparison is made between calorimetric determinations of heat injections and the work done on the specimen as indicated by stress-strain curves. Stress-strain curves for a number of commercial conductors indicate that the most important determinant of the magnitude of this effect is the choice of matrix material

  17. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  18. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  19. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  20. Blood amino acids profile responding to heat stress in dairy cows

    Directory of Open Access Journals (Sweden)

    Jiang Guo

    2018-01-01

    Full Text Available Objective The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results Results showed that heat stress significantly reduced the milk protein content (p<0.05. Heat stress tended to decrease milk yield (p = 0.09. Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05. Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05. The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05. However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05. Conclusion In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.

  1. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    Science.gov (United States)

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young-Hee [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, Chosun University College of Dentistry, Gwangju 501-759 (Korea, Republic of); Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr [Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714 (Korea, Republic of)

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.

  3. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    International Nuclear Information System (INIS)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A.

    2015-01-01

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1 −/− ) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling

  4. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    Directory of Open Access Journals (Sweden)

    Nobuhiro Suzuki

    Full Text Available Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  5. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea

    Directory of Open Access Journals (Sweden)

    Keren Maor-Landaw

    2016-03-01

    Full Text Available It is well-established that there is a hierarchy of susceptibilities amongst coral genera during heat-stress. However, molecular mechanisms governing these differences are still poorly understood. Here we explored if specific corals possessing different morphologies and different susceptibilities to heat stress may manifest varied gene expression patterns. We examined expression patterns of seven genes in the branching corals Stylophora pistillata and Acropora eurystoma and additionally in the massive robust coral, Porites sp. The tested genes are representatives of key cellular processes occurring during heat-stress in Cnidaria: oxidative stress, ER stress, energy metabolism, DNA repair and apoptosis. Varied response to the heat-stress, in terms of visual coral paling, algal maximum quantum yield and host gene expression was evident in the different growth forms. The two branching corals exhibited similar overall responses that differed from that of the massive coral. A. eurystoma that is considered as a susceptible species did not bleach in our experiment, but tissue sloughing was evident at 34 °C. Interestingly, in this species redox regulation genes were up-regulated at the very onset of the thermal challenge. In S. pistillata, bleaching was evident at 34 °C and most of the stress markers were already up-regulated at 32 °C, either remaining highly expressed or decreasing when temperatures reached 34 °C. The massive Porites species displayed severe bleaching at 32 °C but stress marker genes were only significantly elevated at 34 °C. We postulate that by expelling the algal symbionts from Porites tissues, oxidation damages are reduced and stress genes are activated only at a progressed stage. The differential gene expression responses exhibited here can be correlated with the literature well-documented hierarchy of susceptibilities amongst coral morphologies and genera in Eilat’s coral reef.

  6. Effects of induction heating parameters on controlling residual stress in intermediate size pipes

    International Nuclear Information System (INIS)

    Rybicki, E.F.; McGuire, P.A.

    1981-01-01

    Induction heating for stress improvement (IHSI) is a method for reducing the tensile weld induced stresses on the inner surfaces of the girth welded pipes. The process entails inductively heating the outside of a welded pipe while cooling the inner surface with flowing water. A 10-inch schedule 80 Type 304 stainless steel pipe was selected for this study. Residual stresses due to welding were first determined using a finite element computational model. 26 refs

  7. Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers.

    Science.gov (United States)

    Yi, Wen; Chan, Albert P C

    2017-09-12

    Global warming is bringing more frequent and severe heat waves, and the result will be serious for vulnerable populations such as construction workers. Excessive heat stress has profound effects on physiological responses, which cause occupational injuries, fatalities and low productivity. Construction workers are particularly affected by heat stress, because of the body heat production caused by physically demanding tasks, and hot and humid working conditions. Field studies were conducted between August and September 2016 at two construction training grounds in Hong Kong. Onsite wet-bulb globe temperature (WBGT), workers' heart rate (HR), and labor productivity were measured and monitored. Based on the 378 data sets of synchronized environmental, physiological, construction labor productivity (CLP), and personal variables, a CLP-heat stress model was established. It was found that WBGT, percentage of maximum HR, age, work duration, and alcohol drinking habits were determining factors for predicting the CLP (adjusted R ² = 0.68, p stress reduces CLP, with the percentage of direct work time decreasing by 0.33% when the WBGT increased by 1 °C. The findings in this study extend the existing practice notes by providing scientific data that may be of benefit to the industry in producing solid guidelines for working in hot weather.

  8. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  9. Young Children's Acute Stress After a Burn Injury: Disentangling the Role of Injury Severity and Parental Acute Stress.

    Science.gov (United States)

    Haag, Ann-Christin; Landolt, Markus A

    2017-09-01

    Although injury severity and parental stress are strong predictors of posttraumatic adjustment in young children after burns, little is known about the interplay of these variables. This study aimed at clarifying mediation processes between injury severity and mother's, father's, and young child's acute stress. Structural equation modeling was used to examine the relationships between injury severity and parental and child acute stress. Parents of 138 burn-injured children (ages 1-4 years) completed standardized questionnaires on average 19 days postinjury. Sixteen children (11.7%) met Diagnostic and Statistical Manual of Mental Disorders, 5th edition, preschool criteria for posttraumatic stress disorder (excluding time criterion). The model revealed a significant mediation of maternal acute stress, with the effect of injury severity on a child's acute stress mediated by maternal acute stress. Paternal acute stress failed to serve as a mediating variable. Our findings confirm mothers' crucial role in the posttraumatic adjustment of young children. Clinically, mothers' acute stress should be monitored. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. Influence of Turmeric Rhizome Powder diets on decreasing oxidative stress caused by heat stress inbroiler model

    Directory of Open Access Journals (Sweden)

    Seyyed Javad Hosseini-Vashan

    2012-08-01

    Full Text Available Background and Aim: Production of reactive oxygen species (ROS increases during oxidative stress conditions, which stimulates diabetes, inflammatory reactions, rheumatism and anemia. Some antioxidant properties of turmeric rhizome powder (TRP were revealed by previous researchers. The present study was conducted to evaluate the influence of TRP on decreasing effects of oxidative stress resulted from heat stress in broiler chickens.   Materials and Methods: In this experimental study, two-hundred-sixty-four 1-day-old broilers were divided into 3 dietary treatments. The dietary treatments involved 0(control, 0.4 and 0.8% turmeric rhizome powder (cases. In order to create oxidative stress, the ambient temperature was daily raised from 21 to 33oc for 5 hours (11a.m-4p.m throughout the 28th-42nd days. Blood lipids, Glutathione peroxidase (GPx ,superoxide dismutase (SOD, and Tiobarbituric acid reaction score (TBARS were determined at the end of the experiment.   Results: The results revealed that total cholesterol and triglyceride were not affected. The 0.4 TRP diet decreased blood LDL (46.7±3.01 compared to basal group (52.0±2.17. HDL increased in broilers fed 0.8% TRP (74.0 ± 3.87 compared to chickens with basal diet (63.7± 2.98. Enzyme activity of GPx improved in broilers fed TRP diets (225.9± 11.52 as compared to chickens with basal diet(183.1± 8.52 however, the TRP diet did not affect enzyme activity of SOD (P > 0.05. The TBARS index decreased in broilers fed TRP (0.76 ± 0.0052 in basal vs.0.49 ± 0.0032 in 0.8% TRP.   Conclusion: The major bioactive component of TRP is Curcumin that can improve the antioxidant properties under oxidative stress and high ambient temperature.

  11. New guidelines are needed to manage heat stress in elite sports--The Fédération Internationale de Volleyball (FIVB) Heat Stress Monitoring Programme.

    Science.gov (United States)

    Bahr, Roald; Reeser, Jonathan C

    2012-09-01

    There seems to be a discrepancy between the available heat stress guidelines and the actual risk of heat-related illness among professional beach volleyball players competing under hot and humid conditions. To monitor heat stress and record cases of heat-related medical forfeits on the Swatch FIVB Beach Volleyball World Tour. The FIVB Heat Stress Monitoring Protocol covered events on the FIVB Beach Volleyball World Tour and FIVB Beach Volleyball World Championships during the 2009, 2010 and 2011 seasons (51 events, most of these double gender). The protocol consisted of (1) measuring the Wet Bulb Globe Temperature (WBGT) on centre court prior to the start of every match, and (2) recording any heat-related medical forfeits during the tournament. Data were collected during 48 of 51 events. There were nine events where the peak WBGT exceeded the US Navy Black flag conditions of >32.3°C and an additional two events where the peak WBGT exceeded 31°C, (meeting Red flag conditions.) In two events, the average WBGT equalled at least 31°C. One case of a medical forfeit related to heat stress was recorded over the 3-year surveillance period: an athlete whose fluid balance was compromised from a 3-day bout of acute gastroenteritis. The incidence of significant heat illness among athletes competing on the FIVB Beach Volleyball World Tour appears to be quite low, even though weather conditions frequently result in a WBGT index >32°C. Currently available guidelines appear to be inadequate to fully assess the risk of heat stress and too conservative to inform safety decisions in professional beach volleyball.

  12. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    Science.gov (United States)

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Parental Stress and ASD: Relationship with Autism Symptom Severity, IQ, and Resilience

    Science.gov (United States)

    Pastor-Cerezuela, Gemma; Fernández-Andrés, M. Inmaculada; Tárraga-Mínguez, Raúl; Navarro-Peña, J. Miguel

    2016-01-01

    The objectives of this study were (a) to evaluate parental stress in parents of children with autism spectrum disorders (ASD group) and compare it with the stress in parents of children with typical development (comparison group); (b) to study the relationship between parental stress, autism severity, and both verbal and performance IQ; and (c) to…

  14. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica.

    Science.gov (United States)

    Marias, Danielle E; Meinzer, Frederick C; Still, Christopher

    2017-02-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica . Treated plants were heated in a growth chamber at 49°C for 45 or 90 min. Physiological recovery was monitored in situ using gas exchange, chlorophyll fluorescence (the ratio of variable to maximum fluorescence, F V / F M ), and leaf nonstructural carbohydrate (NSC) on mature and expanding leaves before and 2, 15, 25, and 50 days after treatment. Regardless of leaf age, the 90-min treatment resulted in greater F V / F M reduction 2 days after treatment and slower recovery than the 45-min treatment. In both treatments, photosynthesis of expanding leaves recovered more slowly than in mature leaves. Stomatal conductance ( g s ) decreased in expanding leaves but did not change in mature leaves. These responses led to reduced intrinsic water-use efficiency with increasing heat stress duration in both age classes. Based on a leaf energy balance model, aftereffects of heat stress would be exacerbated by increases in leaf temperature at low g s under full sunlight where C. arabica is often grown, but also under partial sunlight. Starch and total NSC content of the 45-min group significantly decreased 2 days after treatment and then accumulated 15 and 25 days after treatment coinciding with recovery of photosynthesis and F V / F M . In contrast, sucrose of the 90-min group accumulated at day 2 suggesting that phloem transport was inhibited. Both treatment group responses contrasted with control plant total NSC and starch, which declined with time associated with subsequent flower and fruit production. No treated plants produced flowers or fruits, suggesting that short duration heat stress can lead to crop failure.

  15. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  16. Occupational heat stress assessment and protective strategies in the context of climate change

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  17. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    Science.gov (United States)

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  18. Family Stress and Coping From Hospitalization of Clients With Severe Alcohol Use Disorder in Korea.

    Science.gov (United States)

    Park, Gyu-Hee; Choi, Yun-Jung

    The rate of relapse and involuntary hospitalization among clients with alcohol use disorder exceeds 40% in South Korea. As a result, family members of clients experience considerable stress and require the assistance of professional services. This empirical study investigates levels of perceived stress and stress coping styles among family members of clients with severe alcohol use disorder and examines the correlations among these variables. Data were collected from three inpatient alcohol rehabilitation centers and five psychiatric hospitals in South Korea. Family stress levels and stress coping styles for 133 respondents were evaluated using the Hospital Stress Rating Scale for Family Members and the Stress Coping Style Checklist. There were significant differences in stress levels according to whether participants had attended a family educational program in the past or were doing so presently. Furthermore, significant differences in stress were observed among participants who were using the stress coping style of easing strained emotions during the client's hospitalization but who had never attended an educational program. Among the subcategories, stress levels had especially strong relationships with easing strained emotions, seeking advice, and solving problems. The results showed that families with severe alcohol use disorder experience stress from the client's hospitalization and seek advice from neighbors to deal with worries, privacy concerns, and economic problems. Family interventions are needed to provide family members with strategies to cope with stress, which can support recovery of clients with severe alcohol use disorder.

  19. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    Science.gov (United States)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  20. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  1. Galacto-oligosaccharides exert a protective effect against heat stress in a Caco-2 cell model

    NARCIS (Netherlands)

    Varasteh, Soheil; Braber, Saskia; Garssen, Johan; Fink-Gremmels, Johanna

    Thermal stress can evoke a stress response and enhance the synthesis of heat shock proteins, while gut barrier dysfunction is considered as an important adverse effect of thermal stress. Considering the previously described effects of galacto-oligosaccharides, nowadays mainly used in infant

  2. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    Science.gov (United States)

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (Pheat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (PHeat and calving related stress caused a fall in the IL-12 levels which increased significantly (Pcows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Role of stress areas, stress severity, and stressful life events on the onset of depressive disorder: a case-control study.

    Science.gov (United States)

    Lueboonthavatchai, Peeraphon

    2009-09-01

    Although the stress and stressful life events are known as the precipitation of depressive disorder, the areas of stress and types of stressful life events found in depression are varied by different socio-cultural context. Identify the stress areas, stress severity, and types of stressful life events associated with the onset of depressive disorder in Thai depressed patients. Ninety depressed and ninety non-depressed subjects, aged above 18 years old, from the Department of Psychiatry, King Chulalongkorn Memorial Hospital, were recruited into the present study between July 2007 and January 2008. All subjects completed a demographic data form, and a 1-Year Life Stress Event Questionnaire. The association between the number of stressful life events, stress areas, stress severity, types of stressful life events, and the onset of depressive disorder were analyzed by independent t-test and chi-square test. Logistic regression was performed to identify the predictors of depressive disorder. Most of the subjects were young and middle-aged women, living in Bangkok and the central region. The depressed subjects experienced more stressful life events than the non-depressed subjects (5.81 +/- 3.19 vs. 3.24 +/- 2.80 events in one year) (p stress areas (health-related, family-related, financial, occupational, and social stress), and overall stress were associated with the onset of depressive disorder (p stress in all areas were at the higher risk of depressive disorder than those with the mild stress (p stress was the stress area highest associated with the depressive disorder (OR = 5.93, 95% CI = 2.33-16.92, p stressful life events associated with the onset of depressive disorder were the medical hospitalization, medical illness leading to missing work or disturbed daily routine, change in sleeping habits, absence of recreation, arguments with spouse, sexual difficulties with spouse, family financial problems, job loss, and trouble with boss (p stress was the significant

  5. Heat shock protection against cold stress of Drosophila melanogaster

    OpenAIRE

    Burton, Vicky; Mitchell, Herschel K.; Young, Patricia; Petersen, Nancy S.

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  6. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  7. Heat stress mortality and desired adaptation responses of healthcare system in Poland

    Science.gov (United States)

    Błażejczyk, Anna; Błażejczyk, Krzysztof; Baranowski, Jarosław; Kuchcik, Magdalena

    2018-03-01

    Heat stress is one of the environmental factors influencing the health of individuals and the wider population. There is a large body of research to document significant increases in mortality and morbidity during heat waves all over the world. This paper presents key results of research dealing with heat-related mortality (HRM) in various cities in Poland which cover about 25% of the country's population. Daily mortality and weather data reports for the years 1991-2000 were used. The intensity of heat stress was assessed by the universal thermal climate index (UTCI). The research considers also the projections of future bioclimate to the end of twenty-first century. Brain storming discussions were applied to find necessary adaptation strategies of healthcare system (HCS) in Poland, to minimise negative effects of heat stress. In general, in days with strong and very strong heat stress, ones must expect increase in mortality (in relation to no thermal stress days) of 12 and 47%, respectively. Because of projected rise in global temperature and heat stress frequency, we must expect significant increase in HRM to the end of twenty-first century of even 165% in comparison to present days. The results of research show necessity of urgent implementation of adaptation strategies to heat in HCS.

  8. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  9. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    International Nuclear Information System (INIS)

    Roudkenar, Mehryar Habibi; Halabian, Raheleh; Roushandeh, Amaneh Mohammadi; Nourani, Mohammad Reza; Masroori, Nasser; Ebrahimi, Majid; Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa; Najafabadi, Ali Jahanian; Shokrgozar, Mohammad Ali

    2009-01-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  10. Lipocalin 2 regulation by thermal stresses: Protective role of Lcn2/NGAL against cold and heat stresses

    Energy Technology Data Exchange (ETDEWEB)

    Roudkenar, Mehryar Habibi, E-mail: roudkenar@ibto.ir [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Halabian, Raheleh [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Roushandeh, Amaneh Mohammadi [Department of Anatomy, Faculty of Medicine, Medical University of Tabriz, Tabriz (Iran, Islamic Republic of); Nourani, Mohammad Reza [Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Masroori, Nasser [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Ebrahimi, Majid [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Chemical Injury Research Center, Baqiyatallah Medical Science University, Tehran (Iran, Islamic Republic of); Nikogoftar, Mahin; Rouhbakhsh, Mehdi; Bahmani, Parisa [Research Center, Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Najafabadi, Ali Jahanian [Department of Molecular Biology, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur institute of Iran, Tehran (Iran, Islamic Republic of)

    2009-11-01

    Environmental temperature variations are the most common stresses experienced by a wide range of organisms. Lipocalin 2 (Lcn2/NGAL) is expressed in various normal and pathologic conditions. However, its precise functions have not been fully determined. Here we report the induction of Lcn2 by thermal stresses in vivo, and its role following exposure to cold and heat stresses in vitro. Induction of Lcn2 in liver, heart and kidney was detected by RT-PCR, Western blot and immunohistochemistry following exposure of mice to heat and cold stresses. When CHO and HEK293T cells overexpressing NGAL were exposed to cold stress, cell proliferation was higher compared to controls. Down-regulatrion of NGAL by siRNA in A549 cells resulted in less proliferation when exposed to cold stress compared to control cells. The number of apoptotic cells and expression of pro-apoptotic proteins were lower in the NGAL overexpressing CHO and HEK293T cells, but were higher in the siRNA-transfected A549 cells compared to controls, indicating that NGAL protects cells against cold stress. Following exposure of the cells to heat stress, ectopic expression of NGAL protected cells while addition of exogenous recombinant NGAL to the cell culture medium exacerbated the toxicity of heat stress specially when there was low or no endogenous expression of NGAL. It had a dual effect on apoptosis following heat stress. NGAL also increased the expression of HO-1. Lcn2/NGAL may have the potential to improve cell proliferation and preservation particularly to prevent cold ischemia injury of transplanted organs or for treatment of some cancers by hyperthermia.

  11. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  12. Mothers’ Depression and Stress, Severity of Autism among Children and Family Income

    OpenAIRE

    Athari, Pegah; Department of educational psychology, Faculty of Education Universiti Teknologi Malaysia; Ghaedi, Leila; Department of educational psychology, Faculty of Education Universiti Teknologi Malaysia

    2013-01-01

    This study was conducted to investigate the relationship between mothers’ depression and stress compared with severity of autism in children and the effect of family income on the relationship between these two latter variables. Levels of depression and stress among mothers (n=250) were measured based on Depression Anxiety and Stress Scale of 42 items (DASS¬-42). The severity of autism among children was assessed by Autism Behavior Checklist (ABC) according to children’s teachers reports (n=2...

  13. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  14. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    Science.gov (United States)

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  15. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  16. Work-related heat stress concerns in automotive industries: a case study from Chennai, India.

    Science.gov (United States)

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-11-11

    Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. The study re-emphasises the need for recognising heat stress as an important occupational health risk in both formal

  17. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  18. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    Science.gov (United States)

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  19. Prediction of strongly-heated gas flows in a vertical tube using explicit algebraic stress/heat-flux models

    International Nuclear Information System (INIS)

    Baek, Seong Gu; Park, Seung O.

    2003-01-01

    This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions

  20. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  1. A review of heat stress and its management in the power industry

    International Nuclear Information System (INIS)

    Waner, N.S.

    1986-01-01

    The effects of heat stress on plant operator performance is discussed. Sources of heat stress are reviewed, in particular, those unique to the Nuclear Power Industry. Measurement techniques correlating environmental conditions with physiological responses are covered, along with suggested assessment indices to establish criteria for worker health and safety. Available major countermeasures are described and include those categorized as, procedural, personal support systems, and plant betterment/engineering programs. Data, recommended standards, and industry practices are presented as viable guidelines along with references and information resources to assist the reader in establishing and implementing programs for managing heat stress

  2. Ocular blood flow decreases during passive heat stress in resting humans

    OpenAIRE

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-01-01

    Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...

  3. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified......In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR...... spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high...

  4. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    Science.gov (United States)

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

  5. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  6. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  7. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  8. Differences in response to heat stress due to production level and breed of dairy cows

    Science.gov (United States)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  9. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    Science.gov (United States)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  10. Environmental Heat Stress Among Young Working Women: A Pilot Study.

    Science.gov (United States)

    Rahman, Juma; Fakhruddin, S H M; Rahman, A K M Fazlur; Halim, M A

    Heat waves are increasing significantly in frequency and severity and threaten the health and income of outdoor workers. Pregnant women workers are particularly at risk due to their delicate physiological systems and accountabilities to future generations. Animal and human studies propose that elevated body temperatures during pregnancy can induce adverse pregnancy outcomes. To measure the change in internal body temperature (Tcore) in young working women before, after, and during work (both outdoor and indoor) on hot humid days and relate threshold temperature to the upshot adverse effects of pregnancy (teratogenicity and related miscarriage). Tympanic temperatures were measured using infrared ear thermometers and workplace temperatures were collected using Lascar Data Logger. Brief exploratory interviews were conducted to gather qualitative data, and content analysis was also carried out. Body temperatures were found elevated among outdoor women workers compared with that of indoor women workers. The present study found that outdoor work during pregnancy in hot, humid days might increase body temperature up to levels that could induce fetal destruction or anomaly. Copyright © 2016 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  11. Heat stress and public health: a critical review.

    Science.gov (United States)

    Kovats, R Sari; Hajat, Shakoor

    2008-01-01

    Heat is an environmental and occupational hazard. The prevention of deaths in the community caused by extreme high temperatures (heat waves) is now an issue of public health concern. The risk of heat-related mortality increases with natural aging, but persons with particular social and/or physical vulnerability are also at risk. Important differences in vulnerability exist between populations, depending on climate, culture, infrastructure (housing), and other factors. Public health measures include health promotion and heat wave warning systems, but the effectiveness of acute measures in response to heat waves has not yet been formally evaluated. Climate change will increase the frequency and the intensity of heat waves, and a range of measures, including improvements to housing, management of chronic diseases, and institutional care of the elderly and the vulnerable, will need to be developed to reduce health impacts.

  12. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    Science.gov (United States)

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermoelastic stress due to an instantaneous finite line heat source in an infinite medium

    International Nuclear Information System (INIS)

    Claesson, J.; Hellstroem, G.

    1995-09-01

    The problem originates from studies of nuclear waste repositories in rock. The problem is by superposition reduced to the case of a single, infinite, antisymmetric, instantaneous line heat source. The dimensionless problem turns out to depend on the dimensionless radial and axial coordinates only, although the original time-dependent problem contains several parameters. An exact analytical solution is derived. The solution is surprisingly handy, considering the complexity of the original problem. The stress and strain field are readily obtained from derivatives of the displacement components. These fields are studied and presented in detail. Asymptotic behaviour, field of principal stresses, regions of compression and tension, and largest values of compression and tension of the components are given as exact formulas. The solution may be used to test numerical models for coupled thermoelastic processes. It may also be used in more detailed numerical simulations of the process near the heat sources as boundary conditions to account for the three-dimensional global process. 7 refs

  14. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers.

    Science.gov (United States)

    Del Vesco, A P; Khatlab, A S; Goes, E S R; Utsunomiya, K S; Vieira, J S; Oliveira Neto, A R; Gasparino, E

    2017-10-01

    We aimed to evaluate the effects of acute heat stress (HS) and age on the redox state in broilers aged 21 and 42 days. We evaluated the expression of genes related to antioxidant capacity, the production of hydrogen peroxide (H2O2), and the activity of antioxidant enzymes in the liver, as well as oxidative stress markers in the liver and plasma. The experiment had a completely randomized factorial design with two thermal environments (thermoneutral and HS, 38°C for 24 h) and two ages (21 and 42 days). Twenty-one-day-old animals exposed to HS showed the highest thioredoxin reductase 1 (TrxR1) (PAge influenced the expression of the thioredoxin (Trx) (P=0.0090), superoxide dismutase (SOD) (P=0.0194), glutathione reductase (GSR) (Page and environment on the liver content of Glutathione (GSH) (Page had higher plasma creatinine content (0.05 v. 0.01 mg/dl) and higher aspartate aminotransferase activity (546.50 v. 230.67 U/l) than chickens at 21 days of age. Our results suggest that under HS conditions, in which there is higher H2O2 production, 21-day-old broilers have greater antioxidant capacity than 42-day-old animals.

  15. Subjective heat stress of urban citizens: influencing factors and coping strategies

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  16. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    Science.gov (United States)

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  17. Heat transfer and thermal stress analysis in fluid-structure coupled field

    International Nuclear Information System (INIS)

    Li, Ming-Jian; Pan, Jun-Hua; Ni, Ming-Jiu; Zhang, Nian-Mei

    2015-01-01

    In this work, three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out. The structure considered is from the dual-coolant lithium-lead (DCLL) blanket, which is the key technology of International Thermo-nuclear Experimental Reactor (ITER). The model was developed based on finite element-finite volume method and was employed to investigate mechanical behaviours of Flow Channel Insert (FCI) and heat transfer in the blanket under nuclear reaction. Temperature distribution, thermal deformation and thermal stresses were calculated in this work, and the effects of thermal conductivity, convection heat transfer coefficient and flow velocity were analyzed. Results show that temperature gradients and thermal stresses of FCI decrease when FCI has better heat conductivity. Higher convection heat transfer coefficient will result in lower temperature, thermal deformations and stresses in FCI. Analysis in this work could be a theoretical basis of blanket optimization. - Highlights: • We use FVM and FEM to investigate FCI structural safety considering heat transfer and FSI effects. • Higher convective heat transfer coefficient is beneficial for the FCI structural safety without much affect to bulk flow temperature. • Smaller FCI thermal conductivity can better prevent heat leakage into helium, yet will increase FCI temperature gradient and thermal stress. • Three-dimensional simulation on conjugate heat transfer in a fluid-structure coupled field was carried out

  18. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  19. Chinese Herbal Medicines as Potential Agents for Alleviation of Heat Stress in Poultry.

    Science.gov (United States)

    Shokryazdan, Parisa; Jahromi, Mohammad Faseleh; Md Saadand, Salwani; Ebrahimi, Mahdi; Idrus, Zulkifli; Zhou, Hailong; Diao, Xiao Ping; Liang, Juan Boo

    2017-01-01

    Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs' mixtures in order to induce positive effects against heat stress in in vivo studies.

  20. Chinese Herbal Medicines as Potential Agents for Alleviation of Heat Stress in Poultry

    Directory of Open Access Journals (Sweden)

    Parisa Shokryazdan

    2017-01-01

    Full Text Available Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs’ mixtures in order to induce positive effects against heat stress in in vivo studies.

  1. Heat Stress in Tunisia: Effects on dairy cows and potential means ...

    African Journals Online (AJOL)

    Heat Stress in Tunisia: Effects on dairy cows and potential means. ... The objectives of this work were to characterize the environmental conditions to which Holstein ... Maintaining cow performance under hot conditions requires the adoption of ...

  2. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.; Puranik, B. P.; Date, A. W.

    2018-01-01

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell

  3. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  4. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  5. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress.

    Science.gov (United States)

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-09-02

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.

  6. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  7. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  8. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  9. Invited review: heat stress effects during late gestation on dry cows and their calves.

    Science.gov (United States)

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Defining and evaluating heat stress thresholds in different dairy cow production systems

    OpenAIRE

    Brügemann, Kerstin; Gernand, Erhard; König von Borstel, Uta; König, Sven

    2012-01-01

    The aim of this study was to assess the impact of heat stress in dairy cows on test-day records for production traits and somatic cell score (SCS) in the state of Lower Saxony, Germany. Three different production systems were defined: A production system characterized by intensive crop production (=indoor housing), a pasture based production system, and a maritime region. Heat stress was assessed by two temperature-humidity indices (THI) modelled as random regression coefficients in an analys...

  11. An Experimental Study on the Heat Focusing of the Metallic layer in a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    By flooding the reactor cavity that surrounds the vessel, significant energy can be removed from relocated corium materials through the vessel wall. The aim of this study is to investigate the heat focusing depending on the aspect ratios and heat transfer characteristic of upper boundary for applications related to severe accident phenomena. Experiments were carried out for Rayleigh numbers and aspect ratio in the range of 8.49x10{sup 7}-5.49x10{sup 9}, 0.128-0.512 respectively. Also, the conditions of the top wall and the side wall are considered: (a) top plate cooling, side wall adiabatic, (b) top plate adiabatic, side wall cooling, (c) both walls cooling. In order to achieve high Rayleigh numbers, the heat transfer experiments were replaced by mass transfer experiments based on heat and mass transfer analogy concept. A sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system was adopted as the mass transfer system.An experimental study was performed to investigate the focusing effect appeared in the metallic layer in a severe accident condition. Mass transfer experiments, based on the analogy concept, carried out in order to achieve high Rayleigh number. The height of the side wall was varied for three different cooling conditions: top only, side only, and both top and side. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The test results for the three configurations (only top cooling, only side wall cooling and both walls cooling) presented that the heat transfer on side wall cooling condition without top cooling is biggest. Also, the heat transfer was enhanced by decreasing the aspect ratio (H/R)

  12. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    Science.gov (United States)

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  14. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  15. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle.

    Science.gov (United States)

    Takagi, Shunya; Nakamura, Tomohiro; Fujisato, Toshia

    2018-01-23

    The effects of heat stress on tissue like skeletal muscle have been widely studied. However, the mechanism responsible for the effect of heat stress is still unclear. A useful experimental tissue model is necessary because muscle function in cell culture may differ from native muscle and measuring its contractility is difficult. We previously reported three-dimensional tissue-engineered artificial skeletal muscle (TEM) that can be easily set in a measurement apparatus for quantitative evaluation of contractility. We have now applied TEM to the investigation of heat stress. We analyzed contractility immediately after thermal exposure at 39 °C for 24 or 48 h to evaluate the acute effects and after thermal exposure followed by normal culture to evaluate the aftereffects. Peak twitch contractile force and time-to-peak twitch were used as contractile parameters. Heat stress increased the TCF in the early stage (1 week) after normal culture; the TCF decreased temporarily in the middle to late stages (2-3 weeks). These results suggest that heat stress may affect both myoblast fusion and myotube differentiation in the early stage of TEM culture, but not myotube maturation in the late stage. The TCF increase rate with thermal exposure was significantly higher than that without thermal exposure. Although detailed analysis at the molecular level is necessary for further investigation, our artificial skeletal muscle may be a promising tool for heat stress investigation.

  16. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    Directory of Open Access Journals (Sweden)

    Anna Maria de Leonardis

    2015-12-01

    Full Text Available Durum wheat (Triticum turgidum (L. subsp. turgidum (L. convar. durum (Desf. is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry were carried out on immature (14 days after flowering and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  17. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  18. Timing Effects of Heat-Stress on Plant Ecophysiological Characteristics and Growth.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Tripathee, Rajan

    2016-01-01

    Heat-waves with higher intensity and frequency and longer durations are expected in the future due to global warming, which could have dramatic impacts in agriculture, economy and ecology. This field study examined how plant responded to heat-stress (HS) treatment at different timing in naturally occurring vegetation. HS treatment (5 days at 40.5°C) were applied to 12 1 m 2 plots in restored prairie vegetation dominated by a warm-season C 4 grass, Andropogon gerardii , and a warm-season C 3 forb, Solidago canadensis , at different growing stages. During and after each heat stress (HS) treatment, temperature were monitored for air, canopy, and soil; net CO 2 assimilation ( A net ), quantum yield of photosystem II (Φ PSII ), stomatal conductance ( g s ), and internal CO 2 level ( C i ), specific leaf area (SLA), and chlorophyll content of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species were determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii , indicated by negative HS effect on both physiological and growth responses for S. canadensis . There were significant timing effect of HS on the two species, with greater reductions in the net photosynthetic rate and productivity occurred when HS was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that HS, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe HS occur in the future.

  19. VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.

    Science.gov (United States)

    Kellogg, Dean L; Zhao, Joan L; Wu, Yubo; Johnson, John M

    2010-07-01

    Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.

  20. The effect of texture, heat treatment and elongation rate on stress corrosion cracking in irradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.; Stany, W.; Hellstrand, E.

    1979-03-01

    Irradiated zircaloy samples with different textures and heat treatments have been tested concerning stress corrosion. Irradiated samples of Zr-1Nb, pure Zr and beta quenched zircaloy have also been investigated. Stress-relieve annealled zircaloy is even after irradiation more sensitive to stress corrosion than recrystallized zircaloy. Zr-1Nb and beta quenched zircaloy are much more sinsitive to stress corrosion than the samples with different textures. As a rule irradiated zircaloy is sensitive to stress corrosion at stresses far below the yield point. The breaking stress decreases with the elongation rate. The extension of cracks is much faster in irradiated zircaloy than in unirradiated zircaloy. There is no simple failure criterium for irradiated zircaloy. However for a certain stress and a certain elongation rate the probability for a failure before this stress is reached with a constant elongation rate can be given. (E.R.)

  1. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  2. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    Science.gov (United States)

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  3. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  4. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  5. Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia

    DEFF Research Database (Denmark)

    Pogačar, Tjaša; Črepinšek, Zalika; Kajfež Bogataj, Lučka

    2017-01-01

    Climate changes and the associated higher frequency of heat waves in Middle-European countries will aggravate occupational heat stress experienced by Slovenian workers. Appropriate behavioral adaptations are important coping strategies and it is pertinent to establish if knowledge among advisers...

  6. Heat stress has a substantial economic impact on the Australian workforce

    NARCIS (Netherlands)

    Zander, K.; Botzen, W.J.W.; Kjellstrom, T.; Oppermann, E.; Garnett, S.T.

    2015-01-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot

  7. Differential response of Aspen and Birch trees to heat stress under elevated carbon dioxide

    Science.gov (United States)

    Joseph N.T. Darbah; Thomas D. Sharkey; Carlo Calfapietra; David F. Karnosky

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO...

  8. Genome-wide association of changes in swine feeding behaviour due to heat stress

    Science.gov (United States)

    Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...

  9. Effects of late-gestation heat stress on immunity and performance of calves.

    Science.gov (United States)

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  10. Mapping rural community and dairy cow heat stress in Southern Ontario: A common geographic pattern from 2010 to 2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2016-07-03

    Climate change has increased the occurrence of heat waves, causing heat stress among humans and livestock, with potentially fatal consequences. Heat stress maps provide information about related health risks and insight for control strategies. Weather data were collected throughout Southern Ontario, and the heat stress index (HSI) was estimated for 2010-2012. Geostatistical kriging was applied to map heat stress, heat waves, and control periods. Average HSI for each period ranged from 55 to 78 during control periods, and from 65 to 84 during heat waves, surpassing levels where morbidity is known to increase substantially. Heat stress followed a temporally consistent geographic pattern. HSI maps indicate high-risk areas for heat-related illness and indicate areas where agriculture and human health may be at increased risk in future.

  11. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation.

    Science.gov (United States)

    Brown, Britni M; Stallings, Jon W; Clay, John S; Rhoads, Michelle L

    2016-01-01

    The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC) cows (n = 94,440); cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC) contemporaries (n = 141,365). In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall). Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however, heat stress at

  12. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation.

    Directory of Open Access Journals (Sweden)

    Britni M Brown

    Full Text Available The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC cows (n = 94,440; cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC contemporaries (n = 141,365. In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall. Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however

  13. Stress moderates the relationships between problem-gambling severity and specific psychopathologies.

    Science.gov (United States)

    Ronzitti, Silvia; Kraus, Shane W; Hoff, Rani A; Potenza, Marc N

    2018-01-01

    The purpose of this study was to examine the extent to which stress moderated the relationships between problem-gambling severity and psychopathologies. We analyzed Wave-1 data from 41,869 participants of the National Epidemiologic Survey of Alcohol and Related Conditions (NESARC). Logistic regression showed that as compared to a non-gambling (NG) group, individuals at-risk gambling (ARG) and problem gambling (PPG) demonstrated higher odds of multiple Axis-I and Axis-II disorders in both high- and low-stress groups. Interactions odds ratios were statistically significant for stress moderating the relationships between at-risk gambling (versus non-gambling) and Any Axis-I and Any Axis-II disorder, with substance-use and Cluster-A and Cluster-B disorders contributing significantly. Some similar patterns were observed for pathological gambling (versus non-gambling), with stress moderating relationships with Cluster-B disorders. In all cases, a stronger relationship was observed between problem-gambling severity and psychopathology in the low-stress versus high-stress groups. The findings suggest that perceived stress accounts for some of the variance in the relationship between problem-gambling severity and specific forms of psychopathology, particularly with respect to lower intensity, subsyndromal levels of gambling. Findings suggest that stress may be particularly important to consider in the relationships between problem-gambling severity and substance use and Cluster-B disorders. Published by Elsevier B.V.

  14. Post-Traumatic Stress Disorder and severe maternal morbidity: is there an association?

    Science.gov (United States)

    Angelini, Carina R; Pacagnella, Rodolfo C; Parpinelli, Mary A; Silveira, Carla; Andreucci, Carla B; Ferreira, Elton C; Santos, Juliana P; Zanardi, Dulce M; Souza, Renato T; Cecatti, Jose G

    2018-01-01

    To evaluate the occurrence of Post-Traumatic Stress Disorder among women experiencing a severe maternal morbidity event and associated factors in comparison with those without maternal morbidity. In a retrospective cohort study, 803 women with or without severe maternal morbidity were evaluated at 6 months to 5 years postpartum for the presence of Post-Traumatic Stress Disorder. Interviews were conducted by telephone and electronic data was stored. Data analysis was carried out by using χ2, Fisher's Exact test, and logistic regression analysis. There was no significant change in the prevalence of Post-Traumatic Stress Disorder related to a previous severe maternal morbidity experience. There were also no differences in diagnostic criteria for severe maternal morbidity (hypertensive syndromes, hemorrhage, surgical intervention or intensive care unit admission required, among other management criteria). Low parity (2.5-fold risk) and increasing age were factors associated with Post-Traumatic Stress Disorder. A severe maternal morbidity episode is not associated with Post-Traumatic Stress Disorder symptoms within five years of the severe maternal morbidity event and birth. However, a more advanced maternal age and primiparity increased the risk of Post-Traumatic Stress Disorder. This does not imply that women who had experienced a severe maternal morbidity event did not suffer or need differentiated care.

  15. Health heat stress in the Porto Metropolitan Area – a matter of temperature or inadequate adaptation?

    Directory of Open Access Journals (Sweden)

    Monteiro, Ana

    2014-09-01

    Full Text Available The aim of this contribution is to understand the negative outcomes for human health during hot weather in a Mediterranean urban environment. Examining seasonal variations of thermal comfort in Porto, by Physiologically Equivalent Temperature (PET, and comparing expected and observed daily mortality (all causes and morbidity (all causes, respiratory and circulatory diseases, suggests that in southern Europe, people’s adaptation techniques for reducing heat stress and associated health risks need to be developed much further. Research already done in Porto shows that social and economic vulnerability must be included alongside with individual characteristics, like age, gender or genetics, when defining the thresholds above which negative health impacts begin to become severe. Findings from Porto show that a climate risk map is needed for every metropolitan area, with sufficient detail to give locally appropriate temperature thresholds taking into account both the local climate and the socio-economic conditions of every sector of the urban environment.

  16. Heat stress in chemical protective clothing: Porosity and vapour resistance

    NARCIS (Netherlands)

    Havenith, G.; Hartog, E.A. den; Martini, S.

    2011-01-01

    Heat strain in chemical protective clothing is an important factor in industrial and military practice. Various improvements to the clothing to alleviate strain while maintaining protection have been attempted. More recently, selectively permeable membranes have been introduced to improve

  17. Mild heat stress at a young age in Drosophila melanogaster leads to ...

    Indian Academy of Sciences (India)

    Unknown

    effect on stress resistance later in life, and on longevity. ... bouts of mild heat stress (3 h at 34°C) at a young age (days 2, 4 and 6 post-eclosion) or held under .... The mortality during the investigated lifespan .... at least during early senescence.

  18. Using Experts to Validate an Animal Specific Heat Stress Model for Feedlot Cattle

    Science.gov (United States)

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  19. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    Science.gov (United States)

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  20. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    Science.gov (United States)

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  1. Residual Stress Distribution In Heat Affected Zone Of Welded Steel By Means Of Neutron Diffraction Method

    International Nuclear Information System (INIS)

    Fajar, Andika; Prasuad; Gunawan; Muslich, M. Rifai

    1996-01-01

    Three dimensional residual stress distribution in the heat affected zone of 10 mm thick welded steel by means of neutron diffraction technique has been measured. The results showed that the residual stress was distributed near the welded metal, namely within about 46,25 mm. The major tensile stresses occurred in the X-direction, and they attained a level greater than 2000 MPa through the position far away fram the weld. The tensile stresses in the Y and Z- directions lied between 500 and 1500 MPa, The results also suggest that the stress in the surface was greater than that in the middle of the sample

  2. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress.

    Directory of Open Access Journals (Sweden)

    Scott M Thompson

    Full Text Available Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC, but lesions larger than 2-3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC. Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR dependent-protein kinase B (AKT survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3 and prognosis (AKT1. Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin.

  3. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  4. Critical heat flux for APR1400 lower head vessel during a severe accident

    International Nuclear Information System (INIS)

    Noh, Sang W.; Suh, Kune Y.

    2013-01-01

    Highlights: ► Studied boiling on downward-facing hemispherical vessel with asymmetric thermal insulator. ► Scaled the APR1400 lower head linearly down by 1/10 including ICI tubes and shear keys. ► Performed thermal analysis using ANSYS V11.0 to determine the internal temperature and heat flux. ► Performed tests to obtain the CHF with saturated demineralized water at atmospheric pressure. ► Measured CHF accounting for 3D random flow effect expected in the APR1400 application. -- Abstract: Corium Ablation Stopper Apparatus (CASA) has a downward-facing hemispherical vessel and geometrically asymmetric thermal insulator of the Advanced Power Reactor 1400 MWe (APR1400) scaled linearly down by 1/10, as well as sixty-one in-core instrumentation (ICI) tubes and four shear keys. The heated vessel plays a pivotal role in CASA depending on the configuration of the oxide pool and metal layer to bring about the focusing effect expected of a molten pool in the lower head during a severe accident. The heated vessel was designed through a trial-and-error method and thermal analysis. Thermal analysis was performed using ANSYS V11.0 to investigate the effect of the internal temperature and heat flux on the integral hemispherical copper vessel. The CASA tests were carried out to obtain the critical heat flux (CHF) with saturated and demineralized water at the atmospheric pressure (0.1 MPa). The CHF in the metal layer through the hemispherical channel was found to be lower than that in the ULPU-2400 configuration V data through the streamlined thermal insulator. The experimental CHF was measured and obtained through the CASA hemispherical heated surface accounting for the three-dimensional random flow effect expected in the APR1400 application

  5. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  6. The ties that bind: perceived social support, stress, and IBS in severely affected patients.

    Science.gov (United States)

    Lackner, J M; Brasel, A M; Quigley, B M; Keefer, L; Krasner, S S; Powell, C; Katz, L A; Sitrin, M D

    2010-08-01

    This study assessed the association between social support and the severity of irritable bowel syndrome (IBS) symptoms in a sample of severely affected IBS patients recruited to an NIH-funded clinical trial. In addition, we examined if the effects of social support on IBS pain are mediated through the effects on stress. Subjects were 105 Rome II diagnosed IBS patients (F = 85%) who completed seven questionnaires which were collected as part of a pretreatment baseline assessment. Partial correlations were conducted to clarify the relationships between social support and clinically relevant variables with baseline levels of psychopathology, holding constant number of comorbid medical diseases, age, gender, marital status, ethnicity, and education. Analyses indicated that social support was inversely related to IBS symptom severity. Social support was positively related with less severe pain. A similar pattern of data was found for perceived stress but not quality of life impairment. Regression analyses examined if the effects of social support on pain are mediated by stress. The effects of social support on bodily pain were mediated by stress such that the greater the social support the less stress and the less pain. This effect did not hold for symptom severity, quality of life, or psychological distress. This study links the perceived adequacy of social support to the global severity of symptoms of IBS and its cardinal symptom (pain). It also suggests that the mechanism by which social support alleviates pain is through a reduction in stress levels.

  7. Community violence exposure and severe posttraumatic stress in suburban American youth: risk and protective factors.

    Science.gov (United States)

    Löfving-Gupta, Sandra; Lindblad, Frank; Stickley, Andrew; Schwab-Stone, Mary; Ruchkin, Vladislav

    2015-04-01

    The psychological effects of community violence exposure among inner-city youth are severe, yet little is known about its prevalence and moderators among suburban middle-class youth. This study aimed to assess the prevalence of community violence exposure among suburban American youth, to examine associated posttraumatic stress and to evaluate factors related to severe vs. less severe posttraumatic stress, such as co-existing internalizing and externalizing problems, as well as the effects of teacher support, parental warmth and support, perceived neighborhood safety and conventional involvement in this context. Data were collected from 780 suburban, predominantly Caucasian middle-class high-school adolescents in the Northeastern US during the Social and Health Assessment (SAHA) study. A substantial number of suburban youth were exposed to community violence and 24% of those victimized by community violence developed severe posttraumatic stress. Depressive symptoms were strongly associated with higher levels and perceived teacher support with lower levels of posttraumatic stress. Similar to urban youth, youth living in suburban areas in North American settings may be affected by community violence. A substantial proportion of these youth reports severe posttraumatic stress and high levels of comorbid depressive symptoms. Teacher support may have a protective effect against severe posttraumatic stress and thus needs to be further assessed as a potential factor that can be used to mitigate the detrimental effects of violence exposure.

  8. Evaluating Effects of Heat Stress on Cognitive Function among Workers in a Hot Industry

    OpenAIRE

    Adel Mazloumi; Farideh Golbabaei; Somayeh Mahmood Khani; Zeinab Kazemi; Mostafa Hosseini; Marzieh Abbasinia; Somayeh Farhang Dehghan

    2014-01-01

    Background:Heat stress, as one of the most common occupational health problems, can impair operators' cognitive processes. The aim of this study was to evaluate the impact of thermal stress on cognitive function among workers in a hot industry. Methods: In this cross-sectional study conducted in Malibel Saipa Company in 2013, workers were assigned into two groups: one group were exposed to heat stress (n=35), working in casting unit and the other group working in machin-ing unit (n=35) wit...

  9. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  10. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  11. FoxO/Daf-16 restored thrashing movement reduced by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2014-04-01

    Many studies on thermotolerance have been done in Caenorhabditis elegans in order to extend survival under heat stress; Daf-16, a homolog of FoxO in C. elegans, was detected as the key factor in thermotolerance. However, the recovery process from heat stress damage has been seldom discussed. In this study, we analyzed the roles of FoxO/Daf-16 on the recovery from heat stress damage by monitoring thrashing movement. Heat shock reduced the movement, which was restored by culturing at 20°C. Thrashing movement was not restored in the daf-16 mutant, which suggests that Daf-16 is one of the essential factors in repairing the damage. Movement restoration was promoted in the daf-2 mutant, a homolog of insulin/IGF-1-like receptor, in a daf-16-dependent manner. In addition, heat stress decreased the expression of daf-28 and ins-7, agonists of Daf-2. Taken together, these results revealed that FoxO/Daf-16 removes heat stress damage and restores movement via inhibition of the insulin-like signaling pathway in C. elegans, suggesting that FoxO/Daf-16 plays a critical role in thermotolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia.

    Science.gov (United States)

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven

    2017-08-01

    To find appropriate regression model specifications for counts of the daily hospital admissions of a Sydney cohort and determine which human heat stress indices best improve the models' fit. We built parent models of eight daily counts of admission records using weather station observations, census population estimates and public holiday data. We added heat stress indices; models with lower Akaike Information Criterion scores were judged a better fit. Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; temperature and heatwave indices also modelled some health outcomes well. Humidity and heat-humidity indices better fit counts of patients who died following admission. Maximum sWBGT is an ideal measure of heat stress for these types of Sydney hospital admissions. Simple temperature indices are a good fallback where a narrower range of conditions is investigated. Implications for public health: This study confirms the importance of selecting appropriate heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions should use maximum sWBGT as a common measure of heat stress. Health organisations interested in short-range forecasting may prefer simple temperature indices. © 2017 The Authors.

  13. Microclimate Variation and Estimated Heat Stress of Runners in the 2020 Tokyo Olympic Marathon

    Directory of Open Access Journals (Sweden)

    Eichi Kosaka

    2018-05-01

    Full Text Available The Tokyo 2020 Olympic Games will be held in July and August. As these are the hottest months in Tokyo, the risk of heat stress to athletes and spectators in outdoor sporting events is a serious concern. This study focuses on the marathon races, which are held outside for a prolonged time, and evaluates the potential heat stress of marathon runners using the COMFA (COMfort FormulA Human Heat Balance (HBB Model. The study applies a four-step procedure: (a measure the thermal environment along the marathon course; (b estimate heat stress on runners by applying COMFA; (c identify locations where runners may be exposed to extreme heat stress; and (d discuss measures to mitigate the heat stress on runners. On clear sunny days, the entire course is rated as ‘dangerous’ or ‘extremely dangerous’, and within the latter half of the course, there is a 10-km portion where values continuously exceed the extremely dangerous level. Findings illustrate which stretches have the highest need for mitigation measures, such as starting the race one hour earlier, allowing runners to run in the shade of buildings or making use of urban greenery including expanding the tree canopy.

  14. Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia

    DEFF Research Database (Denmark)

    Pogačar, Tjaša; Črepinšek, Zalika; Kajfež Bogataj, Lučka

    2017-01-01

    Climate changes and the associated higher frequency of heat waves in Middle-European countries will aggravate occupational heat stress experienced by Slovenian workers. Appropriate behavioral adaptations are important coping strategies and it is pertinent to establish if knowledge among advisers...... and workers is sufficient and identify the symptoms experienced by workers. Therefore a survey including 230 farmers and 86 agricultural advisers was completed. Thermal comfort ranged from hot to extremely hot for 85 ± 5 % of farmers working outside and heat stress had a negative impact on well-being (74 ± 6...... with nausea or vomiting (19 ± 8 vs 9 ± 5 %). 81 ± 4 % of the responders reported that more time is required to complete tasks when the weather is hot. Nevertheless, 61 ± 6 % of farmers have never been informed of the impacts of heat stress and 29 ± 10 % of the agricultural advisers does not include...

  15. Managing heat and immune stress in athletes with evidence-based strategies.

    Science.gov (United States)

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  16. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  17. Impact of heat stress on crop yield—on the importance of considering canopy temperature

    International Nuclear Information System (INIS)

    Siebert, Stefan; Ewert, Frank; Eyshi Rezaei, Ehsan; Kage, Henning; Graß, Rikard

    2014-01-01

    Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 °C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994–2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield. (letter)

  18. Transient thermal stresses in composite hollow circular cylinder due to partial heat generation

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1979-01-01

    Clad materials are adopted for the machines and structures used in contact with high temperature, corrosive atmosphere in view of their strength and economy. Large thermal stress sometimes arises in clad cylinders due to uneaven temperature field and the difference in linear thermal expansion. Vessels are often heated uneavenly, and shearing stress occurs, which is not observed in uniform heating. In this study, infinitely long, concentric cylinders of two layers were analyzed, when the internal heat changing in stepped state is generated in cylindrical form. The unsteady thermal stress occurred was determined, using thermo-elastic potential and stress functions, and assuming the thermal properties and elastic modulus of materials as constant regardless of the temperature. Laplace transformation was used, and the basic equations for thermo-elastic displacement were employed as the basis of calculation. The analysis of the temperature distribution and stress is explained. Numerical calculation was carried out on the example of an internal cylinder of SUS 304 stainless steel and an external cylinder of mild steel. The maximum shearing stress occurred in the direction of 40 deg from the heat source, and was affected largely by the position of heat generation. The effect became remarkable as time elapsed. (Kako, I.)

  19. Comparative transcriptional analysis of clinically relevant heat stress response in Clostridium difficile strain 630.

    Directory of Open Access Journals (Sweden)

    Nigel G Ternan

    Full Text Available Clostridium difficile is considered to be one of the most important causes of health care-associated infections worldwide. In order to understand more fully the adaptive response of the organism to stressful conditions, we examined transcriptional changes resulting from a clinically relevant heat stress (41 °C versus 37 °C in C. difficile strain 630 and identified 341 differentially expressed genes encompassing multiple cellular functional categories. While the transcriptome was relatively resilient to the applied heat stress, we noted upregulation of classical heat shock genes including the groEL and dnaK operons in addition to other stress-responsive genes. Interestingly, the flagellin gene (fliC was downregulated, yet genes encoding the cell-wall associated flagellar components were upregulated suggesting that while motility may be reduced, adherence--to mucus or epithelial cells--could be enhanced during infection. We also observed that a number of phage associated genes were downregulated, as were genes associated with the conjugative transposon Tn5397 including a group II intron, thus highlighting a potential decrease in retromobility during heat stress. These data suggest that maintenance of lysogeny and genome wide stabilisation of mobile elements could be a global response to heat stress in this pathogen.

  20. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  1. A study on the mechanical stress relieving and safety assessment without post-weld heat treatment

    International Nuclear Information System (INIS)

    Xu Jijin; Chen Ligong; Ni Chunzhen

    2007-01-01

    For full welded body valve, the temperature of grommet cannot exceed 150 deg. C in order to prevent it from damaging and assure the tightness and the service life of valve. Therefore, post-weld heat treatment (PWHT) cannot be used to relieve the residual stresses. In this study, the effect of the mechanical stress relieving (MSR) treatment on the residual stresses was studied by the finite element method and experimental work. A pressure and time diagram of MSR treatment was established. A two-dimensional axisymmetric finite element model was used to simulate the residual stresses field. Before and after MSR treatment, the residual stresses on the outer surface were measured by the blind hole drilling method. Finally, the fracture toughness behaviors of weld zone (WZ) and heat affected zone (HAZ) were investigated in terms of crack tip opening displacement (CTOD) according to BS7448 and DNV-OS-C401 fracture toughness tests standards. The safety of the valve in active service was assessed without PWHT. Through comparison and analysis, the axial residual stresses and the hoop residual stresses on the outer surface of valve are mainly tensile. The peak value of tensile stress occurs nearer to the outer surface of the valve. MSR treatment can decrease the peak value of axial residual stresses and hoop residual stresses on the outer surface obviously and make the residual stresses distribution more uniform. The safety of the valve in active service is reliable without PWHT

  2. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...... heat tolerance characteristics as compared to the other three cultivars. The largest decrease in Fv/Fm and F′q/F′m after heat stress occurred in the cultivar PWS7, which did not recover completely after 72 h. All cultivars grown at 25 °C had a slightly increased heat tolerance and better recovery...

  3. Effect of heat treatment on bend stress relaxation of pure tungsten

    International Nuclear Information System (INIS)

    Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira

    2013-01-01

    Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature

  4. Ocular blood flow decreases during passive heat stress in resting humans.

    Science.gov (United States)

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-12-06

    Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Ocular blood flow, end-tidal carbon dioxide (P(ET)CO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35 °C (normothermia) for 30 min and (2) at 50 °C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects' blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively. The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.

  5. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    Science.gov (United States)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a

  6. Residual stresses and their mechanisms of production at circumferential weld by heat-sink welding

    International Nuclear Information System (INIS)

    Ueda, Yukio; Nakacho, Keiji; Ohkubo, Katsumi; Shimizu, Tsubasa.

    1983-01-01

    In the previous report, the authors showed effectiveness of the heat-sink welding (water cooling) to accomplish this end by conducting theoretical analysis and an experiment on residual stresses in the 4B pipe of SUS 304 by the conventional welding and the heat-sink welding at a certain standard heat-input condition. In this research, different pipe sizes and varied heat-input are applied. The welding residual stresses by the conventional welding and the heat-sink welding are obtained by the theoretical analysis and their production mechanisms are clarified. Hence the influence of the above changes of conditions on effectiveness of the heat-sink welding is investigated. The main results are summarized as follow. (1) In case of this pipes such as 2B and 4B pipes, it is important to minimize heat-input per one pass (especially for latter half passes) in order to improve the effectiveness of the heat-sink welding. The effectiveness can be predicted either by theoretical analysis of the temperature distribution history with consideration of the characteristic of heat transfer under spray-watering or by experimental measurement. (2) In case of 24B pipes, thick pipes, it is desirable to minimize heat-input for the first half passes, by which the heat-sink welding becomes more effective. In addition, no matter whether the conventional welding or the heat-sink welding, it is important to prevent angular distorsion which produces tensile axial stresses on the inner surface of the pipe in the weld zone. Possible measures to meet these requirements are to apply restraining jigs, to minimize the section area of the groove (ex. application of the narrow gap arc welding), and to change continuous welding to skip one. (J.P.N.)

  7. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    Science.gov (United States)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  8. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  9. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    Science.gov (United States)

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  10. A Comparative Proteomic Analysis of Pinellia ternata Leaves Exposed to Heat Stress

    Directory of Open Access Journals (Sweden)

    Zuoyi Liu

    2013-10-01

    Full Text Available Pinellia ternata is an important traditional Chinese medicinal plant. The growth of P. ternata is sensitive to high temperatures. To gain a better understanding of heat stress responses in P. ternata, we performed a comparative proteomic analysis. P. ternata seedlings were subjected to a temperature of 38 °C and samples were collected 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress was frequently generated in rice leaves exposed to high temperature. Two-dimensional electrophoresis (2-DE was used to analyze heat-responsive proteins. More than 600 protein spots were reproducibly detected on each gel; of these spots, 20 were up-regulated, and 7 were down-regulated. A total of 24 proteins and protein species were successfully identified by MALDI-TOF/TOF MS. These proteins and protein species were found to be primarily small heat shock proteins (58% as well as proteins involved in RNA processing (17%, photosynthesis (13%, chlorophyll biosynthetic processes (4%, protein degradation (4% and defense (4%. Using 2-DE Western blot analysis, we confirmed the identities of the cytosolic class II small heat shock protein (sHSPs-CII identified by MS. The expression levels of four different proteins [cytosolic class I small heat shock protein (sHSPs-CI, sHSPs-CII, mitochondrial small heat shock protein (sHSPs-MIT, glycine-rich RNA-binding protein (GRP] were analyzed at the transcriptional level by quantitative real-time PCR. The mRNA levels of three sHSPs correlated with the corresponding protein levels. However, GRP was down-regulated at the beginning of heat stress but then increased substantially to reach a peak after 24 h of heat stress. Our study provides valuable new insight into the responses of P. ternata to heat stress.

  11. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers.

    Science.gov (United States)

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-05-20

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  12. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.

    Science.gov (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani

    2018-05-18

    Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.

  13. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers

    Directory of Open Access Journals (Sweden)

    Xiaoli Hao

    2016-05-01

    Full Text Available Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  14. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 2: Physiological Indicators.

    Science.gov (United States)

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat

  15. Heat up and potential failure of BWR upper internals during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  16. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Directory of Open Access Journals (Sweden)

    Abdallah I. A.

    2009-07-01

    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  17. Prion-based memory of heat stress in yeast.

    Science.gov (United States)

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  18. Pulmonary artery and intestinal temperatures during heat stress and cooling

    DEFF Research Database (Denmark)

    Pearson, James; Ganio, Matthew S; Seifert, Thomas

    2012-01-01

    In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used...

  19. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  20. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  1. First wall thermal stress analysis for suddenly applied heat fluxes

    International Nuclear Information System (INIS)

    Dalessandro, J.A.

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably

  2. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  3. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    Science.gov (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  4. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  5. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  6. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  7. Blood Biochemistry and Plasma Corticosterone Concentration in Broiler Chickens Under Heat Stress

    Directory of Open Access Journals (Sweden)

    Elvis Alexander Díaz López

    2014-07-01

    Full Text Available High ambient temperatures cause susceptibility to heat stress in broiler chickens, generating metabolic changes. This paper seeks to determine the changes in blood biochemistry and plasma corticosterone concentration, as well as in glucose, total protein, albumin, globulin, sodium, chlorine, potassium, magnesium, phosphorus, and calcium in broiler chickens under chronic heat stress and at ambient temperature conditions at the Colombian Amazonian piedmont. 21-days-old male chickens of two lines were studied, distributed in an unrestricted random design, in a two-factor scheme, with four treatments. Five repetitions per treatment were performed, and 25 animals per experimental unit examined. Broilers were fed a basic diet of corn and soybean meal with 3,100 kcal ME and 19.5% protein until they reached 42 days of age. The line factor had no effect on the evaluated variables (p ≥ 0.05. However, there was statistically significant difference (p ≤ 0.05 in all variables when concentrations of metabolites in broilers under chronic heat stress were compared to those of chickens exposed to ambient temperatures at the Colombian Amazon piedmont. In conclusion, blood biochemistry suffered significant changes under both experimental temperatures, with more physiological detriment in broilers under chronic heat stress. Concentration of corticosterone became the most sensitive and consistent indicator of the physiological condition of chronic heat stress.

  8. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    Science.gov (United States)

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  9. How a retrotransposon exploits the plant's heat stress response for its activation.

    Directory of Open Access Journals (Sweden)

    Vladimir V Cavrak

    2014-01-01

    Full Text Available Retrotransposons are major components of plant and animal genomes. They amplify by reverse transcription and reintegration into the host genome but their activity is usually epigenetically silenced. In plants, genomic copies of retrotransposons are typically associated with repressive chromatin modifications installed and maintained by RNA-directed DNA methylation. To escape this tight control, retrotransposons employ various strategies to avoid epigenetic silencing. Here we describe the mechanism developed by ONSEN, an LTR-copia type retrotransposon in Arabidopsis thaliana. ONSEN has acquired a heat-responsive element recognized by plant-derived heat stress defense factors, resulting in transcription and production of full length extrachromosomal DNA under elevated temperatures. Further, the ONSEN promoter is free of CG and CHG sites, and the reduction of DNA methylation at the CHH sites is not sufficient to activate the element. Since dividing cells have a more pronounced heat response, the extrachromosomal ONSEN DNA, capable of reintegrating into the genome, accumulates preferentially in the meristematic tissue of the shoot. The recruitment of a major plant heat shock transcription factor in periods of heat stress exploits the plant's heat stress response to achieve the transposon's activation, making it impossible for the host to respond appropriately to stress without losing control over the invader.

  10. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  11. Reef calcifiers are adapted to episodic heat stress but vulnerable to sustained warming.

    Science.gov (United States)

    Stuhr, Marleen; Reymond, Claire E; Rieder, Vera; Hallock, Pamela; Rahnenführer, Jörg; Westphal, Hildegard; Kucera, Michal

    2017-01-01

    Shallow marine ecosystems naturally experience fluctuating physicochemical conditions across spatial and temporal scales. Widespread coral-bleaching events, induced by prolonged heat stress, highlight the importance of how the duration and frequency of thermal stress influence the adaptive physiology of photosymbiotic calcifiers. Large benthic foraminifera harboring algal endosymbionts are major tropical carbonate producers and bioindicators of ecosystem health. Like corals, they are sensitive to thermal stress and bleach at temperatures temporarily occurring in their natural habitat and projected to happen more frequently. However, their thermal tolerance has been studied so far only by chronic exposure, so how they respond under more realistic episodic heat-event scenarios remains unknown. Here, we determined the physiological responses of Amphistegina gibbosa, an abundant western Atlantic foraminifera, to four different treatments--control, single, episodic, and chronic exposure to the same thermal stress (32°C)--in controlled laboratory cultures. Exposure to chronic thermal stress reduced motility and growth, while antioxidant capacity was elevated, and photosymbiont variables (coloration, oxygen-production rates, chlorophyll a concentration) indicated extensive bleaching. In contrast, single- and episodic-stress treatments were associated with higher motility and growth, while photosymbiont variables remained stable. The effects of single and episodic heat events were similar, except for the presumable occurrence of reproduction, which seemed to be suppressed by both episodic and chronic stress. The otherwise different responses between treatments with thermal fluctuations and chronic stress indicate adaptation to thermal peaks, but not to chronic exposure expected to ensue when baseline temperatures are elevated by climate change. This firstly implies that marine habitats with a history of fluctuating thermal stress potentially support resilient

  12. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  13. Evaluation of heat stress in dry cleaner units:A case study in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Javad Malakouti

    2016-04-01

    Full Text Available Background & Aims of the Study: Nowadays, heat stress is one of the most harmful physical agents in workplaces. According to the consequences of heat stress and have no information about it in Qom dry cleaner units, Iran, this study have been designed to evaluate the heat stress among workers of dry cleaner units in Qom province of Iran, in Jul-Aug 2011. Materials & Methods: This cross-sectional study was conducted in 113 units of active dry cleaner units. WBGT (Wet Bulb Globe Temperature index was selected for heat stress evaluation. In order to measure the requisite parameters, WBGT meter made of Casella Company had been used according to ISO 7243. Data had been analyzed according to Occupational Exposure Limits (OELs with SPSS V.16, using analysis of variance, independent T and LSD tests. Results: The average of WBGT index in Qom dry cleaner units of Iran were 28.98±1.64 °C. The average of WBGT index in 66.4% of units was up to 28°C. The average of relative humidity was 42.86%, the average of wet bulb temperature and globe temperature were 25.56°C and 36.72°C, respectively. The findings showed a significant correlation between the average of WBGT index and the standard recommendation level (p<0.0001. In dry cleaner units with less than 10 m2 area, heat stress was higher than other units  significantly (p<0.05. Conclusions: Heat stress in many dry cleaner units in Qom, Iran, was more than recommended OELs. Because of wet bulb and globe temperature in units were high value, the most important measures to heat controls, are technical engineering controls such as  radiation shield, insulation on boilers and modify the cooling systems.

  14. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  15. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Science.gov (United States)

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  16. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2018-02-01

    Full Text Available Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis.

  17. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions.

    Science.gov (United States)

    Ahmad, T; Khalid, T; Mushtaq, T; Mirza, M A; Nadeem, A; Babar, M E; Ahmad, G

    2008-07-01

    The effect of water supplementation of KCl on performance of heat-stressed Hubbard broilers was evaluated in the present experiment. The 3 experimental treatments (i.e., control, 0.3 and 0.6% KCl) were allocated to 3 replicates of 15 birds each. The control group was kept on dugout tap water, whereas the other 2 groups were supplied water supplemented with 0.3 and 0.6% KCl (wt/vol) by supplementing 3 and 6 g of KCl, respectively, per liter of drinking water. Broilers were provided ad libitum access to feed and water for the experimental period of 7 to 42 d of age and kept in open-sided house. The birds were reared under continuous thermostress (minimum 28.2 +/- 1.02 and maximum 37.5 +/- 0.78 degrees C) environment. Supplementing drinking water with 0.6% KCl reduced panting-phase blood pH to 7.31 and significantly increased live BW gain by 14.5 (P = 0.036) and 7.9% (P = 0.029) at 28 and 42 d of age, respectively, relative to control. An improved (P = 0.04) feed:gain and lowered body temperature were noted in groups supplemented with 0.6% KCl as compared with control and 0.3% KCl. Enhanced physiological adaptation with 0.6% KCl was evidenced by a more favorable pH during the panting phase in the present study. These findings demonstrated a possibility of better broiler live performance through KCl supplementation under conditions of severe heat stress (35 to 38 degrees C).

  18. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    Science.gov (United States)

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Diurnal gradual heat stress affects antioxidant enzymes, proline ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... to non-toxic levels by catabolizing it to water and oxygen. (Mittler ... within hours, unlike drought and salinity stresses. Therefore ... mechanism of response of cotton to elevated ..... Copper enzymes in isolated chloroplasts; polyphenol- .... transcription factor-dependent expression and activity of ascorbate.

  20. Indirect calorimetry: assessing animal response to heat and cold stress

    NARCIS (Netherlands)

    Gaughan, J.B.; Heetkamp, M.J.W.; Hendriks, P.

    2015-01-01

    Calorimetric thermal stress studies where indirect calorimetry is used as a tool to estimate energy expenditure have been undertaken since this technique was developed. Some examples of these studies are presented in this chapter. The measurement of gas exchange by means of an open-circuit

  1. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress.

    Science.gov (United States)

    Tu, Wei-Lin; Cheng, Chuen-Yu; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2016-02-01

    Acute heat stress severely impacts poultry production. The hypothalamus acts as a crucial center to regulate body temperature, detect temperature changes, and modulate the autonomic nervous system and endocrine loop for heat retention and dissipation. The purpose of this study was to investigate global gene expression in the hypothalamus of broiler-type B strain Taiwan country chickens after acute heat stress. Twelve 30-week-old hens were allocated to four groups. Three heat-stressed groups were subjected to acute heat stress at 38 °C for 2 hours without recovery (H2R0), with 2 hours of recovery (H2R2), and with 6 hours of recovery (H2R6). The control hens were maintained at 25 °C. At the end, hypothalamus samples were collected for gene expression analysis. The results showed that 24, 11, and 25 genes were upregulated and 41, 15, and 42 genes were downregulated in H2R0, H2R2, and H2R6 treatments, respectively. The expressions of gonadotropin-releasing hormone 1 (GNRH1), heat shock 27-kDa protein 1 (HSPB1), neuropeptide Y (NPY), and heat shock protein 25 (HSP25) were upregulated at all recovery times after heat exposure. Conversely, the expression of TPH2 was downregulated at all recovery times. A gene ontology analysis showed that most of the differentially expressed genes were involved in biological processes including cellular processes, metabolic processes, localization, multicellular organismal processes, developmental processes, and biological regulation. A functional annotation analysis showed that the differentially expressed genes were related to the gene networks of responses to stress and reproductive functions. These differentially expressed genes might be essential and unique key factors in the heat stress response of the hypothalamus in chickens. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows

    Science.gov (United States)

    Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows. PMID:25938406

  3. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Science.gov (United States)

    Lamp, Ole; Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd; Kuhla, Björn

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  4. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  5. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charlotte M [ORNL; Yang, Shihui [ORNL; Rodriguez, Jr., Miguel [ORNL; Ma, Qin [University of Georgia, Athens, GA; Johnson, Courtney M [ORNL; Dice, Lezlee T [ORNL; Xu, Ying [University of Georgia, Athens, GA; Brown, Steven D [ORNL

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate general and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests the

  6. Antioxidant properties of the mung bean flavonoids on alleviating heat stress.

    Directory of Open Access Journals (Sweden)

    Dongdong Cao

    Full Text Available BACKGROUND: It is a widespread belief in Asian countries that mung bean soup (MBS may afford a protective effect against heat stress. Lack of evidence supports MBS conferring a benefit in addition to water. RESULTS: Here we show that vitexin and isovitexin are the major antioxidant components in mungbean (more than 96% of them existing in the bean seed coat, and both of them could be absorbed via gavage into rat plasma. In the plasma of rats fed with mungbean coat extract before or after exposure to heat stress, the levels of malonaldehyde and activities of lactate dehydrogenase and nitric oxide synthase were remarkably reduced; the levels of total antioxidant capacity and glutathione (a quantitative assessment of oxidative stress were significantly enhanced. CONCLUSIONS: Our results demonstrate that MBS can play additional roles to prevent heat stress injury. Characterization of the mechanisms underlying mungbean beneficial effects should help in the design of diet therapy strategies to alleviate heat stress, as well as provide reference for searching natural medicines against oxidative stress induced diseases.

  7. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance.

    Science.gov (United States)

    Ahmed, B M S; Younas, U; Asar, T O; Dikmen, S; Hansen, P J; Dahl, G E

    2017-08-01

    Maternal heat stress during late gestation affects calf function during postnatal life. The objective of the present study was to evaluate whether calves that experience heat stress in utero have altered thermoregulatory responses to acute heat stress later in life. Specifically, the hypothesis was that heat stress in utero would improve the response to acute heat stress at maturity. Females were born to dams exposed to heat stress or cooled during late gestation preceding their birth. All animals were raised postnatally under identical management. Twelve lactating Holstein cows that were exposed to in utero heat stress (HT) and 12 that were exposed to in utero control (CON) were used. A heat stress challenge was conducted in 3 blocks using 4 HT and 4 CON cows matched according to milk yield, stage of lactation, and parity. Each challenge consisted of transfer from a barn with shade and evaporative cooling to one with shade but no additional cooling for 48 h. The challenge was replicated twice for each block. Sweating rate, respiration rate, rectal temperature (RT), and skin temperature were measured on each cow at 0900, 1100, 1300, 1500, and 1700 h for 2 consecutive days. Mean ambient temperature across 6 challenge days was 26.15 ± 4.75°C. Tendencies for differences at 1700 h were observed between treatments for RT (HT: 39.5 ± 0.1; CON: 39.6 ± 0.1°C; = 0.065), however, there was no difference in respiration rate (HT: 77.6 ± 1.6; CON: 79.5 ± 1.6 bpm; = 0.85). Sweating rate for shaved skin (HT: 29.4 ± 2.0; CON: 36.0 ± 2.0 g/mh; = 0.057) and for non-shaved skin (HT: 22.5 ± 1.5; CON: 29.2 ± 1.2 g/mh; = 0.01) differed between groups. However, there was no effect on skin temperature at the shaved location (HT: 36.2 ± 0.2; CON: 36.0 ± 0.2°C; = 0.81), but there was a tendency for differences for the non-shaved area (HT: 35.4 ± 0.2; CON: 34.9 ± 0.2°C; = 0.097). Cows that underwent in utero heat stress had greater skin temperature at 1700 h vs. in utero

  8. Passive decay heat removal by natural air convection after severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, F.J.; Neitzel, H.J. [Forschungszentrum Karlsruhe Institut fur Angewandte Thermo- und Fluiddynamik, Karlsruhe (Germany); Cheng, X. [Technische Universitaet Karlsruhe Institut fur Stroemungslehre und Stroemungsmaschinen, Karlsruhe (Germany)

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  9. Heat adaptation from regular hot water immersion decreases proinflammatory responses, HSP70 expression, and physical heat stress.

    Science.gov (United States)

    Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping

    2017-10-01

    Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    Science.gov (United States)

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  11. Potential applications of heat and cold stress indices to sporting events.

    Science.gov (United States)

    Moran, D S

    2001-01-01

    Many recreational and elite athletes participate in sporting events every year. However, when these events are conducted under hostile environmental conditions, whether in cold or hot climates, the risk for environmental illnesses increases. The higher the stress, the greater is the potential for performance decrements, injuries and illnesses. The most common expected heat illnesses are heat exhaustion and heatstroke, whereas hypothermia and frostbite are the most common cold injuries. However, heat and cold stress indices can minimise the risk for environmental illnesses and dehydration by following the recommendations and guidelines which accompany these indices. Stress indices should be used by athletes, coaches and officials to prevent injury and improve safety conditions for competitors and participants in recreational activities. All participants should be made aware of warning signs, susceptibility and predisposing conditions. Coaches should be aware of their responsibility with regard to the safety of their trainees, and officials should organise and plan events at times that are likely to be of low environmental stress. However, they must also be prepared and equipped with the means necessary to reduce injuries and treat cases of collapse and environmental illnesses. The lack of a friendly, small and simple device for environmental stress assessment is probably the main reason why stress indices are not commonly used. We believe that developing a new portable heat and cold stress monitor in wristwatch format for use by those exposed to environmental stress could help in the decision making process of expected hazards caused by exercising and working in hostile environments, and might help prevent heat and cold illnesses.

  12. Case studies on heat stress related perceptions in different industrial sectors in southern India.

    Science.gov (United States)

    Balakrishnan, Kalpana; Ramalingam, Ayyappan; Dasu, Venkatesan; Stephen, Jeremiah Chinnadurai; Sivaperumal, Mohan Raj; Kumarasamy, Deepan; Mukhopadhyay, Krishnendu; Ghosh, Santu; Sambandam, Sankar

    2010-11-29

    Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management.Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions.Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative controls in the industries

  13. Case studies on heat stress related perceptions in different industrial sectors in southern India

    Directory of Open Access Journals (Sweden)

    Kalpana Balakrishnan

    2010-11-01

    Full Text Available Linkages between thermal loads and its physiological consequences have been widely studied in non-tropical developed country settings. In many developing countries like India, despite the widespread recognition of the problem, limited attempts have been made to estimate health impacts related to occupational heat stress and fewer yet to link heat stress with potential productivity losses. This is reflected in the ubiquity of workplaces with limited or no controls to reduce exposures. As a prelude to understanding the feasibility of alternative interventions in different industrial sectors, we present case studies from 10 different industrial units in Tamil Nadu, Chennai, which describe perceptions of occupational heat stress among the workers and supervisors/management.Units were selected from among those who had previously requested an assessment of workplace heat stress exposure at select locations as part of routine industrial hygiene services provided by the investigators. Since the earlier measurements were performed in response to a management request, all units were revisited to generate a simple job and process profile using checklists in order to understand the overall heat exposure situation in the concerned unit. This was followed by a simple questionnaire administration to a small subsample of employees to evaluate the perceptions of workers and supervisors/management. Finally, we retrieved available quantitative data from previous measurements of heat stress at these units to correlate prevalence of exposures with respective perceptions.Results indicate that the existing level of controls may not be sufficient for managing work-related heat stress in any of the sectors studied, with wide variations in perceived risks. There was a noticeable disconnect between worker's perceptions and their ability to secure workplace improvements related to heat stress from the management. Wider availability of engineering and administrative

  14. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    Science.gov (United States)

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  15. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  16. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  17. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.

    Science.gov (United States)

    Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko

    2016-04-01

    We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.

  18. Age differences in emotional responses to daily stress: the role of timing, severity, and global perceived stress.

    Science.gov (United States)

    Scott, Stacey B; Sliwinski, Martin J; Blanchard-Fields, Fredda

    2013-12-01

    Research on age differences in emotional responses to daily stress has produced inconsistent findings. Guided by recent theoretical advances in aging theory (S. T. Charles, 2010, Strength and vulnerability integration: A model of emotional well-being across adulthood, Psychological Bulletin, Vol. 136, pp. 1068-1091) that emphasize the importance of context for predicting when and how age is related to affective well-being, the current study examined age differences in emotional responses to everyday stressors. The present study examined how three contextual features (e.g., timing of exposure, stressor severity, global perceived stress [GPS]) moderate age differences in emotional experience in an ecological momentary assessment study of adults (N = 190) aged 18-81 years. Results indicated that older adults' negative affect (NA) was less affected by exposure to recent stressors than younger adults, but that there were no age differences in the effects of stressor exposure 3-6 hr afterward. Higher levels of GPS predicted amplified NA responses to daily stress, and controlling for GPS eliminated age differences in NA responses to stressors. No age differences in NA responses as a function of stressor severity were observed. In contrast, older age was associated with less of a decrease in PA when exposed to recent stressors or with more severe recent stressors. There were no age differences in the effect of previous stressor exposure or severity on PA, or any interactions between momentary or previous stress and GPS on PA. Together, these results support the notion that chronic stress plays a central role in emotional experience in daily life. We discuss the implications of these results for emotion theories of aging. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Study of thermal stress in heat affected zones during welding

    International Nuclear Information System (INIS)

    Devaux, J.C.

    1979-01-01

    The importance of applications of welding in the nuclear industry leads to the study of the main problem concerning metal welding: sensibility to cracking. The development of computation methods allows the numerical simulation of welding effects. Due to the complexity of this problem, it is divided in three steps: thermal, metallurgical and mechanical calculus. Interactions between the 3 steps are examined. Mathematical models necessary to get residual stress (i.e. stress remaining when welding is completed and structure at ambient temperature) are described. Then parameters for metallurgical structure determination are given and compared to experiments. A508 and A533 type steels of primary coolant circuit of PWR reactors are taken as examples and the numerical simulation of a test is presented [fr

  20. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  1. Coupled heat conduction and thermal stress formulation using explicit integration

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kulak, R.F.

    1982-06-01

    The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data

  2. Parenting stress in pediatric IBD: relations with child psychopathology, family functioning, and disease severity.

    Science.gov (United States)

    Gray, Wendy N; Graef, Danielle M;